aboutsummaryrefslogtreecommitdiff
path: root/tcl/target/stm32h7x.cfg
blob: 1d116542a7ddc45a6f64d417be277ed6eaac7a46 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
# script for stm32h7x family

#
# stm32h7 devices support both JTAG and SWD transports.
#
source [find target/swj-dp.tcl]
source [find mem_helper.tcl]

if { [info exists CHIPNAME] } {
   set _CHIPNAME $CHIPNAME
} else {
   set _CHIPNAME stm32h7x
}

if { [info exists DUAL_BANK] } {
	set $_CHIPNAME.DUAL_BANK $DUAL_BANK
	unset DUAL_BANK
} else {
	set $_CHIPNAME.DUAL_BANK 0
}

if { [info exists DUAL_CORE] } {
	set $_CHIPNAME.DUAL_CORE $DUAL_CORE
	unset DUAL_CORE
} else {
	set $_CHIPNAME.DUAL_CORE 0
}

# Issue a warning when hla is used, and fallback to single core configuration
if { [set $_CHIPNAME.DUAL_CORE] && [using_hla] } {
	echo "Warning : hla does not support multicore debugging"
	set $_CHIPNAME.DUAL_CORE 0
}

if { [info exists USE_CTI] } {
	set $_CHIPNAME.USE_CTI $USE_CTI
	unset USE_CTI
} else {
	set $_CHIPNAME.USE_CTI 0
}

# Issue a warning when DUAL_CORE=0 and USE_CTI=1, and fallback to USE_CTI=0
if { ![set $_CHIPNAME.DUAL_CORE] && [set $_CHIPNAME.USE_CTI] } {
	echo "Warning : could not use CTI with a single core device, CTI is disabled"
	set $_CHIPNAME.USE_CTI 0
}

set _ENDIAN little

# Work-area is a space in RAM used for flash programming
# By default use 64kB
if { [info exists WORKAREASIZE] } {
   set _WORKAREASIZE $WORKAREASIZE
} else {
   set _WORKAREASIZE 0x10000
}

#jtag scan chain
if { [info exists CPUTAPID] } {
   set _CPUTAPID $CPUTAPID
} else {
   if { [using_jtag] } {
	  set _CPUTAPID 0x6ba00477
   } {
      set _CPUTAPID 0x6ba02477
   }
}

swj_newdap $_CHIPNAME cpu -irlen 4 -ircapture 0x1 -irmask 0xf -expected-id $_CPUTAPID
dap create $_CHIPNAME.dap -chain-position $_CHIPNAME.cpu

if {[using_jtag]} {
 swj_newdap $_CHIPNAME bs -irlen 5
}

if {![using_hla]} {
	# STM32H7 provides an APB-AP at access port 2, which allows the access to
	# the debug and trace features on the system APB System Debug Bus (APB-D).
	target create $_CHIPNAME.ap2 mem_ap -dap $_CHIPNAME.dap -ap-num 2
}

target create $_CHIPNAME.cpu0 cortex_m -endian $_ENDIAN -dap $_CHIPNAME.dap -ap-num 0

$_CHIPNAME.cpu0 configure -work-area-phys 0x20000000 -work-area-size $_WORKAREASIZE -work-area-backup 0

flash bank $_CHIPNAME.bank1.cpu0 stm32h7x 0x08000000 0 0 0 $_CHIPNAME.cpu0

if {[set $_CHIPNAME.DUAL_BANK]} {
	flash bank $_CHIPNAME.bank2.cpu0 stm32h7x 0x08100000 0 0 0 $_CHIPNAME.cpu0
}

if {[set $_CHIPNAME.DUAL_CORE]} {
	target create $_CHIPNAME.cpu1 cortex_m -endian $_ENDIAN -dap $_CHIPNAME.dap -ap-num 3

	$_CHIPNAME.cpu1 configure -work-area-phys 0x38000000 -work-area-size $_WORKAREASIZE -work-area-backup 0

	flash bank $_CHIPNAME.bank1.cpu1 stm32h7x 0x08000000 0 0 0 $_CHIPNAME.cpu1

	if {[set $_CHIPNAME.DUAL_BANK]} {
		flash bank $_CHIPNAME.bank2.cpu1 stm32h7x 0x08100000 0 0 0 $_CHIPNAME.cpu1
	}
}

# Make sure that cpu0 is selected
targets $_CHIPNAME.cpu0

# Clock after reset is HSI at 64 MHz, no need of PLL
adapter_khz 1800

adapter_nsrst_delay 100
if {[using_jtag]} {
 jtag_ntrst_delay 100
}

# use hardware reset
#
# The STM32H7 does not support connect_assert_srst mode because the AXI is
# unavailable while SRST is asserted, and that is used to access the DBGMCU
# component at 0x5C001000 in the examine-end event handler.
#
# It is possible to access the DBGMCU component at 0xE00E1000 via AP2 instead
# of the default AP0, and that works with SRST asserted; however, nonzero AP
# usage does not work with HLA, so is not done by default. That change could be
# made in a local configuration file if connect_assert_srst mode is needed for
# a specific application and a non-HLA adapter is in use.
reset_config srst_only srst_nogate

if {![using_hla]} {
   # if srst is not fitted use SYSRESETREQ to
   # perform a soft reset
	$_CHIPNAME.cpu0 cortex_m reset_config sysresetreq

	if {[set $_CHIPNAME.DUAL_CORE]} {
		$_CHIPNAME.cpu1 cortex_m reset_config sysresetreq
	}

   # Set CSW[27], which according to ARM ADI v5 appendix E1.4 maps to AHB signal
   # HPROT[3], which according to AMBA AHB/ASB/APB specification chapter 3.7.3
   # makes the data access cacheable. This allows reading and writing data in the
   # CPU cache from the debugger, which is far more useful than going straight to
   # RAM when operating on typical variables, and is generally no worse when
   # operating on special memory locations.
   $_CHIPNAME.dap apcsw 0x08000000 0x08000000
}

$_CHIPNAME.cpu0 configure -event examine-end {
	# Enable D3 and D1 DBG clocks
	# DBGMCU_CR |= D3DBGCKEN | D1DBGCKEN
	stm32h7x_dbgmcu_mmw 0x004 0x00600000 0

	# Enable debug during low power modes (uses more power)
	# DBGMCU_CR |= DBG_STANDBY | DBG_STOP | DBG_SLEEP in D3, D2 & D1 Domains
	stm32h7x_dbgmcu_mmw 0x004 0x000001BF 0

	# Stop watchdog counters during halt
	# DBGMCU_APB3FZ1 |= WWDG1
	stm32h7x_dbgmcu_mmw 0x034 0x00000040 0
	# DBGMCU_APB1LFZ1 |= WWDG2
	stm32h7x_dbgmcu_mmw 0x03C 0x00000800 0
	# DBGMCU_APB4FZ1 |= WDGLSD1 | WDGLSD2
	stm32h7x_dbgmcu_mmw 0x054 0x000C0000 0
}

$_CHIPNAME.cpu0 configure -event trace-config {
	# Set TRACECLKEN; TRACE_MODE is set to async; when using sync
	# change this value accordingly to configure trace pins
	# assignment
	stm32h7x_dbgmcu_mmw 0x004 0x00100000 0
}

$_CHIPNAME.cpu0 configure -event reset-init {
	# Clock after reset is HSI at 64 MHz, no need of PLL
	adapter_khz 4000
}

if {[set $_CHIPNAME.DUAL_CORE]} {
	$_CHIPNAME.cpu1 configure -event examine-end {
		# get _CHIPNAME from the current target
		set _CHIPNAME [regsub ".cpu\\d$" [target current] ""]
		global $_CHIPNAME.USE_CTI

		# Stop watchdog counters during halt
		# DBGMCU_APB3FZ2 |= WWDG1
		stm32h7x_dbgmcu_mmw 0x038 0x00000040 0
		# DBGMCU_APB1LFZ2 |= WWDG2
		stm32h7x_dbgmcu_mmw 0x040 0x00000800 0
		# DBGMCU_APB4FZ2 |= WDGLSD1 | WDGLSD2
		stm32h7x_dbgmcu_mmw 0x058 0x000C0000 0

		if {[set $_CHIPNAME.USE_CTI]} {
			stm32h7x_cti_start
		}
	}
}

# like mrw, but with target selection
proc stm32h7x_mrw {used_target reg} {
	set value ""
	$used_target mem2array value 32 $reg 1
	return $value(0)
}

# like mmw, but with target selection
proc stm32h7x_mmw {used_target reg setbits clearbits} {
	set old [stm32h7x_mrw $used_target $reg]
	set new [expr ($old & ~$clearbits) | $setbits]
	$used_target mww $reg $new
}

# mmw for dbgmcu component registers, it accepts the register offset from dbgmcu base
# this procedure will use the mem_ap on AP2 whenever possible
proc stm32h7x_dbgmcu_mmw {reg_offset setbits clearbits} {
	# use $_CHIPNAME.ap2 if possible, and use the proper dbgmcu base address
	if {![using_hla]} {
		# get _CHIPNAME from the current target
		set _CHIPNAME [regsub ".(cpu|ap)\\d*$" [target current] ""]
		set used_target $_CHIPNAME.ap2
		set reg_addr [expr 0xE00E1000 + $reg_offset]
	} {
		set used_target [target current]
		set reg_addr [expr 0x5C001000 + $reg_offset]
	}

	stm32h7x_mmw $used_target $reg_addr $setbits $clearbits
}

if {[set $_CHIPNAME.USE_CTI]} {
	# create CTI instances for both cores
	cti create $_CHIPNAME.cti0 -dap $_CHIPNAME.dap -ap-num 0 -ctibase 0xE0043000
	cti create $_CHIPNAME.cti1 -dap $_CHIPNAME.dap -ap-num 3 -ctibase 0xE0043000

	$_CHIPNAME.cpu0 configure -event halted { stm32h7x_cti_prepare_restart_all }
	$_CHIPNAME.cpu1 configure -event halted { stm32h7x_cti_prepare_restart_all }

	$_CHIPNAME.cpu0 configure -event debug-halted { stm32h7x_cti_prepare_restart_all }
	$_CHIPNAME.cpu1 configure -event debug-halted { stm32h7x_cti_prepare_restart_all }

	proc stm32h7x_cti_start {} {
		# get _CHIPNAME from the current target
		set _CHIPNAME [regsub ".cpu\\d$" [target current] ""]

		# Configure Cores' CTIs to halt each other
		# TRIGIN0 (DBGTRIGGER) and TRIGOUT0 (EDBGRQ) at CTM_CHANNEL_0
		$_CHIPNAME.cti0 write INEN0 0x1
		$_CHIPNAME.cti0 write OUTEN0 0x1
		$_CHIPNAME.cti1 write INEN0 0x1
		$_CHIPNAME.cti1 write OUTEN0 0x1

		# enable CTIs
		$_CHIPNAME.cti0 enable on
		$_CHIPNAME.cti1 enable on
	}

	proc stm32h7x_cti_stop {} {
		# get _CHIPNAME from the current target
		set _CHIPNAME [regsub ".cpu\\d$" [target current] ""]

		$_CHIPNAME.cti0 enable off
		$_CHIPNAME.cti1 enable off
	}

	proc stm32h7x_cti_prepare_restart_all {} {
		stm32h7x_cti_prepare_restart cti0
		stm32h7x_cti_prepare_restart cti1
	}

	proc stm32h7x_cti_prepare_restart {cti} {
		# get _CHIPNAME from the current target
		set _CHIPNAME [regsub ".cpu\\d$" [target current] ""]

		# Acknowlodge EDBGRQ at TRIGOUT0
		$_CHIPNAME.$cti write INACK 0x01
		$_CHIPNAME.$cti write INACK 0x00
	}
}