aboutsummaryrefslogtreecommitdiff
path: root/bench.tcl
blob: 6f142dc428d30b9cb4f18442b9b0f10fca4d1034 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
set batchmode 0
set benchmarks {}
# Run each benchmark for this long (ms)
# Can be changed with the -time parameter
set benchtime 1000

# If the timerate command doesn't exist, implement it in Tcl
if {[info commands timerate] eq ""} {
    proc timerate {script {ms 1000}} {
        set start [clock micros]
        set stop [expr {$start + $ms * 1000}]
        set count 0
        while {1} {
            uplevel 1 $script
            incr count
            set now [clock micros]
            if {$now >= $stop} {
                break
            }
        }
        set elapsed [expr {$now - $start}]

        # Now try to account for the Tcl overhead
        set start [clock micros]
        set n 0
        while {1} {
            uplevel 1 {}
            incr n
            set now [clock micros]
            if {$n >= $count} {
                break
            }
        }
        set elapsed [expr {$elapsed - ($now - $start)}]

        list us_per_iter [expr {1.0 * $elapsed / $count}] iters_per_sec [expr {1e6 * $count / $elapsed}] \
            count $count elapsed_us $elapsed
    }
}

proc format_us_time {us} {
    set units {2 {ps 1e6} 1 {ns 1e3} 0 {us 1} -1 {ms 1e-3} -2 {s 1e-6}}

    if {$us >= 1e8} {
            # >= 100 seconds
            return [format "%.0fs" [expr {$us / 1e6}]]
    }

    # Avoid using log10 here in case math functions aren't enabled

    # How many digits to the left of the decimal place?
    lassign [split [format %e $us] e] - exp
    # Work around Tcl's stupid auto-octal detection
    set exp [regsub -all {([-+])(0+)?(\d)} $exp {\1\3}]
    set leftdigits [expr {$exp + 1}]
    #set leftdigits [expr {int(floor(log10($us)) + 1)}]
    #puts "$leftdigits1 $leftdigits"
    # Work out how much to shift by, in increments of 10^3
    set shift3 [expr {(-$leftdigits / 3) + 1}]
    set shift [expr {$shift3 * 3}]
    # Always show 3 significant digits
    set decimals [expr {3 - ($leftdigits + $shift)}]
    lassign [dict get $units $shift3] name mult
    set value [expr {$us * $mult}]
    return [format "%.${decimals}f%s" $value $name]
}

proc bench {title script} {
    global benchmarks batchmode

    set Title [string range "$title                     " 0 20]

    catch {collect}
    set failed [catch {timerate $script $::benchtime} res]
    if {$failed} {
        if {!$batchmode} {puts "$Title - This test can't run on this interpreter ($res)"}
        lappend benchmarks $title F
    } else {
        set us [dict get $res us_per_iter]
        set count [dict get $res count]
        set ms [expr {$us / 1000}]
        lappend benchmarks $title $ms
        if {!$batchmode} { puts "$Title - [format_us_time $us] per iteration" }
    }
    catch { collect }
}

### BUSY LOOP ##################################################################

proc whilebusyloop {n} {
    set i 0
    while {$i < $n} {
        set a $i
        incr i
    }
}

proc forbusyloop {n} {
    for {set i 0} {$i < $n} {incr i} {
        set a $i
    }
}

proc loopbusyloop {n} {
    loop i 0 $n {
        set a $i
    }
}

### FIBONACCI ##################################################################

proc fibonacci {x} {
    if {$x <= 1} {
	expr 1
    } else {
	expr {[fibonacci [expr {$x-1}]] + [fibonacci [expr {$x-2}]]}
    }
}

### HEAPSORT ###################################################################

set IM 139968
set IA   3877
set IC  29573

set last 42

proc make_gen_random {} {
    global IM IA IC
    set params [list IM $IM IA $IA IC $IC]
    set body [string map $params {
        global last
        expr {($max * [set last [expr {($last * IA + IC) % IM}]]) / IM}
    }]
    proc gen_random {max} $body
}

proc heapsort {ra_name} {
    upvar 1 $ra_name ra
    set n [llength $ra]
    set l [expr {$n / 2}]
    set ir [expr {$n - 1}]
    while 1 {
        if {$l} {
            set rra [lindex $ra [incr l -1]]
        } else {
	    set rra [lindex $ra $ir]
	    lset ra $ir [lindex $ra 0]
	    if {[incr ir -1] == 0} {
                lset ra 0 $rra
		break
            }
        }
	set i $l
	set j [expr {(2 * $l) + 1}]
        while {$j <= $ir} {
	    set tmp [lindex $ra $j]
	    if {$j < $ir} {
		if {$tmp < [lindex $ra [expr {$j + 1}]]} {
		    set tmp [lindex $ra [incr j]]
		}
	    }
            if {$rra >= $tmp} {
		break
	    }
	    lset ra $i $tmp
	    incr j [set i $j]
        }
        lset ra $i $rra
    }
}

proc heapsort_main {n} {
    make_gen_random

    set data {}
    for {set i 1} {$i <= $n} {incr i} {
	lappend data [gen_random 1.0]
    }
    heapsort data
}

### SIEVE ######################################################################

proc sieve {num} {
    while {$num > 0} {
	incr num -1
	set count 0
	for {set i 2} {$i <= 8192} {incr i} {
	    set flags($i) 1
	}
	for {set i 2} {$i <= 8192} {incr i} {
	    if {$flags($i) == 1} {
		# remove all multiples of prime: i
		for {set k [expr {$i+$i}]} {$k <= 8192} {incr k $i} {
		    set flags($k) 0
		}
		incr count
	    }
	}
    }
    return $count
}

proc sieve_dict {num} {
    while {$num > 0} {
	incr num -1
	set count 0
	for {set i 2} {$i <= 8192} {incr i} {
	    dict set flags $i 1
	}
	for {set i 2} {$i <= 8192} {incr i} {
	    if {[dict get $flags $i] == 1} {
		# remove all multiples of prime: i
		for {set k [expr {$i+$i}]} {$k <= 8192} {incr k $i} {
		    dict set flags $k 0
		}
		incr count
	    }
	}
    }
    return $count
}

### ARY ########################################################################

proc ary n {
    for {set i 0} {$i < $n} {incr i} {
	set x($i) $i
    }
    set last [expr {$n - 1}]
    for {set j $last} {$j >= 0} {incr j -1} {
	set y($j) $x($j)
    }
}

proc ary_dict n {
    for {set i 0} {$i < $n} {incr i} {
	dict set x $i $i
    }
    set last [expr {$n - 1}]
    for {set j $last} {$j >= 0} {incr j -1} {
	dict set y $j $x($j)
    }
}

proc ary_static n {
    for {set i 0} {$i < $n} {incr i} {
        set a(b) $i
        set a(c) $i
    }
}

### REPEAT #####################################################################

proc repeat {n body} {
    for {set i 0} {$i < $n} {incr i} {
	uplevel 1 $body
    }
}

proc use_repeat {n} {
    set x 0
    repeat $n {incr x}
}

### UPVAR ######################################################################

proc myincr varname {
    upvar 1 $varname x
    incr x
}

proc upvartest {n} {
    set y 0
    for {set x 0} {$x < $n} {myincr x} {
	myincr y
    }
}

### NESTED LOOPS ###############################################################

proc nestedloops {n} {
    set x 0
    incr n 1
    set a $n
    while {[incr a -1]} {
	set b $n
	while {[incr b -1]} {
	    set c $n
	    while {[incr c -1]} {
		set d $n
		while {[incr d -1]} {
		    set e $n
		    while {[incr e -1]} {
			set f $n
			while {[incr f -1]} {
			    incr x
			}
		    }
		}
	    }
	}
    }
}

### ROTATE #####################################################################

proc rotate {count} {
    set v 1
    for {set n 0} {$n < $count} {incr n} {
	set v [expr {$v <<< 1}]
    }
}

### DYNAMICALLY GENERATED CODE #################################################

proc dyncode {n} {
    for {set i 0} {$i < $n} {incr i} {
        set script "lappend foo $i"
        eval $script
    }
}

proc dyncode_list {n} {
    for {set i 0} {$i < $n} {incr i} {
        set script [list lappend foo $i]
        eval $script
    }
}

### LIST #################################################

proc listcreate {n} {
    for {set i 0} {$i < $n} {incr i} {
        set a [list a b c d e f]
    }
}

### PI DIGITS ##################################################################

proc pi_digits {N} {
 set n [expr {$N * 3}]
 set e 0
 set f {}
 for { set b 0 } { $b <= $n } { incr b } {
     lappend f 2000
 }
 for { set c $n } { $c > 0 } { incr c -14 } {
     set d 0
     set g [expr { $c * 2 }]
     set b $c
     while 1 {
         incr d [expr { [lindex $f $b] * 10000 }]
         lset f $b [expr {$d % [incr g -1]}]
         set d [expr { $d / $g }]
         incr g -1
         if { [incr b -1] == 0 } break
         set d [expr { $d * $b }]
     }
     append result [string range 0000[expr { $e + $d / 10000 }] end-3 end]
     set e [expr { $d % 10000 }]
 }
 #puts $result
}

### EXPAND #####################################################################

proc expand {} {
    set a [list a b c d e f]
    for {set i 0} {$i < 100000} {incr i} {
        lappend b {*}$a
    }
}

### MINLOOPS ###################################################################

proc miniloops {n} {
    for {set i 0} {$i < $n} {incr i} {
        set sum 0
        for {set j 0} {$j < 10} {incr j} {
            # something more or less real
            incr sum $j
        }
    }
}

### wiki.tcl.tk/8566 ###########################################################

 # Internal procedure that indexes into the 2-dimensional array t,
 # which corresponds to the sequence y, looking for the (i,j)th element.

 proc Index { t y i j } {
     set indx [expr { ([llength $y] + 1) * ($i + 1) + ($j + 1) }]
     return [lindex $t $indx]
 }

 # Internal procedure that implements Levenshtein to derive the longest
 # common subsequence of two lists x and y.

 proc ComputeLCS { x y } {
     set t [list]
     for { set i -1 } { $i < [llength $y] } { incr i } {
         lappend t 0
     }
     for { set i 0 } { $i < [llength $x] } { incr i } {
         lappend t 0
         for { set j 0 } { $j < [llength $y] } { incr j } {
             if { [string equal [lindex $x $i] [lindex $y $j]] } {
                 set lastT [Index $t $y [expr { $i - 1 }] [expr {$j - 1}]]
                 set nextT [expr {$lastT + 1}]
             } else {
                 set lastT1 [Index $t $y $i [expr { $j - 1 }]]
                 set lastT2 [Index $t $y [expr { $i - 1 }] $j]
                 if { $lastT1 > $lastT2 } {
                     set nextT $lastT1
                 } else {
                     set nextT $lastT2
                 }
             }
             lappend t $nextT
         }
     }
     return $t
 }

 # Internal procedure that traces through the array built by ComputeLCS
 # and finds a longest common subsequence -- specifically, the one that
 # is lexicographically first.

 proc TraceLCS { t x y } {
     set trace {}
     set i [expr { [llength $x] - 1 }]
     set j [expr { [llength $y] - 1 }]
     set k [expr { [Index $t $y $i $j] - 1 }]
     while { $i >= 0 && $j >= 0 } {
         set im1 [expr { $i - 1 }]
         set jm1 [expr { $j - 1 }]
         if { [Index $t $y $i $j] == [Index $t $y $im1 $jm1] + 1
              && [string equal [lindex $x $i] [lindex $y $j]] } {
             lappend trace xy [list $i $j]
             set i $im1
             set j $jm1
         } elseif { [Index $t $y $im1 $j] > [Index $t $y $i $jm1] } {
             lappend trace x $i
             set i $im1
         } else {
             lappend trace y $j
             set j $jm1
         }
     }
     while { $i >= 0 } {
         lappend trace x $i
         incr i -1
     }
     while { $j >= 0 } {
         lappend trace y $j
         incr j -1
     }
     return $trace
 }

 # list::longestCommonSubsequence::compare --
 #
 #       Compare two lists for the longest common subsequence
 #
 # Arguments:
 #       x, y - Two lists of strings to compare
 #       matched - Callback to execute on matched elements, see below
 #       unmatchedX - Callback to execute on unmatched elements from the
 #                    first list, see below.
 #       unmatchedY - Callback to execute on unmatched elements from the
 #                    second list, see below.
 #
 # Results:
 #       None.
 #
 # Side effects:
 #       Whatever the callbacks do.
 #
 # The 'compare' procedure compares the two lists of strings, x and y.
 # It finds a longest common subsequence between the two.  It then walks
 # the lists in order and makes the following callbacks:
 #
 # For an element that is common to both lists, it appends the index in
 # the first list, the index in the second list, and the string value of
 # the element as three parameters to the 'matched' callback, and executes
 # the result.
 #
 # For an element that is in the first list but not the second, it appends
 # the index in the first list and the string value of the element as two
 # parameters to the 'unmatchedX' callback and executes the result.
 #
 # For an element that is in the second list but not the first, it appends
 # the index in the second list and the string value of the element as two
 # parameters to the 'unmatchedY' callback and executes the result.

 proc compare { x y
                                                matched
                                                unmatchedX unmatchedY } {
     set t [ComputeLCS $x $y]
     set trace [TraceLCS $t $x $y]
     set i [llength $trace]
     while { $i > 0 } {
         set indices [lindex $trace [incr i -1]]
         set type [lindex $trace [incr i -1]]
         switch -exact -- $type {
             xy {
                 set c $matched
                 eval lappend c $indices
                 lappend c [lindex $x [lindex $indices 0]]
                 uplevel 1 $c
             }
             x {
                 set c $unmatchedX
                 lappend c $indices
                 lappend c [lindex $x $indices]
                 uplevel 1 $c
             }
             y {
                 set c $unmatchedY
                 lappend c $indices
                 lappend c [lindex $y $indices]
                 uplevel 1 $c
             }
         }
     }
     return
 }

 proc umx { index value } {
     global lastx
     global xlines
     append xlines "< " $value \n
     set lastx $index
 }

 proc umy { index value } {
     global lasty
     global ylines
     append ylines "> " $value \n
     set lasty $index
 }

 proc matched { index1 index2 value } {
     global lastx
     global lasty
     global xlines
     global ylines
     if { [info exists lastx] && [info exists lasty] } {
     #puts "[expr { $lastx + 1 }],${index1}c[expr {$lasty + 1 }],${index2}"
     #puts -nonewline $xlines
     #puts "----"
     #puts -nonewline $ylines
     } elseif { [info exists lastx] } {
     #puts "[expr { $lastx + 1 }],${index1}d${index2}"
     #puts -nonewline $xlines
     } elseif { [info exists lasty] } {
     #puts  "${index1}a[expr {$lasty + 1 }],${index2}"
     #puts -nonewline $ylines
     }
     catch { unset lastx }
     catch { unset xlines }
     catch { unset lasty }
     catch { unset ylines }
 }

 # Really, we should read the first file in like this:
 #    set f0 [open [lindex $argv 0] r]
 #    set x [split [read $f0] \n]
 #    close $f0
 # But I'll just provide some sample lines:

proc commonsub_test {n} {
 set x {}
 for { set i 0 } { $i < $n } { incr i } {
     lappend x a r a d e d a b r a x
 }

 # The second file, too, should be read in like this:
 #    set f1 [open [lindex $argv 1] r]
 #    set y [split [read $f1] \n]
 #    close $f1
 # Once again, I'll just do some sample lines.

 set y {}
 for { set i 0 } { $i < $n } { incr i } {
     lappend y a b r a c a d a b r a
 }

 compare $x $y matched umx umy
 matched [llength $x] [llength $y] {}
}

### MANDEL #####################################################################

proc mandel {xres yres infx infy supx supy} {
    set incremx [expr {(0.0+$supx-$infx)/$xres}]
    set incremy [expr {(0.0+$supy-$infy)/$yres}]

    for {set j 0} {$j < $yres} {incr j} {
	set cim [expr {$infy+$incremy*$j}]
	set line {}
	for {set i 0} {$i < $xres} {incr i} {
	    set counter 0
	    set zim 0
	    set zre 0
	    set cre [expr {$infx+$incremx*$i}]
	    while {$counter < 255} {
		set dam [expr {$zre*$zre-$zim*$zim+$cre}]
		set zim [expr {2*$zim*$zre+$cim}]
		set zre $dam
		if {$zre*$zre+$zim*$zim > 4} break
		incr counter
	    }
	    # output pixel $i $j
	}
    }
}

### RUN ALL ####################################################################

# bench.tcl ?-batch? ?-time <ms>? ?version?

while [llength $argv] {
    switch -glob -- [lindex $argv 0] {
        -batch {
            set batchmode 1
            set argv [lrange $argv 1 end]
        }
        -time {
            set arg [lindex $argv 1]
            if {$arg ne ""} {
                set benchtime $arg
            }
            set argv [lrange $argv 2 end]
        }
        default {
            break
        }
    }
}
set ver [lindex $argv 0]

bench {[while] busy loop} {whilebusyloop 10}
bench {[for] busy loop} {forbusyloop 10}
bench {[loop] busy loop} {loopbusyloop 10}
bench {mini loops} {miniloops 10}
bench {fibonacci(4)} {fibonacci 4}
bench {heapsort} {heapsort_main 50}
bench {sieve} {sieve 1}
bench {sieve [dict]} {sieve_dict 1}
bench {ary} {ary 20}
bench {ary [dict]} {ary_dict 20}
bench {ary [static]} {ary_static 20}
bench {repeat} {use_repeat 20}
bench {upvar} {upvartest 20}
bench {nested loops} {nestedloops 2}
bench {rotate} {rotate 100}
bench {dynamic code} {dyncode 100}
bench {dynamic code (list)} {dyncode_list 100}
bench {PI digits} {pi_digits 100}
bench {listcreate} {listcreate 100}
bench {expand} {expand}
bench {wiki.tcl.tk/8566} {commonsub_test 10}
bench {mandel} {mandel 30 30 -2 -1.5 1 1.5}

if {$batchmode} {
    if {$ver == ""} {
        if {[catch {info patchlevel} ver]} {
            set ver Jim[info version]
        }
    }
    puts [list $ver $benchmarks]
}