aboutsummaryrefslogtreecommitdiff
path: root/src/hypervisor.tex
blob: 44edab3a1abd9312fa77ea80bee156ab8e010339 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
\chapter{Hypervisor Extension, Version 0.6.2}
\label{hypervisor}

{\bf Warning! This draft specification may change before being
accepted as standard by the RISC-V Foundation.}

This chapter describes the RISC-V hypervisor extension, which virtualizes the
supervisor-level architecture to support the efficient hosting of guest
operating systems atop a type-1 or type-2 hypervisor.
The hypervisor extension changes supervisor mode into
{\em hypervisor-extended supervisor mode} (HS-mode, or {\em hypervisor
mode} for short), where a hypervisor or a hosting-capable operating system
runs.  The hypervisor extension also adds another stage of address translation,
from {\em guest physical addresses} to supervisor physical addresses,
to virtualize the
memory and memory-mapped I/O subsystems for a guest operating system.  HS-mode
acts the same as S-mode, but with additional instructions and CSRs that control
the new stage of address translation and support hosting a guest OS in virtual
S-mode (VS-mode).
Regular S-mode operating systems can execute without modification either in
HS-mode or as VS-mode guests.

In HS-mode, an OS or hypervisor interacts with the machine through the same
SBI as an OS normally does from S-mode.  An HS-mode hypervisor is expected to
implement the SBI for its VS-mode guest.

The hypervisor extension depends on an ``I'' base integer ISA with
32 {\tt x} registers (RV32I or RV64I), not RV32E, which has only
16 {\tt x} registers.
CSR {\tt mtval} must not be hardwired to zero.

The hypervisor extension is enabled by setting bit 7 in the {\tt misa} CSR,
which corresponds to the letter H.
RISC-V harts that implement the hypervisor extension are encouraged
not to hardwire {\tt misa}[7], so that the extension may be disabled.

\begin{commentary}
The baseline privileged architecture is designed to simplify the use of classic
virtualization techniques, where a guest OS is run at user-level, as
the few privileged instructions can be easily detected and trapped.
The hypervisor extension improves virtualization performance by
reducing the frequency of these traps.

The hypervisor extension has been designed to be efficiently
emulable on platforms that do not implement the extension, by running
the hypervisor in S-mode and trapping into M-mode for hypervisor CSR accesses
and to maintain shadow page tables.  The majority of CSR accesses for
type-2 hypervisors are valid S-mode accesses so need not be trapped.
Hypervisors can support nested virtualization analogously.
\end{commentary}

\section{Privilege Modes}

The current {\em virtualization mode}, denoted V, indicates whether the hart
is currently executing in a guest.
When V=1, the hart is either in virtual S-mode (VS-mode), or in virtual U-mode
(VU-mode) atop a guest OS running in VS-mode.
When V=0, the hart is either in M-mode, in HS-mode, or in U-mode atop an OS
running in HS-mode.
The virtualization mode also indicates whether two-stage address translation
is active (V=1) or inactive (V=0).  Table~\ref{tab:HPrivModes} lists the
possible privilege modes of a RISC-V hart with the hypervisor extension.

\begin{table*}[h!]
\begin{center}
\begin{tabular}{|c|c||l|l|l|}
  \hline
   Virtualization & Nominal   & \multirow{2}{*}{Abbreviation} & \multirow{2}{*}{Name} & Two-Stage \\
   Mode (V)       & Privilege &                               &                       & Translation \\ \hline
   0              & U         & U-mode  & User mode & Off \\
   0              & S         & HS-mode & Hypervisor-extended supervisor mode & Off \\
   0              & M         & M-mode  & Machine mode & Off \\
  \hline
   1              & U         & VU-mode & Virtual user mode & On \\
   1              & S         & VS-mode & Virtual supervisor mode & On \\
  \hline
 \end{tabular}
\end{center}
\caption{Privilege modes with the hypervisor extension.}
\label{tab:HPrivModes}
\end{table*}

For privilege modes U and VU, the \textit{nominal privilege mode} is~U,
and for privilege modes HS and VS, the nominal privilege mode is~S.

HS-mode is more privileged
than VS-mode, and VS-mode is more privileged than VU-mode.
VS-mode interrupts are globally disabled when executing in U-mode.

\begin{commentary}
This description does not consider the possibility of U-mode or VU-mode interrupts and will be revised if an extension for user-level interrupts is adopted.
\end{commentary}

\section{Hypervisor and Virtual Supervisor CSRs}

An OS or hypervisor running in HS-mode uses the supervisor CSRs to interact with the exception,
interrupt, and address-translation subsystems.
Additional CSRs are provided to HS-mode, but not to VS-mode, to manage
two-stage address translation and to control the behavior of a VS-mode guest:
{\tt hstatus}, {\tt hedeleg}, {\tt hideleg}, {\tt hvip}, {\tt hip}, {\tt hie},
{\tt hgeip}, {\tt hgeie},
{\tt hcounteren}, {\tt htimedelta}, {\tt htimedeltah}, {\tt htval},
{\tt htinst}, and {\tt hgatp}.

Furthermore, several {\em virtual supervisor} CSRs (VS CSRs) are replicas
of the normal supervisor CSRs.
For example, {\tt vsstatus} is the VS CSR that duplicates the usual
{\tt sstatus} CSR.

When V=1, the VS CSRs substitute for the corresponding supervisor CSRs,
taking over all functions of the usual supervisor CSRs except as specified
otherwise.
Instructions that normally read or modify a supervisor CSR shall instead
access the corresponding VS CSR.
When V=1, an attempt to read or write a VS CSR directly by its own
separate CSR address causes a virtual instruction exception.
(Attempts from U-mode cause an illegal instruction exception as usual.)
The VS CSRs can be accessed as themselves only from M-mode or HS-mode.

While V=1, the normal HS-level supervisor CSRs that are replaced by
VS CSRs retain their values but do
not affect the behavior of the machine unless specifically documented to
do so.
Conversely, when V=0, the VS CSRs do not ordinarily affect the behavior of
the machine other than being readable and writable by CSR instructions.

Some standard supervisor CSRs ({\tt scounteren} and {\tt scontext},
possibly others) have no matching VS CSR.
These supervisor CSRs continue to have their usual function and
accessibility even when V=1, except with VS-mode and VU-mode substituting for
HS-mode and U-mode.
Hypervisor software is expected to manually swap the contents of these
registers as needed.

\begin{commentary}
Matching VS CSRs exist only for the supervisor CSRs that must be
duplicated, which are mainly those that get automatically written by
traps or that impact instruction execution immediately after trap entry
and/or right before SRET, when software alone is unable to swap a CSR at
exactly the right moment.
Currently, most supervisor CSRs fall into this category, but future ones
might not.
\end{commentary}

In this chapter, we use the term {\em HSXLEN} to refer to the effective XLEN
when executing in HS-mode, and {\em VSXLEN} to refer to the effective
XLEN when executing in VS-mode.

\subsection{Hypervisor Status Register ({\tt hstatus})}

The {\tt hstatus} register is an HSXLEN-bit read/write register
formatted as shown in Figure~\ref{hstatusreg-rv32} when HSXLEN=32 and
Figure~\ref{hstatusreg} when HSXLEN=64.
The {\tt hstatus}
register provides facilities analogous to the {\tt mstatus} register
for tracking and controlling the exception behavior of a VS-mode guest.

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\setlength{\tabcolsep}{4pt}
\scalebox{0.95}{
\begin{tabular}{YcccWYccWcccccF}
\\
\instbitrange{31}{23} &
\instbit{22} &
\instbit{21} &
\instbit{20} &
\instbitrange{19}{18} &
\instbitrange{17}{12} &
\instbitrange{11}{10} &
\instbit{9} &
\instbit{8} &
\instbit{7} &
\instbit{6} &
\instbit{5} &
\instbitrange{4}{0} \\
\hline
\multicolumn{1}{|c|}{\wpri} &
\multicolumn{1}{c|}{VTSR} &
\multicolumn{1}{c|}{VTW} &
\multicolumn{1}{c|}{VTVM} &
\multicolumn{1}{c|}{\wpri} &
\multicolumn{1}{c|}{VGEIN[5:0]} &
\multicolumn{1}{c|}{\wpri} &
\multicolumn{1}{c|}{HU} &
\multicolumn{1}{c|}{SPVP} &
\multicolumn{1}{c|}{SPV} &
\multicolumn{1}{c|}{GVA} &
\multicolumn{1}{c|}{VSBE} &
\multicolumn{1}{c|}{\wpri} \\
\hline
9 & 1 & 1 & 1 & 2 & 6 & 2 & 1 & 1 & 1 & 1 & 1 & 5 \\
\end{tabular}}
\end{center}
}
\vspace{-0.1in}
\caption{Hypervisor status register ({\tt hstatus}) for RV32.}
\label{hstatusreg-rv32}
\end{figure*}

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\setlength{\tabcolsep}{4pt}
\begin{tabular}{KFScccc}
\\
\instbitrange{HSXLEN-1}{34} &
\instbitrange{33}{32} &
\instbitrange{31}{23} &
\instbit{22} &
\instbit{21} &
\instbit{20} &
 \\
\hline
\multicolumn{1}{|c|}{\wpri} &
\multicolumn{1}{c|}{VSXL[1:0]} &
\multicolumn{1}{c|}{\wpri} &
\multicolumn{1}{c|}{VTSR} &
\multicolumn{1}{c|}{VTW} &
\multicolumn{1}{c|}{VTVM} &
 \\
\hline
HSXLEN-34 & 2 & 9 & 1 & 1 & 1 & \\
\end{tabular}
\begin{tabular}{cWRWcccccY}
\\
&
\instbitrange{19}{18} &
\instbitrange{17}{12} &
\instbitrange{11}{10} &
\instbit{9} &
\instbit{8} &
\instbit{7} &
\instbit{6} &
\instbit{5} &
\instbitrange{4}{0} \\
\hline
 &
\multicolumn{1}{|c|}{\wpri} &
\multicolumn{1}{c|}{VGEIN[5:0]} &
\multicolumn{1}{c|}{\wpri} &
\multicolumn{1}{c|}{HU} &
\multicolumn{1}{c|}{SPVP} &
\multicolumn{1}{c|}{SPV} &
\multicolumn{1}{c|}{GVA} &
\multicolumn{1}{c|}{VSBE} &
\multicolumn{1}{c|}{\wpri} \\
\hline
 & 2 & 6 & 2 & 1 & 1 & 1 & 1 & 1 & 5 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Hypervisor status register ({\tt hstatus}) for RV64.}
\label{hstatusreg}
\end{figure*}

The VSXL field controls the effective XLEN for VS-mode (known as VSXLEN),
which may differ from the XLEN for HS-mode (HSXLEN).
When HSXLEN=32, the VSXL field does not exist, and VSXLEN=32.
When HSXLEN=64, VSXL is a \warl\ field that is encoded the same as the
MXL field of {\tt misa}, shown in Table~\ref{misabase} on
page~\pageref{misabase}.
In particular, an implementation may make VSXL be a read-only field whose
value always ensures that VSXLEN=HSXLEN.

If HSXLEN is changed from 32 to a wider width, and if field VSXL is not
restricted to a single value, it gets the value corresponding to the
widest supported width not wider than the new HSXLEN.

The {\tt hstatus} fields VTSR, VTW, and VTVM are defined analogously to the
{\tt mstatus} fields TSR, TW, and TVM, but affect execution only in VS-mode,
and cause virtual instruction exceptions instead of illegal instruction
exceptions.
When VTSR=1, an attempt in VS-mode to execute SRET raises a virtual
instruction exception.
When VTW=1 (and assuming {\tt mstatus}.TW=0), an attempt in VS-mode to
execute WFI raises a virtual instruction exception if the WFI does not
complete within an implementation-specific, bounded time limit.
When VTVM=1, an attempt in VS-mode to execute SFENCE.VMA or to access CSR
{\tt satp} raises a virtual instruction exception.

The VGEIN (Virtual Guest External Interrupt Number) field selects a guest
external interrupt source for VS-level external interrupts.
VGEIN is a \wlrl\ field that must be able to hold values between zero
and the maximum guest external interrupt number (known as GEILEN),
inclusive.
When VGEIN=0, no guest external interrupt source is selected for VS-level
external interrupts.
GEILEN may be zero, in which case VGEIN may be hardwired to zero.
Guest external interrupts are explained in
Section~\ref{sec:hgeinterruptregs}, and the use of VGEIN is covered
further in Section~\ref{sec:hinterruptregs}.

Field HU (Hypervisor User mode) controls whether the virtual-machine
load/store instructions, HLV, HLVX, and HSV, can be used also in U-mode.
When HU=1, these instructions can be executed in U-mode the same as in
HS-mode.
When HU=0, all hypervisor instructions cause an illegal instruction trap
in U-mode.

\begin{commentary}
The HU bit allows a portion of a hypervisor to be run in U-mode for
greater protection against software bugs, while still retaining access to
a virtual machine's memory.
\end{commentary}

The SPV bit (Supervisor Previous Virtualization mode) is written by the implementation
whenever a trap is taken into HS-mode.
Just as the SPP bit in {\tt sstatus} is set to the (nominal) privilege
mode at the time of the trap, the SPV bit in {\tt hstatus} is set to the value of the virtualization
mode V at the time of the trap.  When an SRET instruction is executed when V=0,
V is set to SPV.

When V=1 and a trap is taken into HS-mode, bit SPVP (Supervisor Previous
Virtual Privilege) is set to the nominal privilege mode at the time of the trap,
the same as {\tt sstatus}.SPP.
But if V=0 before a trap, SPVP is left unchanged on trap entry.
SPVP controls the effective privilege of explicit memory accesses made by
the virtual-machine load/store instructions, HLV, HLVX, and HSV.

\begin{commentary}
Without SPVP, if instructions HLV, HLVX, and HSV looked instead to
{\tt sstatus}.SPP for the effective privilege of their memory accesses,
then, even with HU=1, U-mode could not access virtual machine memory at
VS-level, because to enter U-mode using SRET always leaves SPP=0.
Unlike SPP, field SPVP is untouched by transitions back-and-forth between
HS-mode and U-mode.
\end{commentary}

Field GVA (Guest Virtual Address) is written by the implementation
whenever a trap is taken into HS-mode.
For any trap (breakpoint, address misaligned,
access fault, page fault, or guest-page fault) that writes
a guest virtual address to {\tt stval}, GVA is set to~1.
For any other trap into HS-mode, GVA is set to~0.

\begin{commentary}
For breakpoint and memory access traps,
GVA is redundant with field SPV (the two bits are set
the same) except when the explicit memory access of an HLV, HLVX, or HSV
instruction causes a fault.
In that case, SPV=0 but GVA=1.
\end{commentary}

The VSBE bit is a \warl\ field that controls the endianness of explicit
memory accesses made from VS-mode.
If VSBE=0, explicit load and store memory accesses made from VS-mode are
little-endian, and if VSBE=1, they are big-endian.
VSBE also controls the endianness of all implicit accesses to VS-level
memory management data structures, such as page tables.
An implementation may make VSBE a read-only field that always specifies
the same endianness as HS-mode.

\subsection{Hypervisor Trap Delegation Registers ({\tt hedeleg} and {\tt hideleg})}

Registers {\tt hedeleg} and {\tt hideleg} are HSXLEN-bit read/write
registers, formatted as shown in Figures \ref{hedelegreg} and
\ref{hidelegreg} respectively.
By default, all traps at any privilege level are handled in M-mode, though
M-mode usually uses the {\tt medeleg} and {\tt mideleg} CSRs to delegate
some traps to HS-mode.  The {\tt hedeleg} and {\tt hideleg} CSRs allow these
traps to be further delegated to a VS-mode guest; their layout is the same
as {\tt medeleg} and {\tt mideleg}.

\begin{figure}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{@{}J}
\instbitrange{HSXLEN-1}{0} \\
\hline
\multicolumn{1}{|c|}{Synchronous Exceptions (\warl)} \\
\hline
HSXLEN \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Hypervisor exception delegation register ({\tt hedeleg}).}
\label{hedelegreg}
\end{figure}

\begin{figure}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{@{}J}
\instbitrange{HSXLEN-1}{0} \\
\hline
\multicolumn{1}{|c|}{Interrupts (\warl)} \\
\hline
HSXLEN \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Hypervisor interrupt delegation register ({\tt hideleg}).}
\label{hidelegreg}
\end{figure}

\begin{table*}[h!]
\begin{center}
\begin{tabular}{|r|l|l|}
\hline
Bit & Attribute   & Corresponding Exception \\
\hline
 0  & (See text)  & Instruction address misaligned \\
 1  & Writable    & Instruction access fault \\
 2  & Writable    & Illegal instruction \\
 3  & Writable    & Breakpoint \\
 4  & Writable    & Load address misaligned \\
 5  & Writable    & Load access fault \\
 6  & Writable    & Store/AMO address misaligned \\
 7  & Writable    & Store/AMO access fault \\
 8  & Writable    & Environment call from U-mode or VU-mode \\
 9  & Read-only 0 & Environment call from HS-mode \\
10  & Read-only 0 & Environment call from VS-mode \\
11  & Read-only 0 & Environment call from M-mode \\
12  & Writable    & Instruction page fault \\
13  & Writable    & Load page fault \\
15  & Writable    & Store/AMO page fault \\
20  & Read-only 0 & Instruction guest-page fault \\
21  & Read-only 0 & Load guest-page fault \\
22  & Read-only 0 & Virtual instruction \\
23  & Read-only 0 & Store/AMO guest-page fault \\
\hline
\end{tabular}
\end{center}
\caption{Bits of {\tt hedeleg} that must be writable or must be hardwired
to zero.}
\label{tab:hedeleg-bits}
\end{table*}

A synchronous trap that has been delegated to HS-mode (using
{\tt medeleg}) is further delegated to VS-mode if V=1 before the trap and
the corresponding {\tt hedeleg} bit is set.
Each bit of {\tt hedeleg} shall be either writable or hardwired to zero.
Many bits of {\tt hedeleg} are required specifically to be writable or
zero, as enumerated in Table~\ref{tab:hedeleg-bits}.
Bit~0, corresponding to instruction address misaligned exceptions, must
be writable if IALIGN=32.

\begin{commentary}
Requiring that certain bits of {\tt hedeleg} be writable reduces some of
the burden on a hypervisor to handle variations of implementation.
\end{commentary}

An interrupt that has been delegated to HS-mode (using {\tt mideleg}) is
further delegated to VS-mode if the corresponding {\tt hideleg} bit is
set.
Among bits 15:0 of {\tt hideleg}, only bits 10, 6, and 2 (corresponding
to the standard VS-level interrupts) shall be writable, and the others
shall be hardwired to zero.

When a virtual supervisor external interrupt (code 10) is delegated to
VS-mode, it is automatically translated by the machine into a supervisor
external interrupt (code 9) for VS-mode, including the value written to
{\tt vscause} on an interrupt trap.
Likewise, a virtual supervisor timer interrupt (6) is translated into a
supervisor timer interrupt (5) for VS-mode, and a virtual supervisor
software interrupt (2) is translated into a supervisor software interrupt
(1) for VS-mode.
Similar translations may or may not be done for platform or custom
interrupt causes (codes 16 and above).

\subsection{Hypervisor Interrupt Registers ({\tt hvip}, {\tt hip}, and {\tt hie})}
\label{sec:hinterruptregs}

Register {\tt hvip} is an HSXLEN-bit read/write register that a
hypervisor can write to indicate virtual interrupts intended for VS-mode.
Bits of {\tt hvip} that are not writable are hardwired to zeros.

\begin{figure}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{@{}J}
\instbitrange{HSXLEN-1}{0} \\
\hline
\multicolumn{1}{|c|}{Virtual Interrupts (\warl)} \\
\hline
HSXLEN \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Hypervisor virtual-interrupt-pending register ({\tt hvip}).}
\label{hvipreg}
\end{figure}

The standard portion (bits 15:0) of {\tt hvip} is formatted as shown in
Figure~\ref{hvipreg-standard}.
Bits VSEIP, VSTIP, and VSSIP of {\tt hvip} are writable.
Setting VSEIP=1 in {\tt hvip} asserts a VS-level external interrupt;
setting VSTIP asserts a VS-level timer interrupt; and setting VSSIP
asserts a VS-level software interrupt.

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\setlength{\tabcolsep}{4pt}
\begin{tabular}{RcFcFcW}
\instbitrange{15}{11} &
\instbit{10} &
\instbitrange{9}{7} &
\instbit{6} &
\instbitrange{5}{3} &
\instbit{2} &
\instbitrange{1}{0} \\
\hline
\multicolumn{1}{|c|}{0} &
\multicolumn{1}{c|}{VSEIP} &
\multicolumn{1}{c|}{0} &
\multicolumn{1}{c|}{VSTIP} &
\multicolumn{1}{c|}{0} &
\multicolumn{1}{c|}{VSSIP} &
\multicolumn{1}{c|}{0} \\
\hline
5 & 1 & 3 & 1 & 3 & 1 & 2 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Standard portion (bits 15:0) of {\tt hvip}.}
\label{hvipreg-standard}
\end{figure*}

Registers {\tt hip} and {\tt hie} are HSXLEN-bit read/write registers
that supplement HS-level's {\tt sip} and {\tt sie} respectively.
The {\tt hip} register indicates pending VS-level and hypervisor-specific
interrupts, while {\tt hie} contains enable bits for the same interrupts.

\begin{figure}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{@{}J}
\instbitrange{HSXLEN-1}{0} \\
\hline
\multicolumn{1}{|c|}{Interrupts (\warl)} \\
\hline
HSXLEN \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Hypervisor interrupt-pending register ({\tt hip}).}
\label{hipreg}
\end{figure}

\begin{figure}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{@{}J}
\instbitrange{HSXLEN-1}{0} \\
\hline
\multicolumn{1}{|c|}{Interrupts (\warl)} \\
\hline
HSXLEN \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Hypervisor interrupt-enable register ({\tt hie}).}
\label{hiereg}
\end{figure}

For each writable bit in {\tt sie}, the corresponding bit shall be
hardwired to zero in both {\tt hip} and {\tt hie}.
Hence, the nonzero bits in {\tt sie} and {\tt hie} are always mutually
exclusive, and likewise for {\tt sip} and {\tt hip}.

\begin{commentary}
The active bits of {\tt hip} and {\tt hie} cannot be placed in HS-level's
{\tt sip} and {\tt sie} because doing so would make it impossible for
software to emulate the hypervisor extension on platforms that do not
implement it in hardware.
\end{commentary}

An interrupt~\textit{i} will trap to HS-mode whenever all of the
following are true:
(a)~either the current operating mode is HS-mode and the SIE bit in the
{\tt sstatus} register is set, or the current operating mode has less
privilege than HS-mode;
(b)~bit~\textit{i} is set in both {\tt sip} and {\tt sie}, or in both
{\tt hip} and {\tt hie}; and
(c)~bit~\textit{i} is not set in {\tt hideleg}.

If bit~\textit{i} of {\tt sie} is hardwired to zero, the same bit in
register {\tt hip} may be writable or may be read-only.
When bit~\textit{i} in {\tt hip} is writable, a pending interrupt
\textit{i} can be cleared by writing 0 to this bit.
If interrupt \textit{i} can become pending in {\tt hip} but
bit~\textit{i} in {\tt hip} is read-only, then either
the interrupt can be cleared by clearing bit~\textit{i}
of {\tt hvip}, or the implementation must provide
some other mechanism for clearing the pending interrupt (which may
involve a call to the execution environment).

A bit in {\tt hie} shall be writable if the corresponding interrupt can
ever become pending in {\tt hip}.
Bits of {\tt hie} that are not writable shall be hardwired to zero.

The standard portions (bits 15:0) of registers {\tt hip} and {\tt hie}
are formatted as shown in Figures \ref{hipreg-standard} and
\ref{hiereg-standard} respectively.

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\setlength{\tabcolsep}{4pt}
\begin{tabular}{FcccFcFcW}
\instbitrange{15}{13} &
\instbit{12} &
\instbit{11} &
\instbit{10} &
\instbitrange{9}{7} &
\instbit{6} &
\instbitrange{5}{3} &
\instbit{2} &
\instbitrange{1}{0} \\
\hline
\multicolumn{1}{|c|}{0} &
\multicolumn{1}{c|}{SGEIP} &
\multicolumn{1}{c|}{0} &
\multicolumn{1}{c|}{VSEIP} &
\multicolumn{1}{c|}{0} &
\multicolumn{1}{c|}{VSTIP} &
\multicolumn{1}{c|}{0} &
\multicolumn{1}{c|}{VSSIP} &
\multicolumn{1}{c|}{0} \\
\hline
3 & 1 & 1 & 1 & 3 & 1 & 3 & 1 & 2 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Standard portion (bits 15:0) of {\tt hip}.}
\label{hipreg-standard}
\end{figure*}

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\setlength{\tabcolsep}{4pt}
\begin{tabular}{FcccFcFcW}
\instbitrange{15}{13} &
\instbit{12} &
\instbit{11} &
\instbit{10} &
\instbitrange{9}{7} &
\instbit{6} &
\instbitrange{5}{3} &
\instbit{2} &
\instbitrange{1}{0} \\
\hline
\multicolumn{1}{|c|}{0} &
\multicolumn{1}{c|}{SGEIE} &
\multicolumn{1}{c|}{0} &
\multicolumn{1}{c|}{VSEIE} &
\multicolumn{1}{c|}{0} &
\multicolumn{1}{c|}{VSTIE} &
\multicolumn{1}{c|}{0} &
\multicolumn{1}{c|}{VSSIE} &
\multicolumn{1}{c|}{0} \\
\hline
3 & 1 & 1 & 1 & 3 & 1 & 3 & 1 & 2 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Standard portion (bits 15:0) of {\tt hie}.}
\label{hiereg-standard}
\end{figure*}

Bits {\tt hip}.SGEIP and {\tt hie}.SGEIE are the interrupt-pending and
interrupt-enable bits for guest external interrupts at supervisor level
(HS-level).
SGEIP is read-only in {\tt hip}, and is 1 if and only if the bitwise
logical-AND of CSRs {\tt hgeip} and {\tt hgeie} is nonzero in any bit.
(See Section~\ref{sec:hgeinterruptregs}.)

Bits {\tt hip}.VSEIP and {\tt hie}.VSEIE are the interrupt-pending and
interrupt-enable bits for VS-level external interrupts.
VSEIP is read-only in {\tt hip}, and is the logical-OR of these interrupt
sources:
\begin{tightlist}
\item
bit VSEIP of {\tt hvip};
\item
the bit of {\tt hgeip} selected by {\tt hstatus}.VGEIN; and
\item
any other platform-specific external interrupt signal directed to
VS-level.
\end{tightlist}

Bits {\tt hip}.VSTIP and {\tt hie}.VSTIE are the interrupt-pending and
interrupt-enable bits for VS-level timer interrupts.
VSTIP is read-only in {\tt hip}, and is the logical-OR of
{\tt hvip}.VSTIP and any other platform-specific timer interrupt signal
directed to VS-level.

Bits {\tt hip}.VSSIP and {\tt hie}.VSSIE are the interrupt-pending and
interrupt-enable bits for VS-level software interrupts.
VSSIP in {\tt hip} is an alias (writable) of the same bit in {\tt hvip}.

Multiple simultaneous interrupts destined for HS-mode are handled in the
following decreasing priority order:  SEI, SSI, STI, SGEI, VSEI, VSSI, VSTI.

\subsection{Hypervisor Guest External Interrupt Registers ({\tt hgeip} and {\tt hgeie})}
\label{sec:hgeinterruptregs}

The {\tt hgeip} register is an HSXLEN-bit read-only register, formatted
as shown in Figure~\ref{hgeipreg}, that indicates pending guest external
interrupts for this hart.
The {\tt hgeie} register is an HSXLEN-bit read/write register, formatted
as shown in Figure~\ref{hgeiereg}, that contains enable bits for the
guest external interrupts at this hart.
Guest external interrupt number \textit{i} corresponds with
bit~\textit{i} in both {\tt hgeip} and {\tt hgeie}.

\begin{figure}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{@{}Jc}
\instbitrange{HSXLEN-1}{1} &
\instbit{0} \\
\hline
\multicolumn{1}{|c|}{Guest External Interrupts} &
\multicolumn{1}{c|}{0} \\
\hline
HSXLEN-1 & 1 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Hypervisor guest external interrupt-pending register ({\tt hgeip}).}
\label{hgeipreg}
\end{figure}

\begin{figure}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{@{}Jc}
\instbitrange{HSXLEN-1}{1} &
\instbit{0} \\
\hline
\multicolumn{1}{|c|}{Guest External Interrupts (\warl)} &
\multicolumn{1}{c|}{0} \\
\hline
HSXLEN-1 & 1 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Hypervisor guest external interrupt-enable register ({\tt hgeie}).}
\label{hgeiereg}
\end{figure}

Guest external interrupts represent interrupts directed to individual
virtual machines at VS-level.
If a RISC-V platform supports placing a physical device under the direct
control of a guest OS with minimal hypervisor intervention (known as
\emph{pass-through} or \emph{direct assignment} between a virtual machine
and the physical device), then, in such circumstance, interrupts from the
device are intended for a specific virtual machine.
Each bit of {\tt hgeip} summarizes \emph{all} pending interrupts directed
to one virtual hart, as collected and reported by an interrupt
controller.
To distinguish specific pending interrupts from multiple devices,
software must query the interrupt controller.

\begin{commentary}
Support for guest external interrupts requires an interrupt controller
that can collect virtual-machine-directed interrupts separately from
other interrupts.
\end{commentary}

The number of bits implemented in {\tt hgeip} and {\tt hgeie} for guest
external interrupts is \unspecified\ and may be zero.
This number is known as \textit{GEILEN}.
The least-significant bits are implemented first, apart from bit~0.
Hence, if GEILEN is nonzero, bits GEILEN:1 shall be writable in
{\tt hgeie}, and all other bit positions shall be hardwired to zeros in
both {\tt hgeip} and {\tt hgeie}.

\begin{commentary}
The set of guest external interrupts received and handled at one physical
hart may differ from those received at other harts.
Guest external interrupt number~\textit{i} at one physical hart is
typically expected not to be the same as guest external
interrupt~\textit{i} at any other hart.
For any one physical hart, the maximum number of virtual harts that may
directly receive guest external interrupts is limited by GEILEN.
The maximum this number can be for any implementation is 31 for RV32 and
63 for RV64, per physical hart.

A hypervisor is always free to \emph{emulate} devices for any number of
virtual harts without being limited by GEILEN.
Only direct pass-through (direct assignment) of interrupts is affected by
the GEILEN limit, and the limit is on the number of virtual harts
receiving such interrupts, not the number of distinct interrupts
received.
The number of distinct interrupts a single virtual hart may receive is
determined by the interrupt controller.
\end{commentary}

Register {\tt hgeie} selects the subset of guest external interrupts that
cause a supervisor-level (HS-level) guest external interrupt.
The enable bits in {\tt hgeie} do not affect the VS-level external
interrupt signal selected from {\tt hgeip} by {\tt hstatus}.VGEIN.

\subsection{Hypervisor Counter-Enable Register ({\tt hcounteren})}

The counter-enable register {\tt hcounteren} is a 32-bit register that
controls the availability of the hardware performance monitoring counters
to the guest virtual machine.

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\setlength{\tabcolsep}{4pt}
\begin{tabular}{cccMcccccc}
\instbit{31} &
\instbit{30} &
\instbit{29} &
\instbitrange{28}{6} &
\instbit{5} &
\instbit{4} &
\instbit{3} &
\instbit{2} &
\instbit{1} &
\instbit{0} \\
\hline
\multicolumn{1}{|c|}{HPM31} &
\multicolumn{1}{c|}{HPM30} &
\multicolumn{1}{c|}{HPM29} &
\multicolumn{1}{c|}{...} &
\multicolumn{1}{c|}{HPM5} &
\multicolumn{1}{c|}{HPM4} &
\multicolumn{1}{c|}{HPM3} &
\multicolumn{1}{c|}{IR} &
\multicolumn{1}{c|}{TM} &
\multicolumn{1}{c|}{CY} \\
\hline
1 & 1 & 1 & 23 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Hypervisor counter-enable register ({\tt hcounteren}).}
\label{hcounteren}
\end{figure*}

When the CY, TM, IR, or HPM{\em n} bit in the {\tt hcounteren} register
is clear, attempts to read the {\tt cycle}, {\tt time}, {\tt instret}, or
{\tt hpmcounter}{\em n} register while V=1 will cause a virtual
instruction exception if the same bit in {\tt mcounteren} is~1.
When one of these bits is set, access to the corresponding register is
permitted when V=1, unless prevented for some other reason.
In VU-mode, a counter is not readable unless the applicable bits are set
in both {\tt hcounteren} and {\tt scounteren}.

{\tt hcounteren} must be implemented.
However, any of the bits may contain a hardwired value of zero,
indicating reads to the corresponding counter will cause an exception
when V=1.
Hence, they are effectively \warl\ fields.

\subsection{Hypervisor Time Delta Registers ({\tt htimedelta}, {\tt htimedeltah})}

The {\tt htimedelta} CSR is a read/write register that contains the delta
between the value of the {\tt time} CSR and the value returned in VS-mode or
VU-mode.
That is, reading the {\tt time} CSR in VS or VU mode returns the sum of the
contents of {\tt htimedelta} and the actual value of {\tt time}.

\begin{commentary}
Because overflow is ignored when summing {\tt htimedelta} and {\tt time},
large values of {\tt htimedelta} may be used to represent negative time
offsets.
\end{commentary}

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{@{}J}
\instbitrange{63}{0} \\
\hline
\multicolumn{1}{|c|}{\tt htimedelta} \\
\hline
64 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Hypervisor time delta register, HSXLEN=64.}
\label{hdeltareg}
\end{figure*}

For HSXLEN=32 only, {\tt htimedelta} holds the lower 32 bits of the
delta, and {\tt htimedeltah} holds the upper 32 bits of the delta.

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{@{}J}
\instbitrange{31}{0} \\
\hline
\multicolumn{1}{|c|}{\tt htimedelta} \\
\hline
\multicolumn{1}{|c|}{\tt htimedeltah} \\
\hline
32 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Hypervisor time delta registers, HSXLEN=32.}
\label{hdeltahreg}
\end{figure*}

\subsection{Hypervisor Trap Value Register ({\tt htval})}

The {\tt htval} register is an HSXLEN-bit read/write register formatted
as shown in Figure~\ref{htvalreg}.
When a trap is taken into HS-mode, {\tt htval} is written with additional
exception-specific information, alongside {\tt stval}, to assist software
in handling the trap.

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{@{}J}
\instbitrange{HSXLEN-1}{0} \\
\hline
\multicolumn{1}{|c|}{\tt htval} \\
\hline
HSXLEN \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Hypervisor trap value register ({\tt htval}).}
\label{htvalreg}
\end{figure*}

When a guest-page-fault trap is taken into HS-mode, {\tt htval} is
written with either zero or the guest physical address that faulted,
shifted right by 2~bits.
For other traps, {\tt htval} is set to zero, but a future standard or
extension may redefine {\tt htval}'s setting for other traps.

A guest-page fault may arise due to an implicit memory access during
first-stage (VS-stage) address translation, in which case a guest
physical address written to {\tt htval} is that of the implicit memory
access that faulted---for example, the address of a VS-level page table
entry that could not be read.
(The guest physical address corresponding to the original virtual address
is unknown when VS-stage translation fails to complete.)
Additional information is provided in CSR {\tt htinst} to disambiguate
such situations.

Otherwise, for misaligned loads and stores that cause guest-page faults,
a nonzero guest physical address in {\tt htval} corresponds to the
faulting portion of the access as indicated by the virtual address in
{\tt stval}.
For instruction guest-page faults on systems with variable-length
instructions, a nonzero {\tt htval} corresponds to the faulting portion
of the instruction as indicated by the virtual address in {\tt stval}.

\begin{commentary}
A guest physical address written to {\tt htval} is shifted right by
2~bits to accommodate addresses wider than the current XLEN.
For RV32, the hypervisor extension permits guest physical addresses as
wide as 34 bits, and {\tt htval} reports bits 33:2 of the address.
This shift-by-2 encoding of guest physical addresses matches the encoding
of physical addresses in PMP address registers (Section~\ref{sec:pmp})
and in page table entries (Sections \ref{sec:sv32}, \ref{sec:sv39},
and~\ref{sec:sv48}).

If the least-significant two bits of a faulting guest physical address
are needed, these bits are ordinarily the same as the least-significant
two bits of the faulting virtual address in {\tt stval}.
For faults due to implicit memory accesses for VS-stage address
translation, the least-significant two bits are instead zeros.
These cases can be distinguished using the value provided in register
{\tt htinst}.
\end{commentary}

{\tt htval} is a \warl\ register that must be able to hold zero and may
be capable of holding only an arbitrary subset of other 2-bit-shifted
guest physical addresses, if any.

\begin{commentary}
Unless it has reason to assume otherwise (such as a platform standard),
software that writes a value to {\tt htval} should read back from
{\tt htval} to confirm the stored value.
\end{commentary}

\subsection{Hypervisor Trap Instruction Register ({\tt htinst})}

The {\tt htinst} register is an HSXLEN-bit read/write register formatted
as shown in Figure~\ref{htinstreg}.
When a trap is taken into HS-mode, {\tt htinst} is written with a value
that, if nonzero, provides information about the instruction that
trapped, to assist software in handling the trap.
The values that may be written to {\tt htinst} on a trap are documented
in Section~\ref{sec:tinst-vals}.

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{@{}J}
\instbitrange{HSXLEN-1}{0} \\
\hline
\multicolumn{1}{|c|}{\tt htinst} \\
\hline
HSXLEN \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Hypervisor trap instruction register ({\tt htinst}).}
\label{htinstreg}
\end{figure*}

{\tt htinst} is a \warl\ register that need only be able to hold the
values that the implementation may automatically write to it on a trap.

\subsection{Hypervisor Guest Address Translation and Protection Register ({\tt hgatp})}
\label{sec:hgatp}

The {\tt hgatp} register is an HSXLEN-bit read/write register, formatted as
shown in Figure~\ref{rv32hgatp} for HSXLEN=32 and Figure~\ref{rv64hgatp} for
HSXLEN=64, which controls G-stage address translation and protection, the
second stage of two-stage translation for guest virtual addresses (see
Section~\ref{sec:two-stage-translation}).
Similar to CSR {\tt satp}, this register holds the physical page number (PPN)
of the guest-physical root page table; a virtual machine identifier (VMID),
which facilitates address-translation fences on a per-virtual-machine basis;
and the MODE field, which selects the address-translation scheme for guest
physical addresses.
When {\tt mstatus}.TVM=1, attempts to read or write {\tt hgatp} while executing
in HS-mode will raise an illegal instruction exception.

\begin{figure}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{cY@{}E@{}K}
\instbit{31} &
\instbitrange{30}{29} &
\instbitrange{28}{22} &
\instbitrange{21}{0} \\
\hline
\multicolumn{1}{|c|}{MODE} &
\multicolumn{1}{c|}{0 (\warl)} &
\multicolumn{1}{c|}{VMID (\warl)} &
\multicolumn{1}{c|}{PPN  (\warl)} \\
\hline
1 & 2 & 7 & 22 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{RV32 Hypervisor guest address translation and protection register
{\tt hgatp}.}
\label{rv32hgatp}
\end{figure}

\begin{figure}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{@{}S@{}Y@{}E@{}K}
\instbitrange{63}{60} &
\instbitrange{59}{58} &
\instbitrange{57}{44} &
\instbitrange{43}{0} \\
\hline
\multicolumn{1}{|c|}{MODE (\warl)} &
\multicolumn{1}{c|}{0 (\warl)} &
\multicolumn{1}{c|}{VMID (\warl)} &
\multicolumn{1}{c|}{PPN  (\warl)} \\
\hline
4 & 2 & 14 & 44 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{RV64 Hypervisor guest address translation and protection register
{\tt hgatp}, for MODE values Bare, Sv39x4, and Sv48x4.}
\label{rv64hgatp}
\end{figure}

Table~\ref{tab:hgatp-mode} shows the encodings of the MODE field for RV32 and
RV64.
When MODE=Bare, guest physical addresses are equal to supervisor physical
addresses, and there is no further memory protection for a guest virtual
machine beyond the physical memory protection scheme described in
Section~\ref{sec:pmp}.
In this case, the remaining fields in {\tt hgatp} must be set to zeros.

For RV32, the only other valid setting for MODE is Sv32x4, which is a
modification of the usual Sv32 paged virtual-memory scheme, extended to support
34-bit guest physical addresses.
For RV64, modes Sv39x4 and Sv48x4 are defined as modifications of the Sv39 and
Sv48 paged virtual-memory schemes.
All of these paged virtual-memory schemes are described in
Section~\ref{sec:guest-addr-translation}.
An additional RV64 scheme, Sv57x4, may be defined in a later version of this
specification.

The remaining MODE settings for RV64 are reserved for future use and may define
different interpretations of the other fields in {\tt hgatp}.

\begin{table}[h]
\begin{center}
\begin{tabular}{|c|c|l|}
\hline
\multicolumn{3}{|c|}{RV32} \\
\hline
Value  & Name & Description \\
\hline
0      & Bare   & No translation or protection. \\
1      & Sv32x4 & Page-based 34-bit virtual addressing (2-bit extension of Sv32). \\
\hline \hline
\multicolumn{3}{|c|}{RV64} \\
\hline
Value  & Name & Description \\
\hline
0      & Bare   & No translation or protection. \\
1--7   & ---    & {\em Reserved} \\
8      & Sv39x4 & Page-based 41-bit virtual addressing (2-bit extension of Sv39). \\
9      & Sv48x4 & Page-based 50-bit virtual addressing (2-bit extension of Sv48). \\
10     & {\em Sv57x4} & {\em Reserved for page-based 59-bit virtual addressing.} \\
11--15 & ---    & {\em Reserved} \\
\hline
\end{tabular}
\end{center}
\caption{Encoding of {\tt hgatp} MODE field.}
\label{tab:hgatp-mode}
\end{table}

RV64 implementations are not required to support all defined RV64 MODE
settings.

A write to {\tt hgatp} with an unsupported MODE value is not ignored as it is
for {\tt satp}.
Instead, the fields of {\tt hgatp} are {\warl} in the normal way, when so
indicated.

As explained in Section~\ref{sec:guest-addr-translation}, for the paged
virtual-memory schemes (Sv32x4, Sv39x4, and Sv48x4), the root page table is
16~KiB and must be aligned to a 16-KiB boundary.
In these modes, the lowest two bits of the physical page number (PPN) in
{\tt hgatp} always read as zeros.
An implementation that supports only the defined paged virtual-memory schemes
and/or Bare may hardwire PPN[1:0] to zero.

The number of VMID bits is \unspecified\ and may be zero.
The number of implemented VMID bits, termed {\mbox {\em VMIDLEN}}, may be
determined by writing one to every bit position in the VMID field, then reading
back the value in {\tt hgatp} to see which bit positions in the VMID field hold
a one.
The least-significant bits of VMID are implemented first:
that is, if VMIDLEN~$>$~0, VMID[VMIDLEN-1:0] is writable.
The maximal value of VMIDLEN, termed VMIDMAX, is 7 for Sv32x4 or 14 for Sv39x4
and Sv48x4.

Note that writing {\tt hgatp} does not imply any ordering constraints between
page-table updates and subsequent G-stage address translations.
If the new virtual machine's guest physical page tables have been modified, it
may be necessary to execute an HFENCE.GVMA instruction
(see Section~\ref{sec:hfence.vma}) before or after writing {\tt hgatp}.

\subsection{Virtual Supervisor Status Register ({\tt vsstatus})}

The {\tt vsstatus} register is a VSXLEN-bit read/write register that is
VS-mode's version of supervisor register {\tt sstatus}, formatted as
shown in Figure~\ref{vsstatusreg-rv32} when VSXLEN=32 and
Figure~\ref{vsstatusreg} when VSXLEN=64.
When V=1, {\tt vsstatus} substitutes for the usual {\tt sstatus}, so
instructions that normally read or modify {\tt sstatus} actually access
{\tt vsstatus} instead.

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\setlength{\tabcolsep}{4pt}
\scalebox{0.95}{
\begin{tabular}{cWcccccWccccWcc}
\\
\instbit{31} &
\instbitrange{30}{20} &
\instbit{19} &
\instbit{18} &
\instbit{17} &
\instbitrange{16}{15} &
\instbitrange{14}{13} &
\instbitrange{12}{9} &
\instbit{8} &
\instbit{7} &
\instbit{6} &
\instbit{5} &
\instbitrange{4}{2} &
\instbit{1} &
\instbit{0} \\
\hline
\multicolumn{1}{|c|}{SD} &
\multicolumn{1}{c|}{\wpri} &
\multicolumn{1}{c|}{MXR} &
\multicolumn{1}{c|}{SUM} &
\multicolumn{1}{c|}{\wpri} &
\multicolumn{1}{c|}{XS[1:0]} &
\multicolumn{1}{c|}{FS[1:0]} &
\multicolumn{1}{c|}{\wpri} &
\multicolumn{1}{c|}{SPP} &
\multicolumn{1}{c|}{\wpri} &
\multicolumn{1}{c|}{UBE} &
\multicolumn{1}{c|}{SPIE} &
\multicolumn{1}{c|}{\wpri} &
\multicolumn{1}{c|}{SIE}  &
\multicolumn{1}{c|}{\wpri} \\
\hline
1 & 11 & 1 & 1 & 1 & 2 & 2 & 4 & 1 & 1 & 1 & 1 & 3 & 1 & 1 \\
\end{tabular}}
\end{center}
}
\vspace{-0.1in}
\caption{Virtual supervisor status register ({\tt vsstatus}) for RV32.}
\label{vsstatusreg-rv32}
\end{figure*}

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\setlength{\tabcolsep}{4pt}
\begin{tabular}{cMFScccc}
\\
\instbit{VSXLEN-1} &
\instbitrange{VSXLEN-2}{34} &
\instbitrange{33}{32} &
\instbitrange{31}{20} &
\instbit{19} &
\instbit{18} &
\instbit{17} &
 \\
\hline
\multicolumn{1}{|c|}{SD} &
\multicolumn{1}{c|}{\wpri} &
\multicolumn{1}{c|}{UXL[1:0]} &
\multicolumn{1}{c|}{\wpri} &
\multicolumn{1}{c|}{MXR} &
\multicolumn{1}{c|}{SUM} &
\multicolumn{1}{c|}{\wpri} &
 \\
\hline
1 & VSXLEN-35 & 2 & 12 & 1 & 1 & 1 & \\
\end{tabular}
\begin{tabular}{cWWFccccWcc}
\\
&
\instbitrange{16}{15} &
\instbitrange{14}{13} &
\instbitrange{12}{9} &
\instbit{8} &
\instbit{7} &
\instbit{6} &
\instbit{5} &
\instbitrange{4}{2} &
\instbit{1} &
\instbit{0} \\
\hline
 &
\multicolumn{1}{|c|}{XS[1:0]} &
\multicolumn{1}{c|}{FS[1:0]} &
\multicolumn{1}{c|}{\wpri} &
\multicolumn{1}{c|}{SPP} &
\multicolumn{1}{c|}{\wpri} &
\multicolumn{1}{c|}{UBE} &
\multicolumn{1}{c|}{SPIE} &
\multicolumn{1}{c|}{\wpri} &
\multicolumn{1}{c|}{SIE} &
\multicolumn{1}{c|}{\wpri} \\
\hline
 & 2 & 2 & 4 & 1 & 1 & 1 & 1 & 3 & 1 & 1 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Virtual supervisor status register ({\tt vsstatus}) for RV64.}
\label{vsstatusreg}
\end{figure*}

The UXL field controls the effective XLEN for VU-mode, which may differ
from the XLEN for VS-mode (VSXLEN).
When VSXLEN=32, the UXL field does not exist, and VU-mode XLEN=32.
When VSXLEN=64, UXL is a \warl\ field that is encoded the same as the MXL
field of {\tt misa}, shown in Table~\ref{misabase} on
page~\pageref{misabase}.
In particular, an implementation may make UXL be a read-only copy of
field VSXL of {\tt hstatus}, forcing VU-mode XLEN=VSXLEN.

If VSXLEN is changed from 32 to a wider width, and if field UXL is not
restricted to a single value, it gets the value corresponding to the
widest supported width not wider than the new VSXLEN.

When V=1, both {\tt vsstatus}.FS and the HS-level {\tt sstatus}.FS are in
effect.  Attempts
to execute a floating-point instruction when either field is 0 (Off) raise an
illegal-instruction exception.  Modifying the floating-point state when V=1
causes both fields to be set to 3 (Dirty).

\begin{commentary}
For a hypervisor to benefit from the extension context status, it must
have its own copy in the HS-level {\tt sstatus}, maintained independently
of a guest OS running in VS-mode.
While a version of the extension context status obviously must exist in
{\tt vsstatus} for VS-mode, a hypervisor cannot rely on this version
being maintained correctly, given that VS-level software can change
{\tt vsstatus}.FS arbitrarily.
If the HS-level {\tt sstatus}.FS were not independently active and
maintained by the hardware in parallel with {\tt vsstatus}.FS while V=1,
hypervisors would always be forced to conservatively swap all
floating-point state when context-switching between virtual machines.
\end{commentary}

Read-only fields SD and XS summarize the extension context status as it
is visible to VS-mode only.
For example, the value of the HS-level {\tt sstatus}.FS does not affect
{\tt vsstatus}.SD.

An implementation may make field UBE be a read-only copy of
{\tt hstatus}.VSBE.

When V=0, {\tt vsstatus} does not directly affect the behavior of the machine,
unless a virtual-machine load/store (HLV, HLVX, or HSV)
or the MPRV feature in the {\tt mstatus}
register is used to execute a load or store
{\em as though} V=1.

\subsection{Virtual Supervisor Interrupt Registers ({\tt vsip} and {\tt vsie})}

The {\tt vsip} and {\tt vsie} registers are VSXLEN-bit read/write
registers that are VS-mode's versions of supervisor CSRs {\tt sip} and
{\tt sie}, formatted as shown in Figures \ref{vsipreg} and \ref{vsiereg}
respectively.
When V=1, {\tt vsip} and {\tt vsie} substitute for the usual {\tt sip}
and {\tt sie}, so instructions that normally read or modify
{\tt sip}/{\tt sie} actually access {\tt vsip}/{\tt vsie} instead.
However, interrupts directed to HS-level continue to be
indicated in the HS-level {\tt sip} register, not in {\tt vsip}, when
V=1.

\begin{figure}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{@{}J}
\instbitrange{VSXLEN-1}{0} \\
\hline
\multicolumn{1}{|c|}{Interrupts (\warl)} \\
\hline
VSXLEN \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Virtual supervisor interrupt-pending register ({\tt vsip}).}
\label{vsipreg}
\end{figure}

\begin{figure}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{@{}J}
\instbitrange{VSXLEN-1}{0} \\
\hline
\multicolumn{1}{|c|}{Interrupts (\warl)} \\
\hline
VSXLEN \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Virtual supervisor interrupt-enable register ({\tt vsie}).}
\label{vsiereg}
\end{figure}

The standard portions (bits 15:0) of registers {\tt vsip} and {\tt vsie}
are formatted as shown in Figures \ref{vsipreg-standard} and
\ref{vsiereg-standard} respectively.

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\setlength{\tabcolsep}{4pt}
\begin{tabular}{ScFcFcc}
\instbitrange{15}{10} &
\instbit{9} &
\instbitrange{8}{6} &
\instbit{5} &
\instbitrange{4}{2} &
\instbit{1} &
\instbit{0} \\
\hline
\multicolumn{1}{|c|}{0} &
\multicolumn{1}{c|}{SEIP} &
\multicolumn{1}{c|}{0} &
\multicolumn{1}{c|}{STIP} &
\multicolumn{1}{c|}{0} &
\multicolumn{1}{c|}{SSIP} &
\multicolumn{1}{c|}{0} \\
\hline
6 & 1 & 3 & 1 & 3 & 1 & 1 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Standard portion (bits 15:0) of {\tt vsip}.}
\label{vsipreg-standard}
\end{figure*}

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\setlength{\tabcolsep}{4pt}
\begin{tabular}{ScFcFcc}
\instbitrange{15}{10} &
\instbit{9} &
\instbitrange{8}{6} &
\instbit{5} &
\instbitrange{4}{2} &
\instbit{1} &
\instbit{0} \\
\hline
\multicolumn{1}{|c|}{0} &
\multicolumn{1}{c|}{SEIE} &
\multicolumn{1}{c|}{0} &
\multicolumn{1}{c|}{STIE} &
\multicolumn{1}{c|}{0} &
\multicolumn{1}{c|}{SSIE} &
\multicolumn{1}{c|}{0} \\
\hline
6 & 1 & 3 & 1 & 3 & 1 & 1 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Standard portion (bits 15:0) of {\tt vsie}.}
\label{vsiereg-standard}
\end{figure*}

When bit 10 of {\tt hideleg} is zero, {\tt vsip}.SEIP and {\tt vsie}.SEIE
are read-only zeros.
Else, {\tt vsip}.SEIP and {\tt vsie}.SEIE are aliases of {\tt hip}.VSEIP
and {\tt hie}.VSEIE.

When bit 6 of {\tt hideleg} is zero, {\tt vsip}.STIP and {\tt vsie}.STIE
are read-only zeros.
Else, {\tt vsip}.STIP and {\tt vsie}.STIE are aliases of {\tt hip}.VSTIP
and {\tt hie}.VSTIE.

When bit 2 of {\tt hideleg} is zero, {\tt vsip}.SSIP and {\tt vsie}.SSIE
are read-only zeros.
Else, {\tt vsip}.SSIP and {\tt vsie}.SSIE are aliases of {\tt hip}.VSSIP
and {\tt hie}.VSSIE.

\subsection{Virtual Supervisor Trap Vector Base Address Register ({\tt vstvec})}

The {\tt vstvec} register is a VSXLEN-bit read/write register that is
VS-mode's version of supervisor register {\tt stvec}, formatted as shown
in Figure~\ref{vstvecreg}.
When V=1, {\tt vstvec} substitutes for the usual {\tt stvec}, so
instructions that normally read or modify {\tt stvec} actually access
{\tt vstvec} instead.
When V=0, {\tt vstvec} does not directly affect the behavior of the
machine.

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{J@{}R}
\instbitrange{VSXLEN-1}{2} &
\instbitrange{1}{0} \\
\hline
\multicolumn{1}{|c|}{BASE[VSXLEN-1:2] (\warl)} &
\multicolumn{1}{c|}{MODE (\warl)} \\
\hline
VSXLEN-2 & 2 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Virtual supervisor trap vector base address register ({\tt vstvec}).}
\label{vstvecreg}
\end{figure*}

\subsection{Virtual Supervisor Scratch Register ({\tt vsscratch})}

The {\tt vsscratch} register is a VSXLEN-bit read/write register that is
VS-mode's version of supervisor register {\tt sscratch}, formatted as
shown in Figure~\ref{vsscratchreg}.
When V=1, {\tt vsscratch} substitutes for the usual {\tt sscratch}, so
instructions that normally read or modify {\tt sscratch} actually access
{\tt vsscratch} instead.
The contents of {\tt vsscratch} never directly affect the behavior of
the machine.

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{@{}J}
\instbitrange{VSXLEN-1}{0} \\
\hline
\multicolumn{1}{|c|}{\tt vsscratch} \\
\hline
VSXLEN \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Virtual supervisor scratch register ({\tt vsscratch}).}
\label{vsscratchreg}
\end{figure*}

\subsection{Virtual Supervisor Exception Program Counter ({\tt vsepc})}

The {\tt vsepc} register is a VSXLEN-bit read/write register that is
VS-mode's version of supervisor register {\tt sepc}, formatted as shown
in Figure~\ref{vsepcreg}.
When V=1, {\tt vsepc} substitutes for the usual {\tt sepc}, so
instructions that normally read or modify {\tt sepc} actually access
{\tt vsepc} instead.
When V=0, {\tt vsepc} does not directly affect the behavior of the
machine.

{\tt vsepc} is a \warl\ register that must be able to hold the same set of
values that {\tt sepc} can hold.

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{@{}J}
\instbitrange{VSXLEN-1}{0} \\
\hline
\multicolumn{1}{|c|}{\tt vsepc} \\
\hline
VSXLEN \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Virtual supervisor exception program counter ({\tt vsepc}).}
\label{vsepcreg}
\end{figure*}

\subsection{Virtual Supervisor Cause Register ({\tt vscause})}

The {\tt vscause} register is a VSXLEN-bit read/write register that is
VS-mode's version of supervisor register {\tt scause}, formatted as shown
in Figure~\ref{vscausereg}.
When V=1, {\tt vscause} substitutes for the usual {\tt scause}, so
instructions that normally read or modify {\tt scause} actually access
{\tt vscause} instead.
When V=0, {\tt vscause} does not directly affect the behavior of the
machine.

{\tt vscause} is a \wlrl\ register that must be able to hold the same set of
values that {\tt scause} can hold.

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{c@{}U}
\instbit{VSXLEN-1} &
\instbitrange{VSXLEN-2}{0} \\
\hline
\multicolumn{1}{|c|}{Interrupt} &
\multicolumn{1}{c|}{Exception Code (\wlrl)} \\
\hline
1 & VSXLEN-1 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Virtual supervisor cause register ({\tt vscause}).}
\label{vscausereg}
\end{figure*}

\subsection{Virtual Supervisor Trap Value Register ({\tt vstval})}

The {\tt vstval} register is a VSXLEN-bit read/write register that is
VS-mode's version of supervisor register {\tt stval}, formatted as shown
in Figure~\ref{vstvalreg}.
When V=1, {\tt vstval} substitutes for the usual {\tt stval}, so
instructions that normally read or modify {\tt stval} actually access
{\tt vstval} instead.
When V=0, {\tt vstval} does not directly affect the behavior of the
machine.

{\tt vstval} is a \warl\ register that must be able to hold the same set of
values that {\tt stval} can hold.

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{@{}J}
\instbitrange{VSXLEN-1}{0} \\
\hline
\multicolumn{1}{|c|}{\tt vstval} \\
\hline
VSXLEN \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Virtual supervisor trap value register ({\tt vstval}).}
\label{vstvalreg}
\end{figure*}

\subsection{Virtual Supervisor Address Translation and Protection Register ({\tt vsatp})}

The {\tt vsatp} register is a VSXLEN-bit read/write register that is
VS-mode's version of supervisor register {\tt satp}, formatted as shown
in Figure~\ref{rv32vsatpreg} for VSXLEN=32 and Figure~\ref{rv64vsatpreg}
for VSXLEN=64.
When V=1, {\tt vsatp} substitutes for the usual {\tt satp}, so
instructions that normally read or modify {\tt satp} actually access
{\tt vsatp} instead.
{\tt vsatp} controls VS-stage address translation, the first stage of
two-stage translation for guest virtual addresses (see
Section~\ref{sec:two-stage-translation}).

\begin{figure}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{c@{}E@{}K}
\instbit{31} &
\instbitrange{30}{22} &
\instbitrange{21}{0} \\
\hline
\multicolumn{1}{|c|}{MODE (\warl)} &
\multicolumn{1}{c|}{ASID (\warl)} &
\multicolumn{1}{c|}{PPN  (\warl)} \\
\hline
1 & 9 & 22 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{RV32 virtual supervisor address translation and protection register {\tt vsatp}.}
\label{rv32vsatpreg}
\end{figure}

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{@{}S@{}T@{}U}
\instbitrange{63}{60} &
\instbitrange{59}{44} &
\instbitrange{43}{0} \\
\hline
\multicolumn{1}{|c|}{MODE (\warl)} &
\multicolumn{1}{c|}{ASID (\warl)} &
\multicolumn{1}{c|}{PPN  (\warl)} \\
\hline
4 & 16 & 44 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{RV64 virtual supervisor address translation and protection register {\tt vsatp}, for MODE
values Bare, Sv39, and Sv48.}
\label{rv64vsatpreg}
\end{figure*}

When V=0, a write to {\tt vsatp} with an unsupported MODE value is not
ignored as it is for {\tt satp}.
Instead, the fields of {\tt vsatp} are {\warl} in the normal way.

When V=0, {\tt vsatp} does not directly affect the behavior of the machine,
unless a virtual-machine load/store (HLV, HLVX, or HSV)
or the MPRV feature in the {\tt mstatus}
register is used to execute a load or store
{\em as though} V=1.

\section{Hypervisor Instructions}

The hypervisor extension adds virtual-machine load and store instructions
and two privileged fence instructions.

\subsection{Hypervisor Virtual-Machine Load and Store Instructions}

\vspace{-0.2in}
\begin{center}
\begin{tabular}{@{}O@{}R@{}R@{}F@{}R@{}S}
\\
\instbitrange{31}{25} &
\instbitrange{24}{20} &
\instbitrange{19}{15} &
\instbitrange{14}{12} &
\instbitrange{11}{7} &
\instbitrange{6}{0} \\
\hline
\multicolumn{1}{|c|}{funct7} &
\multicolumn{1}{c|}{rs2} &
\multicolumn{1}{c|}{rs1} &
\multicolumn{1}{c|}{funct3} &
\multicolumn{1}{c|}{rd} &
\multicolumn{1}{c|}{opcode} \\
\hline
7 & 5 & 5 & 3 & 5 & 7 \\
HLV.\textit{width} & [U]  & addr & PRIVM & dest & SYSTEM \\
HLVX.HU/WU         & HLVX & addr & PRIVM & dest & SYSTEM \\
HSV.\textit{width} & src  & addr & PRIVM & 0    & SYSTEM \\
\end{tabular}
\end{center}

The hypervisor virtual-machine load and store instructions are valid only
in M-mode or HS-mode, or in U-mode when {\tt hstatus}.HU=1.
Each instruction performs an explicit memory access as though V=1;
i.e., with the address translation and protection, and the endianness,
that apply to memory accesses in either VS-mode or VU-mode.
Field SPVP of {\tt hstatus} controls the privilege level of the access.
The explicit memory access is done as though in VU-mode when SPVP=0, and
as though in VS-mode when SPVP=1.
As usual when V=1, two-stage address translation is applied, and the
HS-level {\tt sstatus}.SUM is ignored.
HS-level {\tt sstatus}.MXR makes execute-only pages readable for
both stages of address translation (VS-stage and G-stage), whereas
{\tt vsstatus}.MXR affects only the first translation stage (VS-stage).

For every RV32I or RV64I load instruction, LB, LBU, LH, LHU, LW, LWU,
and LD, there is a corresponding virtual-machine load instruction:
HLV.B, HLV.BU, HLV.H, HLV.HU, HLV.W, HLV.WU, and HLV.D.
For every RV32I or RV64I store instruction, SB, SH, SW, and SD, there is
a corresponding virtual-machine store instruction:  HSV.B, HSV.H, HSV.W,
and HSV.D.
Instructions HLV.WU, HLV.D, and HSV.D are not valid for RV32, of course.

Instructions HLVX.HU and HLVX.WU are the same as HLV.HU and HLV.WU,
except that \textit{execute} permission takes the place of \textit{read}
permission during address translation.
That is, the memory being read must be executable in both stages of
address translation, but read permission is not required.
For the supervisor physical address that results from address
translation, the supervisor physical memory attributes must grant both
\textit{execute} and \textit{read} permissions.
(The \textit{supervisor physical memory attributes} are the machine's
physical memory attributes as modified by physical memory protection,
Section~\ref{sec:pmp}, for supervisor level.)

\begin{commentary}
HLVX cannot override machine-level physical memory protection (PMP),
so attempting to read memory that PMP designates as execute-only still
results in an access-fault exception.
\end{commentary}

HLVX.WU is valid for RV32, even though LWU and HLV.WU are not.
(For RV32, HLVX.WU can be considered a variant of HLV.W, as sign
extension is irrelevant for 32-bit values.)

Attempts to execute a virtual-machine load/store instruction (HLV, HLVX,
or HSV) when V=1 cause a virtual instruction trap.
Attempts to execute one of these same instructions from U-mode when
{\tt hstatus}.HU=0 cause an illegal instruction trap.

\subsection{Hypervisor Memory-Management Fence Instructions}
\label{sec:hfence.vma}

\vspace{-0.2in}
\begin{center}
\begin{tabular}{@{}O@{}R@{}R@{}F@{}R@{}S}
\\
\instbitrange{31}{25} &
\instbitrange{24}{20} &
\instbitrange{19}{15} &
\instbitrange{14}{12} &
\instbitrange{11}{7} &
\instbitrange{6}{0} \\
\hline
\multicolumn{1}{|c|}{funct7} &
\multicolumn{1}{c|}{rs2} &
\multicolumn{1}{c|}{rs1} &
\multicolumn{1}{c|}{funct3} &
\multicolumn{1}{c|}{rd} &
\multicolumn{1}{c|}{opcode} \\
\hline
7 & 5 & 5 & 3 & 5 & 7 \\
HFENCE.VVMA & asid & vaddr & PRIV & 0 & SYSTEM \\
HFENCE.GVMA & vmid & gaddr & PRIV & 0 & SYSTEM \\
\end{tabular}
\end{center}

The hypervisor memory-management fence instructions, HFENCE.VVMA
and HFENCE.GVMA, perform a function similar to SFENCE.VMA
(Section~\ref{sec:sfence.vma}), except applying to the VS-level
memory-management data structures controlled by CSR {\tt vsatp}
(HFENCE.VVMA) or the guest-physical memory-management data structures
controlled by CSR {\tt hgatp} (HFENCE.GVMA).
Instruction SFENCE.VMA applies only to the memory-management data structures
controlled by the current {\tt satp} (either the HS-level {\tt satp} when
V=0 or {\tt vsatp} when V=1).

HFENCE.VVMA is valid only in M-mode or HS-mode.
Its effect is much the
same as temporarily entering VS-mode and executing SFENCE.VMA.
Executing an HFENCE.VVMA guarantees that any previous stores already visible
to the current hart are ordered before all subsequent implicit reads by that
hart of the VS-level memory-management data structures, when those implicit
reads are for instructions that
\begin{compactitem}
\item
are subsequent to the HFENCE.VVMA, and
\item
execute when {\tt hgatp}.VMID has the same setting as it did when HFENCE.VVMA
executed.
\end{compactitem}
Implicit reads need not be ordered when {\tt hgatp}.VMID is different than at
the time HFENCE.VVMA executed.
If operand {\em rs1}$\neq${\tt x0}, it specifies a single guest virtual
address, and if operand {\em rs2}$\neq${\tt x0}, it specifies a single guest
address-space identifier
(ASID).

\begin{commentary}
An HFENCE.VVMA instruction applies only to a single virtual machine, identified
by the setting of {\tt hgatp}.VMID when HFENCE.VVMA executes.
\end{commentary}

When {\em rs2}$\neq${\tt x0}, bits XLEN-1:ASIDMAX of the value held in {\em
rs2} are reserved for future use and should be zeroed by software and ignored
by current implementations.
Furthermore, if ASIDLEN~$<$~ASIDMAX, the implementation shall ignore bits
ASIDMAX-1:ASIDLEN of the value held in {\em rs2}.

\begin{commentary}
Simpler implementations of HFENCE.VVMA can ignore the guest virtual address in
{\em rs1} and the guest ASID value in {\em rs2}, as well as {\tt hgatp}.VMID,
and always perform a global fence for the VS-level memory management of all
virtual machines, or even a global fence for all memory-management data
structures.
\end{commentary}

Neither {\tt mstatus}.TVM nor {\tt hstatus}.VTVM causes HFENCE.VVMA to
trap.

HFENCE.GVMA is valid only in HS-mode when {\tt mstatus}.TVM=0, or in
M-mode (irrespective of {\tt mstatus}.TVM).
Executing an HFENCE.GVMA instruction guarantees that any previous stores
already visible to the current hart are ordered before all subsequent implicit
reads by that hart of guest-physical memory-management data structures done for instructions
that follow the HFENCE.GVMA.
If operand {\em rs1}$\neq${\tt x0}, it specifies a single guest physical
address, shifted right by 2~bits, and if operand {\em rs2}$\neq${\tt x0}, it
specifies a single virtual machine identifier (VMID).

\begin{commentary}
Like for a guest physical address written to {\tt htval} on a
trap, a guest physical address specified in {\em rs1} is shifted
right by 2~bits to accommodate addresses wider than the current XLEN.
\end{commentary}

When {\em rs2}$\neq${\tt x0}, bits XLEN-1:VMIDMAX of the value held in {\em
rs2} are reserved for future use and should be zeroed by software and ignored
by current implementations.
Furthermore, if VMIDLEN~$<$~VMIDMAX, the implementation shall ignore bits
VMIDMAX-1:VMIDLEN of the value held in {\em rs2}.

\begin{commentary}
Simpler implementations of HFENCE.GVMA can ignore the guest physical address in
{\em rs1} and the VMID value in {\em rs2} and always perform a global fence for
the guest-physical memory management of all virtual machines, or even a global
fence for all memory-management data structures.
\end{commentary}

If {\tt hgatp}.MODE is changed for a given VMID, an HFENCE.GVMA with
{\em rs1}={\tt x0} (and {\em rs2} set to either {\tt x0} or the VMID) must
be executed to order subsequent guest translations with the MODE
change---even if the old MODE or new MODE is Bare.

Attempts to execute HFENCE.VVMA or HFENCE.GVMA when V=1 cause a virtual
instruction trap, while attempts to do the same in U-mode
cause an illegal instruction trap.
Attempting to execute HFENCE.GVMA in HS-mode when {\tt mstatus}.TVM=1
also causes an illegal instruction trap.

\section{Machine-Level CSRs}

The hypervisor extension augments or modifies machine CSRs {\tt mstatus},
{\tt mstatush}, {\tt mideleg}, {\tt mip}, and {\tt mie}, and
adds CSRs {\tt mtval2} and {\tt mtinst}.

\subsection{Machine Status Registers ({\tt mstatus} and {\tt mstatush})}

The hypervisor extension adds two fields, MPV and GVA, to the
machine-level {\tt mstatus} or {\tt mstatush} CSR, and modifies the
behavior of several existing {\tt mstatus} fields.
Figure~\ref{hypervisor-mstatus} shows the modified {\tt mstatus} register
when the hypervisor extension is implemented and MXLEN=64.
When MXLEN=32, the hypervisor extension adds MPV and GVA not to {\tt mstatus}
but to {\tt mstatush}.
Figure~\ref{hypervisor-mstatush} shows the {\tt mstatush} register when
the hypervisor extension is implemented and MXLEN=32.

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\setlength{\tabcolsep}{4pt}
\begin{tabular}{cMccccFFc}
\\
\instbit{MXLEN-1} &
\instbitrange{MXLEN-2}{40} &
\instbit{39} &
\instbit{38} &
\instbit{37} &
\instbit{36} &
\instbitrange{35}{34} &
\instbitrange{33}{32} &
 \\
\hline
\multicolumn{1}{|c|}{SD} &
\multicolumn{1}{c|}{\wpri} &
\multicolumn{1}{c|}{MPV} &
\multicolumn{1}{c|}{GVA} &
\multicolumn{1}{c|}{MBE} &
\multicolumn{1}{c|}{SBE} &
\multicolumn{1}{c|}{SXL[1:0]} &
\multicolumn{1}{c|}{UXL[1:0]} &
 \\
\hline
1 & MXLEN-41 & 1 & 1 & 1 & 1 & 2 & 2 & \\
\end{tabular}
\begin{tabular}{cEccccccWWc}
\\
&
\instbitrange{31}{23} &
\instbit{22} &
\instbit{21} &
\instbit{20} &
\instbit{19} &
\instbit{18} &
\instbit{17} &
\instbitrange{16}{15} &
\instbitrange{14}{13} &
 \\
\hline
 &
\multicolumn{1}{|c|}{\wpri} &
\multicolumn{1}{c|}{TSR} &
\multicolumn{1}{c|}{TW} &
\multicolumn{1}{c|}{TVM} &
\multicolumn{1}{c|}{MXR} &
\multicolumn{1}{c|}{SUM} &
\multicolumn{1}{c|}{MPRV} &
\multicolumn{1}{c|}{XS[1:0]} &
\multicolumn{1}{c|}{FS[1:0]} &
 \\
\hline
 & 9 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & \\
\end{tabular}
\begin{tabular}{cFWcccccccccc}
\\
&
\instbitrange{12}{11} &
\instbitrange{10}{9} &
\instbit{8} &
\instbit{7} &
\instbit{6} &
\instbit{5} &
\instbit{4} &
\instbit{3} &
\instbit{2} &
\instbit{1} &
\instbit{0} \\
\hline
 &
\multicolumn{1}{|c|}{MPP[1:0]} &
\multicolumn{1}{c|}{\wpri} &
\multicolumn{1}{c|}{SPP} &
\multicolumn{1}{c|}{MPIE} &
\multicolumn{1}{c|}{UBE} &
\multicolumn{1}{c|}{SPIE} &
\multicolumn{1}{c|}{\wpri} &
\multicolumn{1}{c|}{MIE} &
\multicolumn{1}{c|}{\wpri} &
\multicolumn{1}{c|}{SIE} &
\multicolumn{1}{c|}{\wpri} \\
\hline
 & 2 & 2 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Machine status register ({\tt mstatus}) for RV64 when the hypervisor extension is implemented.}
\label{hypervisor-mstatus}
\end{figure*}

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\setlength{\tabcolsep}{4pt}
\begin{tabular}{LccccF}
\\
\instbitrange{31}{8} &
\instbit{7} &
\instbit{6} &
\instbit{5} &
\instbit{4} &
\instbitrange{3}{0} \\
\hline
\multicolumn{1}{|c|}{\wpri} &
\multicolumn{1}{c|}{MPV} &
\multicolumn{1}{c|}{GVA} &
\multicolumn{1}{c|}{MBE} &
\multicolumn{1}{c|}{SBE} &
\multicolumn{1}{c|}{\wpri} \\
\hline
24 & 1 & 1 & 1 & 1 & 4 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Additional machine status register ({\tt mstatush}) for RV32 when the hypervisor extension is implemented.
The format of {\tt mstatus} is unchanged for RV32.}
\label{hypervisor-mstatush}
\end{figure*}

The MPV bit (Machine Previous Virtualization Mode) is written by the implementation
whenever a trap is taken into M-mode.
Just as the MPP field is set to the (nominal) privilege
mode at the time of the trap, the MPV bit is set to the value of the virtualization
mode V at the time of the trap.  When an MRET instruction is executed, the
virtualization mode V is set to MPV, unless MPP=3, in which case V remains 0.

Field GVA (Guest Virtual Address) is written by the implementation
whenever a trap is taken into M-mode.
For any trap (breakpoint, address misaligned,
access fault, page fault, or guest-page fault) that writes
a guest virtual address to {\tt mtval}, GVA is set to~1.
For any other trap into M-mode, GVA is set to~0.

The TSR and TVM fields of {\tt mstatus} affect execution only in HS-mode,
not in VS-mode.
The TW field affects execution in all modes except M-mode.

Setting TVM=1 prevents HS-mode from accessing {\tt hgatp} or executing
HFENCE.GVMA, but has no effect on accesses to {\tt vsatp} or instruction
HFENCE.VVMA.

The hypervisor extension changes the behavior of the the Modify Privilege
field, MPRV, of {\tt mstatus}.
When MPRV=0, translation and protection behave as normal.
When MPRV=1, explicit memory accesses are translated and protected, and
endianness is applied, as though the current virtualization mode were set
to MPV and the current nominal privilege mode were set to MPP.
Table~\ref{h-mprv} enumerates the cases.

\begin{table*}[h!]
\begin{center}
\begin{tabular}{|c|c|c||p{4.5in}|}
  \hline
   MPRV & MPV & MPP & Effect \\ \hline \hline
   0    & --  & --  & Normal access; current privilege mode applies. \\ \hline
   1    & 0   & 0   & U-level access with HS-level translation and protection only. \\ \hline
   1    & 0   & 1   & HS-level access with HS-level translation and protection only.  \\ \hline
   1    & --  & 3   & M-level access with no translation. \\ \hline
   1    & 1   & 0   & VU-level access with two-stage translation and protection. The HS-level MXR bit makes any executable page readable.  {\tt vsstatus}.MXR makes readable those pages marked executable at the VS translation stage, but only if readable at the guest-physical translation stage. \\ \hline
   1    & 1   & 1   & VS-level access with two-stage translation and protection. The HS-level MXR bit makes any executable page readable.  {\tt vsstatus}.MXR makes readable those pages marked executable at the VS translation stage, but only if readable at the guest-physical translation stage.  {\tt vsstatus}.SUM applies instead of the HS-level SUM bit. \\ \hline
 \end{tabular}
\end{center}
\caption{Effect of MPRV on the translation and protection of explicit
memory accesses.}
\label{h-mprv}
\end{table*}

MPRV does not affect the virtual-machine load/store instructions, HLV,
HLVX, and HSV.
The explicit loads and stores of these instructions always act as though
V=1 and the nominal privilege mode were {\tt hstatus}.SPVP, overriding MPRV.

The {\tt mstatus} register is a superset of the HS-level {\tt sstatus}
register but is not a superset of {\tt vsstatus}.

\FloatBarrier

\subsection{Machine Interrupt Delegation Register ({\tt mideleg})}

When the hypervisor extension is implemented, bits 10, 6, and 2 of
{\tt mideleg} (corresponding to the standard VS-level interrupts) are
each hardwired to one.
Furthermore, if any guest external interrupts are implemented (GEILEN is
nonzero), bit~12 of {\tt mideleg} (corresponding to supervisor-level
guest external interrupts) is also hardwired to one.
VS-level interrupts and guest external interrupts are always delegated
past M-mode to HS-mode.

\subsection{Machine Interrupt Registers ({\tt mip} and {\tt mie})}

The hypervisor extension gives registers {\tt mip} and {\tt mie}
additional active bits for the hypervisor-added interrupts.
Figures \ref{hypervisor-mipreg-standard} and
\ref{hypervisor-miereg-standard} show the standard portions (bits 15:0)
of registers {\tt mip} and {\tt mie} when the hypervisor extension is
implemented.

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\setlength{\tabcolsep}{4pt}
\begin{tabular}{Yccccccccccccc}
\instbitrange{15}{13} &
\instbit{12} &
\instbit{11} &
\instbit{10} &
\instbit{9} &
\instbit{8} &
\instbit{7} &
\instbit{6} &
\instbit{5} &
\instbit{4} &
\instbit{3} &
\instbit{2} &
\instbit{1} &
\instbit{0} \\
\hline
\multicolumn{1}{|c|}{0} &
\multicolumn{1}{c|}{SGEIP} &
\multicolumn{1}{c|}{MEIP} &
\multicolumn{1}{c|}{VSEIP} &
\multicolumn{1}{c|}{SEIP} &
\multicolumn{1}{c|}{0} &
\multicolumn{1}{c|}{MTIP} &
\multicolumn{1}{c|}{VSTIP} &
\multicolumn{1}{c|}{STIP} &
\multicolumn{1}{c|}{0} &
\multicolumn{1}{c|}{MSIP} &
\multicolumn{1}{c|}{VSSIP} &
\multicolumn{1}{c|}{SSIP} &
\multicolumn{1}{c|}{0} \\
\hline
3 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Standard portion (bits 15:0) of {\tt mip}.}
\label{hypervisor-mipreg-standard}
\end{figure*}

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\setlength{\tabcolsep}{4pt}
\begin{tabular}{Yccccccccccccc}
\instbitrange{15}{13} &
\instbit{12} &
\instbit{11} &
\instbit{10} &
\instbit{9} &
\instbit{8} &
\instbit{7} &
\instbit{6} &
\instbit{5} &
\instbit{4} &
\instbit{3} &
\instbit{2} &
\instbit{1} &
\instbit{0} \\
\hline
\multicolumn{1}{|c|}{0} &
\multicolumn{1}{c|}{SGEIE} &
\multicolumn{1}{c|}{MEIE} &
\multicolumn{1}{c|}{VSEIE} &
\multicolumn{1}{c|}{SEIE} &
\multicolumn{1}{c|}{0} &
\multicolumn{1}{c|}{MTIE} &
\multicolumn{1}{c|}{VSTIE} &
\multicolumn{1}{c|}{STIE} &
\multicolumn{1}{c|}{0} &
\multicolumn{1}{c|}{MSIE} &
\multicolumn{1}{c|}{VSSIE} &
\multicolumn{1}{c|}{SSIE} &
\multicolumn{1}{c|}{0} \\
\hline
3 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Standard portion (bits 15:0) of {\tt mie}.}
\label{hypervisor-miereg-standard}
\end{figure*}

Bits SGEIP, VSEIP, VSTIP, and VSSIP in {\tt mip} are aliases for the same bits
in hypervisor CSR {\tt hip}, while SGEIE, VSEIE, VSTIE, and VSSIE in {\tt mie}
are aliases for the same bits in {\tt hie}.

\subsection{Machine Second Trap Value Register ({\tt mtval2})}

The {\tt mtval2} register is an MXLEN-bit read/write register formatted
as shown in Figure~\ref{mtval2reg}.
When a trap is taken into M-mode, {\tt mtval2} is written with additional
exception-specific information, alongside {\tt mtval}, to assist software
in handling the trap.

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{@{}J}
\instbitrange{MXLEN-1}{0} \\
\hline
\multicolumn{1}{|c|}{\tt mtval2} \\
\hline
MXLEN \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Machine second trap value register ({\tt mtval2}).}
\label{mtval2reg}
\end{figure*}

When a guest-page-fault trap is taken into M-mode, {\tt mtval2} is
written with either zero or the guest physical address that faulted,
shifted right by 2~bits.
For other traps, {\tt mtval2} is set to zero, but a future standard or
extension may redefine {\tt mtval2}'s setting for other traps.

If a guest-page fault is due to an implicit memory access during
first-stage (VS-stage) address translation, a guest physical address
written to {\tt mtval2} is that of the implicit memory access that
faulted.
Additional information is provided in CSR {\tt mtinst} to disambiguate
such situations.

Otherwise, for misaligned loads and stores that cause guest-page faults,
a nonzero guest physical address in {\tt mtval2} corresponds to the
faulting portion of the access as indicated by the virtual address in
{\tt mtval}.
For instruction guest-page faults on systems with variable-length
instructions, a nonzero {\tt mtval2} corresponds to the faulting portion
of the instruction as indicated by the virtual address in {\tt mtval}.

{\tt mtval2} is a \warl\ register that must be able to hold zero and may
be capable of holding only an arbitrary subset of other 2-bit-shifted
guest physical addresses, if any.

\subsection{Machine Trap Instruction Register ({\tt mtinst})}

The {\tt mtinst} register is an MXLEN-bit read/write register formatted
as shown in Figure~\ref{mtinstreg}.
When a trap is taken into M-mode, {\tt mtinst} is written with a value
that, if nonzero, provides information about the instruction that
trapped, to assist software in handling the trap.
The values that may be written to {\tt mtinst} on a trap are documented
in Section~\ref{sec:tinst-vals}.

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{@{}J}
\instbitrange{MXLEN-1}{0} \\
\hline
\multicolumn{1}{|c|}{\tt mtinst} \\
\hline
MXLEN \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Machine trap instruction register ({\tt mtinst}).}
\label{mtinstreg}
\end{figure*}

{\tt mtinst} is a \warl\ register that need only be able to hold the
values that the implementation may automatically write to it on a trap.

\section{Two-Stage Address Translation}
\label{sec:two-stage-translation}

Whenever the current virtualization mode V is 1,
two-stage address translation and protection is in
effect.
For any virtual memory access, the original virtual address is
converted in the first stage
by VS-level address translation, as controlled by the {\tt vsatp}
register, into a {\em guest physical address}.
The guest physical address is then converted
in the second stage by guest physical address
translation, as controlled by the {\tt hgatp} register, into a supervisor
physical address.
The two stages are known also as VS-stage and G-stage translation.
Although there is no option to disable two-stage address translation when V=1,
either stage of translation can be effectively disabled by zeroing the
corresponding {\tt vsatp} or {\tt hgatp} register.

The {\tt vsstatus} field MXR, which makes execute-only pages readable, only
overrides VS-stage page protection.
Setting MXR at VS-level does not override guest-physical page protections.
Setting MXR at HS-level, however, overrides both VS-stage and G-stage
execute-only permissions.

When V=1, memory accesses that would normally bypass address translation are
subject to G-stage address translation alone.
This includes memory accesses made in support of VS-stage address translation,
such as reads and writes of VS-level page tables.

Machine-level physical memory protection applies to supervisor physical
addresses and is in effect regardless of virtualization mode.

\subsection{Guest Physical Address Translation}
\label{sec:guest-addr-translation}

The mapping of guest physical addresses to supervisor physical addresses is
controlled by CSR {\tt hgatp} (Section~\ref{sec:hgatp}).

When the address translation scheme selected by the MODE field of {\tt hgatp}
is Bare, guest physical addresses are equal to supervisor physical addresses
without modification, and no memory protection applies in the trivial
translation of guest physical addresses to supervisor physical addresses.

When {\tt hgatp}.MODE specifies a translation scheme of Sv32x4, Sv39x4, or
Sv48x4, G-stage address translation is a variation on the usual
page-based virtual address translation scheme of Sv32, Sv39, or Sv48,
respectively.
In each case, the size of the incoming address is widened by 2~bits (to 34, 41,
or 50 bits).
To accommodate the 2~extra bits, the root page table (only) is expanded by a
factor of four to be 16~KiB instead of the usual 4~KiB.
Matching its larger size, the root page table also must be aligned to a 16~KiB
boundary instead of the usual 4~KiB page boundary.
Except as noted, all other aspects of Sv32, Sv39, or Sv48 are adopted unchanged
for G-stage translation.
Non-root page tables and all page table entries (PTEs) have the same formats as
documented in Sections \ref{sec:sv32}, \ref{sec:sv39}, and~\ref{sec:sv48}.

For Sv32x4, an incoming guest physical address is partitioned into a virtual
page number (VPN) and page offset as shown in Figure~\ref{sv32x4va}.
This partitioning is identical to that for an Sv32 virtual address as depicted
in Figure~\ref{sv32va} (page~\pageref{sv32va}), except with 2 more bits at the
high end in VPN[1].
(Note that the fields of a partitioned guest physical address also correspond
one-for-one with the structure that Sv32 assigns to a physical address,
depicted in Figure~\ref{rv32va}.)

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{@{}E@{}O@{}E}
\instbitrange{33}{22} &
\instbitrange{21}{12} &
\instbitrange{11}{0} \\
\hline
\multicolumn{1}{|c|}{VPN[1]} &
\multicolumn{1}{c|}{VPN[0]} &
\multicolumn{1}{c|}{page offset} \\
\hline
12 & 10 & 12 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Sv32x4 virtual address (guest physical address).}
\label{sv32x4va}
\end{figure*}

For Sv39x4, an incoming guest physical address is partitioned as shown in
Figure~\ref{sv39x4va}.
This partitioning is identical to that for an Sv39 virtual address as depicted
in Figure~\ref{sv39va} (page~\pageref{sv39va}), except with 2 more bits at the
high end in VPN[2].
Address bits 63:41 must all be zeros, or else a guest-page-fault
exception occurs.

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{@{}E@{}O@{}O@{}O}
\instbitrange{40}{30} &
\instbitrange{29}{21} &
\instbitrange{20}{12} &
\instbitrange{11}{0} \\
\hline
\multicolumn{1}{|c|}{VPN[2]} &
\multicolumn{1}{c|}{VPN[1]} &
\multicolumn{1}{c|}{VPN[0]} &
\multicolumn{1}{c|}{page offset} \\
\hline
11 & 9 & 9 & 12 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Sv39x4 virtual address (guest physical address).}
\label{sv39x4va}
\end{figure*}

For Sv48x4, an incoming guest physical address is partitioned as shown in
Figure~\ref{sv48x4va}.
This partitioning is identical to that for an Sv48 virtual address as depicted
in Figure~\ref{sv48va} (page~\pageref{sv48va}), except with 2 more bits at the
high end in VPN[3].
Address bits 63:50 must all be zeros, or else a guest-page-fault
exception occurs.

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{@{}E@{}O@{}O@{}O@{}O}
\instbitrange{49}{39} &
\instbitrange{38}{30} &
\instbitrange{29}{21} &
\instbitrange{20}{12} &
\instbitrange{11}{0} \\
\hline
\multicolumn{1}{|c|}{VPN[3]} &
\multicolumn{1}{c|}{VPN[2]} &
\multicolumn{1}{c|}{VPN[1]} &
\multicolumn{1}{c|}{VPN[0]} &
\multicolumn{1}{c|}{page offset} \\
\hline
11 & 9 & 9 & 9 & 12 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Sv48x4 virtual address (guest physical address).}
\label{sv48x4va}
\end{figure*}

\begin{commentary}
The page-based G-stage address translation scheme for RV32, Sv32x4, is
defined to support a 34-bit guest physical address so that an RV32 hypervisor
need not be limited in its ability to virtualize real 32-bit RISC-V machines,
even those with 33-bit or 34-bit physical addresses.
This may include the possibility of a machine virtualizing itself, if it
happens to use 33-bit or 34-bit physical addresses.
Multiplying the size and alignment of the root page table by a factor of four
is the cheapest way to extend Sv32 to cover a 34-bit address.
The possible wastage of 12~KiB for an unnecessarily large root page table is
expected to be of negligible consequence for most (maybe all) real uses.

A consistent ability to virtualize machines having as much as four times the
physical address space as virtual address space is believed to be of some
utility also for RV64.
For a machine implementing 39-bit virtual addresses (Sv39), for example, this
allows the hypervisor extension to support up to a 41-bit guest physical
address space without either necessitating hardware support for 48-bit virtual
addresses (Sv48) or falling back to emulating the larger address space using
shadow page tables.
\end{commentary}

The conversion of an Sv32x4, Sv39x4, or Sv48x4 guest physical address is
accomplished with the same algorithm used for Sv32, Sv39, or Sv48, as presented
in Section~\ref{sv32algorithm}, except that:
\begin{compactitem}
\item
in step~1, $a = \mbox{{\tt hgatp}.PPN}\times\mbox{PAGESIZE}$;
\item
the current privilege mode is always taken to be U-mode; and
\item
guest-page-fault exceptions are raised instead of regular page-fault
exceptions.
\end{compactitem}

For G-stage address translation, all memory accesses (including those
made to access data structures for VS-stage address translation) are considered
to be user-level accesses, as though executed in U-mode.
Access type permissions---readable, writable, or executable---are checked
during G-stage translation the same as for VS-stage
translation.
For a memory access made to support VS-stage address translation (such as to
read/write a VS-level page table), permissions are checked as though for a load
or store, not for the original access type.
However, any exception is always reported for the original access type
(instruction, load, or store/AMO).

The G~bit in all G-stage PTEs is reserved for future standard use, should be cleared
by software for forward compatibility, and must be ignored by hardware.

\begin{commentary}
G-stage address translation uses the identical format for PTEs as
regular address translation, even including the U~bit, due to the
possibility of sharing some (or all) page tables between G-stage
translation and regular HS-level address translation.
Regardless of whether this usage will ever become common, we chose not to
preclude it.
\end{commentary}

\subsection{Guest-Page Faults}

Guest-page-fault traps may be delegated from M-mode to HS-mode under the
control of CSR {\tt medeleg}, but cannot be delegated to other privilege
modes.
On a guest-page fault, CSR {\tt mtval} or {\tt stval} is written with the
faulting guest virtual address as usual, and {\tt mtval2} or {\tt htval} is
written either with zero or with the faulting guest physical address,
shifted right by 2~bits.
CSR {\tt mtinst} or {\tt htinst} may also be written with information
about the faulting instruction or other reason for the access, as
explained in Section~\ref{sec:tinst-vals}.

When an instruction fetch or a misaligned memory access straddles a page
boundary, two different address translations are involved.
When a guest-page fault occurs in such a circumstance, the faulting
virtual address written to {\tt mtval}/{\tt stval} is the same as would
be required for a regular page fault.
Thus, the faulting virtual address may be a page-boundary address that is
higher than the instruction's original virtual address, if the byte at
that page boundary is among the accessed bytes.

When a guest-page fault is not due to an implicit
memory access for VS-stage address translation,
a nonzero guest physical address written to
{\tt mtval2}/{\tt htval} shall correspond
to the exact virtual address written to
{\tt mtval}/{\tt stval}.

\subsection{Memory-Management Fences}

The behavior of the SFENCE.VMA instruction is affected by the current
virtualization mode V.  When V=0, the virtual-address argument is an HS-level
virtual address, and the ASID argument is an HS-level ASID.
The instruction orders stores only to HS-level address-translation structures
with subsequent HS-level address translations.

When V=1, the virtual-address argument to SFENCE.VMA is a guest virtual
address within the current virtual machine, and the ASID argument is a VS-level
ASID within the current virtual machine.
The current virtual machine is identified by the VMID field of CSR {\tt hgatp},
and the effective ASID can be considered to be the combination of this VMID
with the VS-level ASID.
The SFENCE.VMA instruction orders stores only to the VS-level
address-translation structures with subsequent VS-stage address translations
for the same virtual machine, i.e., only when {\tt hgatp}.VMID is the same as
when the SFENCE.VMA executed.

Hypervisor instructions HFENCE.VVMA and HFENCE.GVMA provide additional
memory-management fences to complement SFENCE.VMA.
These instructions are described in Section~\ref{sec:hfence.vma}.

Section~\ref{pmp-vmem} discusses the intersection between physical memory
protection (PMP) and page-based address translation.
It is noted there that, when PMP settings are modified in a manner that affects
either the physical memory that holds page tables or the physical memory to
which page tables point, M-mode software must synchronize the PMP settings with
the virtual memory system.
For HS-level address translation, this is accomplished by executing in M-mode
an SFENCE.VMA instruction with {\em rs1}={\tt x0} and {\em rs2}={\tt x0}, after
the PMP CSRs are written.
If G-stage address translation is in use and is not Bare,
synchronization with its data
structures is also needed.
When PMP settings are modified in a manner that affects either the physical
memory that holds guest-physical page tables or the physical memory to which
guest-physical page tables point, an HFENCE.GVMA instruction with
{\em rs1}={\tt x0} and {\em rs2}={\tt x0} must be executed in M-mode after the
PMP CSRs are written.
An HFENCE.VVMA instruction is not required.

\section{Traps}

\subsection{Trap Cause Codes}

The hypervisor extension augments the trap cause encoding.
Table~\ref{hcauses} lists the possible M-mode and HS-mode trap cause
codes when the hypervisor extension is implemented.
Codes are added for VS-level interrupts (interrupts 2, 6,~10), for
supervisor-level guest external interrupts (interrupt~12), for virtual
instruction exceptions (exception~22), and for guest-page faults
(exceptions 20, 21,~23).
Furthermore, environment calls from VS-mode are assigned cause 10,
whereas those from HS-mode or S-mode use cause~9 as usual.

\begin{table*}[p]
\begin{center}
\begin{tabular}{|r|r|l|l|}
  \hline
  Interrupt & Exception Code  & Description \\
  \hline
  1         & 0               & {\em Reserved} \\
  1         & 1               & Supervisor software interrupt \\
  1         & 2               & Virtual supervisor software interrupt \\
  1         & 3               & Machine software interrupt \\ \hline
  1         & 4               & {\em Reserved} \\
  1         & 5               & Supervisor timer interrupt \\
  1         & 6               & Virtual supervisor timer interrupt \\
  1         & 7               & Machine timer interrupt \\ \hline
  1         & 8               & {\em Reserved} \\
  1         & 9               & Supervisor external interrupt \\
  1         & 10              & Virtual supervisor external interrupt \\
  1         & 11              & Machine external interrupt \\ \hline
  1         & 12              & Supervisor guest external interrupt \\
  1         & 13--15          & {\em Reserved} \\
  1         & $\ge$16         & {\em Designated for platform or custom use} \\ \hline
  0         & 0               & Instruction address misaligned \\
  0         & 1               & Instruction access fault \\
  0         & 2               & Illegal instruction \\
  0         & 3               & Breakpoint \\
  0         & 4               & Load address misaligned \\
  0         & 5               & Load access fault \\
  0         & 6               & Store/AMO address misaligned \\
  0         & 7               & Store/AMO access fault \\
  0         & 8               & Environment call from U-mode or VU-mode \\
  0         & 9               & Environment call from HS-mode \\
  0         & 10              & Environment call from VS-mode \\
  0         & 11              & Environment call from M-mode \\
  0         & 12              & Instruction page fault \\
  0         & 13              & Load page fault \\
  0         & 14              & {\em Reserved} \\
  0         & 15              & Store/AMO page fault \\
  0         & 16--19          & {\em Reserved} \\
  0         & 20              & Instruction guest-page fault \\
  0         & 21              & Load guest-page fault \\
  0         & 22              & Virtual instruction \\
  0         & 23              & Store/AMO guest-page fault \\
  0         & 24--31          & {\em Designated for custom use} \\
  0         & 32--47          & {\em Reserved} \\
  0         & 48--63          & {\em Designated for custom use} \\
  0         & $\ge$64         & {\em Reserved} \\
  \hline
\end{tabular}
\end{center}
\caption{Machine and supervisor cause register ({\tt mcause} and
{\tt scause}) values when the hypervisor extension is implemented.}
\label{hcauses}
\end{table*}

\begin{commentary}
HS-mode and VS-mode ECALLs use different cause values so they can be delegated
separately.
\end{commentary}

When V=1, a virtual instruction exception (code 22) is normally
raised instead of an illegal instruction exception if the attempted
instruction is \textit{HS-qualified}
but is prevented from executing when V=1 due to
insufficient privilege or because the instruction is expressly disabled
by a hypervisor CSR such as {\tt hcounteren}.
An instruction is \textit{HS-qualified} if it would be valid to execute
in HS-mode (for some values of the instruction's register operands),
assuming fields TSR and TVM of CSR {\tt mstatus} are both zero.

Special rules apply for CSR instructions that access \mbox{32-bit}
high-half CSRs such as {\tt cycleh} and {\tt htimedeltah}.
When V=1 and XLEN$>$32, an attempt to access a high-half
supervisor-level CSR, high-half hypervisor CSR, high-half VS CSR,
or high-half unprivileged CSR always raises an illegal instruction
exception.
And in VS-mode, if the XLEN for VU-mode is greater than 32, an attempt
to access a high-half user-level CSR (distinct from an unprivileged
CSR) always raises an illegal instruction exception.
On the other hand, when V=1 and XLEN=32, an invalid attempt to access a
high-half S-level, hypervisor, VS, or unprivileged CSR raises a virtual
instruction exception instead of an illegal instruction exception
if the same CSR instruction for the partner \textit{low-half} CSR
(e.g.\@ {\tt cycle} or {\tt htimedelta}) is HS-qualified.
Likewise, in VS-mode, if the XLEN for VU-mode is 32, an invalid attempt
to access a high-half user-level CSR raises a virtual instruction
exception instead of an illegal instruction exception if the same CSR
instruction for the partner low-half CSR is HS-qualified.

\begin{commentary}
The RISC-V Privileged Architecture currently defines no user-level
CSRs, but they might be added by a future version of this standard or
by an extension.
\end{commentary}

Specifically, a virtual instruction exception is raised for the
following cases:
\begin{itemize}

\item
in VS-mode or VU-mode,
attempts to access a non-high-half counter CSR when the corresponding bit in
{\tt hcounteren} is~0 and the same bit in {\tt mcounteren} is~1;

\item
in VS-mode or VU-mode, if XLEN=32, attempts to access a high-half
counter CSR when the corresponding bit in {\tt hcounteren} is~0 and the
same bit in {\tt mcounteren} is~1;

\item
in VS-mode or VU-mode,
attempts to execute a hypervisor instruction (HLV, HLVX, HSV, or HFENCE);

\item
in VS-mode or VU-mode, attempts to access an implemented non-high-half
hypervisor CSR or VS CSR when the same access (read/write) would be
allowed in HS-mode, assuming {\tt mstatus}.TVM=0;

\item
in VS-mode or VU-mode, if XLEN=32, attempts to access an implemented
high-half hypervisor CSR or high-half VS CSR when the same access
(read/write) to the CSR's low-half partner would be allowed in HS-mode,
assuming {\tt mstatus}.TVM=0;

\item
in VU-mode, attempts to execute WFI when {\tt mstatus}.TW=0, or to
execute a supervisor instruction (SRET or SFENCE);

\item
in VU-mode, attempts to access an implemented non-high-half supervisor
CSR when the same access (read/write) would be allowed in HS-mode,
assuming {\tt mstatus}.TVM=0;

\item
in VU-mode, if XLEN=32, attempts to access an implemented high-half
supervisor CSR when the same access to the CSR's low-half partner would
be allowed in HS-mode, assuming {\tt mstatus}.TVM=0;

\item
in VS-mode, attempts to execute WFI when {\tt hstatus}.VTW=1 and
{\tt mstatus}.TW=0, unless the instruction completes within an
implementation-specific, bounded time;

\item
in VS-mode, attempts to execute SRET when {\tt hstatus}.VTSR=1; and

\item
in VS-mode, attempts to execute an SFENCE instruction or to access
{\tt satp}, when {\tt hstatus}.VTVM=1.

\end{itemize}
Other extensions to the \mbox{RISC-V} Privileged Architecture may add
to the set of circumstances that cause a virtual instruction exception
when V=1.

On a virtual instruction trap, {\tt mtval} or {\tt stval} is written the
same as for an illegal instruction trap.

\begin{commentary}
It is not unusual that hypervisors must emulate the
instructions that raise virtual instruction exceptions, to
support nested hypervisors or for other reasons.
Machine level is expected ordinarily to delegate virtual instruction
traps directly to HS-level, whereas illegal instruction traps are likely
to be processed first in M-mode before being conditionally delegated (by
software) to HS-level.
Consequently, virtual instruction traps are expected typically to be
handled faster than illegal instruction traps.

When not emulating the trapping instruction,
a hypervisor should convert a virtual
instruction trap into an illegal instruction exception for the guest
virtual machine.
\end{commentary}

\begin{commentary}
Because TSR and TVM in {\tt mstatus} are intended to impact only S-mode
(HS-mode), they are ignored for determining exceptions in VS-mode.
\end{commentary}

\begin{table*}[htbp]
\begin{center}
\begin{tabular}{|l|r|l|}
  \hline
  Priority      & Exc.\@ Code  & Description \\
  \hline
  {\em Highest} &            3 & Instruction address breakpoint \\
  \hline
                &              & During instruction address translation: \\
                &    12, 20, 1 & \quad First encountered page fault,
                                   guest-page fault, or access fault \\
  \hline
                &              & With physical address for instruction: \\
                &            1 & \quad Instruction access fault \\
  \hline
                &            2 & Illegal instruction \\
                &           22 & Virtual instruction \\
                &            0 & Instruction address misaligned \\
                & 8, 9, 10, 11 & Environment call \\
                &            3 & Environment break \\
                &            3 & Load/store/AMO address breakpoint \\
  \hline
                &              & Optionally: \\
                &         4, 6 & \quad Load/store/AMO address misaligned \\
  \hline
                &              & During address translation for an explicit
                                   memory access: \\
        & 13, 15, 21, 23, 5, 7 & \quad First encountered page fault,
                                   guest-page fault, or access fault \\
  \hline
                &              & With physical address for an explicit
                                   memory access: \\
                &         5, 7 & \quad Load/store/AMO access fault \\
  \hline
                &              & If not higher priority: \\
  {\em Lowest}  &         4, 6 & \quad Load/store/AMO address misaligned \\
  \hline
\end{tabular}
\end{center}
\caption{%
Synchronous exception priority when the hypervisor extension is
implemented.%
}
\label{tab:HSyncExcPrio}
\end{table*}

If an instruction may raise multiple synchronous exceptions, the
decreasing priority order of Table~\ref{tab:HSyncExcPrio} indicates
which exception is taken and reported in {\tt mcause} or {\tt scause}.

\FloatBarrier

\subsection{Trap Entry}

When a trap occurs in HS-mode or U-mode, it goes to M-mode, unless
delegated by {\tt medeleg} or {\tt mideleg}, in which case it goes to HS-mode.
When a trap occurs in VS-mode or VU-mode, it goes to M-mode, unless
delegated by {\tt medeleg} or {\tt mideleg}, in which case it goes to HS-mode,
unless further delegated by {\tt hedeleg} or {\tt hideleg}, in which case it
goes to VS-mode.

When a trap is taken into M-mode, virtualization mode V gets set to~0,
and fields MPV and MPP in {\tt mstatus}
(or {\tt mstatush}) are set according to
Table~\ref{h-mpp}.
A trap into M-mode also writes fields GVA, MPIE, and MIE in
{\tt mstatus}/{\tt mstatush} and writes CSRs {\tt mepc}, {\tt mcause},
{\tt mtval}, {\tt mtval2}, and {\tt mtinst}.

\begin{table*}[h!]
\begin{center}
\begin{tabular}{|l|c|c|}
  \hline
  Previous Mode & MPV & MPP \\ \hline
  U-mode        & 0   & 0   \\
  HS-mode       & 0   & 1   \\
  M-mode        & 0   & 3   \\ \hline
  VU-mode       & 1   & 0   \\
  VS-mode       & 1   & 1   \\ \hline
\end{tabular}
\end{center}
\caption{Value of {\tt mstatus}/{\tt mstatush} fields MPV and MPP after a trap into M-mode.
Upon trap return, MPV is ignored when MPP=3.}
\label{h-mpp}
\end{table*}

When a trap is taken into HS-mode, virtualization mode V is set to~0,
and {\tt hstatus}.SPV and {\tt sstatus}.SPP are
set according to Table~\ref{h-spp}.
If V was 1 before the trap, field SPVP in {\tt hstatus} is set the same as
{\tt sstatus}.SPP;
otherwise, SPVP is left unchanged.
A trap into HS-mode also writes field GVA in {\tt hstatus}, fields
SPIE and SIE in {\tt sstatus}, and CSRs {\tt sepc}, {\tt scause},
{\tt stval}, {\tt htval}, and {\tt htinst}.

\begin{table*}[h!]
\begin{center}
\begin{tabular}{|l|c|c|}
  \hline
  Previous Mode & SPV & SPP \\ \hline
  U-mode        & 0   & 0   \\
  HS-mode       & 0   & 1   \\ \hline
  VU-mode       & 1   & 0   \\
  VS-mode       & 1   & 1   \\ \hline
\end{tabular}
\end{center}
\caption{Value of {\tt hstatus} field SPV and {\tt sstatus} field SPP after a trap into HS-mode.}
\label{h-spp}
\end{table*}

When a trap is taken into VS-mode, {\tt vsstatus}.SPP is set according to
Table~\ref{h-vspp}.
Register {\tt hstatus} and the HS-level {\tt sstatus} are not modified,
and the virtualization mode V remains~1.
A trap into VS-mode also writes fields SPIE and SIE in
{\tt vsstatus} and writes CSRs {\tt vsepc}, {\tt vscause}, and
{\tt vstval}.

\begin{table*}[h!]
\begin{center}
\begin{tabular}{|l|c|}
  \hline
  Previous Mode & SPP \\ \hline
  VU-mode       & 0   \\
  VS-mode       & 1   \\ \hline
\end{tabular}
\end{center}
\caption{Value of {\tt vsstatus} field SPP after a trap into VS-mode.}
\label{h-vspp}
\end{table*}

\FloatBarrier

\subsection{Transformed Instruction or Pseudoinstruction for {\tt mtinst} or {\tt htinst}}
\label{sec:tinst-vals}

On any trap into M-mode or HS-mode, one of these values is written
automatically into the appropriate trap instruction CSR, {\tt mtinst} or
{\tt htinst}:
\begin{tightlist}
\item
zero;
\item
a transformation of the trapping instruction;
\item
a custom value (allowed only if the trapping instruction is nonstandard);
or
\item
a special pseudoinstruction.
\end{tightlist}
Except when a pseudoinstruction value is required (described later), the
value written to {\tt mtinst} or {\tt htinst} may always be zero,
indicating that the hardware is providing no information in the register
for this particular trap.

\begin{commentary}
The value written to the trap instruction CSR serves two purposes.
The first is to improve the speed of instruction emulation in a trap
handler, partly by allowing the handler to skip loading the trapping
instruction from memory, and partly by obviating some of the work of
decoding and executing the instruction.
The second purpose is to supply, via pseudoinstructions, additional
information about guest-page-fault exceptions caused by implicit memory
accesses done for VS-stage address translation.

A \emph{transformation} of the trapping instruction is written instead of
simply a copy of the original instruction in order to minimize the burden
for hardware yet still provide to a trap handler the information needed
to emulate the instruction.
An implementation may at any time reduce its effort by substituting zero
in place of the transformed instruction.
\end{commentary}

On an interrupt, the value written to the trap instruction register is
always zero.
On a synchronous exception, if a nonzero value is written, one of the
following shall be true about the value:

\begin{itemize}

\item
Bit~0 is {\tt 1}, and replacing bit~1 with {\tt 1} makes the value into a
valid encoding of a standard instruction.

In this case, the instruction that trapped is the same kind as indicated
by the register value, and the register value is the transformation of
the trapping instruction, as defined later.
For example, if bits 1:0 are binary {\tt 11} and the register value is
the encoding of a standard LW (load word) instruction, then the trapping
instruction is LW, and the register value is the transformation of the
trapping LW instruction.

\item
Bit~0 is {\tt 1}, and replacing bit~1 with {\tt 1} makes the value into
an instruction encoding that is explicitly designated for a custom
instruction (\emph{not} an unused reserved encoding).

This is a \textit{custom value}.
The instruction that trapped is a nonstandard instruction.
The interpretation of a custom value is not otherwise specified by this
standard.

\item
The value is one of the special pseudoinstructions defined later, all of
which have bits 1:0 equal to {\tt 00}.

\end{itemize}

These three cases exclude a large number of other possible values, such
as all those having bits 1:0 equal to binary {\tt 10}.
A future standard or extension may define additional cases, thus allowing
values that are currently excluded.
Software may safely treat an unrecognized value in a trap instruction
register the same as zero.

\begin{commentary}
To be forward-compatible with future revisions of this standard, software
that interprets a nonzero value from {\tt mtinst} or {\tt htinst} must
fully verify that the value conforms to one of the cases listed above.
For instance, for RV64, discovering that bits 6:0 of {\tt mtinst} are
{\tt 0000011} and bits 14:12 are {\tt 010} is not sufficient to establish
that the first case applies and the trapping instruction is a standard LW
instruction;
rather, software must also confirm that bits 63:32 of {\tt mtinst} are
all zeros.
A future standard might define new values for 64-bit {\tt mtinst} that
are nonzero in bits 63:32 yet may coincidentally have in bits 31:0 the
same bit patterns as standard RV64 instructions.
\end{commentary}

\begin{commentary}
Unlike for standard instructions, there is no requirement that the
instruction encoding of a custom value be of the same ``kind'' as the
instruction that trapped (or even have any correlation with the trapping
instruction).
\end{commentary}

Table~\ref{tab:tinst-values} shows the values that may be automatically
written to the trap instruction register for each standard exception
cause.
For exceptions that prevent the fetching of an instruction, only zero or
a pseudoinstruction value may be written.
A custom value may be automatically written only if the instruction that
traps is nonstandard.
A future standard or extension may permit other values to be written,
chosen from the set of allowed values established earlier.

\begin{table*}[h!]
\begin{center}
\begin{tabular}{|l|c|c|c|c|}
\hline
                               &      & Transformed &        & Pseudo- \\
                               &      & Standard    & Custom & instruction \\
Exception                      & Zero & Instruction & Value  & Value \\
\hline
Instruction address misaligned & Yes  & No          & Yes    & No  \\
\hline
Instruction access fault       & Yes  & No          & No     & No  \\
Illegal instruction            & Yes  & No          & No     & No  \\
Breakpoint                     & Yes  & No          & Yes    & No  \\
Virtual instruction            & Yes  & No          & Yes    & No  \\
\hline
Load address misaligned        & Yes  & Yes         & Yes    & No  \\
Load access fault              & Yes  & Yes         & Yes    & No  \\
Store/AMO address misaligned   & Yes  & Yes         & Yes    & No  \\
Store/AMO access fault         & Yes  & Yes         & Yes    & No  \\
\hline
Environment call               & Yes  & No          & Yes    & No  \\
\hline
Instruction page fault         & Yes  & No          & No     & No  \\
Load page fault                & Yes  & Yes         & Yes    & No  \\
Store/AMO page fault           & Yes  & Yes         & Yes    & No  \\
\hline
Instruction guest-page fault   & Yes  & No          & No     & Yes \\
Load guest-page fault          & Yes  & Yes         & Yes    & Yes \\
Store/AMO guest-page fault     & Yes  & Yes         & Yes    & Yes \\
\hline
\end{tabular}
\end{center}
\caption{Values that may be automatically written to the trap instruction
register ({\tt mtinst} or {\tt htinst}) on an exception trap.}
\label{tab:tinst-values}
\end{table*}

As enumerated in the table, a synchronous exception may write to the trap
instruction register a standard transformation of the trapping
instruction only for exceptions that arise from explicit memory accesses
(from loads, stores, and AMO instructions).
Accordingly, standard transformations are currently defined only for
these memory-access instructions.
If a synchronous trap occurs for a standard instruction for which no
transformation has been defined, the trap instruction register shall be
written with zero (or, under certain circumstances, with a special
pseudoinstruction value).

\FloatBarrier

For a standard load instruction that is not a compressed instruction and
is one of LB, LBU, LH, LHU, LW, LWU, LD, FLW, FLD, or FLQ, the
transformed instruction has the format shown in
Figure~\ref{transformedloadinst}.

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{@{}O@{}R@{}R@{}F@{}R@{}S}
\\
\instbitrange{31}{25} &
\instbitrange{24}{20} &
\instbitrange{19}{15} &
\instbitrange{14}{12} &
\instbitrange{11}{7} &
\instbitrange{6}{0} \\
\hline
\multicolumn{1}{|c|}{0} &
\multicolumn{1}{c|}{0} &
\multicolumn{1}{c|}{Addr.\ Offset} &
\multicolumn{1}{c|}{funct3} &
\multicolumn{1}{c|}{rd} &
\multicolumn{1}{c|}{opcode} \\
\hline
7 & 5 & 5 & 3 & 5 & 7 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Transformed noncompressed load instruction (LB, LBU, LH, LHU,
LW, LWU, LD, FLW, FLD, or FLQ).
Fields funct3, rd, and opcode are the same as the trapping load
instruction.}
\label{transformedloadinst}
\end{figure*}

For a standard store instruction that is not a compressed instruction and
is one of SB, SH, SW, SD, FSW, FSD, or FSQ, the transformed instruction
has the format shown in Figure~\ref{transformedstoreinst}.

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{@{}O@{}R@{}R@{}F@{}R@{}S}
\\
\instbitrange{31}{25} &
\instbitrange{24}{20} &
\instbitrange{19}{15} &
\instbitrange{14}{12} &
\instbitrange{11}{7} &
\instbitrange{6}{0} \\
\hline
\multicolumn{1}{|c|}{0} &
\multicolumn{1}{c|}{rs2} &
\multicolumn{1}{c|}{Addr.\ Offset} &
\multicolumn{1}{c|}{funct3} &
\multicolumn{1}{c|}{0} &
\multicolumn{1}{c|}{opcode} \\
\hline
7 & 5 & 5 & 3 & 5 & 7 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Transformed noncompressed store instruction (SB, SH, SW, SD,
FSW, FSD, or FSQ).
Fields rs2, funct3, and opcode are the same as the trapping store
instruction.}
\label{transformedstoreinst}
\end{figure*}

For a standard atomic instruction (load-reserved, store-conditional, or
AMO instruction), the transformed instruction has the format shown in
Figure~\ref{transformedatomicinst}.

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{@{}R@{}c@{}c@{}R@{}R@{}F@{}R@{}S}
\\
\instbitrange{31}{27} &
\instbit{26} &
\instbit{25} &
\instbitrange{24}{20} &
\instbitrange{19}{15} &
\instbitrange{14}{12} &
\instbitrange{11}{7} &
\instbitrange{6}{0} \\
\hline
\multicolumn{1}{|c|}{funct5} &
\multicolumn{1}{c|}{aq} &
\multicolumn{1}{c|}{rl} &
\multicolumn{1}{c|}{rs2} &
\multicolumn{1}{c|}{Addr.\ Offset} &
\multicolumn{1}{c|}{funct3} &
\multicolumn{1}{c|}{rd} &
\multicolumn{1}{c|}{opcode} \\
\hline
5 & 1 & 1 & 5 & 5 & 3 & 5 & 7 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Transformed atomic instruction (load-reserved,
store-conditional, or AMO instruction).
All fields are the same as the trapping instruction except bits 19:15,
Addr.\ Offset.}
\label{transformedatomicinst}
\end{figure*}

For a standard virtual-machine load/store instruction
(HLV, HLVX, or HSV), the transformed instruction has the format shown in
Figure~\ref{transformedvmaccessinst}.

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{@{}O@{}R@{}R@{}F@{}R@{}S}
\\
\instbitrange{31}{25} &
\instbitrange{24}{20} &
\instbitrange{19}{15} &
\instbitrange{14}{12} &
\instbitrange{11}{7} &
\instbitrange{6}{0} \\
\hline
\multicolumn{1}{|c|}{funct7} &
\multicolumn{1}{c|}{rs2} &
\multicolumn{1}{c|}{Addr.\ Offset} &
\multicolumn{1}{c|}{funct3} &
\multicolumn{1}{c|}{rd} &
\multicolumn{1}{c|}{opcode} \\
\hline
7 & 5 & 5 & 3 & 5 & 7 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Transformed virtual-machine load/store instruction (HLV, HLVX, HSV).
All fields are the same as the trapping instruction except bits 19:15,
Addr.\ Offset.}
\label{transformedvmaccessinst}
\end{figure*}

In all the transformed instructions above, the Addr.\ Offset field that
replaces the instruction's rs1 field in bits 19:15 is the positive
difference between the faulting virtual address (written to {\tt mtval}
or {\tt stval}) and the original virtual address.
This difference can be nonzero only for a misaligned memory access.
Note also that, for basic loads and stores, the transformations replace
the instruction's immediate offset fields with zero.

For a standard compressed instruction (16-bit size), the transformed
instruction is found as follows:
\begin{enumerate}
\item
Expand the compressed instruction to its 32-bit equivalent.
\item
Transform the 32-bit equivalent instruction.
\item
Replace bit~1 with a~{\tt 0}.
\end{enumerate}
Bits 1:0 of a transformed standard instruction will be binary {\tt 01} if
the trapping instruction is compressed and {\tt 11} if not.

\begin{commentary}
In decoding the contents of {\tt mtinst} or {\tt htinst}, once software
has determined that the register contains the encoding of a standard
basic load (LB, LBU, LH, LHU, LW, LWU, LD, FLW, FLD, or FLQ) or basic
store (SB, SH, SW, SD, FSW, FSD, or FSQ), it is not necessary to confirm
also that the immediate offset fields (31:25, and 24:20 or 11:7) are
zeros.
The knowledge that the register's value is the encoding of a basic
load/store is sufficient to prove that the trapping instruction is of the
same kind.

A future version of this standard may add information to the fields that
are currently zeros.
However, for backwards compatiblity, any such information will be for
performance purposes only and can safely be ignored.
\end{commentary}

For guest-page faults, the trap instruction register is written with a
special pseudoinstruction value if:
(a)~the fault is caused by an implicit memory access for VS-stage address
translation, and
(b)~a nonzero value (the faulting guest physical address) is written to
{\tt mtval2} or {\tt htval}.
If both conditions are met, the value written to {\tt mtinst} or
{\tt htinst} must be taken from Table~\ref{tab:pseudoinsts};
zero is not allowed.

\begin{table*}[h!]
\begin{center}
\begin{tabular}{|l|l|}
\hline
Value            & Meaning \\
\hline
{\tt 0x00002000} & 32-bit read for VS-stage address translation (RV32) \\
{\tt 0x00002020} & 32-bit write for VS-stage address translation (RV32) \\
\hline
{\tt 0x00003000} & 64-bit read for VS-stage address translation (RV64) \\
{\tt 0x00003020} & 64-bit write for VS-stage address translation (RV64) \\
\hline
\end{tabular}
\end{center}
\caption{Special pseudoinstruction values for guest-page faults.
The RV32 values are used when VSXLEN=32, and the RV64 values when VSXLEN=64.}
\label{tab:pseudoinsts}
\end{table*}

The defined pseudoinstruction values are designed to correspond closely
with the encodings of basic loads and stores, as illustrated by
Table~\ref{tab:pseudoinsts-basis}.

\begin{table*}[h!]
\begin{center}
\begin{tabular}{|l|l|}
\hline
Encoding         & Instruction \\ \hline
{\tt 0x00002003} & {\tt lw x0,0(x0)} \\
{\tt 0x00002023} & {\tt sw x0,0(x0)} \\ \hline
{\tt 0x00003003} & {\tt ld x0,0(x0)} \\
{\tt 0x00003023} & {\tt sd x0,0(x0)} \\ \hline
\end{tabular}
\end{center}
\caption{Standard instructions corresponding to the special
pseudoinstructions of Table~\ref{tab:pseudoinsts}.}
\label{tab:pseudoinsts-basis}
\end{table*}

A \textit{write} pseudoinstruction ({\tt 0x00002020} or {\tt 0x00003020})
is used for the case that the machine is attempting automatically to
update bits A and/or D in VS-level page tables.
All other implicit memory accesses for VS-stage address translation will
be reads.
If a machine never automatically updates bits A or D in VS-level page
tables (leaving this to software), the \textit{write} case will never
arise.
The fact that such a page table update must actually be atomic, not just
a simple write, is ignored for the pseudoinstruction.

\begin{commentary}
If the conditions that necessitate a pseudoinstruction value can ever
occur for M-mode, then {\tt mtinst} cannot be hardwired entirely to zero;
and likewise for HS-mode and {\tt htinst}.
However, in that case, the trap instruction registers may minimally
support only values 0 and {\tt 0x00002000} or {\tt 0x00003000}, and
possibly {\tt 0x00002020} or {\tt 0x00003020}, requiring as few as one or
two flip-flops in hardware, per register.
\end{commentary}

\begin{commentary}
There is no harm here in ignoring the atomicity requirement for page
table updates, because a hypervisor is not expected in these
circumstances to emulate an implicit memory access that fails.
Rather, the hypervisor is given enough information about the faulting
access to be able to make the memory accessible (e.g.\ by restoring a
missing page of virtual memory) before resuming execution by retrying the
faulting instruction.
\end{commentary}

\subsection{Trap Return}

The MRET instruction is used to return from a trap taken into M-mode.
MRET first determines what the new privilege mode will be according to
the values of MPP and MPV in {\tt mstatus} or {\tt mstatush}, as encoded in
Table~\ref{h-mpp}.
MRET then in {\tt mstatus}/{\tt mstatush} sets MPV=0, MPP=0, MIE=MPIE, and MPIE=1.
Lastly, MRET sets the privilege mode as previously
determined, and sets {\tt pc}={\tt mepc}.

The SRET instruction is used to return from a trap taken into HS-mode or
VS-mode.  Its behavior depends on the current virtualization mode.

When executed in M-mode or HS-mode (i.e., V=0), SRET first determines
what the new privilege mode will be according to the values in
{\tt hstatus}.SPV and {\tt sstatus}.SPP, as encoded in Table~\ref{h-spp}.
SRET then sets {\tt hstatus}.SPV=0, and in {\tt sstatus} sets SPP=0,
SIE=SPIE, and SPIE=1.
Lastly, SRET sets the privilege mode as previously
determined, and sets {\tt pc}={\tt sepc}.

When executed in VS-mode (i.e., V=1), SRET sets the privilege mode according to
Table~\ref{h-vspp}, in {\tt vsstatus} sets SPP=0, SIE=SPIE, and SPIE=1, and
lastly sets {\tt pc}={\tt vsepc}.