aboutsummaryrefslogtreecommitdiff
path: root/src/target/mips32.c
blob: 6bbf71bd82c7d89e929314fbbface6dd9cd4349f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
// SPDX-License-Identifier: GPL-2.0-or-later

/***************************************************************************
 *   Copyright (C) 2008 by Spencer Oliver                                  *
 *   spen@spen-soft.co.uk                                                  *
 *                                                                         *
 *   Copyright (C) 2008 by David T.L. Wong                                 *
 *                                                                         *
 *   Copyright (C) 2007,2008 Øyvind Harboe                                 *
 *   oyvind.harboe@zylin.com                                               *
 *                                                                         *
 *   Copyright (C) 2011 by Drasko DRASKOVIC                                *
 *   drasko.draskovic@gmail.com                                            *
 ***************************************************************************/

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include "mips32.h"
#include "mips_cpu.h"
#include "breakpoints.h"
#include "algorithm.h"
#include "register.h"

static const char *mips_isa_strings[] = {
	"MIPS32", "MIPS16", "", "MICRO MIPS32",
};

#define MIPS32_GDB_FP_REG 1

/*
 * GDB registers
 * based on gdb-7.6.2/gdb/features/mips-{fpu,cp0,cpu}.xml
 */
static const struct {
	unsigned id;
	const char *name;
	enum reg_type type;
	const char *group;
	const char *feature;
	int size;
} mips32_regs[] = {
	{  0,  "r0", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
	{  1,  "r1", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
	{  2,  "r2", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
	{  3,  "r3", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
	{  4,  "r4", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
	{  5,  "r5", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
	{  6,  "r6", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
	{  7,  "r7", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
	{  8,  "r8", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
	{  9,  "r9", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
	{ 10, "r10", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
	{ 11, "r11", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
	{ 12, "r12", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
	{ 13, "r13", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
	{ 14, "r14", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
	{ 15, "r15", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
	{ 16, "r16", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
	{ 17, "r17", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
	{ 18, "r18", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
	{ 19, "r19", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
	{ 20, "r20", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
	{ 21, "r21", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
	{ 22, "r22", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
	{ 23, "r23", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
	{ 24, "r24", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
	{ 25, "r25", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
	{ 26, "r26", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
	{ 27, "r27", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
	{ 28, "r28", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
	{ 29, "r29", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
	{ 30, "r30", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
	{ 31, "r31", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
	{ 32,  "lo", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
	{ 33,  "hi", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },

	{ MIPS32_REGLIST_FP_INDEX + 0,  "f0", REG_TYPE_IEEE_DOUBLE, NULL,
		"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
	{ MIPS32_REGLIST_FP_INDEX + 1,  "f1", REG_TYPE_IEEE_DOUBLE, NULL,
		"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
	{ MIPS32_REGLIST_FP_INDEX + 2,  "f2", REG_TYPE_IEEE_DOUBLE, NULL,
		"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
	{ MIPS32_REGLIST_FP_INDEX + 3,  "f3", REG_TYPE_IEEE_DOUBLE, NULL,
		"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
	{ MIPS32_REGLIST_FP_INDEX + 4,  "f4", REG_TYPE_IEEE_DOUBLE, NULL,
		"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
	{ MIPS32_REGLIST_FP_INDEX + 5,  "f5", REG_TYPE_IEEE_DOUBLE, NULL,
		"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
	{ MIPS32_REGLIST_FP_INDEX + 6,  "f6", REG_TYPE_IEEE_DOUBLE, NULL,
		"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
	{ MIPS32_REGLIST_FP_INDEX + 7,  "f7", REG_TYPE_IEEE_DOUBLE, NULL,
		"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
	{ MIPS32_REGLIST_FP_INDEX + 8,  "f8", REG_TYPE_IEEE_DOUBLE, NULL,
		"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
	{ MIPS32_REGLIST_FP_INDEX + 9,  "f9", REG_TYPE_IEEE_DOUBLE, NULL,
		"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
	{ MIPS32_REGLIST_FP_INDEX + 10, "f10", REG_TYPE_IEEE_DOUBLE, NULL,
		"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
	{ MIPS32_REGLIST_FP_INDEX + 11, "f11", REG_TYPE_IEEE_DOUBLE, NULL,
		"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
	{ MIPS32_REGLIST_FP_INDEX + 12, "f12", REG_TYPE_IEEE_DOUBLE, NULL,
		"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
	{ MIPS32_REGLIST_FP_INDEX + 13, "f13", REG_TYPE_IEEE_DOUBLE, NULL,
		"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
	{ MIPS32_REGLIST_FP_INDEX + 14, "f14", REG_TYPE_IEEE_DOUBLE, NULL,
		"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
	{ MIPS32_REGLIST_FP_INDEX + 15, "f15", REG_TYPE_IEEE_DOUBLE, NULL,
		"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
	{ MIPS32_REGLIST_FP_INDEX + 16, "f16", REG_TYPE_IEEE_DOUBLE, NULL,
		"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
	{ MIPS32_REGLIST_FP_INDEX + 17, "f17", REG_TYPE_IEEE_DOUBLE, NULL,
		"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
	{ MIPS32_REGLIST_FP_INDEX + 18, "f18", REG_TYPE_IEEE_DOUBLE, NULL,
		"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
	{ MIPS32_REGLIST_FP_INDEX + 19, "f19", REG_TYPE_IEEE_DOUBLE, NULL,
		"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
	{ MIPS32_REGLIST_FP_INDEX + 20, "f20", REG_TYPE_IEEE_DOUBLE, NULL,
		"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
	{ MIPS32_REGLIST_FP_INDEX + 21, "f21", REG_TYPE_IEEE_DOUBLE, NULL,
		"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
	{ MIPS32_REGLIST_FP_INDEX + 22, "f22", REG_TYPE_IEEE_DOUBLE, NULL,
		"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
	{ MIPS32_REGLIST_FP_INDEX + 23, "f23", REG_TYPE_IEEE_DOUBLE, NULL,
		"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
	{ MIPS32_REGLIST_FP_INDEX + 24, "f24", REG_TYPE_IEEE_DOUBLE, NULL,
		"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
	{ MIPS32_REGLIST_FP_INDEX + 25, "f25", REG_TYPE_IEEE_DOUBLE, NULL,
		"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
	{ MIPS32_REGLIST_FP_INDEX + 26, "f26", REG_TYPE_IEEE_DOUBLE, NULL,
		"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
	{ MIPS32_REGLIST_FP_INDEX + 27, "f27", REG_TYPE_IEEE_DOUBLE, NULL,
		"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
	{ MIPS32_REGLIST_FP_INDEX + 28, "f28", REG_TYPE_IEEE_DOUBLE, NULL,
		"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
	{ MIPS32_REGLIST_FP_INDEX + 29, "f29", REG_TYPE_IEEE_DOUBLE, NULL,
		"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
	{ MIPS32_REGLIST_FP_INDEX + 30, "f30", REG_TYPE_IEEE_DOUBLE, NULL,
		"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
	{ MIPS32_REGLIST_FP_INDEX + 31, "f31", REG_TYPE_IEEE_DOUBLE, NULL,
		"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },

	{ MIPS32_REGLIST_FPC_INDEX + 0, "fcsr", REG_TYPE_INT, "float",
		"org.gnu.gdb.mips.fpu", 0 },
	{ MIPS32_REGLIST_FPC_INDEX + 1, "fir", REG_TYPE_INT, "float",
		"org.gnu.gdb.mips.fpu", 0 },

	{ MIPS32_REGLIST_C0_STATUS_INDEX,	"status", REG_TYPE_INT, NULL,
		"org.gnu.gdb.mips.cp0", 0 },
	{ MIPS32_REGLIST_C0_BADVADDR_INDEX,	"badvaddr", REG_TYPE_INT, NULL,
		"org.gnu.gdb.mips.cp0", 0 },
	{ MIPS32_REGLIST_C0_CAUSE_INDEX,	"cause", REG_TYPE_INT, NULL,
		"org.gnu.gdb.mips.cp0", 0 },
	{ MIPS32_REGLIST_C0_PC_INDEX,		"pc", REG_TYPE_INT, NULL,
		"org.gnu.gdb.mips.cpu", 0 },
	{ MIPS32_REGLIST_C0_GUESTCTL1_INDEX, "guestCtl1", REG_TYPE_INT, NULL,
		"org.gnu.gdb.mips.cp0", 0 },
};

#define MIPS32_NUM_REGS ARRAY_SIZE(mips32_regs)



#define zero	0

#define AT	1

#define v0	2
#define v1	3

#define a0	4
#define a1	5
#define a2	6
#define	a3	7
#define t0	8
#define t1	9
#define t2	10
#define t3	11
#define t4	12
#define t5	13
#define t6	14
#define t7	15
#define ta0	12	/* alias for $t4 */
#define ta1	13	/* alias for $t5 */
#define ta2	14	/* alias for $t6 */
#define ta3	15	/* alias for $t7 */

#define s0	16
#define s1	17
#define s2	18
#define s3	19
#define s4	20
#define s5	21
#define s6	22
#define s7	23
#define s8	30		/* == fp */

#define t8	24
#define t9	25
#define k0	26
#define k1	27

#define gp	28

#define sp	29
#define fp	30
#define ra	31


static const struct {
	const char *name;
} mips32_dsp_regs[MIPS32NUMDSPREGS] = {
	{ "hi0"},
	{ "hi1"},
	{ "hi2"},
	{ "hi3"},
	{ "lo0"},
	{ "lo1"},
	{ "lo2"},
	{ "lo3"},
	{ "control"},
};

static int mips32_get_core_reg(struct reg *reg)
{
	int retval;
	struct mips32_core_reg *mips32_reg = reg->arch_info;
	struct target *target = mips32_reg->target;
	struct mips32_common *mips32_target = target_to_mips32(target);

	if (target->state != TARGET_HALTED)
		return ERROR_TARGET_NOT_HALTED;

	retval = mips32_target->read_core_reg(target, mips32_reg->num);

	return retval;
}

static int mips32_set_core_reg(struct reg *reg, uint8_t *buf)
{
	struct mips32_core_reg *mips32_reg = reg->arch_info;
	struct target *target = mips32_reg->target;
	uint64_t value;

	if (reg->size == 64)
		value = buf_get_u64(buf, 0, 64);
	else
		value = buf_get_u32(buf, 0, 32);

	if (target->state != TARGET_HALTED)
		return ERROR_TARGET_NOT_HALTED;

	if (reg->size == 64)
		buf_set_u64(reg->value, 0, 64, value);
	else
		buf_set_u32(reg->value, 0, 32, value);

	reg->dirty = true;
	reg->valid = true;

	return ERROR_OK;
}

/**
 * mips32_set_all_fpr_width - Set the width of all floating-point registers
 * @param[in] mips32: MIPS32 common structure
 * @param[in] fp64: Flag indicating whether to set the width to 64 bits (double precision)
 *
 * @brief Sets the width of all floating-point registers based on the specified flag.
 */
static void mips32_set_all_fpr_width(struct mips32_common *mips32, bool fp64)
{
	struct reg_cache *cache = mips32->core_cache;
	struct reg *reg_list = cache->reg_list;
	int i;

	for (i = MIPS32_REGLIST_FP_INDEX; i < (MIPS32_REGLIST_FP_INDEX + MIPS32_REG_FP_COUNT); i++) {
		reg_list[i].size = fp64 ? 64 : 32;
		reg_list[i].reg_data_type->type = fp64 ? REG_TYPE_IEEE_DOUBLE : REG_TYPE_IEEE_SINGLE;
	}
}

/**
 * mips32_detect_fpr_mode_change - Detect changes in floating-point register mode
 * @param[in] mips32: MIPS32 common structure
 * @param[in] cp0_status: Value of the CP0 status register
 *
 * @brief Detects changes in the floating-point register mode based on the CP0 status register.
 * If changes are detected, it updates the internal state
 * and logs a warning message indicating the mode change.
 */
static void mips32_detect_fpr_mode_change(struct mips32_common *mips32, uint32_t cp0_status)
{
	if (!mips32->fp_imp)
		return;

	/* CP0.Status.FR indicates the working mode of floating-point register.
	 * When FP = 0, fpr can contain any 32bit data type,
	 * 64bit data types are stored in even-odd register pairs.
	 * When FP = 1, fpr can contain any data types.*/
	bool fpu_in_64bit = ((cp0_status & BIT(MIPS32_CP0_STATUS_FR_SHIFT)) != 0);

	/* CP0.Status.CU1 indicated whether CoProcessor1(which is FPU) is present. */
	bool fp_enabled = ((cp0_status & BIT(MIPS32_CP0_STATUS_CU1_SHIFT)) != 0);

	if (mips32->fpu_in_64bit != fpu_in_64bit) {
		mips32->fpu_in_64bit = fpu_in_64bit;
		mips32_set_all_fpr_width(mips32, fpu_in_64bit);
		LOG_WARNING("** FP mode changed to %sbit, you must reconnect GDB **", fpu_in_64bit ? "64" : "32");
	}

	if (mips32->fpu_enabled != fp_enabled) {
		mips32->fpu_enabled = fp_enabled;
		const char *s = fp_enabled ? "enabled" : "disabled";
		LOG_WARNING("** FP is %s, register update %s **", s, s);
	}
}

static int mips32_read_core_reg(struct target *target, unsigned int num)
{
	unsigned int cnum;
	uint64_t reg_value = 0;

	/* get pointers to arch-specific information */
	struct mips32_common *mips32 = target_to_mips32(target);

	if (num >= MIPS32_NUM_REGS)
		return ERROR_COMMAND_SYNTAX_ERROR;

	if (num >= MIPS32_REGLIST_C0_INDEX) {
		/* CP0 */
		cnum = num - MIPS32_REGLIST_C0_INDEX;
		reg_value = mips32->core_regs.cp0[cnum];
		buf_set_u32(mips32->core_cache->reg_list[num].value, 0, 32, reg_value);
		if (cnum == MIPS32_REG_C0_STATUS_INDEX)
			mips32_detect_fpr_mode_change(mips32, reg_value);
	} else if (num >= MIPS32_REGLIST_FPC_INDEX) {
		/* FPCR */
		cnum = num - MIPS32_REGLIST_FPC_INDEX;
		reg_value = mips32->core_regs.fpcr[cnum];
		buf_set_u32(mips32->core_cache->reg_list[num].value, 0, 32, reg_value);
	} else if (num >= MIPS32_REGLIST_FP_INDEX) {
		/* FPR */
		cnum = num - MIPS32_REGLIST_FP_INDEX;
		reg_value = mips32->core_regs.fpr[cnum];
		buf_set_u64(mips32->core_cache->reg_list[num].value, 0, 64, reg_value);
	} else {
		/* GPR */
		cnum = num - MIPS32_REGLIST_GP_INDEX;
		reg_value = mips32->core_regs.gpr[cnum];
		buf_set_u32(mips32->core_cache->reg_list[num].value, 0, 32, reg_value);
	}

	mips32->core_cache->reg_list[num].valid = true;
	mips32->core_cache->reg_list[num].dirty = false;

	LOG_DEBUG("read core reg %i value 0x%" PRIx64 "", num, reg_value);

	return ERROR_OK;
}

static int mips32_write_core_reg(struct target *target, unsigned int num)
{
	unsigned int cnum;
	uint64_t reg_value;

	/* get pointers to arch-specific information */
	struct mips32_common *mips32 = target_to_mips32(target);

	if (num >= MIPS32_NUM_REGS)
		return ERROR_COMMAND_SYNTAX_ERROR;

	if (num >= MIPS32_REGLIST_C0_INDEX) {
		/* CP0 */
		cnum = num - MIPS32_REGLIST_C0_INDEX;
		reg_value = buf_get_u32(mips32->core_cache->reg_list[num].value, 0, 32);
		mips32->core_regs.cp0[cnum] = (uint32_t)reg_value;
		if (cnum == MIPS32_REG_C0_STATUS_INDEX)
			mips32_detect_fpr_mode_change(mips32, reg_value);
	} else if (num >= MIPS32_REGLIST_FPC_INDEX) {
		/* FPCR */
		cnum = num - MIPS32_REGLIST_FPC_INDEX;
		reg_value = buf_get_u32(mips32->core_cache->reg_list[num].value, 0, 32);
		mips32->core_regs.fpcr[cnum] = (uint32_t)reg_value;
	} else if (num >= MIPS32_REGLIST_FP_INDEX) {
		/* FPR */
		cnum = num - MIPS32_REGLIST_FP_INDEX;
		reg_value = buf_get_u64(mips32->core_cache->reg_list[num].value, 0, 64);
		mips32->core_regs.fpr[cnum] = reg_value;
	} else {
		/* GPR */
		cnum = num - MIPS32_REGLIST_GP_INDEX;
		reg_value = buf_get_u32(mips32->core_cache->reg_list[num].value, 0, 32);
		mips32->core_regs.gpr[cnum] = (uint32_t)reg_value;
	}

	LOG_DEBUG("write core reg %i value 0x%" PRIx64 "", num, reg_value);
	mips32->core_cache->reg_list[num].valid = true;
	mips32->core_cache->reg_list[num].dirty = false;

	return ERROR_OK;
}

int mips32_get_gdb_reg_list(struct target *target, struct reg **reg_list[],
		int *reg_list_size, enum target_register_class reg_class)
{
	/* get pointers to arch-specific information */
	struct mips32_common *mips32 = target_to_mips32(target);
	unsigned int i;

	/* include floating point registers */
	*reg_list_size = MIPS32_NUM_REGS;
	*reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));

	for (i = 0; i < MIPS32_NUM_REGS; i++)
		(*reg_list)[i] = &mips32->core_cache->reg_list[i];

	return ERROR_OK;
}

int mips32_save_context(struct target *target)
{
	unsigned int i;

	/* get pointers to arch-specific information */
	struct mips32_common *mips32 = target_to_mips32(target);

	/* read core registers */
	int retval = mips32_pracc_read_regs(mips32);
	if (retval != ERROR_OK) {
		LOG_ERROR("Could not read core registers from target");
		return retval;
	}

	for (i = 0; i < MIPS32_NUM_REGS; i++) {
		if (!mips32->core_cache->reg_list[i].valid)
			mips32->read_core_reg(target, i);
	}

	return ERROR_OK;
}

int mips32_restore_context(struct target *target)
{
	unsigned int i;

	/* get pointers to arch-specific information */
	struct mips32_common *mips32 = target_to_mips32(target);

	for (i = 0; i < MIPS32_NUM_REGS; i++) {
		if (mips32->core_cache->reg_list[i].dirty)
			mips32->write_core_reg(target, i);
	}

	/* write core regs */
	return mips32_pracc_write_regs(mips32);
}

int mips32_arch_state(struct target *target)
{
	struct mips32_common *mips32 = target_to_mips32(target);

	LOG_USER("target halted in %s mode due to %s, pc: 0x%8.8" PRIx32 "",
		mips_isa_strings[mips32->isa_mode],
		debug_reason_name(target),
		buf_get_u32(mips32->core_cache->reg_list[MIPS32_REGLIST_C0_PC_INDEX].value, 0, 32));

	return ERROR_OK;
}

static const struct reg_arch_type mips32_reg_type = {
	.get = mips32_get_core_reg,
	.set = mips32_set_core_reg,
};

struct reg_cache *mips32_build_reg_cache(struct target *target)
{
	/* get pointers to arch-specific information */
	struct mips32_common *mips32 = target_to_mips32(target);

	int num_regs = MIPS32_NUM_REGS;
	struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
	struct reg_cache *cache = malloc(sizeof(struct reg_cache));
	struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
	struct mips32_core_reg *arch_info = malloc(sizeof(struct mips32_core_reg) * num_regs);
	struct reg_feature *feature;
	int i;

	/* Build the process context cache */
	cache->name = "mips32 registers";
	cache->next = NULL;
	cache->reg_list = reg_list;
	cache->num_regs = num_regs;
	(*cache_p) = cache;
	mips32->core_cache = cache;

	for (i = 0; i < num_regs; i++) {
		arch_info[i].num = mips32_regs[i].id;
		arch_info[i].target = target;
		arch_info[i].mips32_common = mips32;

		reg_list[i].name = mips32_regs[i].name;
		reg_list[i].size = mips32_regs[i].size ? 64 : 32;

		reg_list[i].value = mips32_regs[i].size ? calloc(1, 8) : calloc(1, 4);
		reg_list[i].valid = false;
		reg_list[i].type = &mips32_reg_type;
		reg_list[i].arch_info = &arch_info[i];

		reg_list[i].reg_data_type = calloc(1, sizeof(struct reg_data_type));
		if (reg_list[i].reg_data_type)
			reg_list[i].reg_data_type->type = mips32_regs[i].type;
		else
			LOG_ERROR("unable to allocate reg type list");


		reg_list[i].dirty = false;

		reg_list[i].group = mips32_regs[i].group;
		reg_list[i].number = i;
		reg_list[i].exist = true;
		reg_list[i].caller_save = true;	/* gdb defaults to true */

		feature = calloc(1, sizeof(struct reg_feature));
		if (feature) {
			feature->name = mips32_regs[i].feature;
			reg_list[i].feature = feature;
		} else
			LOG_ERROR("unable to allocate feature list");
	}

	return cache;
}

int mips32_init_arch_info(struct target *target, struct mips32_common *mips32, struct jtag_tap *tap)
{
	target->arch_info = mips32;
	mips32->common_magic = MIPS32_COMMON_MAGIC;
	mips32->fast_data_area = NULL;
	mips32->isa_imp = MIPS32_ONLY;	/* default */

	/* has breakpoint/watchpoint unit been scanned */
	mips32->bp_scanned = 0;
	mips32->data_break_list = NULL;

	mips32->ejtag_info.tap = tap;
	mips32->read_core_reg = mips32_read_core_reg;
	mips32->write_core_reg = mips32_write_core_reg;
	/* if unknown endianness defaults to little endian, 1 */
	mips32->ejtag_info.endianness = target->endianness == TARGET_BIG_ENDIAN ? 0 : 1;
	mips32->ejtag_info.scan_delay = MIPS32_SCAN_DELAY_LEGACY_MODE;
	mips32->ejtag_info.mode = 0;			/* Initial default value */
	mips32->ejtag_info.isa = 0;	/* isa on debug mips32, updated by poll function */
	mips32->ejtag_info.config_regs = 0;	/* no config register read */
	return ERROR_OK;
}

/* run to exit point. return error if exit point was not reached. */
static int mips32_run_and_wait(struct target *target, target_addr_t entry_point,
		unsigned int timeout_ms, target_addr_t exit_point, struct mips32_common *mips32)
{
	uint32_t pc;
	int retval;
	/* This code relies on the target specific  resume() and  poll()->debug_entry()
	 * sequence to write register values to the processor and the read them back */
	retval = target_resume(target, 0, entry_point, 0, 1);
	if (retval != ERROR_OK)
		return retval;

	retval = target_wait_state(target, TARGET_HALTED, timeout_ms);
	/* If the target fails to halt due to the breakpoint, force a halt */
	if (retval != ERROR_OK || target->state != TARGET_HALTED) {
		retval = target_halt(target);
		if (retval != ERROR_OK)
			return retval;
		retval = target_wait_state(target, TARGET_HALTED, 500);
		if (retval != ERROR_OK)
			return retval;
		return ERROR_TARGET_TIMEOUT;
	}

	pc = buf_get_u32(mips32->core_cache->reg_list[MIPS32_REGLIST_C0_PC_INDEX].value, 0, 32);
	if (exit_point && (pc != exit_point)) {
		LOG_DEBUG("failed algorithm halted at 0x%" PRIx32 " ", pc);
		return ERROR_TARGET_TIMEOUT;
	}

	return ERROR_OK;
}

int mips32_run_algorithm(struct target *target, int num_mem_params,
		struct mem_param *mem_params, int num_reg_params,
		struct reg_param *reg_params, target_addr_t entry_point,
		target_addr_t exit_point, unsigned int timeout_ms, void *arch_info)
{
	struct mips32_common *mips32 = target_to_mips32(target);
	struct mips32_algorithm *mips32_algorithm_info = arch_info;
	enum mips32_isa_mode isa_mode = mips32->isa_mode;

	uint32_t context[MIPS32_NUM_REGS];
	int retval = ERROR_OK;

	LOG_DEBUG("Running algorithm");

	/* NOTE: mips32_run_algorithm requires that each algorithm uses a software breakpoint
	 * at the exit point */

	if (mips32->common_magic != MIPS32_COMMON_MAGIC) {
		LOG_ERROR("current target isn't a MIPS32 target");
		return ERROR_TARGET_INVALID;
	}

	if (target->state != TARGET_HALTED) {
		LOG_TARGET_ERROR(target, "not halted (run target algo)");
		return ERROR_TARGET_NOT_HALTED;
	}

	/* refresh core register cache */
	for (unsigned int i = 0; i < MIPS32_NUM_REGS; i++) {
		if (!mips32->core_cache->reg_list[i].valid)
			mips32->read_core_reg(target, i);
		context[i] = buf_get_u32(mips32->core_cache->reg_list[i].value, 0, 32);
	}

	for (int i = 0; i < num_mem_params; i++) {
		if (mem_params[i].direction == PARAM_IN)
			continue;
		retval = target_write_buffer(target, mem_params[i].address,
				mem_params[i].size, mem_params[i].value);
		if (retval != ERROR_OK)
			return retval;
	}

	for (int i = 0; i < num_reg_params; i++) {
		if (reg_params[i].direction == PARAM_IN)
			continue;

		struct reg *reg = register_get_by_name(mips32->core_cache, reg_params[i].reg_name, false);

		if (!reg) {
			LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
			return ERROR_COMMAND_SYNTAX_ERROR;
		}

		if (reg->size != reg_params[i].size) {
			LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
					reg_params[i].reg_name);
			return ERROR_COMMAND_SYNTAX_ERROR;
		}

		mips32_set_core_reg(reg, reg_params[i].value);
	}

	mips32->isa_mode = mips32_algorithm_info->isa_mode;

	retval = mips32_run_and_wait(target, entry_point, timeout_ms, exit_point, mips32);

	if (retval != ERROR_OK)
		return retval;

	for (int i = 0; i < num_mem_params; i++) {
		if (mem_params[i].direction != PARAM_OUT) {
			retval = target_read_buffer(target, mem_params[i].address, mem_params[i].size,
					mem_params[i].value);
			if (retval != ERROR_OK)
				return retval;
		}
	}

	for (int i = 0; i < num_reg_params; i++) {
		if (reg_params[i].direction != PARAM_OUT) {
			struct reg *reg = register_get_by_name(mips32->core_cache, reg_params[i].reg_name, false);
			if (!reg) {
				LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
				return ERROR_COMMAND_SYNTAX_ERROR;
			}

			if (reg->size != reg_params[i].size) {
				LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
						reg_params[i].reg_name);
				return ERROR_COMMAND_SYNTAX_ERROR;
			}

			buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
		}
	}

	/* restore everything we saved before */
	for (unsigned int i = 0; i < MIPS32_NUM_REGS; i++) {
		uint32_t regvalue;
		regvalue = buf_get_u32(mips32->core_cache->reg_list[i].value, 0, 32);
		if (regvalue != context[i]) {
			LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32,
				mips32->core_cache->reg_list[i].name, context[i]);
			buf_set_u32(mips32->core_cache->reg_list[i].value,
					0, 32, context[i]);
			mips32->core_cache->reg_list[i].valid = true;
			mips32->core_cache->reg_list[i].dirty = true;
		}
	}

	mips32->isa_mode = isa_mode;

	return ERROR_OK;
}

int mips32_examine(struct target *target)
{
	struct mips32_common *mips32 = target_to_mips32(target);

	if (!target_was_examined(target)) {
		target_set_examined(target);

		/* we will configure later */
		mips32->bp_scanned = 0;
		mips32->num_inst_bpoints = 0;
		mips32->num_data_bpoints = 0;
		mips32->num_inst_bpoints_avail = 0;
		mips32->num_data_bpoints_avail = 0;
	}

	return ERROR_OK;
}

static int mips32_configure_ibs(struct target *target)
{
	struct mips32_common *mips32 = target_to_mips32(target);
	struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
	int retval, i;
	uint32_t bpinfo;

	/* get number of inst breakpoints */
	retval = target_read_u32(target, ejtag_info->ejtag_ibs_addr, &bpinfo);
	if (retval != ERROR_OK)
		return retval;

	mips32->num_inst_bpoints = (bpinfo >> 24) & 0x0F;
	mips32->num_inst_bpoints_avail = mips32->num_inst_bpoints;
	mips32->inst_break_list = calloc(mips32->num_inst_bpoints,
		sizeof(struct mips32_comparator));

	for (i = 0; i < mips32->num_inst_bpoints; i++)
		mips32->inst_break_list[i].reg_address =
			ejtag_info->ejtag_iba0_addr +
			(ejtag_info->ejtag_iba_step_size * i);

	/* clear IBIS reg */
	retval = target_write_u32(target, ejtag_info->ejtag_ibs_addr, 0);
	return retval;
}

static int mips32_configure_dbs(struct target *target)
{
	struct mips32_common *mips32 = target_to_mips32(target);
	struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
	int retval, i;
	uint32_t bpinfo;

	/* get number of data breakpoints */
	retval = target_read_u32(target, ejtag_info->ejtag_dbs_addr, &bpinfo);
	if (retval != ERROR_OK)
		return retval;

	mips32->num_data_bpoints = (bpinfo >> 24) & 0x0F;
	mips32->num_data_bpoints_avail = mips32->num_data_bpoints;
	mips32->data_break_list = calloc(mips32->num_data_bpoints,
		sizeof(struct mips32_comparator));

	for (i = 0; i < mips32->num_data_bpoints; i++)
		mips32->data_break_list[i].reg_address =
			ejtag_info->ejtag_dba0_addr +
			(ejtag_info->ejtag_dba_step_size * i);

	/* clear DBIS reg */
	retval = target_write_u32(target, ejtag_info->ejtag_dbs_addr, 0);
	return retval;
}

int mips32_configure_break_unit(struct target *target)
{
	/* get pointers to arch-specific information */
	struct mips32_common *mips32 = target_to_mips32(target);
	struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
	int retval;
	uint32_t dcr;

	if (mips32->bp_scanned)
		return ERROR_OK;

	/* get info about breakpoint support */
	retval = target_read_u32(target, EJTAG_DCR, &dcr);
	if (retval != ERROR_OK)
		return retval;

	/* EJTAG 2.0 defines IB and DB bits in IMP instead of DCR. */
	if (ejtag_info->ejtag_version == EJTAG_VERSION_20) {
		ejtag_info->debug_caps = dcr & EJTAG_DCR_ENM;
		if (!(ejtag_info->impcode & EJTAG_V20_IMP_NOIB))
			ejtag_info->debug_caps |= EJTAG_DCR_IB;
		if (!(ejtag_info->impcode & EJTAG_V20_IMP_NODB))
			ejtag_info->debug_caps |= EJTAG_DCR_DB;
	} else
		/* keep  debug caps for later use */
		ejtag_info->debug_caps = dcr & (EJTAG_DCR_ENM
				| EJTAG_DCR_IB | EJTAG_DCR_DB);


	if (ejtag_info->debug_caps & EJTAG_DCR_IB) {
		retval = mips32_configure_ibs(target);
		if (retval != ERROR_OK)
			return retval;
	}

	if (ejtag_info->debug_caps & EJTAG_DCR_DB) {
		retval = mips32_configure_dbs(target);
		if (retval != ERROR_OK)
			return retval;
	}

	/* check if target endianness settings matches debug control register */
	if (((ejtag_info->debug_caps & EJTAG_DCR_ENM)
			&& (target->endianness == TARGET_LITTLE_ENDIAN)) ||
			(!(ejtag_info->debug_caps & EJTAG_DCR_ENM)
			 && (target->endianness == TARGET_BIG_ENDIAN)))
		LOG_WARNING("DCR endianness settings does not match target settings");

	LOG_DEBUG("DCR 0x%" PRIx32 " numinst %i numdata %i", dcr, mips32->num_inst_bpoints,
			mips32->num_data_bpoints);

	mips32->bp_scanned = 1;

	return ERROR_OK;
}

int mips32_enable_interrupts(struct target *target, int enable)
{
	int retval;
	int update = 0;
	uint32_t dcr;

	/* read debug control register */
	retval = target_read_u32(target, EJTAG_DCR, &dcr);
	if (retval != ERROR_OK)
		return retval;

	if (enable) {
		if (!(dcr & EJTAG_DCR_INTE)) {
			/* enable interrupts */
			dcr |= EJTAG_DCR_INTE;
			update = 1;
		}
	} else {
		if (dcr & EJTAG_DCR_INTE) {
			/* disable interrupts */
			dcr &= ~EJTAG_DCR_INTE;
			update = 1;
		}
	}

	if (update) {
		retval = target_write_u32(target, EJTAG_DCR, dcr);
		if (retval != ERROR_OK)
			return retval;
	}

	return ERROR_OK;
}

/* read processor identification cp0 register */
static int mips32_read_c0_prid(struct target *target)
{
	struct mips32_common *mips32 = target_to_mips32(target);
	struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
	int retval;

	retval = mips32_cp0_read(ejtag_info, &mips32->prid, 15, 0);
	if (retval != ERROR_OK) {
		LOG_ERROR("processor id not available, failed to read cp0 PRId register");
		mips32->prid = 0;
	}

	return retval;
}

/**
 * mips32_find_cpu_by_prid - Find CPU information by processor ID.
 * @param[in] prid: Processor ID of the CPU.
 *
 * @brief This function looks up the CPU entry in the mips32_cpu_entry array based on the provided
 * processor ID. It also handles special cases like AMD/Alchemy CPUs that use Company Options
 * instead of Processor IDs.
 *
 * @return Pointer to the corresponding cpu_entry struct, or the 'unknown' entry if not found.
 */
static const struct cpu_entry *mips32_find_cpu_by_prid(uint32_t prid)
{
	/* AMD/Alchemy CPU uses Company Options instead of Processor ID.
	 * Therefore an extra transform step for prid to map it to an assigned ID,
	 */
	if ((prid & PRID_COMP_MASK) == PRID_COMP_ALCHEMY) {
		/* Clears Processor ID field, then put Company Option field to its place */
		prid = (prid & 0xFFFF00FF) | ((prid & 0xFF000000) >> 16);
	}

	/* Mask out Company Option */
	prid &= 0x00FFFFFF;

	for (unsigned int i = 0; i < MIPS32_NUM_CPU_ENTRIES; i++) {
		const struct cpu_entry *entry = &mips32_cpu_entry[i];
		if ((entry->prid & MIPS32_CORE_MASK) <= prid && prid <= entry->prid)
			return entry;
	}

	/* If nothing matched, then return unknown entry */
	return &mips32_cpu_entry[MIPS32_NUM_CPU_ENTRIES - 1];
}

static bool mips32_cpu_is_lexra(struct mips_ejtag *ejtag_info)
{
	return (ejtag_info->prid & PRID_COMP_MASK) == PRID_COMP_LEXRA;
}

static int mips32_cpu_get_release(struct mips_ejtag *ejtag_info)
{
	return (ejtag_info->config[0] & MIPS32_CONFIG0_AR_MASK) >> MIPS32_CONFIG0_AR_SHIFT;
}

/**
 * mips32_cpu_support_sync - Checks CPU supports ordering
 * @param[in] ejtag_info: MIPS EJTAG information structure.
 *
 * @brief MIPS ISA implemented on Lexra CPUs is MIPS-I, similar to R3000,
 * which does not have the SYNC instruction alone with unaligned
 * load/store instructions.
 *
 * @returns true if current CPU supports sync instruction(CPU is not Lexra)
*/
bool mips32_cpu_support_sync(struct mips_ejtag *ejtag_info)
{
	return !mips32_cpu_is_lexra(ejtag_info);
}

/**
 * mips32_cpu_support_hazard_barrier - Checks CPU supports hazard barrier
 * @param[in] ejtag_info: MIPS EJTAG information structure.
 *
 * @brief hazard barrier instructions EHB and *.HB was introduced to MIPS from release 2.
 *
 * @returns true if current CPU supports hazard barrier(release > 1)
*/
bool mips32_cpu_support_hazard_barrier(struct mips_ejtag *ejtag_info)
{
	return mips32_cpu_get_release(ejtag_info) > MIPS32_RELEASE_1;
}

/**
 * mips32_cpu_probe - Detects processor type and applies necessary quirks.
 * @param[in] target: The target CPU to probe.
 *
 * @brief This function probes the CPU, reads its PRID (Processor ID), and determines the CPU type.
 * It applies any quirks necessary for specific processor types.
 *
 * NOTE: The proper detection of certain CPUs can become quite complicated.
 * Please consult the following Linux kernel code when adding new CPUs:
 *  arch/mips/include/asm/cpu.h
 *  arch/mips/kernel/cpu-probe.c
 *
 * @return ERROR_OK on success; error code on failure.
 */
int mips32_cpu_probe(struct target *target)
{
	struct mips32_common *mips32 = target_to_mips32(target);
	int retval;

	if (mips32->prid)
		return ERROR_OK; /* Already probed once, return early. */

	retval = mips32_read_c0_prid(target);
	if (retval != ERROR_OK)
		return retval;

	const struct cpu_entry *entry = mips32_find_cpu_by_prid(mips32->prid);

	switch (mips32->prid & PRID_COMP_MASK) {
	case PRID_COMP_INGENIC_E1:
		switch (mips32->prid & PRID_IMP_MASK) {
		case PRID_IMP_XBURST_REV1:
			mips32->cpu_quirks |= EJTAG_QUIRK_PAD_DRET;
			break;
		default:
			break;
		}
		break;

	/* Determine which CP0 registers are available in the current processor core */
	case PRID_COMP_MTI:
		switch (entry->prid & PRID_IMP_MASK) {
		case PRID_IMP_MAPTIV_UC:
			mips32->cp0_mask = MIPS_CP0_MAPTIV_UC;
			break;
		case PRID_IMP_MAPTIV_UP:
		case PRID_IMP_M5150:
			mips32->cp0_mask = MIPS_CP0_MAPTIV_UP;
			break;
		case PRID_IMP_IAPTIV:
		case PRID_IMP_IAPTIV_CM:
			mips32->cp0_mask = MIPS_CP0_IAPTIV;
			break;
		default:
			/* CP0 mask should be the same as MK4 by default */
			mips32->cp0_mask = MIPS_CP0_MK4;
			break;
		}

	default:
		break;
	}

	mips32->cpu_info = entry;
	LOG_DEBUG("CPU: %s (PRId %08x)", entry->cpu_name, mips32->prid);

	return ERROR_OK;
}

/* reads dsp implementation info from CP0 Config3 register {DSPP, DSPREV}*/
static void mips32_read_config_dsp(struct mips32_common *mips32, struct mips_ejtag *ejtag_info)
{
	uint32_t dsp_present = ((ejtag_info->config[3] & MIPS32_CONFIG3_DSPP_MASK) >> MIPS32_CONFIG3_DSPP_SHIFT);
	if (dsp_present) {
		mips32->dsp_imp = ((ejtag_info->config[3] & MIPS32_CONFIG3_DSPREV_MASK) >> MIPS32_CONFIG3_DSPREV_SHIFT) + 1;
		LOG_USER("DSP implemented: %s, rev %d", "yes", mips32->dsp_imp);
	} else {
		LOG_USER("DSP implemented: %s", "no");
	}
}

/* read fpu implementation info from CP0 Config1 register {CU1, FP}*/
static int mips32_read_config_fpu(struct mips32_common *mips32, struct mips_ejtag *ejtag_info)
{
	int retval;
	uint32_t fp_imp = (ejtag_info->config[1] & MIPS32_CONFIG1_FP_MASK) >> MIPS32_CONFIG1_FP_SHIFT;
	char buf[60] = {0};
	if (!fp_imp) {
		LOG_USER("FPU implemented: %s", "no");
		mips32->fp_imp = MIPS32_FP_IMP_NONE;
		return ERROR_OK;
	}
	uint32_t fir_value, status_value;
	bool fpu_in_64bit, fp_enabled;

	retval = mips32_cp0_read(ejtag_info, &status_value, MIPS32_C0_STATUS, 0);
	if (retval != ERROR_OK) {
		LOG_ERROR("Failed to read cp0 status register");
		return retval;
	}

	fpu_in_64bit = (status_value & BIT(MIPS32_CP0_STATUS_FR_SHIFT)) != 0;
	fp_enabled = (status_value & BIT(MIPS32_CP0_STATUS_CU1_SHIFT)) != 0;
	if (fp_enabled) {
		retval = mips32_cp1_control_read(ejtag_info, &fir_value, 0);
		if (retval != ERROR_OK) {
			LOG_ERROR("Failed to read cp1 FIR register");
			return retval;
		}

		if ((fir_value >> MIPS32_CP1_FIR_F64_SHIFT) & 0x1)
			fp_imp++;
	} else {
		/* This is the only condition that writes to buf */
		snprintf(buf, sizeof(buf), "yes, disabled");
		fp_imp = MIPS32_FP_IMP_UNKNOWN;
	}

	mips32->fpu_in_64bit = fpu_in_64bit;
	mips32->fpu_enabled = fp_enabled;

	mips32_set_all_fpr_width(mips32, fpu_in_64bit);

	/* If fpu is not disabled, print out more information */
	if (!buf[0])
		snprintf(buf, sizeof(buf), "yes, %sbit (%s, working in %sbit)",
			fp_imp == MIPS32_FP_IMP_64 ? "64" : "32",
			fp_enabled ? "enabled" : "disabled",
			fpu_in_64bit ? "64" : "32");

	LOG_USER("FPU implemented: %s", buf);
	mips32->fp_imp = fp_imp;

	return ERROR_OK;
}

/**
 * mips32_read_config_fdc - Read Fast Debug Channel configuration
 * @param[in,out] mips32: MIPS32 common structure
 * @param[in] ejtag_info: EJTAG information structure
 * @param[in] dcr: Device Configuration Register value
 *
 * @brief Checks if the current target implements the Common Device Memory Map (CDMM) and Fast Debug Channel (FDC).
 *
 * This function examines the configuration registers and the Device Configuration Register (DCR) to determine
 * if the current MIPS32 target supports the Common Device Memory Map (CDMM) and the Fast Debug Channel (FDC).
 * If supported, it sets the corresponding flags in the MIPS32 common structure. \n
 *
 * NOTE:These are defined on MD00090, page 67 and MD00047F, page 82, respectively.
 * MIPS Documents are pretty much all available online,
 * it should pop up first when you search "MDxxxxx"
 */
static void mips32_read_config_fdc(struct mips32_common *mips32, struct mips_ejtag *ejtag_info, uint32_t dcr)
{
	if (((ejtag_info->config[3] & MIPS32_CONFIG3_CDMM_MASK) != 0) && ((dcr & EJTAG_DCR_FDC) != 0)) {
		mips32->fdc = 1;
		mips32->semihosting = 1;
	} else {
		mips32->fdc = 0;
		mips32->semihosting = 0;
	}
}

/* read config to config3 cp0 registers and log isa implementation */
int mips32_read_config_regs(struct target *target)
{
	struct mips32_common *mips32 = target_to_mips32(target);
	struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
	char buf[60] = {0};
	int retval;

	if (ejtag_info->config_regs == 0)
		for (int i = 0; i != 4; i++) {
			retval = mips32_cp0_read(ejtag_info, &ejtag_info->config[i], 16, i);
			if (retval != ERROR_OK) {
				LOG_ERROR("isa info not available, failed to read cp0 config register: %" PRId32, i);
				ejtag_info->config_regs = 0;
				return retval;
			}
			ejtag_info->config_regs = i + 1;
			if ((ejtag_info->config[i] & (1 << 31)) == 0)
				break;	/* no more config registers implemented */
		}
	else
		return ERROR_OK;	/* already successfully read */

	LOG_DEBUG("read  %"PRIu32" config registers", ejtag_info->config_regs);

	mips32->isa_rel = (ejtag_info->config[0] & MIPS32_CONFIG0_AR_MASK) >> MIPS32_CONFIG0_AR_SHIFT;
	snprintf(buf, sizeof(buf), ", release %s(AR=%d)",
			mips32->isa_rel == MIPS32_RELEASE_1 ? "1"
			: mips32->isa_rel == MIPS32_RELEASE_2 ? "2"
			: mips32->isa_rel == MIPS32_RELEASE_6 ? "6"
			: "unknown", mips32->isa_rel);

	if (ejtag_info->impcode & EJTAG_IMP_MIPS16) {
		mips32->isa_imp = MIPS32_MIPS16;
		LOG_USER("ISA implemented: %s%s", "MIPS32, MIPS16", buf);
	} else if (ejtag_info->config_regs >= 4) {	/* config3 implemented */
		unsigned isa_imp = (ejtag_info->config[3] & MIPS32_CONFIG3_ISA_MASK) >> MIPS32_CONFIG3_ISA_SHIFT;
		if (isa_imp == 1) {
			mips32->isa_imp = MMIPS32_ONLY;
			LOG_USER("ISA implemented: %s%s", "microMIPS32", buf);

		} else if (isa_imp != 0) {
			mips32->isa_imp = MIPS32_MMIPS32;
			LOG_USER("ISA implemented: %s%s", "MIPS32, microMIPS32", buf);
		}
	} else if (mips32->isa_imp == MIPS32_ONLY)	{
		/* initial default value */
		LOG_USER("ISA implemented: %s%s", "MIPS32", buf);
	}

	/* Retrieve DSP info */
	mips32_read_config_dsp(mips32, ejtag_info);

	/* Retrieve if Float Point CoProcessor Implemented */
	retval = mips32_read_config_fpu(mips32, ejtag_info);
	if (retval != ERROR_OK) {
		LOG_ERROR("fpu info is not available, error while reading cp0 status");
		mips32->fp_imp = MIPS32_FP_IMP_NONE;
		return retval;
	}

	uint32_t dcr;

	retval = target_read_u32(target, EJTAG_DCR, &dcr);
	if (retval != ERROR_OK) {
		LOG_ERROR("failed to read EJTAG_DCR register");
		return retval;
	}

	/* Determine if FDC and CDMM are implemented for this core */
	mips32_read_config_fdc(mips32, ejtag_info, dcr);

	return ERROR_OK;
}

int mips32_checksum_memory(struct target *target, target_addr_t address,
		uint32_t count, uint32_t *checksum)
{
	struct working_area *crc_algorithm;
	struct reg_param reg_params[2];
	struct mips32_algorithm mips32_info;

	struct mips32_common *mips32 = target_to_mips32(target);
	struct mips_ejtag *ejtag_info = &mips32->ejtag_info;

	/* see contrib/loaders/checksum/mips32.s for src */
	uint32_t isa = ejtag_info->isa ? 1 : 0;

	uint32_t mips_crc_code[] = {
		MIPS32_ADDIU(isa, 12, 4, 0),			/* addiu	$t4, $a0, 0 */
		MIPS32_ADDIU(isa, 10, 5, 0),			/* addiu	$t2, $a1, 0 */
		MIPS32_ADDIU(isa, 4, 0, 0xFFFF),		/* addiu	$a0, $zero, 0xffff */
		MIPS32_BEQ(isa, 0, 0, 0x10 << isa),		/* beq		$zero, $zero, ncomp */
		MIPS32_ADDIU(isa, 11, 0, 0),			/* addiu	$t3, $zero, 0 */
						/* nbyte: */
		MIPS32_LB(isa, 5, 0, 12),			/* lb		$a1, ($t4) */
		MIPS32_ADDI(isa, 12, 12, 1),			/* addi		$t4, $t4, 1 */
		MIPS32_SLL(isa, 5, 5, 24),			/* sll		$a1, $a1, 24 */
		MIPS32_LUI(isa, 2, 0x04c1),			/* lui		$v0, 0x04c1 */
		MIPS32_XOR(isa, 4, 4, 5),			/* xor		$a0, $a0, $a1 */
		MIPS32_ORI(isa, 7, 2, 0x1db7),			/* ori		$a3, $v0, 0x1db7 */
		MIPS32_ADDU(isa, 6, 0, 0),			/* addu		$a2, $zero, $zero */
						/* loop */
		MIPS32_SLL(isa, 8, 4, 1),			/* sll		$t0, $a0, 1 */
		MIPS32_ADDIU(isa, 6, 6, 1),			/* addiu	$a2, $a2, 1 */
		MIPS32_SLTI(isa, 4, 4, 0),			/* slti		$a0, $a0, 0 */
		MIPS32_XOR(isa, 9, 8, 7),			/* xor		$t1, $t0, $a3 */
		MIPS32_MOVN(isa, 8, 9, 4),			/* movn		$t0, $t1, $a0 */
		MIPS32_SLTI(isa, 3, 6, 8),			/* slti		$v1, $a2, 8 */
		MIPS32_BNE(isa, 3, 0, NEG16(7 << isa)),		/* bne		$v1, $zero, loop */
		MIPS32_ADDU(isa, 4, 8, 0),			/* addu		$a0, $t0, $zero */
						/* ncomp */
		MIPS32_BNE(isa, 10, 11, NEG16(16 << isa)),	/* bne		$t2, $t3, nbyte */
		MIPS32_ADDIU(isa, 11, 11, 1),			/* addiu	$t3, $t3, 1 */
		MIPS32_SDBBP(isa),
	};

	/* make sure we have a working area */
	if (target_alloc_working_area(target, sizeof(mips_crc_code), &crc_algorithm) != ERROR_OK)
		return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;

	pracc_swap16_array(ejtag_info, mips_crc_code, ARRAY_SIZE(mips_crc_code));

	/* convert mips crc code into a buffer in target endianness */
	uint8_t mips_crc_code_8[sizeof(mips_crc_code)];
	target_buffer_set_u32_array(target, mips_crc_code_8,
					ARRAY_SIZE(mips_crc_code), mips_crc_code);

	int retval = target_write_buffer(target, crc_algorithm->address, sizeof(mips_crc_code), mips_crc_code_8);
	if (retval != ERROR_OK)
		return retval;

	mips32_info.common_magic = MIPS32_COMMON_MAGIC;
	mips32_info.isa_mode = isa ? MIPS32_ISA_MMIPS32 : MIPS32_ISA_MIPS32;	/* run isa as in debug mode */

	init_reg_param(&reg_params[0], "r4", 32, PARAM_IN_OUT);
	buf_set_u32(reg_params[0].value, 0, 32, address);

	init_reg_param(&reg_params[1], "r5", 32, PARAM_OUT);
	buf_set_u32(reg_params[1].value, 0, 32, count);

	unsigned int timeout = 20000 * (1 + (count / (1024 * 1024)));

	retval = target_run_algorithm(target, 0, NULL, 2, reg_params, crc_algorithm->address,
				      crc_algorithm->address + (sizeof(mips_crc_code) - 4), timeout, &mips32_info);

	if (retval == ERROR_OK)
		*checksum = buf_get_u32(reg_params[0].value, 0, 32);

	destroy_reg_param(&reg_params[0]);
	destroy_reg_param(&reg_params[1]);

	target_free_working_area(target, crc_algorithm);

	return retval;
}

/** Checks whether a memory region is erased. */
int mips32_blank_check_memory(struct target *target,
		struct target_memory_check_block *blocks, int num_blocks,
		uint8_t erased_value)
{
	struct working_area *erase_check_algorithm;
	struct reg_param reg_params[3];
	struct mips32_algorithm mips32_info;

	struct mips32_common *mips32 = target_to_mips32(target);
	struct mips_ejtag *ejtag_info = &mips32->ejtag_info;

	if (erased_value != 0xff) {
		LOG_ERROR("Erase value 0x%02" PRIx8 " not yet supported for MIPS32",
			erased_value);
		return ERROR_FAIL;
	}
	uint32_t isa = ejtag_info->isa ? 1 : 0;
	uint32_t erase_check_code[] = {
						/* nbyte: */
		MIPS32_LB(isa, 8, 0, 4),			/* lb		$t0, ($a0) */
		MIPS32_AND(isa, 6, 6, 8),			/* and		$a2, $a2, $t0 */
		MIPS32_ADDIU(isa, 5, 5, NEG16(1)),		/* addiu	$a1, $a1, -1 */
		MIPS32_BNE(isa, 5, 0, NEG16(4 << isa)),		/* bne		$a1, $zero, nbyte */
		MIPS32_ADDIU(isa, 4, 4, 1),			/* addiu	$a0, $a0, 1 */
		MIPS32_SDBBP(isa)				/* sdbbp */
	};

	/* make sure we have a working area */
	if (target_alloc_working_area(target, sizeof(erase_check_code), &erase_check_algorithm) != ERROR_OK)
		return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;

	pracc_swap16_array(ejtag_info, erase_check_code, ARRAY_SIZE(erase_check_code));

	/* convert erase check code into a buffer in target endianness */
	uint8_t erase_check_code_8[sizeof(erase_check_code)];
	target_buffer_set_u32_array(target, erase_check_code_8,
					ARRAY_SIZE(erase_check_code), erase_check_code);

	int retval = target_write_buffer(target, erase_check_algorithm->address,
						sizeof(erase_check_code), erase_check_code_8);
	if (retval != ERROR_OK)
		goto cleanup;

	mips32_info.common_magic = MIPS32_COMMON_MAGIC;
	mips32_info.isa_mode = isa ? MIPS32_ISA_MMIPS32 : MIPS32_ISA_MIPS32;

	init_reg_param(&reg_params[0], "r4", 32, PARAM_OUT);
	buf_set_u32(reg_params[0].value, 0, 32, blocks[0].address);

	init_reg_param(&reg_params[1], "r5", 32, PARAM_OUT);
	buf_set_u32(reg_params[1].value, 0, 32, blocks[0].size);

	init_reg_param(&reg_params[2], "r6", 32, PARAM_IN_OUT);
	buf_set_u32(reg_params[2].value, 0, 32, erased_value);

	retval = target_run_algorithm(target, 0, NULL, 3, reg_params, erase_check_algorithm->address,
			erase_check_algorithm->address + (sizeof(erase_check_code) - 4), 10000, &mips32_info);

	if (retval == ERROR_OK)
		blocks[0].result = buf_get_u32(reg_params[2].value, 0, 32);

	destroy_reg_param(&reg_params[0]);
	destroy_reg_param(&reg_params[1]);
	destroy_reg_param(&reg_params[2]);

cleanup:
	target_free_working_area(target, erase_check_algorithm);

	if (retval != ERROR_OK)
		return retval;

	return 1;       /* only one block has been checked */
}

static int mips32_verify_pointer(struct command_invocation *cmd,
		struct mips32_common *mips32)
{
	if (mips32->common_magic != MIPS32_COMMON_MAGIC) {
		command_print(cmd, "target is not an MIPS32");
		return ERROR_TARGET_INVALID;
	}
	return ERROR_OK;
}

/**
 * mips32_read_config_mmu - Reads MMU configuration and logs relevant information.
 * @param[in] ejtag_info: EJTAG interface information.
 *
 * @brief Reads the MMU configuration from the CP0 register and calculates the number of TLB entries,
 * ways, and sets. Handles different MMU types like VTLB only, root RPU/Fixed, and VTLB and FTLB.
 *
 * @return ERROR_OK on success; error code on failure.
 */
static int mips32_read_config_mmu(struct mips_ejtag *ejtag_info)
{
	uint32_t config4, tlb_entries = 0, ways = 0, sets = 0;
	uint32_t config0 = ejtag_info->config[0];
	uint32_t config1 = ejtag_info->config[1];
	uint32_t config3 = ejtag_info->config[3];
	uint32_t mmu_type = (config0 >> 7) & 7;
	uint32_t vz_present = (config3 & BIT(23));

	int retval = mips32_cp0_read(ejtag_info, &config4, 16, 4);
	if (retval != ERROR_OK)
		return retval;

	/* mmu type = 1: VTLB only (Note: Does not account for Config4.ExtVTLB)
	 * mmu type = 3: root RPU/Fixed (Note: Only valid with VZ ASE)
	 * mmu type = 4: VTLB and FTLB
	 */
	if ((mmu_type == 1 || mmu_type == 4) || (mmu_type == 3 && vz_present)) {
		tlb_entries = (uint32_t)(((config1 >> 25) & 0x3f) + 1);
		if (mmu_type == 4) {
			/* Release 6 definition for Config4[0:15] (MD01251, page 243) */
			/* The FTLB ways field is defined as [2, 3, 4, 5, 6, 7, 8, ...0 (reserved)] */
			int index = ((config4 >> 4) & 0xf);
			ways = index > 6 ? 0 : index + 2;

			/* The FTLB sets field is defined as [1, 2, 4, 8, ..., 16384, 32768] (powers of 2) */
			index = (config4 & 0xf);
			sets = 1 << index;
			tlb_entries = tlb_entries + (ways * sets);
		}
	}
	LOG_USER("TLB Entries: %d (%d ways, %d sets per way)", tlb_entries, ways, sets);

	return ERROR_OK;
}

/**
 * mips32_cp0_find_register_by_name - Find CP0 register by its name.
 * @param[in] cp0_mask: Mask to filter out irrelevant registers.
 * @param[in] reg_name: Name of the register to find.
 *
 * @brief This function iterates through mips32_cp0_regs to find a register
 * matching reg_name, considering cp0_mask to filter out registers
 * not relevant for the current core.
 *
 * @return Pointer to the found register, or NULL if not found.
 */
static const struct mips32_cp0 *mips32_cp0_find_register_by_name(uint32_t cp0_mask, const char *reg_name)
{
	if (reg_name)
		for (unsigned int i = 0; i < MIPS32NUMCP0REGS; i++) {
			if ((mips32_cp0_regs[i].core & cp0_mask) == 0)
				continue;

			if (strcmp(mips32_cp0_regs[i].name, reg_name) == 0)
				return &mips32_cp0_regs[i];
		}
	return NULL;
}

/**
 * mips32_cp0_get_all_regs - Print all CP0 registers and their values.
 * @param[in] cmd: Command invocation context.
 * @param[in] ejtag_info: EJTAG interface information.
 * @param[in] cp0_mask: Mask to identify relevant registers.
 *
 * @brief Iterates over all CP0 registers, reads their values, and prints them.
 * Only considers registers relevant to the current core, as defined by cp0_mask.
 *
 * @return ERROR_OK on success; error code on failure.
 */
static int mips32_cp0_get_all_regs(struct command_invocation *cmd, struct mips_ejtag *ejtag_info, uint32_t cp0_mask)
{
	uint32_t value;

	for (unsigned int i = 0; i < MIPS32NUMCP0REGS; i++) {
		/* Register name not valid for this core */
		if ((mips32_cp0_regs[i].core & cp0_mask) == 0)
			continue;

		int retval = mips32_cp0_read(ejtag_info, &value, mips32_cp0_regs[i].reg, mips32_cp0_regs[i].sel);
		if (retval != ERROR_OK) {
			command_print(CMD, "Error: couldn't access reg %s", mips32_cp0_regs[i].name);
			return retval;
		}

		command_print(CMD, "%*s: 0x%8.8" PRIx32, 14, mips32_cp0_regs[i].name, value);
	}
	return ERROR_OK;
}

/**
 * mips32_cp0_get_reg_by_name - Read and print a CP0 register's value by name.
 * @param[in] cmd: Command invocation context.
 * @param[in] ejtag_info: EJTAG interface information.
 * @param[in] cp0_mask: Mask to identify relevant registers.
 *
 * @brief Finds a CP0 register by name, reads its value, and prints it.
 * Handles error scenarios like register not found or read failure.
 *
 * @return ERROR_OK on success; error code on failure.
 */
static int mips32_cp0_get_reg_by_name(struct command_invocation *cmd, struct mips_ejtag *ejtag_info, uint32_t cp0_mask)
{
	const struct mips32_cp0 *cp0_regs = mips32_cp0_find_register_by_name(cp0_mask, CMD_ARGV[0]);
	if (!cp0_regs) {
		command_print(CMD, "Error: Register '%s' not found", CMD_ARGV[0]);
		return ERROR_COMMAND_ARGUMENT_INVALID;
	}

	uint32_t value;
	int retval = mips32_cp0_read(ejtag_info, &value, cp0_regs->reg, cp0_regs->sel);
	if (retval != ERROR_OK) {
		command_print(CMD, "Error: Encounter an Error while reading cp0 reg %d sel %d",
					cp0_regs->reg, cp0_regs->sel);
		return retval;
	}

	command_print(CMD, "0x%8.8" PRIx32, value);
	return ERROR_OK;
}

/**
 * mips32_cp0_get_reg_by_number - Read and print a CP0 register's value by number.
 * @param[in] cmd: Command invocation context.
 * @param[in] ejtag_info: EJTAG interface information.
 *
 * @brief Reads a specific CP0 register (identified by number and selection) and prints its value.
 * The register number and selection are parsed from the command arguments.
 *
 * @return ERROR_OK on success; error code on failure.
 */
static int mips32_cp0_get_reg_by_number(struct command_invocation *cmd, struct mips_ejtag *ejtag_info)
{
	uint32_t cp0_reg, cp0_sel, value;
	COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], cp0_reg);
	COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], cp0_sel);

	int retval = mips32_cp0_read(ejtag_info, &value, cp0_reg, cp0_sel);
	if (retval != ERROR_OK) {
		command_print(CMD,
				"Error: couldn't access reg %" PRIu32,
				cp0_reg);
		return retval;
	}

	command_print(CMD, "cp0 reg %" PRIu32 ", select %" PRIu32 ": %8.8" PRIx32,
			cp0_reg, cp0_sel, value);
	return ERROR_OK;
}

/**
 * mips32_cp0_set_reg_by_name - Write to a CP0 register identified by name.
 * @param[in] cmd: Command invocation context.
 * @param[in] mips32: Common MIPS32 data structure.
 * @param[in] ejtag_info: EJTAG interface information.
 *
 * @brief Writes a value to a CP0 register specified by name. Updates internal
 * cache if specific registers (STATUS, CAUSE, DEPC, GUESTCTL1) are modified.
 *
 * @return ERROR_OK on success; error code on failure.
 */
static int mips32_cp0_set_reg_by_name(struct command_invocation *cmd,
		struct mips32_common *mips32, struct mips_ejtag *ejtag_info)
{
	const struct mips32_cp0 *cp0_regs = mips32_cp0_find_register_by_name(mips32->cp0_mask, CMD_ARGV[0]);
	if (!cp0_regs) {
		command_print(CMD, "Error: Register '%s' not found", CMD_ARGV[0]);
		return ERROR_COMMAND_ARGUMENT_INVALID;
	}


	uint32_t value;
	COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);

	if (cp0_regs->reg == MIPS32_C0_STATUS && cp0_regs->sel == 0) {
		/* Update cached Status register if user is writing to Status */
		mips32->core_regs.cp0[MIPS32_REG_C0_STATUS_INDEX] = value;
		mips32->core_cache->reg_list[MIPS32_REGLIST_C0_STATUS_INDEX].dirty = 1;
	} else if (cp0_regs->reg == MIPS32_C0_CAUSE && cp0_regs->sel == 0) {
		/* Update register cache with new value if its Cause */
		mips32->core_regs.cp0[MIPS32_REG_C0_CAUSE_INDEX] = value;
		mips32->core_cache->reg_list[MIPS32_REGLIST_C0_CAUSE_INDEX].dirty = 1;
	} else if (cp0_regs->reg == MIPS32_C0_DEPC && cp0_regs->sel == 0) {
		/* Update cached PC if its DEPC */
		mips32->core_regs.cp0[MIPS32_REG_C0_PC_INDEX] = value;
		mips32->core_cache->reg_list[MIPS32_REGLIST_C0_PC_INDEX].dirty = 1;
	} else if (cp0_regs->reg == MIPS32_C0_GUESTCTL1 && cp0_regs->sel == 4) {
		/* Update cached guestCtl1 */
		mips32->core_regs.cp0[MIPS32_REG_C0_GUESTCTL1_INDEX] = value;
		mips32->core_cache->reg_list[MIPS32_REGLIST_C0_GUESTCTL1_INDEX].dirty = 1;
	}

	int retval = mips32_cp0_write(ejtag_info, value,
								cp0_regs->reg,
								cp0_regs->sel);
	if (retval != ERROR_OK) {
		command_print(CMD, "Error: Encounter an Error while writing to cp0 reg %d, sel %d",
					cp0_regs->reg, cp0_regs->sel);
		return retval;
	}

	command_print(CMD, "cp0 reg %s (%u, select %u: %8.8" PRIx32 ")",
			CMD_ARGV[0], cp0_regs->reg, cp0_regs->sel, value);
	return ERROR_OK;
}

/**
 * mips32_cp0_set_reg_by_number - Write to a CP0 register identified by number.
 * @param[in] cmd: Command invocation context.
 * @param[in] mips32: Common MIPS32 data structure.
 * @param[in] ejtag_info: EJTAG interface information.
 *
 * @brief Writes a value to a CP0 register specified by number and selection.
 * Handles special cases like updating the internal cache for certain registers.
 *
 * @return ERROR_OK on success; error code on failure.
 */
static int mips32_cp0_set_reg_by_number(struct command_invocation *cmd,
		struct mips32_common *mips32, struct mips_ejtag *ejtag_info)
{
	uint32_t cp0_reg, cp0_sel, value;
	COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], cp0_reg);
	COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], cp0_sel);
	COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], value);

	if (cp0_reg == MIPS32_C0_STATUS && cp0_sel == 0) {
		/* Update cached status register if user is writing to Status register */
		mips32->core_regs.cp0[MIPS32_REG_C0_STATUS_INDEX] = value;
		mips32->core_cache->reg_list[MIPS32_REGLIST_C0_STATUS_INDEX].dirty = 1;
	} else if (cp0_reg == MIPS32_C0_CAUSE && cp0_sel == 0) {
		/* Update register cache with new value if its Cause register */
		mips32->core_regs.cp0[MIPS32_REG_C0_CAUSE_INDEX] = value;
		mips32->core_cache->reg_list[MIPS32_REGLIST_C0_CAUSE_INDEX].dirty = 1;
	} else if (cp0_reg == MIPS32_C0_DEPC && cp0_sel == 0) {
		/* Update cached PC if its DEPC */
		mips32->core_regs.cp0[MIPS32_REG_C0_PC_INDEX] = value;
		mips32->core_cache->reg_list[MIPS32_REGLIST_C0_PC_INDEX].dirty = 1;
	} else if (cp0_reg == MIPS32_C0_GUESTCTL1 && cp0_sel == 4) {
		/* Update cached guestCtl1, too */
		mips32->core_regs.cp0[MIPS32_REG_C0_GUESTCTL1_INDEX] = value;
		mips32->core_cache->reg_list[MIPS32_REGLIST_C0_GUESTCTL1_INDEX].dirty = 1;
	}

	int retval = mips32_cp0_write(ejtag_info, value, cp0_reg, cp0_sel);
	if (retval != ERROR_OK) {
		command_print(CMD,
				"Error: couldn't access cp0 reg %" PRIu32 ", select %" PRIu32,
				cp0_reg,  cp0_sel);
		return retval;
	}

	command_print(CMD, "cp0 reg %" PRIu32 ", select %" PRIu32 ": %8.8" PRIx32,
			cp0_reg, cp0_sel, value);
	return ERROR_OK;
}

/**
 * mips32_handle_cp0_command - Handle commands related to CP0 registers.
 * @cmd: Command invocation context.
 *
 * Orchestrates different operations on CP0 registers based on the command arguments.
 * Supports operations like reading all registers, reading/writing a specific register
 * by name or number.
 *
 * Return: ERROR_OK on success; error code on failure.
 */
COMMAND_HANDLER(mips32_handle_cp0_command)
{
	int retval, tmp;
	struct target *target = get_current_target(CMD_CTX);
	struct mips32_common *mips32 = target_to_mips32(target);
	struct mips_ejtag *ejtag_info = &mips32->ejtag_info;


	retval = mips32_verify_pointer(CMD, mips32);
	if (retval != ERROR_OK)
		return retval;

	if (target->state != TARGET_HALTED) {
		command_print(CMD, "Error: target must be stopped for \"%s\" command", CMD_NAME);
		return ERROR_TARGET_NOT_HALTED;
	}

	switch (CMD_ARGC) {
		case 0: /* No arg => print out all cp0 regs */
			retval = mips32_cp0_get_all_regs(CMD, ejtag_info, mips32->cp0_mask);
			break;
		case 1: /* 1 arg => get cp0 #reg/#sel value by name */
			retval = mips32_cp0_get_reg_by_name(CMD, ejtag_info, mips32->cp0_mask);
			break;
		case 2: /* 2 args => get cp0 reg/sel value or set value by name */
			tmp = *CMD_ARGV[0];
			if (isdigit(tmp)) /* starts from number then args are #reg and #sel */
				retval = mips32_cp0_get_reg_by_number(CMD, ejtag_info);
			else /* or set value by register name */
				retval = mips32_cp0_set_reg_by_name(CMD, mips32, ejtag_info);

			break;
		case 3: /* 3 args => set cp0 reg/sel value*/
			retval = mips32_cp0_set_reg_by_number(CMD, mips32, ejtag_info);
			break;
		default: /* Other argc => err */
			retval = ERROR_COMMAND_SYNTAX_ERROR;
			break;
	}

	return retval;
}

/**
 * mips32_dsp_enable - Enable access to DSP registers
 * @param[in] ctx: Context information for the pracc queue
 * @param[in] isa: Instruction Set Architecture identifier
 *
 * @brief Enables access to DSP registers by modifying the status register.
 *
 * This function adds instructions to the context queue for enabling
 * access to DSP registers by modifying the status register.
 */
static void mips32_dsp_enable(struct pracc_queue_info *ctx, int isa)
{
	/* Save Status Register */
	/* move status to $9 (t1) 2*/
	pracc_add(ctx, 0, MIPS32_MFC0(isa, 9, 12, 0));

	/* Read it again in order to modify it */
	/* move status to $0 (t0) 3*/
	pracc_add(ctx, 0, MIPS32_MFC0(isa, 8, 12, 0));

	/* Enable access to DSP registers by setting MX bit in status register */
	/* $15 = MIPS32_PRACC_STACK 4/5/6*/
	pracc_add(ctx, 0, MIPS32_LUI(isa, 15, UPPER16(MIPS32_DSP_ENABLE)));
	pracc_add(ctx, 0, MIPS32_ORI(isa, 15, 15, LOWER16(MIPS32_DSP_ENABLE)));
	pracc_add(ctx, 0, MIPS32_ISA_OR(8, 8, 15));
	/* Enable DSP - update status registers 7*/
	pracc_add(ctx, 0, MIPS32_MTC0(isa, 8, 12, 0));
}

/**
 * mips32_dsp_restore - Restore DSP status registers to the previous setting
 * @param[in] ctx: Context information pracc queue
 * @param[in] isa: isa identifier
 *
 * @brief Restores the DSP status registers to their previous setting.
 *
 * This function adds instructions to the context queue for restoring the DSP
 * status registers to their values before the operation.
 */
static void mips32_dsp_restore(struct pracc_queue_info *ctx, int isa)
{
	pracc_add(ctx, 0, MIPS32_MTC0(isa, 9, 12, 0)); /* Restore status registers to previous setting */
	pracc_add(ctx, 0, MIPS32_NOP); /* nop */
}

/**
 * mips32_pracc_read_dsp_reg - Read a value from a MIPS32 DSP register
 * @param[in] ejtag_info: EJTAG information structure
 * @param[out] val: Pointer to store the read value
 * @param[in] reg: Index of the DSP register to read
 *
 * @brief Reads the value from the specified MIPS32 DSP register using EJTAG access.
 *
 * This function initiates a sequence of instructions to read the value from the
 * specified DSP register. It will enable dsp module if its not enabled
 * and restoring the status registers after the read operation.
 *
 * @return ERROR_OK on success; error code on failure.
 */
static int mips32_pracc_read_dsp_reg(struct mips_ejtag *ejtag_info, uint32_t *val, uint32_t reg)
{
	int isa = 0;

	struct pracc_queue_info ctx = {
		.max_code = 48,
		.ejtag_info = ejtag_info
	};

	uint32_t dsp_read_code[] = {
		MIPS32_MFHI(isa, t0),		/* mfhi t0 ($ac0) - OPCODE - 0x00004010 */
		MIPS32_DSP_MFHI(t0, 1),		/* mfhi	t0,$ac1 - OPCODE - 0x00204010 */
		MIPS32_DSP_MFHI(t0, 2),		/* mfhi	t0,$ac2 - OPCODE - 0x00404010 */
		MIPS32_DSP_MFHI(t0, 3),		/* mfhi	t0,$ac3 - OPCODE - 0x00604010*/
		MIPS32_MFLO(isa, t0),		/* mflo t0 ($ac0) - OPCODE - 0x00004012 */
		MIPS32_DSP_MFLO(t0, 1),		/* mflo	t0,$ac1 - OPCODE - 0x00204012 */
		MIPS32_DSP_MFLO(t0, 2),		/* mflo	t0,$ac2 - OPCODE - 0x00404012 */
		MIPS32_DSP_MFLO(t0, 3),		/* mflo	t0,$ac3 - OPCODE - 0x00604012 */
		MIPS32_DSP_RDDSP(t0, 0x3F),	/* rddsp t0, 0x3f (DSPCtl) - OPCODE - 0x7c3f44b8 */
	};

	/* Check status register to determine if dsp register access is enabled */
	/* Get status register so it can be restored later */

	ctx.pracc_list = NULL;

	/* Init context queue */
	pracc_queue_init(&ctx);

	if (ctx.retval != ERROR_OK)
		goto exit;

	/* Enables DSP whether its already enabled or not */
	mips32_dsp_enable(&ctx, isa);

	/* move AC or Control to $8 (t0) 8*/
	pracc_add(&ctx, 0, dsp_read_code[reg]);
	/* Restore status registers to previous setting */
	mips32_dsp_restore(&ctx, isa);

	/* $15 = MIPS32_PRACC_BASE_ADDR 1*/
	pracc_add(&ctx, 0, MIPS32_LUI(isa, 15, PRACC_UPPER_BASE_ADDR));
	/* store $8 to pracc_out 10*/
	pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT, MIPS32_SW(isa, 8, PRACC_OUT_OFFSET, 15));
	/* move COP0 DeSave to $15 11*/
	pracc_add(&ctx, 0, MIPS32_MFC0(isa, 15, 31, 0));
	/* restore upper 16 of $8 12*/
	pracc_add(&ctx, 0, MIPS32_LUI(isa, 8, UPPER16(ejtag_info->reg8)));
	/* restore lower 16 of $8 13*/
	pracc_add(&ctx, 0, MIPS32_ORI(isa, 8, 8, LOWER16(ejtag_info->reg8)));
	/* restore upper 16 of $9 14*/
	pracc_add(&ctx, 0, MIPS32_LUI(isa, 9, UPPER16(ejtag_info->reg9)));
	pracc_add(&ctx, 0, MIPS32_SYNC(isa));
	/* jump to start 18*/
	pracc_add(&ctx, 0, MIPS32_B(isa, NEG16(ctx.code_count + 1)));
	/* restore lower 16 of $9 15*/
	pracc_add(&ctx, 0, MIPS32_ORI(isa, 9, 9, LOWER16(ejtag_info->reg9)));

	ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, val, 1);
exit:
	pracc_queue_free(&ctx);
	return ctx.retval;
}

/**
 * mips32_pracc_write_dsp_reg - Write a value to a MIPS32 DSP register
 * @param[in] ejtag_info: EJTAG information structure
 * @param[in] val: Value to be written to the register
 * @param[in] reg: Index of the DSP register to write
 *
 * @brief Writes the specified value to the specified MIPS32 DSP register.
 *
 * This function initiates a sequence of instructions to write the given value to the
 * specified DSP register.
 *
 * @return ERROR_OK on success; error code on failure.
 */
static int mips32_pracc_write_dsp_reg(struct mips_ejtag *ejtag_info, uint32_t val, uint32_t reg)
{
	int isa = 0;

	struct pracc_queue_info ctx = {
		.max_code = 48,
		.ejtag_info = ejtag_info
	};

	uint32_t dsp_write_code[] = {
		MIPS32_MTHI(isa, t0),		/* mthi t0 ($ac0) - OPCODE - 0x01000011 */
		MIPS32_DSP_MTHI(t0, 1),		/* mthi t0, $ac1 - OPCODE - 0x01000811 */
		MIPS32_DSP_MTHI(t0, 2),		/* mthi t0, $ac2 - OPCODE - 0x01001011 */
		MIPS32_DSP_MTHI(t0, 3),		/* mthi t0, $ac3 - OPCODE - 0x01001811 */
		MIPS32_MTLO(isa, t0),		/* mtlo t0 ($ac0) - OPCODE - 0x01000013 */
		MIPS32_DSP_MTLO(t0, 1),		/* mtlo t0, $ac1 - OPCODE - 0x01000813 */
		MIPS32_DSP_MTLO(t0, 2),		/* mtlo t0, $ac2 - OPCODE - 0x01001013 */
		MIPS32_DSP_MTLO(t0, 3),		/* mtlo t0, $ac3 - OPCODE - 0x01001813 */
		MIPS32_DSP_WRDSP(t0, 0x1F), /* wrdsp t0, 0x1f (DSPCtl) - OPCODE - 0x7d00fcf8*/
	};

	/* Init context queue */
	pracc_queue_init(&ctx);
	if (ctx.retval != ERROR_OK)
		goto exit;

	/* Enables DSP whether its already enabled or not */
	mips32_dsp_enable(&ctx, isa);

	/* Load val to $8 (t0) */
	pracc_add(&ctx, 0, MIPS32_LUI(isa, 8, UPPER16(val)));
	pracc_add(&ctx, 0, MIPS32_ORI(isa, 8, 8, LOWER16(val)));

	/* move AC or Control to $8 (t0) */
	pracc_add(&ctx, 0, dsp_write_code[reg]);

	/* nop, delay in order to ensure write */
	pracc_add(&ctx, 0, MIPS32_NOP);
	/* Restore status registers to previous setting */
	mips32_dsp_restore(&ctx, isa);

	/* move COP0 DeSave to $15 */
	pracc_add(&ctx, 0, MIPS32_MFC0(isa, 15, 31, 0));

	/* restore $8 */
	pracc_add(&ctx, 0, MIPS32_LUI(isa, 8, UPPER16(ejtag_info->reg8)));
	pracc_add(&ctx, 0, MIPS32_ORI(isa, 8, 8, LOWER16(ejtag_info->reg8)));

	/* restore upper 16 of $9 */
	pracc_add(&ctx, 0, MIPS32_LUI(isa, 9, UPPER16(ejtag_info->reg9)));

	/* jump to start */
	pracc_add(&ctx, 0, MIPS32_B(isa, NEG16(ctx.code_count + 1)));
	/* restore lower 16 of $9  */
	pracc_add(&ctx, 0, MIPS32_ORI(isa, 9, 9, LOWER16(ejtag_info->reg9)));

	ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL, 1);
exit:
	pracc_queue_free(&ctx);
	return ctx.retval;
}

/**
 * mips32_handle_cpuinfo_command - Handles the 'cpuinfo' command.
 * @param[in] cmd: Command invocation context.
 *
 * @brief Executes the 'cpuinfo' command which displays detailed information about the current CPU core.
 * This includes core type, vendor, instruction set, cache size, and other relevant details.
 *
 * @return ERROR_OK on success; error code on failure.
 */
COMMAND_HANDLER(mips32_handle_cpuinfo_command)
{
	int retval;
	struct target *target = get_current_target(CMD_CTX);
	struct mips32_common *mips32 = target_to_mips32(target);
	struct mips_ejtag *ejtag_info = &mips32->ejtag_info;

	uint32_t prid = mips32->prid; /* cp0 PRID - 15, 0 */
	uint32_t config0 = ejtag_info->config[0]; /*	cp0 config - 16, 0 */
	uint32_t config1 = ejtag_info->config[1]; /*	cp0 config - 16, 1 */
	uint32_t config3 = ejtag_info->config[3]; /*	cp0 config - 16, 3 */

	/* Following configs are not read during probe */
	uint32_t config5; /*	cp0 config - 16, 5 */

	/* No args for now */
	if (CMD_ARGC != 0)
		return ERROR_COMMAND_SYNTAX_ERROR;

	if (target->state != TARGET_HALTED) {
		command_print(CMD, "target must be stopped for \"%s\" command", CMD_NAME);
		return ERROR_TARGET_NOT_HALTED;
	}

	retval = mips32_cp0_read(ejtag_info, &config5, 16, 5);
	if (retval != ERROR_OK)
		return retval;

	/* Determine Core info */
	const struct cpu_entry *entry = mips32->cpu_info;
	/* Display Core Type info */
	command_print(CMD, "CPU Core: %s", entry->cpu_name);

	/* Display Core Vendor ID if it's unknown */
	if (entry == &mips32_cpu_entry[MIPS32_NUM_CPU_ENTRIES - 1])
		command_print(CMD, "Vendor: Unknown CPU vendor code %x.", ((prid & 0x00ffff00) >> 16));
	else
		command_print(CMD, "Vendor: %s", entry->vendor);

	/* If MIPS release 2 or above, then get exception base info */
	enum mips32_isa_rel ar = mips32->isa_rel;
	if (ar > MIPS32_RELEASE_1) {	/* release 2 and above */
		uint32_t ebase;
		retval = mips32_cp0_read(ejtag_info, &ebase, 15, 1);
		if (retval != ERROR_OK)
			return retval;

		command_print(CMD, "Current CPU ID: %d", (ebase & 0x1ff));
	} else {
		command_print(CMD, "Current CPU ID: 0");
	}

	char *instr;
	switch ((config3 & MIPS32_CONFIG3_ISA_MASK) >> MIPS32_CONFIG3_ISA_SHIFT) {
	case 0:
		instr = "MIPS32";
		break;
	case 1:
		instr = "microMIPS";
		break;
	case 2:
		instr = "MIPS32 (at reset) and microMIPS";
		break;
	case 3:
	default:
		instr = "microMIPS (at reset) and MIPS32";
		break;
	}

	/* Display Instruction Set Info */
	command_print(CMD, "Instr set: %s", instr);
	command_print(CMD, "Instr rel: %s",
			ar == MIPS32_RELEASE_1 ? "1"
			: ar == MIPS32_RELEASE_2 ? "2"
			: ar == MIPS32_RELEASE_6 ? "6"
			: "unknown");
	command_print(CMD, "PRId: %x", prid);
	/* Some of MIPS CPU Revisions(for M74K) can be seen on MD00541, page 26 */
	uint32_t rev = prid & 0x000000ff;
	command_print(CMD, "RTL Rev: %d.%d.%d", (rev & 0xE0), (rev & 0x1C), (rev & 0x3));

	command_print(CMD, "Max Number of Instr Breakpoints: %d", mips32->num_inst_bpoints);
	command_print(CMD, "Max Number of  Data Breakpoints: %d", mips32->num_data_bpoints);

	/* MMU Support */
	uint32_t mmu_type = (config0 >> 7) & 7; /* MMU Type Info */
	char *mmu;
	switch (mmu_type) {
		case MIPS32_MMU_TLB:
			mmu = "TLB";
		break;
		case MIPS32_MMU_BAT:
			mmu = "BAT";
		break;
		case MIPS32_MMU_FIXED:
			mmu = "FIXED";
		break;
		case MIPS32_MMU_DUAL_VTLB_FTLB:
			mmu = "DUAL VAR/FIXED";
		break;
		default:
			mmu = "Unknown";
	}
	command_print(CMD, "MMU Type: %s", mmu);

	retval = mips32_read_config_mmu(ejtag_info);
	if (retval != ERROR_OK)
		return retval;

	/* Definitions of I/D Cache Sizes are available on MD01251, page 224~226 */
	int index;
	uint32_t ways, sets, bpl;

	/* Determine Instr Cache Size */
	/* Ways mapping = [1, 2, 3, 4, 5, 6, 7, 8] */
	ways = ((config1 >> MIPS32_CFG1_IASHIFT) & 7);

	/* Sets per way = [64, 128, 256, 512, 1024, 2048, 4096, 32] */
	index = ((config1 >> MIPS32_CFG1_ISSHIFT) & 7);
	sets = index == 7 ? 32 : 32 << (index + 1);

	/* Bytes per line = [0, 4, 8, 16, 32, 64, 128, Reserved] */
	index = ((config1 >> MIPS32_CFG1_ILSHIFT) & 7);
	bpl = index == 0 ? 0 : 4 << (index - 1);
	command_print(CMD, "Instr Cache: %d (%d ways, %d lines, %d byte per line)", ways * sets * bpl, ways, sets, bpl);

	/* Determine data cache size, same as above */
	ways = ((config1 >>  MIPS32_CFG1_DASHIFT) & 7);

	index = ((config1 >> MIPS32_CFG1_DSSHIFT) & 7);
	sets = index == 7 ? 32 : 32 << (index + 1);

	index = ((config1 >> MIPS32_CFG1_DLSHIFT) & 7);
	bpl = index == 0 ? 0 : 4 << (index - 1);
	command_print(CMD, " Data Cache: %d (%d ways, %d lines, %d byte per line)", ways * sets * bpl, ways, sets, bpl);

	/* does the core hava FPU*/
	mips32_read_config_fpu(mips32, ejtag_info);

	/* does the core support a DSP */
	mips32_read_config_dsp(mips32, ejtag_info);

	/* VZ module */
	uint32_t vzase = (config3 & BIT(23));
	if (vzase)
		command_print(CMD, "VZ implemented: yes");
	else
		command_print(CMD, "VZ implemented: no");

	/* multithreading */
	uint32_t mtase  = (config3 & BIT(2));
	if (mtase) {
		command_print(CMD, "MT  implemented: yes");

		/* Get VPE and Thread info */
		uint32_t tcbind;
		uint32_t mvpconf0;

		/* Read tcbind register */
		retval = mips32_cp0_read(ejtag_info, &tcbind, 2, 2);
		if (retval != ERROR_OK)
			return retval;

		command_print(CMD, " | Current VPE: %d", (tcbind & 0xf));
		command_print(CMD, " | Current  TC: %d", ((tcbind >> 21) & 0xff));

		/* Read mvpconf0 register */
		retval = mips32_cp0_read(ejtag_info, &mvpconf0, 0, 2);
		if (retval != ERROR_OK)
			return retval;

		command_print(CMD, " | Total  TC: %d", (mvpconf0 & 0xf) + 1);
		command_print(CMD, " | Total VPE: %d", ((mvpconf0 >> 10) & 0xf) + 1);
	} else {
		command_print(CMD, "MT  implemented: no");
	}

	/* MIPS SIMD Architecture (MSA) */
	uint32_t msa = (config3 & BIT(28));
	command_print(CMD, "MSA implemented: %s", msa ? "yes" : "no");

	/* Move To/From High COP0 (MTHC0/MFHC0) instructions are implemented.
	 * Implicates current ISA release >= 5.*/
	uint32_t mvh = (config5 & BIT(5));
	command_print(CMD, "MVH implemented: %s", mvh ? "yes" : "no");

	/* Common Device Memory Map implemented? */
	uint32_t cdmm = (config3 & BIT(3));
	command_print(CMD, "CDMM implemented: %s", cdmm ? "yes" : "no");

	return ERROR_OK;
}

/**
 * mips32_dsp_find_register_by_name - Find DSP register index by name
 * @param[in] reg_name: Name of the DSP register to find
 *
 * @brief Searches for a DSP register by name and returns its index.
 * If no match is found, it returns MIPS32NUMDSPREGS.
 *
 * @return Index of the found register or MIPS32NUMDSPREGS if not found.
 */
static int mips32_dsp_find_register_by_name(const char *reg_name)
{
	if (reg_name)
		for (int i = 0; i < MIPS32NUMDSPREGS; i++) {
			if (strcmp(mips32_dsp_regs[i].name, reg_name) == 0)
				return i;
		}
	return MIPS32NUMDSPREGS;
}

/**
 * mips32_dsp_get_all_regs - Get values of all MIPS32 DSP registers
 * @param[in] cmd: Command invocation context
 * @param[in] ejtag_info: EJTAG information structure
 *
 * @brief This function iterates through all DSP registers, reads their values,
 * and prints each register name along with its corresponding value.
 *
 * @return ERROR_OK on success; error code on failure.
 */
static int mips32_dsp_get_all_regs(struct command_invocation *cmd, struct mips_ejtag *ejtag_info)
{
	uint32_t value;
	for (int i = 0; i < MIPS32NUMDSPREGS; i++) {
		int retval = mips32_pracc_read_dsp_reg(ejtag_info, &value, i);
		if (retval != ERROR_OK) {
			command_print(CMD, "couldn't access reg %s", mips32_dsp_regs[i].name);
			return retval;
		}
		command_print(CMD, "%*s: 0x%8.8x", 7, mips32_dsp_regs[i].name, value);
	}
	return ERROR_OK;
}

/**
 * mips32_dsp_get_register - Get the value of a MIPS32 DSP register
 * @param[in] cmd: Command invocation context
 * @param[in] ejtag_info: EJTAG information structure
 *
 * @brief Retrieves the value of a specified MIPS32 DSP register.
 * If the register is found, it reads the register value and prints the result.
 * If the register is not found, it prints an error message.
 *
 * @return ERROR_OK on success; error code on failure.
 */
static int mips32_dsp_get_register(struct command_invocation *cmd, struct mips_ejtag *ejtag_info)
{
	uint32_t value;
	int index = mips32_dsp_find_register_by_name(CMD_ARGV[0]);
	if (index == MIPS32NUMDSPREGS) {
		command_print(CMD, "ERROR: register '%s' not found", CMD_ARGV[0]);
		return ERROR_COMMAND_SYNTAX_ERROR;
	}

	int retval = mips32_pracc_read_dsp_reg(ejtag_info, &value, index);
	if (retval != ERROR_OK)
		command_print(CMD, "ERROR: Could not access dsp register %s", CMD_ARGV[0]);
	else
		command_print(CMD, "0x%8.8x", value);

	return retval;
}

/**
 * mips32_dsp_set_register - Set the value of a MIPS32 DSP register
 * @param[in] cmd: Command invocation context
 * @param[in] ejtag_info: EJTAG information structure
 *
 * @brief Sets the value of a specified MIPS32 DSP register.
 * If the register is found, it writes provided value to the register.
 * If the register is not found or there is an error in writing the value,
 * it prints an error message.
 *
 * @return ERROR_OK on success; error code on failure.
 */
static int mips32_dsp_set_register(struct command_invocation *cmd, struct mips_ejtag *ejtag_info)
{
	uint32_t value;
	int index = mips32_dsp_find_register_by_name(CMD_ARGV[0]);
	if (index == MIPS32NUMDSPREGS) {
		command_print(CMD, "ERROR: register '%s' not found", CMD_ARGV[0]);
		return ERROR_COMMAND_SYNTAX_ERROR;
	}

	COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);

	int retval = mips32_pracc_write_dsp_reg(ejtag_info, value, index);
	if (retval != ERROR_OK)
		command_print(CMD, "Error: could not write to dsp register %s", CMD_ARGV[0]);

	return retval;
}

/**
 * mips32_handle_dsp_command - Handles mips dsp related command
 * @param[in] cmd: Command invocation context
 *
 * @brief Reads or sets the content of each dsp register.
 *
 * @return ERROR_OK on success; error code on failure.
*/
COMMAND_HANDLER(mips32_handle_dsp_command)
{
	int retval, tmp;
	struct target *target = get_current_target(CMD_CTX);
	struct mips32_common *mips32 = target_to_mips32(target);
	struct mips_ejtag *ejtag_info = &mips32->ejtag_info;

	retval = mips32_verify_pointer(CMD, mips32);
	if (retval != ERROR_OK)
		return retval;

	if (target->state != TARGET_HALTED) {
		command_print(CMD, "target must be stopped for \"%s\" command", CMD_NAME);
		return ERROR_OK;
	}

	/* Check for too many command args */
	if (CMD_ARGC >= 3)
		return ERROR_COMMAND_SYNTAX_ERROR;

	/* Check if DSP access supported or not */
	if (!mips32->dsp_imp) {
		/* Issue Error Message */
		command_print(CMD, "DSP not implemented by this processor");
		return ERROR_OK;
	}

	switch (CMD_ARGC) {
		case 0:
			retval = mips32_dsp_get_all_regs(CMD, ejtag_info);
			break;
		case 1:
			retval = mips32_dsp_get_register(CMD, ejtag_info);
			break;
		case 2:
			tmp = *CMD_ARGV[0];
			if (isdigit(tmp)) {
				command_print(CMD, "Error: invalid dsp command format");
				retval = ERROR_COMMAND_ARGUMENT_INVALID;
			} else {
				retval = mips32_dsp_set_register(CMD, ejtag_info);
			}
			break;
		default:
			command_print(CMD, "Error: invalid argument format, required 0-2, given %d", CMD_ARGC);
			retval = ERROR_COMMAND_ARGUMENT_INVALID;
			break;
	}
	return retval;
}

/**
 * mips32_handle_ejtag_reg_command - Handler commands related to EJTAG
 * @param[in] cmd: Command invocation context
 *
 * @brief Prints all EJTAG Registers including DCR features.
 *
 * @return ERROR_OK on success; error code on failure.
 */
COMMAND_HANDLER(mips32_handle_ejtag_reg_command)
{
	struct target *target = get_current_target(CMD_CTX);
	struct mips32_common *mips32 = target_to_mips32(target);
	struct mips_ejtag *ejtag_info = &mips32->ejtag_info;

	uint32_t ejtag_ctrl;
	uint32_t dcr;
	int retval;

	retval = mips_ejtag_get_idcode(ejtag_info);
	if (retval != ERROR_OK)
		command_print(CMD, "Error: Encounter an Error while getting idcode");
	else
		command_print(CMD, "       idcode: 0x%8.8" PRIx32, ejtag_info->idcode);

	retval = mips_ejtag_get_impcode(ejtag_info);
	if (retval != ERROR_OK)
		command_print(CMD, "Error: Encounter an Error while getting impcode");
	else
		command_print(CMD, "      impcode: 0x%8.8" PRIx32, ejtag_info->impcode);

	mips_ejtag_set_instr(ejtag_info, EJTAG_INST_CONTROL);
	ejtag_ctrl = ejtag_info->ejtag_ctrl;
	retval = mips_ejtag_drscan_32(ejtag_info, &ejtag_ctrl);
	if (retval != ERROR_OK)
		command_print(CMD, "Error: Encounter an Error while executing drscan reading EJTAG Control register");
	else
		command_print(CMD, "ejtag control: 0x%8.8" PRIx32, ejtag_ctrl);

	ejtag_main_print_imp(ejtag_info);

	/* Display current DCR */
	retval = target_read_u32(target, EJTAG_DCR, &dcr);
	if (retval != ERROR_OK)
		command_print(CMD, "Error: Encounter an Error while reading Debug Control Register");
	else
		command_print(CMD, "          DCR: 0x%8.8" PRIx32, dcr);

	for (unsigned int i = 0; i < EJTAG_DCR_ENTRIES; i++) {
		if (dcr & BIT(dcr_features[i].bit))
			command_print(CMD, "%s supported", dcr_features[i].name);
	}

	return ERROR_OK;
}

/**
 * mips32_handle_scan_delay_command - Handler command for changing scan delay
 * @param[in] cmd: Command invocation context
 *
 * @brief Changes current scan mode between legacy and fast queued mode.
 *
 * @return ERROR_OK on success; error code on failure.
 */
COMMAND_HANDLER(mips32_handle_scan_delay_command)
{
	struct target *target = get_current_target(CMD_CTX);
	struct mips32_common *mips32 = target_to_mips32(target);
	struct mips_ejtag *ejtag_info = &mips32->ejtag_info;

	if (CMD_ARGC == 1)
		COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], ejtag_info->scan_delay);
	else if (CMD_ARGC > 1)
			return ERROR_COMMAND_SYNTAX_ERROR;

	command_print(CMD, "scan delay: %d nsec", ejtag_info->scan_delay);
	if (ejtag_info->scan_delay >= MIPS32_SCAN_DELAY_LEGACY_MODE) {
		ejtag_info->mode = 0;
		command_print(CMD, "running in legacy mode");
	} else {
		ejtag_info->mode = 1;
		command_print(CMD, "running in fast queued mode");
	}

	return ERROR_OK;
}

static const struct command_registration mips32_exec_command_handlers[] = {
	{
		.name = "cp0",
		.handler = mips32_handle_cp0_command,
		.mode = COMMAND_EXEC,
		.usage = "[[reg_name|regnum select] [value]]",
		.help = "display/modify cp0 register",
	},
	{
		.name = "cpuinfo",
		.handler = mips32_handle_cpuinfo_command,
		.mode = COMMAND_EXEC,
		.help = "display CPU information",
		.usage = "",
	},
	{
		.name = "dsp",
		.handler = mips32_handle_dsp_command,
		.mode = COMMAND_EXEC,
		.help = "display or set DSP register; "
			"with no arguments, displays all registers and their values",
		.usage = "[[register_name] [value]]",
	},
	{
		.name = "scan_delay",
		.handler = mips32_handle_scan_delay_command,
		.mode = COMMAND_ANY,
		.help = "display/set scan delay in nano seconds",
		.usage = "[value]",
	},
	{
		.name = "ejtag_reg",
		.handler = mips32_handle_ejtag_reg_command,
		.mode = COMMAND_ANY,
		.help = "read ejtag registers",
		.usage = "",
	},
	COMMAND_REGISTRATION_DONE
};

const struct command_registration mips32_command_handlers[] = {
	{
		.name = "mips32",
		.mode = COMMAND_ANY,
		.help = "mips32 command group",
		.usage = "",
		.chain = mips32_exec_command_handlers,
	},
	COMMAND_REGISTRATION_DONE
};