aboutsummaryrefslogtreecommitdiff
path: root/src/target/arm_simulator.c
blob: 245e108acb30755b6c8efb4e2c95075feb07760f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
/***************************************************************************
 *   Copyright (C) 2006 by Dominic Rath                                    *
 *   Dominic.Rath@gmx.de                                                   *
 *                                                                         *
 *   Copyright (C) 2008 by Hongtao Zheng                                   *
 *   hontor@126.com                                                        *
 *                                                                         *
 *   This program is free software; you can redistribute it and/or modify  *
 *   it under the terms of the GNU General Public License as published by  *
 *   the Free Software Foundation; either version 2 of the License, or     *
 *   (at your option) any later version.                                   *
 *                                                                         *
 *   This program is distributed in the hope that it will be useful,       *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
 *   GNU General Public License for more details.                          *
 *                                                                         *
 *   You should have received a copy of the GNU General Public License     *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
 ***************************************************************************/

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include "arm.h"
#include "armv4_5.h"
#include "arm_disassembler.h"
#include "arm_simulator.h"
#include <helper/binarybuffer.h>
#include "register.h"
#include <helper/log.h>

static uint32_t arm_shift(uint8_t shift, uint32_t Rm,
	uint32_t shift_amount, uint8_t *carry)
{
	uint32_t return_value = 0;
	shift_amount &= 0xff;

	if (shift == 0x0) {	/* LSL */
		if ((shift_amount > 0) && (shift_amount <= 32)) {
			return_value = Rm << shift_amount;
			*carry = Rm >> (32 - shift_amount);
		} else if (shift_amount > 32) {
			return_value = 0x0;
			*carry = 0x0;
		} else /* (shift_amount == 0) */
			return_value = Rm;
	} else if (shift == 0x1) {	/* LSR */
		if ((shift_amount > 0) && (shift_amount <= 32)) {
			return_value = Rm >> shift_amount;
			*carry = (Rm >> (shift_amount - 1)) & 1;
		} else if (shift_amount > 32) {
			return_value = 0x0;
			*carry = 0x0;
		} else /* (shift_amount == 0) */
			return_value = Rm;
	} else if (shift == 0x2) {	/* ASR */
		if ((shift_amount > 0) && (shift_amount <= 32)) {
			/* C right shifts of unsigned values are guaranteed to
			 * be logical (shift in zeroes); simulate an arithmetic
			 * shift (shift in signed-bit) by adding the sign bit
			 * manually
			 */
			return_value = Rm >> shift_amount;
			if (Rm & 0x80000000)
				return_value |= 0xffffffff << (32 - shift_amount);
		} else if (shift_amount > 32) {
			if (Rm & 0x80000000) {
				return_value = 0xffffffff;
				*carry = 0x1;
			} else {
				return_value = 0x0;
				*carry = 0x0;
			}
		} else /* (shift_amount == 0) */
			return_value = Rm;
	} else if (shift == 0x3) {	/* ROR */
		if (shift_amount == 0)
			return_value = Rm;
		else {
			shift_amount = shift_amount % 32;
			return_value = (Rm >> shift_amount) | (Rm << (32 - shift_amount));
			*carry = (return_value >> 31) & 0x1;
		}
	} else if (shift == 0x4) {	/* RRX */
		return_value = Rm >> 1;
		if (*carry)
			Rm |= 0x80000000;
		*carry = Rm & 0x1;
	}

	return return_value;
}


static uint32_t arm_shifter_operand(struct arm_sim_interface *sim,
	int variant, union arm_shifter_operand shifter_operand,
	uint8_t *shifter_carry_out)
{
	uint32_t return_value;
	int instruction_size;

	if (sim->get_state(sim) == ARM_STATE_ARM)
		instruction_size = 4;
	else
		instruction_size = 2;

	*shifter_carry_out = sim->get_cpsr(sim, 29, 1);

	if (variant == 0) /* 32-bit immediate */
		return_value = shifter_operand.immediate.immediate;
	else if (variant == 1) {/* immediate shift */
		uint32_t Rm = sim->get_reg_mode(sim, shifter_operand.immediate_shift.Rm);

		/* adjust RM in case the PC is being read */
		if (shifter_operand.immediate_shift.Rm == 15)
			Rm += 2 * instruction_size;

		return_value = arm_shift(shifter_operand.immediate_shift.shift,
				Rm, shifter_operand.immediate_shift.shift_imm,
				shifter_carry_out);
	} else if (variant == 2) {	/* register shift */
		uint32_t Rm = sim->get_reg_mode(sim, shifter_operand.register_shift.Rm);
		uint32_t Rs = sim->get_reg_mode(sim, shifter_operand.register_shift.Rs);

		/* adjust RM in case the PC is being read */
		if (shifter_operand.register_shift.Rm == 15)
			Rm += 2 * instruction_size;

		return_value = arm_shift(shifter_operand.immediate_shift.shift,
				Rm, Rs, shifter_carry_out);
	} else {
		LOG_ERROR("BUG: shifter_operand.variant not 0, 1 or 2");
		return_value = 0xffffffff;
	}

	return return_value;
}

static int pass_condition(uint32_t cpsr, uint32_t opcode)
{
	switch ((opcode & 0xf0000000) >> 28) {
		case 0x0:	/* EQ */
			if (cpsr & 0x40000000)
				return 1;
			else
				return 0;
		case 0x1:	/* NE */
			if (!(cpsr & 0x40000000))
				return 1;
			else
				return 0;
		case 0x2:	/* CS */
			if (cpsr & 0x20000000)
				return 1;
			else
				return 0;
		case 0x3:	/* CC */
			if (!(cpsr & 0x20000000))
				return 1;
			else
				return 0;
		case 0x4:	/* MI */
			if (cpsr & 0x80000000)
				return 1;
			else
				return 0;
		case 0x5:	/* PL */
			if (!(cpsr & 0x80000000))
				return 1;
			else
				return 0;
		case 0x6:	/* VS */
			if (cpsr & 0x10000000)
				return 1;
			else
				return 0;
		case 0x7:	/* VC */
			if (!(cpsr & 0x10000000))
				return 1;
			else
				return 0;
		case 0x8:	/* HI */
			if ((cpsr & 0x20000000) && !(cpsr & 0x40000000))
				return 1;
			else
				return 0;
		case 0x9:	/* LS */
			if (!(cpsr & 0x20000000) || (cpsr & 0x40000000))
				return 1;
			else
				return 0;
		case 0xa:	/* GE */
			if (((cpsr & 0x80000000) && (cpsr & 0x10000000))
				|| (!(cpsr & 0x80000000) && !(cpsr & 0x10000000)))
				return 1;
			else
				return 0;
		case 0xb:	/* LT */
			if (((cpsr & 0x80000000) && !(cpsr & 0x10000000))
				|| (!(cpsr & 0x80000000) && (cpsr & 0x10000000)))
				return 1;
			else
				return 0;
		case 0xc:	/* GT */
			if (!(cpsr & 0x40000000) &&
				(((cpsr & 0x80000000) && (cpsr & 0x10000000))
				|| (!(cpsr & 0x80000000) && !(cpsr & 0x10000000))))
				return 1;
			else
				return 0;
		case 0xd:	/* LE */
			if ((cpsr & 0x40000000) ||
				((cpsr & 0x80000000) && !(cpsr & 0x10000000))
				|| (!(cpsr & 0x80000000) && (cpsr & 0x10000000)))
				return 1;
			else
				return 0;
		case 0xe:
		case 0xf:
			return 1;

	}

	LOG_ERROR("BUG: should never get here");
	return 0;
}

static int thumb_pass_branch_condition(uint32_t cpsr, uint16_t opcode)
{
	return pass_condition(cpsr, (opcode & 0x0f00) << 20);
}

/* simulate a single step (if possible)
 * if the dry_run_pc argument is provided, no state is changed,
 * but the new pc is stored in the variable pointed at by the argument
 */
static int arm_simulate_step_core(struct target *target,
	uint32_t *dry_run_pc, struct arm_sim_interface *sim)
{
	uint32_t current_pc = sim->get_reg(sim, 15);
	struct arm_instruction instruction;
	int instruction_size;
	int retval = ERROR_OK;

	if (sim->get_state(sim) == ARM_STATE_ARM) {
		uint32_t opcode;

		/* get current instruction, and identify it */
		retval = target_read_u32(target, current_pc, &opcode);
		if (retval != ERROR_OK)
			return retval;
		retval = arm_evaluate_opcode(opcode, current_pc, &instruction);
		if (retval != ERROR_OK)
			return retval;
		instruction_size = 4;

		/* check condition code (for all instructions) */
		if (!pass_condition(sim->get_cpsr(sim, 0, 32), opcode)) {
			if (dry_run_pc)
				*dry_run_pc = current_pc + instruction_size;
			else
				sim->set_reg(sim, 15, current_pc + instruction_size);

			return ERROR_OK;
		}
	} else {
		uint16_t opcode;

		retval = target_read_u16(target, current_pc, &opcode);
		if (retval != ERROR_OK)
			return retval;
		retval = thumb_evaluate_opcode(opcode, current_pc, &instruction);
		if (retval != ERROR_OK)
			return retval;
		instruction_size = 2;

		/* check condition code (only for branch (1) instructions) */
		if ((opcode & 0xf000) == 0xd000
			&& !thumb_pass_branch_condition(
			sim->get_cpsr(sim, 0, 32), opcode)) {
			if (dry_run_pc)
				*dry_run_pc = current_pc + instruction_size;
			else
				sim->set_reg(sim, 15, current_pc + instruction_size);

			return ERROR_OK;
		}

		/* Deal with 32-bit BL/BLX */
		if ((opcode & 0xf800) == 0xf000) {
			uint32_t high = instruction.info.b_bl_bx_blx.target_address;
			retval = target_read_u16(target, current_pc+2, &opcode);
			if (retval != ERROR_OK)
				return retval;
			retval = thumb_evaluate_opcode(opcode, current_pc, &instruction);
			if (retval != ERROR_OK)
				return retval;
			instruction.info.b_bl_bx_blx.target_address += high;
		}
	}

	/* examine instruction type */

	/* branch instructions */
	if ((instruction.type >= ARM_B) && (instruction.type <= ARM_BLX)) {
		uint32_t target_address;

		if (instruction.info.b_bl_bx_blx.reg_operand == -1)
			target_address = instruction.info.b_bl_bx_blx.target_address;
		else {
			target_address = sim->get_reg_mode(sim,
					instruction.info.b_bl_bx_blx.reg_operand);
			if (instruction.info.b_bl_bx_blx.reg_operand == 15)
				target_address += 2 * instruction_size;
		}

		if (dry_run_pc) {
			*dry_run_pc = target_address & ~1;
			return ERROR_OK;
		} else {
			if (instruction.type == ARM_B)
				sim->set_reg(sim, 15, target_address);
			else if (instruction.type == ARM_BL) {
				uint32_t old_pc = sim->get_reg(sim, 15);
				int T = (sim->get_state(sim) == ARM_STATE_THUMB);
				sim->set_reg_mode(sim, 14, old_pc + 4 + T);
				sim->set_reg(sim, 15, target_address);
			} else if (instruction.type == ARM_BX) {
				if (target_address & 0x1)
					sim->set_state(sim, ARM_STATE_THUMB);
				else
					sim->set_state(sim, ARM_STATE_ARM);
				sim->set_reg(sim, 15, target_address & 0xfffffffe);
			} else if (instruction.type == ARM_BLX) {
				uint32_t old_pc = sim->get_reg(sim, 15);
				int T = (sim->get_state(sim) == ARM_STATE_THUMB);
				sim->set_reg_mode(sim, 14, old_pc + 4 + T);

				if (target_address & 0x1)
					sim->set_state(sim, ARM_STATE_THUMB);
				else
					sim->set_state(sim, ARM_STATE_ARM);
				sim->set_reg(sim, 15, target_address & 0xfffffffe);
			}

			return ERROR_OK;
		}
	}
	/* data processing instructions, except compare instructions (CMP, CMN, TST, TEQ) */
	else if (((instruction.type >= ARM_AND) && (instruction.type <= ARM_RSC))
		|| ((instruction.type >= ARM_ORR) && (instruction.type <= ARM_MVN))) {
		uint32_t Rd, Rn, shifter_operand;
		uint8_t C = sim->get_cpsr(sim, 29, 1);
		uint8_t carry_out;

		Rd = 0x0;
		/* ARM_MOV and ARM_MVN does not use Rn */
		if ((instruction.type != ARM_MOV) && (instruction.type != ARM_MVN))
			Rn = sim->get_reg_mode(sim, instruction.info.data_proc.Rn);
		else
			Rn = 0;

		shifter_operand = arm_shifter_operand(sim,
				instruction.info.data_proc.variant,
				instruction.info.data_proc.shifter_operand,
				&carry_out);

		/* adjust Rn in case the PC is being read */
		if (instruction.info.data_proc.Rn == 15)
			Rn += 2 * instruction_size;

		if (instruction.type == ARM_AND)
			Rd = Rn & shifter_operand;
		else if (instruction.type == ARM_EOR)
			Rd = Rn ^ shifter_operand;
		else if (instruction.type == ARM_SUB)
			Rd = Rn - shifter_operand;
		else if (instruction.type == ARM_RSB)
			Rd = shifter_operand - Rn;
		else if (instruction.type == ARM_ADD)
			Rd = Rn + shifter_operand;
		else if (instruction.type == ARM_ADC)
			Rd = Rn + shifter_operand + (C & 1);
		else if (instruction.type == ARM_SBC)
			Rd = Rn - shifter_operand - (C & 1) ? 0 : 1;
		else if (instruction.type == ARM_RSC)
			Rd = shifter_operand - Rn - (C & 1) ? 0 : 1;
		else if (instruction.type == ARM_ORR)
			Rd = Rn | shifter_operand;
		else if (instruction.type == ARM_BIC)
			Rd = Rn & ~(shifter_operand);
		else if (instruction.type == ARM_MOV)
			Rd = shifter_operand;
		else if (instruction.type == ARM_MVN)
			Rd = ~shifter_operand;
		else
			LOG_WARNING("unhandled instruction type");

		if (dry_run_pc) {
			if (instruction.info.data_proc.Rd == 15)
				*dry_run_pc = Rd & ~1;
			else
				*dry_run_pc = current_pc + instruction_size;

			return ERROR_OK;
		} else {
			if (instruction.info.data_proc.Rd == 15) {
				sim->set_reg_mode(sim, 15, Rd & ~1);
				if (Rd & 1)
					sim->set_state(sim, ARM_STATE_THUMB);
				else
					sim->set_state(sim, ARM_STATE_ARM);
				return ERROR_OK;
			}
			sim->set_reg_mode(sim, instruction.info.data_proc.Rd, Rd);
			LOG_WARNING("no updating of flags yet");
		}
	}
	/* compare instructions (CMP, CMN, TST, TEQ) */
	else if ((instruction.type >= ARM_TST) && (instruction.type <= ARM_CMN)) {
		if (dry_run_pc) {
			*dry_run_pc = current_pc + instruction_size;
			return ERROR_OK;
		} else
			LOG_WARNING("no updating of flags yet");
	}
	/* load register instructions */
	else if ((instruction.type >= ARM_LDR) && (instruction.type <= ARM_LDRSH)) {
		uint32_t load_address = 0, modified_address = 0, load_value = 0;
		uint32_t Rn = sim->get_reg_mode(sim, instruction.info.load_store.Rn);

		/* adjust Rn in case the PC is being read */
		if (instruction.info.load_store.Rn == 15)
			Rn += 2 * instruction_size;

		if (instruction.info.load_store.offset_mode == 0) {
			if (instruction.info.load_store.U)
				modified_address = Rn + instruction.info.load_store.offset.offset;
			else
				modified_address = Rn - instruction.info.load_store.offset.offset;
		} else if (instruction.info.load_store.offset_mode == 1) {
			uint32_t offset;
			uint32_t Rm = sim->get_reg_mode(sim,
					instruction.info.load_store.offset.reg.Rm);
			uint8_t shift = instruction.info.load_store.offset.reg.shift;
			uint8_t shift_imm = instruction.info.load_store.offset.reg.shift_imm;
			uint8_t carry = sim->get_cpsr(sim, 29, 1);

			offset = arm_shift(shift, Rm, shift_imm, &carry);

			if (instruction.info.load_store.U)
				modified_address = Rn + offset;
			else
				modified_address = Rn - offset;
		} else
			LOG_ERROR("BUG: offset_mode neither 0 (offset) nor 1 (scaled register)");

		if (instruction.info.load_store.index_mode == 0) {
			/* offset mode
			 * we load from the modified address, but don't change
			 * the base address register
			 */
			load_address = modified_address;
			modified_address = Rn;
		} else if (instruction.info.load_store.index_mode == 1) {
			/* pre-indexed mode
			 * we load from the modified address, and write it
			 * back to the base address register
			 */
			load_address = modified_address;
		} else if (instruction.info.load_store.index_mode == 2) {
			/* post-indexed mode
			 * we load from the unmodified address, and write the
			 * modified address back
			 */
			load_address = Rn;
		}

		if ((!dry_run_pc) || (instruction.info.load_store.Rd == 15)) {
			retval = target_read_u32(target, load_address, &load_value);
			if (retval != ERROR_OK)
				return retval;
		}

		if (dry_run_pc) {
			if (instruction.info.load_store.Rd == 15)
				*dry_run_pc = load_value & ~1;
			else
				*dry_run_pc = current_pc + instruction_size;
			return ERROR_OK;
		} else {
			if ((instruction.info.load_store.index_mode == 1) ||
				(instruction.info.load_store.index_mode == 2))
				sim->set_reg_mode(sim,
					instruction.info.load_store.Rn,
					modified_address);

			if (instruction.info.load_store.Rd == 15) {
				sim->set_reg_mode(sim, 15, load_value & ~1);
				if (load_value & 1)
					sim->set_state(sim, ARM_STATE_THUMB);
				else
					sim->set_state(sim, ARM_STATE_ARM);
				return ERROR_OK;
			}
			sim->set_reg_mode(sim, instruction.info.load_store.Rd, load_value);
		}
	}
	/* load multiple instruction */
	else if (instruction.type == ARM_LDM) {
		int i;
		uint32_t Rn = sim->get_reg_mode(sim, instruction.info.load_store_multiple.Rn);
		uint32_t load_values[16];
		int bits_set = 0;

		for (i = 0; i < 16; i++) {
			if (instruction.info.load_store_multiple.register_list & (1 << i))
				bits_set++;
		}

		switch (instruction.info.load_store_multiple.addressing_mode) {
			case 0:	/* Increment after */
				/* Rn = Rn; */
				break;
			case 1:	/* Increment before */
				Rn = Rn + 4;
				break;
			case 2:	/* Decrement after */
				Rn = Rn - (bits_set * 4) + 4;
				break;
			case 3:	/* Decrement before */
				Rn = Rn - (bits_set * 4);
				break;
		}

		for (i = 0; i < 16; i++) {
			if (instruction.info.load_store_multiple.register_list & (1 << i)) {
				if ((!dry_run_pc) || (i == 15))
					target_read_u32(target, Rn, &load_values[i]);
				Rn += 4;
			}
		}

		if (dry_run_pc) {
			if (instruction.info.load_store_multiple.register_list & 0x8000) {
				*dry_run_pc = load_values[15] & ~1;
				return ERROR_OK;
			}
		} else {
			int update_cpsr = 0;

			if (instruction.info.load_store_multiple.S) {
				if (instruction.info.load_store_multiple.register_list & 0x8000)
					update_cpsr = 1;
			}

			for (i = 0; i < 16; i++) {
				if (instruction.info.load_store_multiple.register_list & (1 << i)) {
					if (i == 15) {
						uint32_t val = load_values[i];
						sim->set_reg_mode(sim, i, val & ~1);
						if (val & 1)
							sim->set_state(sim, ARM_STATE_THUMB);
						else
							sim->set_state(sim, ARM_STATE_ARM);
					} else
						sim->set_reg_mode(sim, i, load_values[i]);
				}
			}

			if (update_cpsr) {
				uint32_t spsr = sim->get_reg_mode(sim, 16);
				sim->set_reg(sim, ARMV4_5_CPSR, spsr);
			}

			/* base register writeback */
			if (instruction.info.load_store_multiple.W)
				sim->set_reg_mode(sim, instruction.info.load_store_multiple.Rn, Rn);


			if (instruction.info.load_store_multiple.register_list & 0x8000)
				return ERROR_OK;
		}
	}
	/* store multiple instruction */
	else if (instruction.type == ARM_STM) {
		int i;

		if (dry_run_pc) {
			/* STM wont affect PC (advance by instruction size */
		} else {
			uint32_t Rn = sim->get_reg_mode(sim,
					instruction.info.load_store_multiple.Rn);
			int bits_set = 0;

			for (i = 0; i < 16; i++) {
				if (instruction.info.load_store_multiple.register_list & (1 << i))
					bits_set++;
			}

			switch (instruction.info.load_store_multiple.addressing_mode) {
				case 0:	/* Increment after */
					/* Rn = Rn; */
					break;
				case 1:	/* Increment before */
					Rn = Rn + 4;
					break;
				case 2:	/* Decrement after */
					Rn = Rn - (bits_set * 4) + 4;
					break;
				case 3:	/* Decrement before */
					Rn = Rn - (bits_set * 4);
					break;
			}

			for (i = 0; i < 16; i++) {
				if (instruction.info.load_store_multiple.register_list & (1 << i)) {
					target_write_u32(target, Rn, sim->get_reg_mode(sim, i));
					Rn += 4;
				}
			}

			/* base register writeback */
			if (instruction.info.load_store_multiple.W)
				sim->set_reg_mode(sim,
					instruction.info.load_store_multiple.Rn, Rn);

		}
	} else if (!dry_run_pc) {
		/* the instruction wasn't handled, but we're supposed to simulate it
		 */
		LOG_ERROR("Unimplemented instruction, could not simulate it.");
		return ERROR_FAIL;
	}

	if (dry_run_pc) {
		*dry_run_pc = current_pc + instruction_size;
		return ERROR_OK;
	} else {
		sim->set_reg(sim, 15, current_pc + instruction_size);
		return ERROR_OK;
	}

}

static uint32_t armv4_5_get_reg(struct arm_sim_interface *sim, int reg)
{
	struct arm *arm = (struct arm *)sim->user_data;

	return buf_get_u32(arm->core_cache->reg_list[reg].value, 0, 32);
}

static void armv4_5_set_reg(struct arm_sim_interface *sim, int reg, uint32_t value)
{
	struct arm *arm = (struct arm *)sim->user_data;

	buf_set_u32(arm->core_cache->reg_list[reg].value, 0, 32, value);
}

static uint32_t armv4_5_get_reg_mode(struct arm_sim_interface *sim, int reg)
{
	struct arm *arm = (struct arm *)sim->user_data;

	return buf_get_u32(ARMV4_5_CORE_REG_MODE(arm->core_cache,
			arm->core_mode, reg).value, 0, 32);
}

static void armv4_5_set_reg_mode(struct arm_sim_interface *sim, int reg, uint32_t value)
{
	struct arm *arm = (struct arm *)sim->user_data;

	buf_set_u32(ARMV4_5_CORE_REG_MODE(arm->core_cache,
		arm->core_mode, reg).value, 0, 32, value);
}

static uint32_t armv4_5_get_cpsr(struct arm_sim_interface *sim, int pos, int bits)
{
	struct arm *arm = (struct arm *)sim->user_data;

	return buf_get_u32(arm->cpsr->value, pos, bits);
}

static enum arm_state armv4_5_get_state(struct arm_sim_interface *sim)
{
	struct arm *arm = (struct arm *)sim->user_data;

	return arm->core_state;
}

static void armv4_5_set_state(struct arm_sim_interface *sim, enum arm_state mode)
{
	struct arm *arm = (struct arm *)sim->user_data;

	arm->core_state = mode;
}

static enum arm_mode armv4_5_get_mode(struct arm_sim_interface *sim)
{
	struct arm *arm = (struct arm *)sim->user_data;

	return arm->core_mode;
}

int arm_simulate_step(struct target *target, uint32_t *dry_run_pc)
{
	struct arm *arm = target_to_arm(target);
	struct arm_sim_interface sim;

	sim.user_data = arm;
	sim.get_reg = &armv4_5_get_reg;
	sim.set_reg = &armv4_5_set_reg;
	sim.get_reg_mode = &armv4_5_get_reg_mode;
	sim.set_reg_mode = &armv4_5_set_reg_mode;
	sim.get_cpsr = &armv4_5_get_cpsr;
	sim.get_mode = &armv4_5_get_mode;
	sim.get_state = &armv4_5_get_state;
	sim.set_state = &armv4_5_set_state;

	return arm_simulate_step_core(target, dry_run_pc, &sim);
}