1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
|
/*
* Copyright(c) 2013 Intel Corporation.
*
* Adrian Burns (adrian.burns@intel.com)
* Thomas Faust (thomas.faust@intel.com)
* Ivan De Cesaris (ivan.de.cesaris@intel.com)
* Julien Carreno (julien.carreno@intel.com)
* Jeffrey Maxwell (jeffrey.r.maxwell@intel.com)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Contact Information:
* Intel Corporation
*/
/*
* @file
* This implements generic x86 32 bit memory and breakpoint operations.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <helper/log.h>
#include "target.h"
#include "target_type.h"
#include "register.h"
#include "breakpoints.h"
#include "x86_32_common.h"
static int set_debug_regs(struct target *t, uint32_t address,
uint8_t bp_num, uint8_t bp_type, uint8_t bp_length);
static int unset_debug_regs(struct target *t, uint8_t bp_num);
static int read_mem(struct target *t, uint32_t size,
uint32_t addr, uint8_t *buf);
static int write_mem(struct target *t, uint32_t size,
uint32_t addr, const uint8_t *buf);
static int calcaddr_physfromlin(struct target *t, target_addr_t addr,
target_addr_t *physaddr);
static int read_phys_mem(struct target *t, uint32_t phys_address,
uint32_t size, uint32_t count, uint8_t *buffer);
static int write_phys_mem(struct target *t, uint32_t phys_address,
uint32_t size, uint32_t count, const uint8_t *buffer);
static int set_breakpoint(struct target *target,
struct breakpoint *breakpoint);
static int unset_breakpoint(struct target *target,
struct breakpoint *breakpoint);
static int set_watchpoint(struct target *target,
struct watchpoint *watchpoint);
static int unset_watchpoint(struct target *target,
struct watchpoint *watchpoint);
static int read_hw_reg_to_cache(struct target *t, int num);
static int write_hw_reg_from_cache(struct target *t, int num);
int x86_32_get_gdb_reg_list(struct target *t,
struct reg **reg_list[], int *reg_list_size,
enum target_register_class reg_class)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
int i;
*reg_list_size = x86_32->cache->num_regs;
LOG_DEBUG("num_regs=%d, reg_class=%d", (*reg_list_size), reg_class);
*reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
if (*reg_list == NULL) {
LOG_ERROR("%s out of memory", __func__);
return ERROR_FAIL;
}
/* this will copy the values from our reg list to gdbs */
for (i = 0; i < (*reg_list_size); i++) {
(*reg_list)[i] = &x86_32->cache->reg_list[i];
LOG_DEBUG("value %s = %08" PRIx32, x86_32->cache->reg_list[i].name,
buf_get_u32(x86_32->cache->reg_list[i].value, 0, 32));
}
return ERROR_OK;
}
int x86_32_common_init_arch_info(struct target *t, struct x86_32_common *x86_32)
{
t->arch_info = x86_32;
x86_32->common_magic = X86_32_COMMON_MAGIC;
x86_32->num_hw_bpoints = MAX_DEBUG_REGS;
x86_32->hw_break_list = calloc(x86_32->num_hw_bpoints,
sizeof(struct x86_32_dbg_reg));
if (x86_32->hw_break_list == NULL) {
LOG_ERROR("%s out of memory", __func__);
return ERROR_FAIL;
}
x86_32->curr_tap = t->tap;
x86_32->fast_data_area = NULL;
x86_32->flush = 1;
x86_32->read_hw_reg_to_cache = read_hw_reg_to_cache;
x86_32->write_hw_reg_from_cache = write_hw_reg_from_cache;
return ERROR_OK;
}
int x86_32_common_mmu(struct target *t, int *enabled)
{
*enabled = true;
return ERROR_OK;
}
int x86_32_common_virt2phys(struct target *t, target_addr_t address, target_addr_t *physical)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
/*
* We need to ignore 'segmentation' for now, as OpenOCD can't handle
* segmented addresses.
* In protected mode that is almost OK, as (almost) any known OS is using
* flat segmentation. In real mode we use use the base of the DS segment,
* as we don't know better ...
*/
uint32_t cr0 = buf_get_u32(x86_32->cache->reg_list[CR0].value, 0, 32);
if (!(cr0 & CR0_PG)) {
/* target halted in real mode */
/* TODO: needs validation !!! */
uint32_t dsb = buf_get_u32(x86_32->cache->reg_list[DSB].value, 0, 32);
*physical = dsb + address;
} else {
/* target halted in protected mode */
if (calcaddr_physfromlin(t, address, physical) != ERROR_OK) {
LOG_ERROR("%s failed to calculate physical address from " TARGET_ADDR_FMT,
__func__, address);
return ERROR_FAIL;
}
}
return ERROR_OK;
}
int x86_32_common_read_phys_mem(struct target *t, target_addr_t phys_address,
uint32_t size, uint32_t count, uint8_t *buffer)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
int error;
error = read_phys_mem(t, phys_address, size, count, buffer);
if (error != ERROR_OK)
return error;
/* After reading memory from target, we must replace software breakpoints
* with the original instructions again.
*/
struct swbp_mem_patch *iter = x86_32->swbbp_mem_patch_list;
while (iter != NULL) {
if (iter->physaddr >= phys_address && iter->physaddr < phys_address+(size*count)) {
uint32_t offset = iter->physaddr - phys_address;
buffer[offset] = iter->orig_byte;
}
iter = iter->next;
}
return ERROR_OK;
}
static int read_phys_mem(struct target *t, uint32_t phys_address,
uint32_t size, uint32_t count, uint8_t *buffer)
{
int retval = ERROR_OK;
bool pg_disabled = false;
LOG_DEBUG("addr=0x%08" PRIx32 ", size=%" PRIu32 ", count=0x%" PRIx32 ", buf=%p",
phys_address, size, count, buffer);
struct x86_32_common *x86_32 = target_to_x86_32(t);
if (check_not_halted(t))
return ERROR_TARGET_NOT_HALTED;
if (!count || !buffer || !phys_address) {
LOG_ERROR("%s invalid params count=0x%" PRIx32 ", buf=%p, addr=0x%08" PRIx32,
__func__, count, buffer, phys_address);
return ERROR_COMMAND_ARGUMENT_INVALID;
}
/* to access physical memory, switch off the CR0.PG bit */
if (x86_32->is_paging_enabled(t)) {
retval = x86_32->disable_paging(t);
if (retval != ERROR_OK) {
LOG_ERROR("%s could not disable paging", __func__);
return retval;
}
pg_disabled = true;
}
for (uint32_t i = 0; i < count; i++) {
switch (size) {
case BYTE:
retval = read_mem(t, size, phys_address + i, buffer + i);
break;
case WORD:
retval = read_mem(t, size, phys_address + i * 2, buffer + i * 2);
break;
case DWORD:
retval = read_mem(t, size, phys_address + i * 4, buffer + i * 4);
break;
default:
LOG_ERROR("%s invalid read size", __func__);
break;
}
if (retval != ERROR_OK)
break;
}
/* restore CR0.PG bit if needed (regardless of retval) */
if (pg_disabled) {
int retval2 = x86_32->enable_paging(t);
if (retval2 != ERROR_OK) {
LOG_ERROR("%s could not enable paging", __func__);
return retval2;
}
}
/* TODO: After reading memory from target, we must replace
* software breakpoints with the original instructions again.
* Solve this with the breakpoint fix
*/
return retval;
}
int x86_32_common_write_phys_mem(struct target *t, target_addr_t phys_address,
uint32_t size, uint32_t count, const uint8_t *buffer)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
int error = ERROR_OK;
uint8_t *newbuffer = NULL;
check_not_halted(t);
if (!count || !buffer || !phys_address) {
LOG_ERROR("%s invalid params count=0x%" PRIx32 ", buf=%p, addr=" TARGET_ADDR_FMT,
__func__, count, buffer, phys_address);
return ERROR_COMMAND_ARGUMENT_INVALID;
}
/* Before writing memory to target, we must update software breakpoints
* with the new instructions and patch the memory buffer with the
* breakpoint instruction.
*/
newbuffer = malloc(size*count);
if (newbuffer == NULL) {
LOG_ERROR("%s out of memory", __func__);
return ERROR_FAIL;
}
memcpy(newbuffer, buffer, size*count);
struct swbp_mem_patch *iter = x86_32->swbbp_mem_patch_list;
while (iter != NULL) {
if (iter->physaddr >= phys_address && iter->physaddr < phys_address+(size*count)) {
uint32_t offset = iter->physaddr - phys_address;
newbuffer[offset] = SW_BP_OPCODE;
/* update the breakpoint */
struct breakpoint *pbiter = t->breakpoints;
while (pbiter != NULL && pbiter->unique_id != iter->swbp_unique_id)
pbiter = pbiter->next;
if (pbiter)
pbiter->orig_instr[0] = buffer[offset];
}
iter = iter->next;
}
error = write_phys_mem(t, phys_address, size, count, newbuffer);
free(newbuffer);
return error;
}
static int write_phys_mem(struct target *t, uint32_t phys_address,
uint32_t size, uint32_t count, const uint8_t *buffer)
{
int retval = ERROR_OK;
bool pg_disabled = false;
struct x86_32_common *x86_32 = target_to_x86_32(t);
LOG_DEBUG("addr=0x%08" PRIx32 ", size=%" PRIu32 ", count=0x%" PRIx32 ", buf=%p",
phys_address, size, count, buffer);
check_not_halted(t);
if (!count || !buffer || !phys_address) {
LOG_ERROR("%s invalid params count=0x%" PRIx32 ", buf=%p, addr=0x%08" PRIx32,
__func__, count, buffer, phys_address);
return ERROR_COMMAND_ARGUMENT_INVALID;
}
/* TODO: Before writing memory to target, we must update
* software breakpoints with the new instructions and
* patch the memory buffer with the breakpoint instruction.
* Solve this with the breakpoint fix
*/
/* to access physical memory, switch off the CR0.PG bit */
if (x86_32->is_paging_enabled(t)) {
retval = x86_32->disable_paging(t);
if (retval != ERROR_OK) {
LOG_ERROR("%s could not disable paging", __func__);
return retval;
}
pg_disabled = true;
}
for (uint32_t i = 0; i < count; i++) {
switch (size) {
case BYTE:
retval = write_mem(t, size, phys_address + i, buffer + i);
break;
case WORD:
retval = write_mem(t, size, phys_address + i * 2, buffer + i * 2);
break;
case DWORD:
retval = write_mem(t, size, phys_address + i * 4, buffer + i * 4);
break;
default:
LOG_DEBUG("invalid read size");
break;
}
}
/* restore CR0.PG bit if needed (regardless of retval) */
if (pg_disabled) {
retval = x86_32->enable_paging(t);
if (retval != ERROR_OK) {
LOG_ERROR("%s could not enable paging", __func__);
return retval;
}
}
return retval;
}
static int read_mem(struct target *t, uint32_t size,
uint32_t addr, uint8_t *buf)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
/* if CS.D bit=1 then its a 32 bit code segment, else 16 */
bool use32 = (buf_get_u32(x86_32->cache->reg_list[CSAR].value, 0, 32)) & CSAR_D;
int retval = x86_32->write_hw_reg(t, EAX, addr, 0);
if (retval != ERROR_OK) {
LOG_ERROR("%s error write EAX", __func__);
return retval;
}
switch (size) {
case BYTE:
if (use32)
retval = x86_32->submit_instruction(t, MEMRDB32);
else
retval = x86_32->submit_instruction(t, MEMRDB16);
break;
case WORD:
if (use32)
retval = x86_32->submit_instruction(t, MEMRDH32);
else
retval = x86_32->submit_instruction(t, MEMRDH16);
break;
case DWORD:
if (use32)
retval = x86_32->submit_instruction(t, MEMRDW32);
else
retval = x86_32->submit_instruction(t, MEMRDW16);
break;
default:
LOG_ERROR("%s invalid read mem size", __func__);
break;
}
if (retval != ERROR_OK)
return retval;
/* read_hw_reg() will write to 4 bytes (uint32_t)
* Watch out, the buffer passed into read_mem() might be 1 or 2 bytes.
*/
uint32_t regval;
retval = x86_32->read_hw_reg(t, EDX, ®val, 0);
if (retval != ERROR_OK) {
LOG_ERROR("%s error read EDX", __func__);
return retval;
}
for (uint8_t i = 0; i < size; i++)
buf[i] = (regval >> (i*8)) & 0x000000FF;
retval = x86_32->transaction_status(t);
if (retval != ERROR_OK) {
LOG_ERROR("%s error on mem read", __func__);
return retval;
}
return retval;
}
static int write_mem(struct target *t, uint32_t size,
uint32_t addr, const uint8_t *buf)
{
uint32_t i = 0;
uint32_t buf4bytes = 0;
int retval = ERROR_OK;
struct x86_32_common *x86_32 = target_to_x86_32(t);
for (i = 0; i < size; ++i) {
buf4bytes = buf4bytes << 8; /* first time we only shift 0s */
buf4bytes += buf[(size-1)-i]; /* it was hard to write, should be hard to read! */
}
/* if CS.D bit=1 then its a 32 bit code segment, else 16 */
bool use32 = (buf_get_u32(x86_32->cache->reg_list[CSAR].value, 0, 32)) & CSAR_D;
retval = x86_32->write_hw_reg(t, EAX, addr, 0);
if (retval != ERROR_OK) {
LOG_ERROR("%s error write EAX", __func__);
return retval;
}
/* write_hw_reg() will write to 4 bytes (uint32_t)
* Watch out, the buffer passed into write_mem() might be 1 or 2 bytes.
*/
retval = x86_32->write_hw_reg(t, EDX, buf4bytes, 0);
if (retval != ERROR_OK) {
LOG_ERROR("%s error write EDX", __func__);
return retval;
}
switch (size) {
case BYTE:
if (use32)
retval = x86_32->submit_instruction(t, MEMWRB32);
else
retval = x86_32->submit_instruction(t, MEMWRB16);
break;
case WORD:
if (use32)
retval = x86_32->submit_instruction(t, MEMWRH32);
else
retval = x86_32->submit_instruction(t, MEMWRH16);
break;
case DWORD:
if (use32)
retval = x86_32->submit_instruction(t, MEMWRW32);
else
retval = x86_32->submit_instruction(t, MEMWRW16);
break;
default:
LOG_ERROR("%s invalid write mem size", __func__);
return ERROR_FAIL;
}
if (retval != ERROR_OK)
return retval;
retval = x86_32->transaction_status(t);
if (retval != ERROR_OK) {
LOG_ERROR("%s error on mem write", __func__);
return retval;
}
return retval;
}
int calcaddr_physfromlin(struct target *t, target_addr_t addr, target_addr_t *physaddr)
{
uint8_t entry_buffer[8];
if (physaddr == NULL || t == NULL)
return ERROR_FAIL;
struct x86_32_common *x86_32 = target_to_x86_32(t);
/* The 'user-visible' CR0.PG should be set - otherwise the function shouldn't be called
* (Don't check the CR0.PG on the target, this might be temporally disabled at this point)
*/
uint32_t cr0 = buf_get_u32(x86_32->cache->reg_list[CR0].value, 0, 32);
if (!(cr0 & CR0_PG)) {
/* you are wrong in this function, never mind */
*physaddr = addr;
return ERROR_OK;
}
uint32_t cr4 = buf_get_u32(x86_32->cache->reg_list[CR4].value, 0, 32);
bool is_pae = cr4 & 0x00000020; /* PAE - Physical Address Extension */
uint32_t cr3 = buf_get_u32(x86_32->cache->reg_list[CR3].value, 0, 32);
if (is_pae) {
uint32_t pdpt_base = cr3 & 0xFFFFF000; /* lower 12 bits of CR3 must always be 0 */
uint32_t pdpt_index = (addr & 0xC0000000) >> 30; /* A[31:30] index to PDPT */
uint32_t pdpt_addr = pdpt_base + (8 * pdpt_index);
if (x86_32_common_read_phys_mem(t, pdpt_addr, 4, 2, entry_buffer) != ERROR_OK) {
LOG_ERROR("%s couldn't read page directory pointer table entry at 0x%08" PRIx32,
__func__, pdpt_addr);
return ERROR_FAIL;
}
uint64_t pdpt_entry = target_buffer_get_u64(t, entry_buffer);
if (!(pdpt_entry & 0x0000000000000001)) {
LOG_ERROR("%s page directory pointer table entry at 0x%08" PRIx32 " is not present",
__func__, pdpt_addr);
return ERROR_FAIL;
}
uint32_t pd_base = pdpt_entry & 0xFFFFF000; /* A[31:12] is PageTable/Page Base Address */
uint32_t pd_index = (addr & 0x3FE00000) >> 21; /* A[29:21] index to PD entry with PAE */
uint32_t pd_addr = pd_base + (8 * pd_index);
if (x86_32_common_read_phys_mem(t, pd_addr, 4, 2, entry_buffer) != ERROR_OK) {
LOG_ERROR("%s couldn't read page directory entry at 0x%08" PRIx32,
__func__, pd_addr);
return ERROR_FAIL;
}
uint64_t pd_entry = target_buffer_get_u64(t, entry_buffer);
if (!(pd_entry & 0x0000000000000001)) {
LOG_ERROR("%s page directory entry at 0x%08" PRIx32 " is not present",
__func__, pd_addr);
return ERROR_FAIL;
}
/* PS bit in PD entry is indicating 4KB or 2MB page size */
if (pd_entry & 0x0000000000000080) {
uint32_t page_base = (uint32_t)(pd_entry & 0x00000000FFE00000); /* [31:21] */
uint32_t offset = addr & 0x001FFFFF; /* [20:0] */
*physaddr = page_base + offset;
return ERROR_OK;
} else {
uint32_t pt_base = (uint32_t)(pd_entry & 0x00000000FFFFF000); /*[31:12]*/
uint32_t pt_index = (addr & 0x001FF000) >> 12; /*[20:12]*/
uint32_t pt_addr = pt_base + (8 * pt_index);
if (x86_32_common_read_phys_mem(t, pt_addr, 4, 2, entry_buffer) != ERROR_OK) {
LOG_ERROR("%s couldn't read page table entry at 0x%08" PRIx32, __func__, pt_addr);
return ERROR_FAIL;
}
uint64_t pt_entry = target_buffer_get_u64(t, entry_buffer);
if (!(pt_entry & 0x0000000000000001)) {
LOG_ERROR("%s page table entry at 0x%08" PRIx32 " is not present", __func__, pt_addr);
return ERROR_FAIL;
}
uint32_t page_base = (uint32_t)(pt_entry & 0x00000000FFFFF000); /*[31:12]*/
uint32_t offset = addr & 0x00000FFF; /*[11:0]*/
*physaddr = page_base + offset;
return ERROR_OK;
}
} else {
uint32_t pd_base = cr3 & 0xFFFFF000; /* lower 12 bits of CR3 must always be 0 */
uint32_t pd_index = (addr & 0xFFC00000) >> 22; /* A[31:22] index to PD entry */
uint32_t pd_addr = pd_base + (4 * pd_index);
if (x86_32_common_read_phys_mem(t, pd_addr, 4, 1, entry_buffer) != ERROR_OK) {
LOG_ERROR("%s couldn't read page directory entry at 0x%08" PRIx32, __func__, pd_addr);
return ERROR_FAIL;
}
uint32_t pd_entry = target_buffer_get_u32(t, entry_buffer);
if (!(pd_entry & 0x00000001)) {
LOG_ERROR("%s page directory entry at 0x%08" PRIx32 " is not present", __func__, pd_addr);
return ERROR_FAIL;
}
/* Bit 7 in page directory entry is page size.
*/
if (pd_entry & 0x00000080) {
/* 4MB pages */
uint32_t page_base = pd_entry & 0xFFC00000;
*physaddr = page_base + (addr & 0x003FFFFF);
} else {
/* 4KB pages */
uint32_t pt_base = pd_entry & 0xFFFFF000; /* A[31:12] is PageTable/Page Base Address */
uint32_t pt_index = (addr & 0x003FF000) >> 12; /* A[21:12] index to page table entry */
uint32_t pt_addr = pt_base + (4 * pt_index);
if (x86_32_common_read_phys_mem(t, pt_addr, 4, 1, entry_buffer) != ERROR_OK) {
LOG_ERROR("%s couldn't read page table entry at 0x%08" PRIx32, __func__, pt_addr);
return ERROR_FAIL;
}
uint32_t pt_entry = target_buffer_get_u32(t, entry_buffer);
if (!(pt_entry & 0x00000001)) {
LOG_ERROR("%s page table entry at 0x%08" PRIx32 " is not present", __func__, pt_addr);
return ERROR_FAIL;
}
uint32_t page_base = pt_entry & 0xFFFFF000; /* A[31:12] is PageTable/Page Base Address */
*physaddr = page_base + (addr & 0x00000FFF); /* A[11:0] offset to 4KB page in linear address */
}
}
return ERROR_OK;
}
int x86_32_common_read_memory(struct target *t, target_addr_t addr,
uint32_t size, uint32_t count, uint8_t *buf)
{
int retval = ERROR_OK;
struct x86_32_common *x86_32 = target_to_x86_32(t);
LOG_DEBUG("addr=" TARGET_ADDR_FMT ", size=%" PRIu32 ", count=0x%" PRIx32 ", buf=%p",
addr, size, count, buf);
check_not_halted(t);
if (!count || !buf || !addr) {
LOG_ERROR("%s invalid params count=0x%" PRIx32 ", buf=%p, addr=" TARGET_ADDR_FMT,
__func__, count, buf, addr);
return ERROR_COMMAND_ARGUMENT_INVALID;
}
if (x86_32->is_paging_enabled(t)) {
/* all memory accesses from debugger must be physical (CR0.PG == 0)
* conversion to physical address space needed
*/
retval = x86_32->disable_paging(t);
if (retval != ERROR_OK) {
LOG_ERROR("%s could not disable paging", __func__);
return retval;
}
target_addr_t physaddr = 0;
if (calcaddr_physfromlin(t, addr, &physaddr) != ERROR_OK) {
LOG_ERROR("%s failed to calculate physical address from " TARGET_ADDR_FMT,
__func__, addr);
retval = ERROR_FAIL;
}
/* TODO: !!! Watch out for page boundaries
* for every 4kB, the physical address has to be re-calculated
* This should be fixed together with bulk memory reads
*/
if (retval == ERROR_OK
&& x86_32_common_read_phys_mem(t, physaddr, size, count, buf) != ERROR_OK) {
LOG_ERROR("%s failed to read memory from physical address " TARGET_ADDR_FMT,
__func__, physaddr);
}
/* restore PG bit if it was cleared prior (regardless of retval) */
retval = x86_32->enable_paging(t);
if (retval != ERROR_OK) {
LOG_ERROR("%s could not enable paging", __func__);
return retval;
}
} else {
/* paging is off - linear address is physical address */
if (x86_32_common_read_phys_mem(t, addr, size, count, buf) != ERROR_OK) {
LOG_ERROR("%s failed to read memory from address " TARGET_ADDR_FMT,
__func__, addr);
retval = ERROR_FAIL;
}
}
return retval;
}
int x86_32_common_write_memory(struct target *t, target_addr_t addr,
uint32_t size, uint32_t count, const uint8_t *buf)
{
int retval = ERROR_OK;
struct x86_32_common *x86_32 = target_to_x86_32(t);
LOG_DEBUG("addr=" TARGET_ADDR_FMT ", size=%" PRIu32 ", count=0x%" PRIx32 ", buf=%p",
addr, size, count, buf);
check_not_halted(t);
if (!count || !buf || !addr) {
LOG_ERROR("%s invalid params count=0x%" PRIx32 ", buf=%p, addr=" TARGET_ADDR_FMT,
__func__, count, buf, addr);
return ERROR_COMMAND_ARGUMENT_INVALID;
}
if (x86_32->is_paging_enabled(t)) {
/* all memory accesses from debugger must be physical (CR0.PG == 0)
* conversion to physical address space needed
*/
retval = x86_32->disable_paging(t);
if (retval != ERROR_OK) {
LOG_ERROR("%s could not disable paging", __func__);
return retval;
}
target_addr_t physaddr = 0;
if (calcaddr_physfromlin(t, addr, &physaddr) != ERROR_OK) {
LOG_ERROR("%s failed to calculate physical address from " TARGET_ADDR_FMT,
__func__, addr);
retval = ERROR_FAIL;
}
/* TODO: !!! Watch out for page boundaries
* for every 4kB, the physical address has to be re-calculated
* This should be fixed together with bulk memory reads
*/
if (retval == ERROR_OK
&& x86_32_common_write_phys_mem(t, physaddr, size, count, buf) != ERROR_OK) {
LOG_ERROR("%s failed to write memory to physical address " TARGET_ADDR_FMT,
__func__, physaddr);
}
/* restore PG bit if it was cleared prior (regardless of retval) */
retval = x86_32->enable_paging(t);
if (retval != ERROR_OK) {
LOG_ERROR("%s could not enable paging", __func__);
return retval;
}
} else {
/* paging is off - linear address is physical address */
if (x86_32_common_write_phys_mem(t, addr, size, count, buf) != ERROR_OK) {
LOG_ERROR("%s failed to write memory to address " TARGET_ADDR_FMT,
__func__, addr);
retval = ERROR_FAIL;
}
}
return retval;
}
int x86_32_common_read_io(struct target *t, uint32_t addr,
uint32_t size, uint8_t *buf)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
/* if CS.D bit=1 then its a 32 bit code segment, else 16 */
bool use32 = (buf_get_u32(x86_32->cache->reg_list[CSAR].value, 0, 32)) & CSAR_D;
int retval = ERROR_FAIL;
bool pg_disabled = false;
LOG_DEBUG("addr=0x%08" PRIx32 ", size=%" PRIu32 ", buf=%p", addr, size, buf);
check_not_halted(t);
if (!buf || !addr) {
LOG_ERROR("%s invalid params buf=%p, addr=%08" PRIx32, __func__, buf, addr);
return retval;
}
retval = x86_32->write_hw_reg(t, EDX, addr, 0);
if (retval != ERROR_OK) {
LOG_ERROR("%s error EDX write", __func__);
return retval;
}
/* to access physical memory, switch off the CR0.PG bit */
if (x86_32->is_paging_enabled(t)) {
retval = x86_32->disable_paging(t);
if (retval != ERROR_OK) {
LOG_ERROR("%s could not disable paging", __func__);
return retval;
}
pg_disabled = true;
}
switch (size) {
case BYTE:
if (use32)
retval = x86_32->submit_instruction(t, IORDB32);
else
retval = x86_32->submit_instruction(t, IORDB16);
break;
case WORD:
if (use32)
retval = x86_32->submit_instruction(t, IORDH32);
else
retval = x86_32->submit_instruction(t, IORDH16);
break;
case DWORD:
if (use32)
retval = x86_32->submit_instruction(t, IORDW32);
else
retval = x86_32->submit_instruction(t, IORDW16);
break;
default:
LOG_ERROR("%s invalid read io size", __func__);
return ERROR_FAIL;
}
/* restore CR0.PG bit if needed */
if (pg_disabled) {
int retval2 = x86_32->enable_paging(t);
if (retval2 != ERROR_OK) {
LOG_ERROR("%s could not enable paging", __func__);
return retval2;
}
}
if (retval != ERROR_OK)
return retval;
uint32_t regval = 0;
retval = x86_32->read_hw_reg(t, EAX, ®val, 0);
if (retval != ERROR_OK) {
LOG_ERROR("%s error on read EAX", __func__);
return retval;
}
for (uint8_t i = 0; i < size; i++)
buf[i] = (regval >> (i*8)) & 0x000000FF;
retval = x86_32->transaction_status(t);
if (retval != ERROR_OK) {
LOG_ERROR("%s error on io read", __func__);
return retval;
}
return retval;
}
int x86_32_common_write_io(struct target *t, uint32_t addr,
uint32_t size, const uint8_t *buf)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
/* if CS.D bit=1 then its a 32 bit code segment, else 16 */
bool use32 = (buf_get_u32(x86_32->cache->reg_list[CSAR].value, 0, 32)) & CSAR_D;
LOG_DEBUG("addr=0x%08" PRIx32 ", size=%" PRIu32 ", buf=%p", addr, size, buf);
check_not_halted(t);
int retval = ERROR_FAIL;
bool pg_disabled = false;
if (!buf || !addr) {
LOG_ERROR("%s invalid params buf=%p, addr=0x%08" PRIx32, __func__, buf, addr);
return retval;
}
/* no do the write */
retval = x86_32->write_hw_reg(t, EDX, addr, 0);
if (retval != ERROR_OK) {
LOG_ERROR("%s error on EDX write", __func__);
return retval;
}
uint32_t regval = 0;
for (uint8_t i = 0; i < size; i++)
regval += (buf[i] << (i*8));
retval = x86_32->write_hw_reg(t, EAX, regval, 0);
if (retval != ERROR_OK) {
LOG_ERROR("%s error on EAX write", __func__);
return retval;
}
/* to access physical memory, switch off the CR0.PG bit */
if (x86_32->is_paging_enabled(t)) {
retval = x86_32->disable_paging(t);
if (retval != ERROR_OK) {
LOG_ERROR("%s could not disable paging", __func__);
return retval;
}
pg_disabled = true;
}
switch (size) {
case BYTE:
if (use32)
retval = x86_32->submit_instruction(t, IOWRB32);
else
retval = x86_32->submit_instruction(t, IOWRB16);
break;
case WORD:
if (use32)
retval = x86_32->submit_instruction(t, IOWRH32);
else
retval = x86_32->submit_instruction(t, IOWRH16);
break;
case DWORD:
if (use32)
retval = x86_32->submit_instruction(t, IOWRW32);
else
retval = x86_32->submit_instruction(t, IOWRW16);
break;
default:
LOG_ERROR("%s invalid write io size", __func__);
return ERROR_FAIL;
}
/* restore CR0.PG bit if needed */
if (pg_disabled) {
int retval2 = x86_32->enable_paging(t);
if (retval2 != ERROR_OK) {
LOG_ERROR("%s could not enable paging", __func__);
return retval2;
}
}
if (retval != ERROR_OK)
return retval;
retval = x86_32->transaction_status(t);
if (retval != ERROR_OK) {
LOG_ERROR("%s error on io write", __func__);
return retval;
}
return retval;
}
int x86_32_common_add_watchpoint(struct target *t, struct watchpoint *wp)
{
check_not_halted(t);
/* set_watchpoint() will return ERROR_TARGET_RESOURCE_NOT_AVAILABLE if all
* hardware registers are gone
*/
return set_watchpoint(t, wp);
}
int x86_32_common_remove_watchpoint(struct target *t, struct watchpoint *wp)
{
if (check_not_halted(t))
return ERROR_TARGET_NOT_HALTED;
if (wp->set)
unset_watchpoint(t, wp);
return ERROR_OK;
}
int x86_32_common_add_breakpoint(struct target *t, struct breakpoint *bp)
{
LOG_DEBUG("type=%d, addr=" TARGET_ADDR_FMT, bp->type, bp->address);
if (check_not_halted(t))
return ERROR_TARGET_NOT_HALTED;
/* set_breakpoint() will return ERROR_TARGET_RESOURCE_NOT_AVAILABLE if all
* hardware registers are gone (for hardware breakpoints)
*/
return set_breakpoint(t, bp);
}
int x86_32_common_remove_breakpoint(struct target *t, struct breakpoint *bp)
{
LOG_DEBUG("type=%d, addr=" TARGET_ADDR_FMT, bp->type, bp->address);
if (check_not_halted(t))
return ERROR_TARGET_NOT_HALTED;
if (bp->set)
unset_breakpoint(t, bp);
return ERROR_OK;
}
static int set_debug_regs(struct target *t, uint32_t address,
uint8_t bp_num, uint8_t bp_type, uint8_t bp_length)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
LOG_DEBUG("addr=0x%08" PRIx32 ", bp_num=%" PRIu8 ", bp_type=%" PRIu8 ", pb_length=%" PRIu8,
address, bp_num, bp_type, bp_length);
/* DR7 - set global enable */
uint32_t dr7 = buf_get_u32(x86_32->cache->reg_list[DR7].value, 0, 32);
if (bp_length != 1 && bp_length != 2 && bp_length != 4)
return ERROR_FAIL;
if (DR7_BP_FREE(dr7, bp_num))
DR7_GLOBAL_ENABLE(dr7, bp_num);
else {
LOG_ERROR("%s dr7 error, already enabled, val=%08" PRIx32, __func__, dr7);
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
switch (bp_type) {
case 0:
/* 00 - only on instruction execution */
DR7_SET_EXE(dr7, bp_num);
DR7_SET_LENGTH(dr7, bp_num, bp_length);
break;
case 1:
/* 01 - only on data writes */
DR7_SET_WRITE(dr7, bp_num);
DR7_SET_LENGTH(dr7, bp_num, bp_length);
break;
case 2:
/* 10 UNSUPPORTED - an I/O read and I/O write */
LOG_ERROR("%s unsupported feature bp_type=%d", __func__, bp_type);
return ERROR_FAIL;
break;
case 3:
/* on data read or data write */
DR7_SET_ACCESS(dr7, bp_num);
DR7_SET_LENGTH(dr7, bp_num, bp_length);
break;
default:
LOG_ERROR("%s invalid request [only 0-3] bp_type=%d", __func__, bp_type);
return ERROR_FAIL;
}
/* update regs in the reg cache ready to be written to hardware
* when we exit PM
*/
buf_set_u32(x86_32->cache->reg_list[bp_num+DR0].value, 0, 32, address);
x86_32->cache->reg_list[bp_num+DR0].dirty = true;
x86_32->cache->reg_list[bp_num+DR0].valid = true;
buf_set_u32(x86_32->cache->reg_list[DR6].value, 0, 32, PM_DR6);
x86_32->cache->reg_list[DR6].dirty = true;
x86_32->cache->reg_list[DR6].valid = true;
buf_set_u32(x86_32->cache->reg_list[DR7].value, 0, 32, dr7);
x86_32->cache->reg_list[DR7].dirty = true;
x86_32->cache->reg_list[DR7].valid = true;
return ERROR_OK;
}
static int unset_debug_regs(struct target *t, uint8_t bp_num)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
LOG_DEBUG("bp_num=%" PRIu8, bp_num);
uint32_t dr7 = buf_get_u32(x86_32->cache->reg_list[DR7].value, 0, 32);
if (!(DR7_BP_FREE(dr7, bp_num))) {
DR7_GLOBAL_DISABLE(dr7, bp_num);
} else {
LOG_ERROR("%s dr7 error, not enabled, val=0x%08" PRIx32, __func__, dr7);
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
/* this will clear rw and len bits */
DR7_RESET_RWLEN_BITS(dr7, bp_num);
/* update regs in the reg cache ready to be written to hardware
* when we exit PM
*/
buf_set_u32(x86_32->cache->reg_list[bp_num+DR0].value, 0, 32, 0);
x86_32->cache->reg_list[bp_num+DR0].dirty = true;
x86_32->cache->reg_list[bp_num+DR0].valid = true;
buf_set_u32(x86_32->cache->reg_list[DR6].value, 0, 32, PM_DR6);
x86_32->cache->reg_list[DR6].dirty = true;
x86_32->cache->reg_list[DR6].valid = true;
buf_set_u32(x86_32->cache->reg_list[DR7].value, 0, 32, dr7);
x86_32->cache->reg_list[DR7].dirty = true;
x86_32->cache->reg_list[DR7].valid = true;
return ERROR_OK;
}
static int set_hwbp(struct target *t, struct breakpoint *bp)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
struct x86_32_dbg_reg *debug_reg_list = x86_32->hw_break_list;
uint8_t hwbp_num = 0;
while (debug_reg_list[hwbp_num].used && (hwbp_num < x86_32->num_hw_bpoints))
hwbp_num++;
if (hwbp_num >= x86_32->num_hw_bpoints) {
LOG_ERROR("%s no free hw breakpoint bpid=0x%" PRIx32, __func__, bp->unique_id);
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
if (set_debug_regs(t, bp->address, hwbp_num, DR7_BP_EXECUTE, 1) != ERROR_OK)
return ERROR_FAIL;
bp->set = hwbp_num + 1;
debug_reg_list[hwbp_num].used = 1;
debug_reg_list[hwbp_num].bp_value = bp->address;
LOG_USER("%s hardware breakpoint %" PRIu32 " set at 0x%08" PRIx32 " (hwreg=%" PRIu8 ")", __func__,
bp->unique_id, debug_reg_list[hwbp_num].bp_value, hwbp_num);
return ERROR_OK;
}
static int unset_hwbp(struct target *t, struct breakpoint *bp)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
struct x86_32_dbg_reg *debug_reg_list = x86_32->hw_break_list;
int hwbp_num = bp->set - 1;
if ((hwbp_num < 0) || (hwbp_num >= x86_32->num_hw_bpoints)) {
LOG_ERROR("%s invalid breakpoint number=%d, bpid=%" PRIu32,
__func__, hwbp_num, bp->unique_id);
return ERROR_OK;
}
if (unset_debug_regs(t, hwbp_num) != ERROR_OK)
return ERROR_FAIL;
debug_reg_list[hwbp_num].used = 0;
debug_reg_list[hwbp_num].bp_value = 0;
LOG_USER("%s hardware breakpoint %" PRIu32 " removed from " TARGET_ADDR_FMT " (hwreg=%d)",
__func__, bp->unique_id, bp->address, hwbp_num);
return ERROR_OK;
}
static int set_swbp(struct target *t, struct breakpoint *bp)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
LOG_DEBUG("id %" PRIx32, bp->unique_id);
target_addr_t physaddr;
uint8_t opcode = SW_BP_OPCODE;
uint8_t readback;
if (calcaddr_physfromlin(t, bp->address, &physaddr) != ERROR_OK)
return ERROR_FAIL;
if (read_phys_mem(t, physaddr, 1, 1, bp->orig_instr))
return ERROR_FAIL;
LOG_DEBUG("set software breakpoint - orig byte=0x%02" PRIx8 "", *bp->orig_instr);
/* just write the instruction trap byte */
if (write_phys_mem(t, physaddr, 1, 1, &opcode))
return ERROR_FAIL;
/* verify that this is not invalid/read-only memory */
if (read_phys_mem(t, physaddr, 1, 1, &readback))
return ERROR_FAIL;
if (readback != SW_BP_OPCODE) {
LOG_ERROR("%s software breakpoint error at " TARGET_ADDR_FMT ", check memory",
__func__, bp->address);
LOG_ERROR("%s readback=0x%02" PRIx8 " orig=0x%02" PRIx8 "",
__func__, readback, *bp->orig_instr);
return ERROR_FAIL;
}
bp->set = SW_BP_OPCODE; /* just non 0 */
/* add the memory patch */
struct swbp_mem_patch *new_patch = malloc(sizeof(struct swbp_mem_patch));
if (new_patch == NULL) {
LOG_ERROR("%s out of memory", __func__);
return ERROR_FAIL;
}
new_patch->next = NULL;
new_patch->orig_byte = *bp->orig_instr;
new_patch->physaddr = physaddr;
new_patch->swbp_unique_id = bp->unique_id;
struct swbp_mem_patch *addto = x86_32->swbbp_mem_patch_list;
if (addto == NULL)
x86_32->swbbp_mem_patch_list = new_patch;
else {
while (addto->next != NULL)
addto = addto->next;
addto->next = new_patch;
}
LOG_USER("%s software breakpoint %" PRIu32 " set at " TARGET_ADDR_FMT,
__func__, bp->unique_id, bp->address);
return ERROR_OK;
}
static int unset_swbp(struct target *t, struct breakpoint *bp)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
LOG_DEBUG("id %" PRIx32, bp->unique_id);
target_addr_t physaddr;
uint8_t current_instr;
/* check that user program has not modified breakpoint instruction */
if (calcaddr_physfromlin(t, bp->address, &physaddr) != ERROR_OK)
return ERROR_FAIL;
if (read_phys_mem(t, physaddr, 1, 1, ¤t_instr))
return ERROR_FAIL;
if (current_instr == SW_BP_OPCODE) {
if (write_phys_mem(t, physaddr, 1, 1, bp->orig_instr))
return ERROR_FAIL;
} else {
LOG_ERROR("%s software breakpoint remove error at " TARGET_ADDR_FMT ", check memory",
__func__, bp->address);
LOG_ERROR("%s current=0x%02" PRIx8 " orig=0x%02" PRIx8 "",
__func__, current_instr, *bp->orig_instr);
return ERROR_FAIL;
}
/* remove from patch */
struct swbp_mem_patch *iter = x86_32->swbbp_mem_patch_list;
if (iter != NULL) {
if (iter->swbp_unique_id == bp->unique_id) {
/* it's the first item */
x86_32->swbbp_mem_patch_list = iter->next;
free(iter);
} else {
while (iter->next != NULL && iter->next->swbp_unique_id != bp->unique_id)
iter = iter->next;
if (iter->next != NULL) {
/* it's the next one */
struct swbp_mem_patch *freeme = iter->next;
iter->next = iter->next->next;
free(freeme);
}
}
}
LOG_USER("%s software breakpoint %" PRIu32 " removed from " TARGET_ADDR_FMT,
__func__, bp->unique_id, bp->address);
return ERROR_OK;
}
static int set_breakpoint(struct target *t, struct breakpoint *bp)
{
int error = ERROR_OK;
struct x86_32_common *x86_32 = target_to_x86_32(t);
LOG_DEBUG("type=%d, addr=" TARGET_ADDR_FMT, bp->type, bp->address);
if (bp->set) {
LOG_ERROR("breakpoint already set");
return error;
}
if (bp->type == BKPT_HARD) {
error = set_hwbp(t, bp);
if (error != ERROR_OK) {
LOG_ERROR("%s error setting hardware breakpoint at " TARGET_ADDR_FMT,
__func__, bp->address);
return error;
}
} else {
if (x86_32->sw_bpts_supported(t)) {
error = set_swbp(t, bp);
if (error != ERROR_OK) {
LOG_ERROR("%s error setting software breakpoint at " TARGET_ADDR_FMT,
__func__, bp->address);
return error;
}
} else {
LOG_ERROR("%s core doesn't support SW breakpoints", __func__);
return ERROR_FAIL;
}
}
return error;
}
static int unset_breakpoint(struct target *t, struct breakpoint *bp)
{
LOG_DEBUG("type=%d, addr=" TARGET_ADDR_FMT, bp->type, bp->address);
if (!bp->set) {
LOG_WARNING("breakpoint not set");
return ERROR_OK;
}
if (bp->type == BKPT_HARD) {
if (unset_hwbp(t, bp) != ERROR_OK) {
LOG_ERROR("%s error removing hardware breakpoint at " TARGET_ADDR_FMT,
__func__, bp->address);
return ERROR_FAIL;
}
} else {
if (unset_swbp(t, bp) != ERROR_OK) {
LOG_ERROR("%s error removing software breakpoint at " TARGET_ADDR_FMT,
__func__, bp->address);
return ERROR_FAIL;
}
}
bp->set = 0;
return ERROR_OK;
}
static int set_watchpoint(struct target *t, struct watchpoint *wp)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
struct x86_32_dbg_reg *debug_reg_list = x86_32->hw_break_list;
int wp_num = 0;
LOG_DEBUG("type=%d, addr=" TARGET_ADDR_FMT, wp->rw, wp->address);
if (wp->set) {
LOG_ERROR("%s watchpoint already set", __func__);
return ERROR_OK;
}
if (wp->rw == WPT_READ) {
LOG_ERROR("%s no support for 'read' watchpoints, use 'access' or 'write'"
, __func__);
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
while (debug_reg_list[wp_num].used && (wp_num < x86_32->num_hw_bpoints))
wp_num++;
if (wp_num >= x86_32->num_hw_bpoints) {
LOG_ERROR("%s no debug registers left", __func__);
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
if (wp->length != 4 && wp->length != 2 && wp->length != 1) {
LOG_ERROR("%s only watchpoints of length 1, 2 or 4 are supported", __func__);
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
switch (wp->rw) {
case WPT_WRITE:
if (set_debug_regs(t, wp->address, wp_num,
DR7_BP_WRITE, wp->length) != ERROR_OK) {
return ERROR_FAIL;
}
break;
case WPT_ACCESS:
if (set_debug_regs(t, wp->address, wp_num, DR7_BP_READWRITE,
wp->length) != ERROR_OK) {
return ERROR_FAIL;
}
break;
default:
LOG_ERROR("%s only 'access' or 'write' watchpoints are supported", __func__);
break;
}
wp->set = wp_num + 1;
debug_reg_list[wp_num].used = 1;
debug_reg_list[wp_num].bp_value = wp->address;
LOG_USER("'%s' watchpoint %d set at " TARGET_ADDR_FMT " with length %" PRIu32 " (hwreg=%d)",
wp->rw == WPT_READ ? "read" : wp->rw == WPT_WRITE ?
"write" : wp->rw == WPT_ACCESS ? "access" : "?",
wp->unique_id, wp->address, wp->length, wp_num);
return ERROR_OK;
}
static int unset_watchpoint(struct target *t, struct watchpoint *wp)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
struct x86_32_dbg_reg *debug_reg_list = x86_32->hw_break_list;
LOG_DEBUG("type=%d, addr=" TARGET_ADDR_FMT, wp->rw, wp->address);
if (!wp->set) {
LOG_WARNING("watchpoint not set");
return ERROR_OK;
}
int wp_num = wp->set - 1;
if ((wp_num < 0) || (wp_num >= x86_32->num_hw_bpoints)) {
LOG_DEBUG("Invalid FP Comparator number in watchpoint");
return ERROR_OK;
}
if (unset_debug_regs(t, wp_num) != ERROR_OK)
return ERROR_FAIL;
debug_reg_list[wp_num].used = 0;
debug_reg_list[wp_num].bp_value = 0;
wp->set = 0;
LOG_USER("'%s' watchpoint %d removed from " TARGET_ADDR_FMT " with length %" PRIu32 " (hwreg=%d)",
wp->rw == WPT_READ ? "read" : wp->rw == WPT_WRITE ?
"write" : wp->rw == WPT_ACCESS ? "access" : "?",
wp->unique_id, wp->address, wp->length, wp_num);
return ERROR_OK;
}
/* after reset breakpoints and watchpoints in memory are not valid anymore and
* debug registers are cleared.
* we can't afford to remove sw breakpoints using the default methods as the
* memory doesn't have the same layout yet and an access might crash the target,
* so we just clear the openocd breakpoints structures.
*/
void x86_32_common_reset_breakpoints_watchpoints(struct target *t)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
struct x86_32_dbg_reg *debug_reg_list = x86_32->hw_break_list;
struct breakpoint *next_b;
struct watchpoint *next_w;
while (t->breakpoints) {
next_b = t->breakpoints->next;
free(t->breakpoints->orig_instr);
free(t->breakpoints);
t->breakpoints = next_b;
}
while (t->watchpoints) {
next_w = t->watchpoints->next;
free(t->watchpoints);
t->watchpoints = next_w;
}
for (int i = 0; i < x86_32->num_hw_bpoints; i++) {
debug_reg_list[i].used = 0;
debug_reg_list[i].bp_value = 0;
}
}
static int read_hw_reg_to_cache(struct target *t, int num)
{
uint32_t reg_value;
struct x86_32_common *x86_32 = target_to_x86_32(t);
if (check_not_halted(t))
return ERROR_TARGET_NOT_HALTED;
if ((num < 0) || (num >= x86_32->get_num_user_regs(t)))
return ERROR_COMMAND_SYNTAX_ERROR;
if (x86_32->read_hw_reg(t, num, ®_value, 1) != ERROR_OK) {
LOG_ERROR("%s fail for %s", x86_32->cache->reg_list[num].name, __func__);
return ERROR_FAIL;
}
LOG_DEBUG("reg %s value 0x%08" PRIx32,
x86_32->cache->reg_list[num].name, reg_value);
return ERROR_OK;
}
static int write_hw_reg_from_cache(struct target *t, int num)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
if (check_not_halted(t))
return ERROR_TARGET_NOT_HALTED;
if ((num < 0) || (num >= x86_32->get_num_user_regs(t)))
return ERROR_COMMAND_SYNTAX_ERROR;
if (x86_32->write_hw_reg(t, num, 0, 1) != ERROR_OK) {
LOG_ERROR("%s fail for %s", x86_32->cache->reg_list[num].name, __func__);
return ERROR_FAIL;
}
LOG_DEBUG("reg %s value 0x%08" PRIx32, x86_32->cache->reg_list[num].name,
buf_get_u32(x86_32->cache->reg_list[num].value, 0, 32));
return ERROR_OK;
}
/* x86 32 commands */
static void handle_iod_output(struct command_invocation *cmd,
struct target *target, uint32_t address, unsigned size,
unsigned count, const uint8_t *buffer)
{
const unsigned line_bytecnt = 32;
unsigned line_modulo = line_bytecnt / size;
char output[line_bytecnt * 4 + 1];
unsigned output_len = 0;
const char *value_fmt;
switch (size) {
case 4:
value_fmt = "%8.8x ";
break;
case 2:
value_fmt = "%4.4x ";
break;
case 1:
value_fmt = "%2.2x ";
break;
default:
/* "can't happen", caller checked */
LOG_ERROR("%s invalid memory read size: %u", __func__, size);
return;
}
for (unsigned i = 0; i < count; i++) {
if (i % line_modulo == 0) {
output_len += snprintf(output + output_len,
sizeof(output) - output_len,
"0x%8.8x: ",
(unsigned)(address + (i*size)));
}
uint32_t value = 0;
const uint8_t *value_ptr = buffer + i * size;
switch (size) {
case 4:
value = target_buffer_get_u32(target, value_ptr);
break;
case 2:
value = target_buffer_get_u16(target, value_ptr);
break;
case 1:
value = *value_ptr;
}
output_len += snprintf(output + output_len,
sizeof(output) - output_len,
value_fmt, value);
if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
command_print(cmd, "%s", output);
output_len = 0;
}
}
}
COMMAND_HANDLER(handle_iod_command)
{
if (CMD_ARGC != 1)
return ERROR_COMMAND_SYNTAX_ERROR;
uint32_t address;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
if (address > 0xffff) {
LOG_ERROR("%s IA-32 I/O space is 2^16, 0x%08" PRIx32 " exceeds max", __func__, address);
return ERROR_COMMAND_SYNTAX_ERROR;
}
unsigned size = 0;
switch (CMD_NAME[2]) {
case 'w':
size = 4;
break;
case 'h':
size = 2;
break;
case 'b':
size = 1;
break;
default:
return ERROR_COMMAND_SYNTAX_ERROR;
}
unsigned count = 1;
uint8_t *buffer = calloc(count, size);
struct target *target = get_current_target(CMD_CTX);
int retval = x86_32_common_read_io(target, address, size, buffer);
if (retval == ERROR_OK)
handle_iod_output(CMD, target, address, size, count, buffer);
free(buffer);
return retval;
}
static int target_fill_io(struct target *target,
uint32_t address,
unsigned data_size,
/* value */
uint32_t b)
{
LOG_DEBUG("address=0x%08" PRIx32 ", data_size=%u, b=0x%08" PRIx32,
address, data_size, b);
uint8_t target_buf[data_size];
switch (data_size) {
case 4:
target_buffer_set_u32(target, target_buf, b);
break;
case 2:
target_buffer_set_u16(target, target_buf, b);
break;
case 1:
target_buf[0] = (b & 0x0ff);
break;
default:
exit(-1);
}
return x86_32_common_write_io(target, address, data_size, target_buf);
}
COMMAND_HANDLER(handle_iow_command)
{
if (CMD_ARGC != 2)
return ERROR_COMMAND_SYNTAX_ERROR;
uint32_t address;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
uint32_t value;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
struct target *target = get_current_target(CMD_CTX);
unsigned wordsize;
switch (CMD_NAME[2]) {
case 'w':
wordsize = 4;
break;
case 'h':
wordsize = 2;
break;
case 'b':
wordsize = 1;
break;
default:
return ERROR_COMMAND_SYNTAX_ERROR;
}
return target_fill_io(target, address, wordsize, value);
}
static const struct command_registration x86_32_exec_command_handlers[] = {
{
.name = "iww",
.mode = COMMAND_EXEC,
.handler = handle_iow_command,
.help = "write I/O port word",
.usage = "port data[word]",
},
{
.name = "iwh",
.mode = COMMAND_EXEC,
.handler = handle_iow_command,
.help = "write I/O port halfword",
.usage = "port data[halfword]",
},
{
.name = "iwb",
.mode = COMMAND_EXEC,
.handler = handle_iow_command,
.help = "write I/O port byte",
.usage = "port data[byte]",
},
{
.name = "idw",
.mode = COMMAND_EXEC,
.handler = handle_iod_command,
.help = "display I/O port word",
.usage = "port",
},
{
.name = "idh",
.mode = COMMAND_EXEC,
.handler = handle_iod_command,
.help = "display I/O port halfword",
.usage = "port",
},
{
.name = "idb",
.mode = COMMAND_EXEC,
.handler = handle_iod_command,
.help = "display I/O port byte",
.usage = "port",
},
COMMAND_REGISTRATION_DONE
};
const struct command_registration x86_32_command_handlers[] = {
{
.name = "x86_32",
.mode = COMMAND_ANY,
.help = "x86_32 target commands",
.usage = "",
.chain = x86_32_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
|