aboutsummaryrefslogtreecommitdiff
path: root/src/target/arm_adi_v5.c
blob: 35d686e29577eebd3bd41c4ed13a3e985e6563e0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
/***************************************************************************
 *   Copyright (C) 2006 by Magnus Lundin                                   *
 *   lundin@mlu.mine.nu                                                    *
 *                                                                         *
 *   Copyright (C) 2008 by Spencer Oliver                                  *
 *   spen@spen-soft.co.uk                                                  *
 *                                                                         *
 *   Copyright (C) 2009-2010 by Oyvind Harboe                              *
 *   oyvind.harboe@zylin.com                                               *
 *                                                                         *
 *   Copyright (C) 2009-2010 by David Brownell                             *
 *                                                                         *
 *   Copyright (C) 2013 by Andreas Fritiofson                              *
 *   andreas.fritiofson@gmail.com                                          *
 *                                                                         *
 *   This program is free software; you can redistribute it and/or modify  *
 *   it under the terms of the GNU General Public License as published by  *
 *   the Free Software Foundation; either version 2 of the License, or     *
 *   (at your option) any later version.                                   *
 *                                                                         *
 *   This program is distributed in the hope that it will be useful,       *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
 *   GNU General Public License for more details.                          *
 *                                                                         *
 *   You should have received a copy of the GNU General Public License     *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
 ***************************************************************************/

/**
 * @file
 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
 * debugging architecture.  Compared with previous versions, this includes
 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
 * transport, and focuses on memory mapped resources as defined by the
 * CoreSight architecture.
 *
 * A key concept in ADIv5 is the Debug Access Port, or DAP.  A DAP has two
 * basic components:  a Debug Port (DP) transporting messages to and from a
 * debugger, and an Access Port (AP) accessing resources.  Three types of DP
 * are defined.  One uses only JTAG for communication, and is called JTAG-DP.
 * One uses only SWD for communication, and is called SW-DP.  The third can
 * use either SWD or JTAG, and is called SWJ-DP.  The most common type of AP
 * is used to access memory mapped resources and is called a MEM-AP.  Also a
 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
 *
 * This programming interface allows DAP pipelined operations through a
 * transaction queue.  This primarily affects AP operations (such as using
 * a MEM-AP to access memory or registers).  If the current transaction has
 * not finished by the time the next one must begin, and the ORUNDETECT bit
 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
 * further AP operations will fail.  There are two basic methods to avoid
 * such overrun errors.  One involves polling for status instead of using
 * transaction pipelining.  The other involves adding delays to ensure the
 * AP has enough time to complete one operation before starting the next
 * one.  (For JTAG these delays are controlled by memaccess_tck.)
 */

/*
 * Relevant specifications from ARM include:
 *
 * ARM(tm) Debug Interface v5 Architecture Specification    ARM IHI 0031E
 * CoreSight(tm) v1.0 Architecture Specification            ARM IHI 0029B
 *
 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
 * Cortex-M3(tm) TRM, ARM DDI 0337G
 */

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include "jtag/interface.h"
#include "arm.h"
#include "arm_adi_v5.h"
#include "jtag/swd.h"
#include "transport/transport.h"
#include <helper/jep106.h>
#include <helper/time_support.h>
#include <helper/list.h>
#include <helper/jim-nvp.h>

/* ARM ADI Specification requires at least 10 bits used for TAR autoincrement  */

/*
	uint32_t tar_block_size(uint32_t address)
	Return the largest block starting at address that does not cross a tar block size alignment boundary
*/
static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
{
	return tar_autoincr_block - ((tar_autoincr_block - 1) & address);
}

/***************************************************************************
 *                                                                         *
 * DP and MEM-AP  register access  through APACC and DPACC                 *
 *                                                                         *
***************************************************************************/

static int mem_ap_setup_csw(struct adiv5_ap *ap, uint32_t csw)
{
	csw |= ap->csw_default;

	if (csw != ap->csw_value) {
		/* LOG_DEBUG("DAP: Set CSW %x",csw); */
		int retval = dap_queue_ap_write(ap, MEM_AP_REG_CSW, csw);
		if (retval != ERROR_OK) {
			ap->csw_value = 0;
			return retval;
		}
		ap->csw_value = csw;
	}
	return ERROR_OK;
}

static int mem_ap_setup_tar(struct adiv5_ap *ap, uint32_t tar)
{
	if (!ap->tar_valid || tar != ap->tar_value) {
		/* LOG_DEBUG("DAP: Set TAR %x",tar); */
		int retval = dap_queue_ap_write(ap, MEM_AP_REG_TAR, tar);
		if (retval != ERROR_OK) {
			ap->tar_valid = false;
			return retval;
		}
		ap->tar_value = tar;
		ap->tar_valid = true;
	}
	return ERROR_OK;
}

static int mem_ap_read_tar(struct adiv5_ap *ap, uint32_t *tar)
{
	int retval = dap_queue_ap_read(ap, MEM_AP_REG_TAR, tar);
	if (retval != ERROR_OK) {
		ap->tar_valid = false;
		return retval;
	}

	retval = dap_run(ap->dap);
	if (retval != ERROR_OK) {
		ap->tar_valid = false;
		return retval;
	}

	ap->tar_value = *tar;
	ap->tar_valid = true;
	return ERROR_OK;
}

static uint32_t mem_ap_get_tar_increment(struct adiv5_ap *ap)
{
	switch (ap->csw_value & CSW_ADDRINC_MASK) {
	case CSW_ADDRINC_SINGLE:
		switch (ap->csw_value & CSW_SIZE_MASK) {
		case CSW_8BIT:
			return 1;
		case CSW_16BIT:
			return 2;
		case CSW_32BIT:
			return 4;
		default:
			return 0;
		}
	case CSW_ADDRINC_PACKED:
		return 4;
	}
	return 0;
}

/* mem_ap_update_tar_cache is called after an access to MEM_AP_REG_DRW
 */
static void mem_ap_update_tar_cache(struct adiv5_ap *ap)
{
	if (!ap->tar_valid)
		return;

	uint32_t inc = mem_ap_get_tar_increment(ap);
	if (inc >= max_tar_block_size(ap->tar_autoincr_block, ap->tar_value))
		ap->tar_valid = false;
	else
		ap->tar_value += inc;
}

/**
 * Queue transactions setting up transfer parameters for the
 * currently selected MEM-AP.
 *
 * Subsequent transfers using registers like MEM_AP_REG_DRW or MEM_AP_REG_BD2
 * initiate data reads or writes using memory or peripheral addresses.
 * If the CSW is configured for it, the TAR may be automatically
 * incremented after each transfer.
 *
 * @param ap The MEM-AP.
 * @param csw MEM-AP Control/Status Word (CSW) register to assign.  If this
 *	matches the cached value, the register is not changed.
 * @param tar MEM-AP Transfer Address Register (TAR) to assign.  If this
 *	matches the cached address, the register is not changed.
 *
 * @return ERROR_OK if the transaction was properly queued, else a fault code.
 */
static int mem_ap_setup_transfer(struct adiv5_ap *ap, uint32_t csw, uint32_t tar)
{
	int retval;
	retval = mem_ap_setup_csw(ap, csw);
	if (retval != ERROR_OK)
		return retval;
	retval = mem_ap_setup_tar(ap, tar);
	if (retval != ERROR_OK)
		return retval;
	return ERROR_OK;
}

/**
 * Asynchronous (queued) read of a word from memory or a system register.
 *
 * @param ap The MEM-AP to access.
 * @param address Address of the 32-bit word to read; it must be
 *	readable by the currently selected MEM-AP.
 * @param value points to where the word will be stored when the
 *	transaction queue is flushed (assuming no errors).
 *
 * @return ERROR_OK for success.  Otherwise a fault code.
 */
int mem_ap_read_u32(struct adiv5_ap *ap, uint32_t address,
		uint32_t *value)
{
	int retval;

	/* Use banked addressing (REG_BDx) to avoid some link traffic
	 * (updating TAR) when reading several consecutive addresses.
	 */
	retval = mem_ap_setup_transfer(ap,
			CSW_32BIT | (ap->csw_value & CSW_ADDRINC_MASK),
			address & 0xFFFFFFF0);
	if (retval != ERROR_OK)
		return retval;

	return dap_queue_ap_read(ap, MEM_AP_REG_BD0 | (address & 0xC), value);
}

/**
 * Synchronous read of a word from memory or a system register.
 * As a side effect, this flushes any queued transactions.
 *
 * @param ap The MEM-AP to access.
 * @param address Address of the 32-bit word to read; it must be
 *	readable by the currently selected MEM-AP.
 * @param value points to where the result will be stored.
 *
 * @return ERROR_OK for success; *value holds the result.
 * Otherwise a fault code.
 */
int mem_ap_read_atomic_u32(struct adiv5_ap *ap, uint32_t address,
		uint32_t *value)
{
	int retval;

	retval = mem_ap_read_u32(ap, address, value);
	if (retval != ERROR_OK)
		return retval;

	return dap_run(ap->dap);
}

/**
 * Asynchronous (queued) write of a word to memory or a system register.
 *
 * @param ap The MEM-AP to access.
 * @param address Address to be written; it must be writable by
 *	the currently selected MEM-AP.
 * @param value Word that will be written to the address when transaction
 *	queue is flushed (assuming no errors).
 *
 * @return ERROR_OK for success.  Otherwise a fault code.
 */
int mem_ap_write_u32(struct adiv5_ap *ap, uint32_t address,
		uint32_t value)
{
	int retval;

	/* Use banked addressing (REG_BDx) to avoid some link traffic
	 * (updating TAR) when writing several consecutive addresses.
	 */
	retval = mem_ap_setup_transfer(ap,
			CSW_32BIT | (ap->csw_value & CSW_ADDRINC_MASK),
			address & 0xFFFFFFF0);
	if (retval != ERROR_OK)
		return retval;

	return dap_queue_ap_write(ap, MEM_AP_REG_BD0 | (address & 0xC),
			value);
}

/**
 * Synchronous write of a word to memory or a system register.
 * As a side effect, this flushes any queued transactions.
 *
 * @param ap The MEM-AP to access.
 * @param address Address to be written; it must be writable by
 *	the currently selected MEM-AP.
 * @param value Word that will be written.
 *
 * @return ERROR_OK for success; the data was written.  Otherwise a fault code.
 */
int mem_ap_write_atomic_u32(struct adiv5_ap *ap, uint32_t address,
		uint32_t value)
{
	int retval = mem_ap_write_u32(ap, address, value);

	if (retval != ERROR_OK)
		return retval;

	return dap_run(ap->dap);
}

/**
 * Synchronous write of a block of memory, using a specific access size.
 *
 * @param ap The MEM-AP to access.
 * @param buffer The data buffer to write. No particular alignment is assumed.
 * @param size Which access size to use, in bytes. 1, 2 or 4.
 * @param count The number of writes to do (in size units, not bytes).
 * @param address Address to be written; it must be writable by the currently selected MEM-AP.
 * @param addrinc Whether the target address should be increased for each write or not. This
 *  should normally be true, except when writing to e.g. a FIFO.
 * @return ERROR_OK on success, otherwise an error code.
 */
static int mem_ap_write(struct adiv5_ap *ap, const uint8_t *buffer, uint32_t size, uint32_t count,
		uint32_t address, bool addrinc)
{
	struct adiv5_dap *dap = ap->dap;
	size_t nbytes = size * count;
	const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
	uint32_t csw_size;
	uint32_t addr_xor;
	int retval = ERROR_OK;

	/* TI BE-32 Quirks mode:
	 * Writes on big-endian TMS570 behave very strangely. Observed behavior:
	 *   size   write address   bytes written in order
	 *   4      TAR ^ 0         (val >> 24), (val >> 16), (val >> 8), (val)
	 *   2      TAR ^ 2         (val >> 8), (val)
	 *   1      TAR ^ 3         (val)
	 * For example, if you attempt to write a single byte to address 0, the processor
	 * will actually write a byte to address 3.
	 *
	 * To make writes of size < 4 work as expected, we xor a value with the address before
	 * setting the TAP, and we set the TAP after every transfer rather then relying on
	 * address increment. */

	if (size == 4) {
		csw_size = CSW_32BIT;
		addr_xor = 0;
	} else if (size == 2) {
		csw_size = CSW_16BIT;
		addr_xor = dap->ti_be_32_quirks ? 2 : 0;
	} else if (size == 1) {
		csw_size = CSW_8BIT;
		addr_xor = dap->ti_be_32_quirks ? 3 : 0;
	} else {
		return ERROR_TARGET_UNALIGNED_ACCESS;
	}

	if (ap->unaligned_access_bad && (address % size != 0))
		return ERROR_TARGET_UNALIGNED_ACCESS;

	while (nbytes > 0) {
		uint32_t this_size = size;

		/* Select packed transfer if possible */
		if (addrinc && ap->packed_transfers && nbytes >= 4
				&& max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
			this_size = 4;
			retval = mem_ap_setup_csw(ap, csw_size | CSW_ADDRINC_PACKED);
		} else {
			retval = mem_ap_setup_csw(ap, csw_size | csw_addrincr);
		}

		if (retval != ERROR_OK)
			break;

		retval = mem_ap_setup_tar(ap, address ^ addr_xor);
		if (retval != ERROR_OK)
			return retval;

		/* How many source bytes each transfer will consume, and their location in the DRW,
		 * depends on the type of transfer and alignment. See ARM document IHI0031C. */
		uint32_t outvalue = 0;
		uint32_t drw_byte_idx = address;
		if (dap->ti_be_32_quirks) {
			switch (this_size) {
			case 4:
				outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
				outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
				outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
				outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx & 3) ^ addr_xor);
				break;
			case 2:
				outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (drw_byte_idx++ & 3) ^ addr_xor);
				outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (drw_byte_idx & 3) ^ addr_xor);
				break;
			case 1:
				outvalue |= (uint32_t)*buffer++ << 8 * (0 ^ (drw_byte_idx & 3) ^ addr_xor);
				break;
			}
		} else {
			switch (this_size) {
			case 4:
				outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
				outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
				/* fallthrough */
			case 2:
				outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
				/* fallthrough */
			case 1:
				outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx & 3);
			}
		}

		nbytes -= this_size;

		retval = dap_queue_ap_write(ap, MEM_AP_REG_DRW, outvalue);
		if (retval != ERROR_OK)
			break;

		mem_ap_update_tar_cache(ap);
		if (addrinc)
			address += this_size;
	}

	/* REVISIT: Might want to have a queued version of this function that does not run. */
	if (retval == ERROR_OK)
		retval = dap_run(dap);

	if (retval != ERROR_OK) {
		uint32_t tar;
		if (mem_ap_read_tar(ap, &tar) == ERROR_OK)
			LOG_ERROR("Failed to write memory at 0x%08"PRIx32, tar);
		else
			LOG_ERROR("Failed to write memory and, additionally, failed to find out where");
	}

	return retval;
}

/**
 * Synchronous read of a block of memory, using a specific access size.
 *
 * @param ap The MEM-AP to access.
 * @param buffer The data buffer to receive the data. No particular alignment is assumed.
 * @param size Which access size to use, in bytes. 1, 2 or 4.
 * @param count The number of reads to do (in size units, not bytes).
 * @param adr Address to be read; it must be readable by the currently selected MEM-AP.
 * @param addrinc Whether the target address should be increased after each read or not. This
 *  should normally be true, except when reading from e.g. a FIFO.
 * @return ERROR_OK on success, otherwise an error code.
 */
static int mem_ap_read(struct adiv5_ap *ap, uint8_t *buffer, uint32_t size, uint32_t count,
		uint32_t adr, bool addrinc)
{
	struct adiv5_dap *dap = ap->dap;
	size_t nbytes = size * count;
	const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
	uint32_t csw_size;
	uint32_t address = adr;
	int retval = ERROR_OK;

	/* TI BE-32 Quirks mode:
	 * Reads on big-endian TMS570 behave strangely differently than writes.
	 * They read from the physical address requested, but with DRW byte-reversed.
	 * For example, a byte read from address 0 will place the result in the high bytes of DRW.
	 * Also, packed 8-bit and 16-bit transfers seem to sometimes return garbage in some bytes,
	 * so avoid them. */

	if (size == 4)
		csw_size = CSW_32BIT;
	else if (size == 2)
		csw_size = CSW_16BIT;
	else if (size == 1)
		csw_size = CSW_8BIT;
	else
		return ERROR_TARGET_UNALIGNED_ACCESS;

	if (ap->unaligned_access_bad && (adr % size != 0))
		return ERROR_TARGET_UNALIGNED_ACCESS;

	/* Allocate buffer to hold the sequence of DRW reads that will be made. This is a significant
	 * over-allocation if packed transfers are going to be used, but determining the real need at
	 * this point would be messy. */
	uint32_t *read_buf = calloc(count, sizeof(uint32_t));
	/* Multiplication count * sizeof(uint32_t) may overflow, calloc() is safe */
	uint32_t *read_ptr = read_buf;
	if (read_buf == NULL) {
		LOG_ERROR("Failed to allocate read buffer");
		return ERROR_FAIL;
	}

	/* Queue up all reads. Each read will store the entire DRW word in the read buffer. How many
	 * useful bytes it contains, and their location in the word, depends on the type of transfer
	 * and alignment. */
	while (nbytes > 0) {
		uint32_t this_size = size;

		/* Select packed transfer if possible */
		if (addrinc && ap->packed_transfers && nbytes >= 4
				&& max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
			this_size = 4;
			retval = mem_ap_setup_csw(ap, csw_size | CSW_ADDRINC_PACKED);
		} else {
			retval = mem_ap_setup_csw(ap, csw_size | csw_addrincr);
		}
		if (retval != ERROR_OK)
			break;

		retval = mem_ap_setup_tar(ap, address);
		if (retval != ERROR_OK)
			break;

		retval = dap_queue_ap_read(ap, MEM_AP_REG_DRW, read_ptr++);
		if (retval != ERROR_OK)
			break;

		nbytes -= this_size;
		if (addrinc)
			address += this_size;

		mem_ap_update_tar_cache(ap);
	}

	if (retval == ERROR_OK)
		retval = dap_run(dap);

	/* Restore state */
	address = adr;
	nbytes = size * count;
	read_ptr = read_buf;

	/* If something failed, read TAR to find out how much data was successfully read, so we can
	 * at least give the caller what we have. */
	if (retval != ERROR_OK) {
		uint32_t tar;
		if (mem_ap_read_tar(ap, &tar) == ERROR_OK) {
			/* TAR is incremented after failed transfer on some devices (eg Cortex-M4) */
			LOG_ERROR("Failed to read memory at 0x%08"PRIx32, tar);
			if (nbytes > tar - address)
				nbytes = tar - address;
		} else {
			LOG_ERROR("Failed to read memory and, additionally, failed to find out where");
			nbytes = 0;
		}
	}

	/* Replay loop to populate caller's buffer from the correct word and byte lane */
	while (nbytes > 0) {
		uint32_t this_size = size;

		if (addrinc && ap->packed_transfers && nbytes >= 4
				&& max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
			this_size = 4;
		}

		if (dap->ti_be_32_quirks) {
			switch (this_size) {
			case 4:
				*buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
				*buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
				/* fallthrough */
			case 2:
				*buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
				/* fallthrough */
			case 1:
				*buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
			}
		} else {
			switch (this_size) {
			case 4:
				*buffer++ = *read_ptr >> 8 * (address++ & 3);
				*buffer++ = *read_ptr >> 8 * (address++ & 3);
				/* fallthrough */
			case 2:
				*buffer++ = *read_ptr >> 8 * (address++ & 3);
				/* fallthrough */
			case 1:
				*buffer++ = *read_ptr >> 8 * (address++ & 3);
			}
		}

		read_ptr++;
		nbytes -= this_size;
	}

	free(read_buf);
	return retval;
}

int mem_ap_read_buf(struct adiv5_ap *ap,
		uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
{
	return mem_ap_read(ap, buffer, size, count, address, true);
}

int mem_ap_write_buf(struct adiv5_ap *ap,
		const uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
{
	return mem_ap_write(ap, buffer, size, count, address, true);
}

int mem_ap_read_buf_noincr(struct adiv5_ap *ap,
		uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
{
	return mem_ap_read(ap, buffer, size, count, address, false);
}

int mem_ap_write_buf_noincr(struct adiv5_ap *ap,
		const uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
{
	return mem_ap_write(ap, buffer, size, count, address, false);
}

/*--------------------------------------------------------------------------*/


#define DAP_POWER_DOMAIN_TIMEOUT (10)

/*--------------------------------------------------------------------------*/

/**
 * Invalidate cached DP select and cached TAR and CSW of all APs
 */
void dap_invalidate_cache(struct adiv5_dap *dap)
{
	dap->select = DP_SELECT_INVALID;
	dap->last_read = NULL;

	int i;
	for (i = 0; i <= 255; i++) {
		/* force csw and tar write on the next mem-ap access */
		dap->ap[i].tar_valid = false;
		dap->ap[i].csw_value = 0;
	}
}

/**
 * Initialize a DAP.  This sets up the power domains, prepares the DP
 * for further use and activates overrun checking.
 *
 * @param dap The DAP being initialized.
 */
int dap_dp_init(struct adiv5_dap *dap)
{
	int retval;

	LOG_DEBUG("%s", adiv5_dap_name(dap));

	dap->do_reconnect = false;
	dap_invalidate_cache(dap);

	/*
	 * Early initialize dap->dp_ctrl_stat.
	 * In jtag mode only, if the following queue run (in dap_dp_poll_register)
	 * fails and sets the sticky error, it will trigger the clearing
	 * of the sticky. Without this initialization system and debug power
	 * would be disabled while clearing the sticky error bit.
	 */
	dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;

	/*
	 * This write operation clears the sticky error bit in jtag mode only and
	 * is ignored in swd mode. It also powers-up system and debug domains in
	 * both jtag and swd modes, if not done before.
	 */
	retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat | SSTICKYERR);
	if (retval != ERROR_OK)
		return retval;

	retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
	if (retval != ERROR_OK)
		return retval;

	retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
	if (retval != ERROR_OK)
		return retval;

	/* Check that we have debug power domains activated */
	LOG_DEBUG("DAP: wait CDBGPWRUPACK");
	retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
				      CDBGPWRUPACK, CDBGPWRUPACK,
				      DAP_POWER_DOMAIN_TIMEOUT);
	if (retval != ERROR_OK)
		return retval;

	if (!dap->ignore_syspwrupack) {
		LOG_DEBUG("DAP: wait CSYSPWRUPACK");
		retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
					      CSYSPWRUPACK, CSYSPWRUPACK,
					      DAP_POWER_DOMAIN_TIMEOUT);
		if (retval != ERROR_OK)
			return retval;
	}

	retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
	if (retval != ERROR_OK)
		return retval;

	/* With debug power on we can activate OVERRUN checking */
	dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
	retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
	if (retval != ERROR_OK)
		return retval;
	retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
	if (retval != ERROR_OK)
		return retval;

	retval = dap_run(dap);
	if (retval != ERROR_OK)
		return retval;

	return retval;
}

/**
 * Initialize a DAP or do reconnect if DAP is not accessible.
 *
 * @param dap The DAP being initialized.
 */
int dap_dp_init_or_reconnect(struct adiv5_dap *dap)
{
	LOG_DEBUG("%s", adiv5_dap_name(dap));

	/*
	 * Early initialize dap->dp_ctrl_stat.
	 * In jtag mode only, if the following atomic reads fail and set the
	 * sticky error, it will trigger the clearing of the sticky. Without this
	 * initialization system and debug power would be disabled while clearing
	 * the sticky error bit.
	 */
	dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;

	dap->do_reconnect = false;

	dap_dp_read_atomic(dap, DP_CTRL_STAT, NULL);
	if (dap->do_reconnect) {
		/* dap connect calls dap_dp_init() after transport dependent initialization */
		return dap->ops->connect(dap);
	} else {
		return dap_dp_init(dap);
	}
}

/**
 * Initialize a DAP.  This sets up the power domains, prepares the DP
 * for further use, and arranges to use AP #0 for all AP operations
 * until dap_ap-select() changes that policy.
 *
 * @param ap The MEM-AP being initialized.
 */
int mem_ap_init(struct adiv5_ap *ap)
{
	/* check that we support packed transfers */
	uint32_t csw, cfg;
	int retval;
	struct adiv5_dap *dap = ap->dap;

	ap->tar_valid = false;
	ap->csw_value = 0;      /* force csw and tar write */
	retval = mem_ap_setup_transfer(ap, CSW_8BIT | CSW_ADDRINC_PACKED, 0);
	if (retval != ERROR_OK)
		return retval;

	retval = dap_queue_ap_read(ap, MEM_AP_REG_CSW, &csw);
	if (retval != ERROR_OK)
		return retval;

	retval = dap_queue_ap_read(ap, MEM_AP_REG_CFG, &cfg);
	if (retval != ERROR_OK)
		return retval;

	retval = dap_run(dap);
	if (retval != ERROR_OK)
		return retval;

	if (csw & CSW_ADDRINC_PACKED)
		ap->packed_transfers = true;
	else
		ap->packed_transfers = false;

	/* Packed transfers on TI BE-32 processors do not work correctly in
	 * many cases. */
	if (dap->ti_be_32_quirks)
		ap->packed_transfers = false;

	LOG_DEBUG("MEM_AP Packed Transfers: %s",
			ap->packed_transfers ? "enabled" : "disabled");

	/* The ARM ADI spec leaves implementation-defined whether unaligned
	 * memory accesses work, only work partially, or cause a sticky error.
	 * On TI BE-32 processors, reads seem to return garbage in some bytes
	 * and unaligned writes seem to cause a sticky error.
	 * TODO: it would be nice to have a way to detect whether unaligned
	 * operations are supported on other processors. */
	ap->unaligned_access_bad = dap->ti_be_32_quirks;

	LOG_DEBUG("MEM_AP CFG: large data %d, long address %d, big-endian %d",
			!!(cfg & 0x04), !!(cfg & 0x02), !!(cfg & 0x01));

	return ERROR_OK;
}

/**
 * Put the debug link into SWD mode, if the target supports it.
 * The link's initial mode may be either JTAG (for example,
 * with SWJ-DP after reset) or SWD.
 *
 * Note that targets using the JTAG-DP do not support SWD, and that
 * some targets which could otherwise support it may have been
 * configured to disable SWD signaling
 *
 * @param dap The DAP used
 * @return ERROR_OK or else a fault code.
 */
int dap_to_swd(struct adiv5_dap *dap)
{
	LOG_DEBUG("Enter SWD mode");

	return dap_send_sequence(dap, JTAG_TO_SWD);
}

/**
 * Put the debug link into JTAG mode, if the target supports it.
 * The link's initial mode may be either SWD or JTAG.
 *
 * Note that targets implemented with SW-DP do not support JTAG, and
 * that some targets which could otherwise support it may have been
 * configured to disable JTAG signaling
 *
 * @param dap The DAP used
 * @return ERROR_OK or else a fault code.
 */
int dap_to_jtag(struct adiv5_dap *dap)
{
	LOG_DEBUG("Enter JTAG mode");

	return dap_send_sequence(dap, SWD_TO_JTAG);
}

/* CID interpretation -- see ARM IHI 0029B section 3
 * and ARM IHI 0031A table 13-3.
 */
static const char *class_description[16] = {
	"Reserved", "ROM table", "Reserved", "Reserved",
	"Reserved", "Reserved", "Reserved", "Reserved",
	"Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
	"Reserved", "OptimoDE DESS",
	"Generic IP component", "PrimeCell or System component"
};

static bool is_dap_cid_ok(uint32_t cid)
{
	return (cid & 0xffff0fff) == 0xb105000d;
}

/*
 * This function checks the ID for each access port to find the requested Access Port type
 */
int dap_find_ap(struct adiv5_dap *dap, enum ap_type type_to_find, struct adiv5_ap **ap_out)
{
	int ap_num;

	/* Maximum AP number is 255 since the SELECT register is 8 bits */
	for (ap_num = 0; ap_num <= DP_APSEL_MAX; ap_num++) {

		/* read the IDR register of the Access Port */
		uint32_t id_val = 0;

		int retval = dap_queue_ap_read(dap_ap(dap, ap_num), AP_REG_IDR, &id_val);
		if (retval != ERROR_OK)
			return retval;

		retval = dap_run(dap);

		/* IDR bits:
		 * 31-28 : Revision
		 * 27-24 : JEDEC bank (0x4 for ARM)
		 * 23-17 : JEDEC code (0x3B for ARM)
		 * 16-13 : Class (0b1000=Mem-AP)
		 * 12-8  : Reserved
		 *  7-4  : AP Variant (non-zero for JTAG-AP)
		 *  3-0  : AP Type (0=JTAG-AP 1=AHB-AP 2=APB-AP 4=AXI-AP)
		 */

		/* Reading register for a non-existent AP should not cause an error,
		 * but just to be sure, try to continue searching if an error does happen.
		 */
		if ((retval == ERROR_OK) &&                  /* Register read success */
			((id_val & IDR_JEP106) == IDR_JEP106_ARM) && /* Jedec codes match */
			((id_val & IDR_TYPE) == type_to_find)) {      /* type matches*/

			LOG_DEBUG("Found %s at AP index: %d (IDR=0x%08" PRIX32 ")",
						(type_to_find == AP_TYPE_AHB3_AP)  ? "AHB3-AP"  :
						(type_to_find == AP_TYPE_AHB5_AP)  ? "AHB5-AP"  :
						(type_to_find == AP_TYPE_APB_AP)  ? "APB-AP"  :
						(type_to_find == AP_TYPE_AXI_AP)  ? "AXI-AP"  :
						(type_to_find == AP_TYPE_JTAG_AP) ? "JTAG-AP" : "Unknown",
						ap_num, id_val);

			*ap_out = &dap->ap[ap_num];
			return ERROR_OK;
		}
	}

	LOG_DEBUG("No %s found",
				(type_to_find == AP_TYPE_AHB3_AP)  ? "AHB3-AP"  :
				(type_to_find == AP_TYPE_AHB5_AP)  ? "AHB5-AP"  :
				(type_to_find == AP_TYPE_APB_AP)  ? "APB-AP"  :
				(type_to_find == AP_TYPE_AXI_AP)  ? "AXI-AP"  :
				(type_to_find == AP_TYPE_JTAG_AP) ? "JTAG-AP" : "Unknown");
	return ERROR_FAIL;
}

int dap_get_debugbase(struct adiv5_ap *ap,
			uint32_t *dbgbase, uint32_t *apid)
{
	struct adiv5_dap *dap = ap->dap;
	int retval;

	retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE, dbgbase);
	if (retval != ERROR_OK)
		return retval;
	retval = dap_queue_ap_read(ap, AP_REG_IDR, apid);
	if (retval != ERROR_OK)
		return retval;
	retval = dap_run(dap);
	if (retval != ERROR_OK)
		return retval;

	return ERROR_OK;
}

int dap_lookup_cs_component(struct adiv5_ap *ap,
			uint32_t dbgbase, uint8_t type, uint32_t *addr, int32_t *idx)
{
	uint32_t romentry, entry_offset = 0, component_base, devtype;
	int retval;

	*addr = 0;

	do {
		retval = mem_ap_read_atomic_u32(ap, (dbgbase&0xFFFFF000) |
						entry_offset, &romentry);
		if (retval != ERROR_OK)
			return retval;

		component_base = (dbgbase & 0xFFFFF000)
			+ (romentry & 0xFFFFF000);

		if (romentry & 0x1) {
			uint32_t c_cid1;
			retval = mem_ap_read_atomic_u32(ap, component_base | 0xff4, &c_cid1);
			if (retval != ERROR_OK) {
				LOG_ERROR("Can't read component with base address 0x%" PRIx32
					  ", the corresponding core might be turned off", component_base);
				return retval;
			}
			if (((c_cid1 >> 4) & 0x0f) == 1) {
				retval = dap_lookup_cs_component(ap, component_base,
							type, addr, idx);
				if (retval == ERROR_OK)
					break;
				if (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
					return retval;
			}

			retval = mem_ap_read_atomic_u32(ap,
					(component_base & 0xfffff000) | 0xfcc,
					&devtype);
			if (retval != ERROR_OK)
				return retval;
			if ((devtype & 0xff) == type) {
				if (!*idx) {
					*addr = component_base;
					break;
				} else
					(*idx)--;
			}
		}
		entry_offset += 4;
	} while (romentry > 0);

	if (!*addr)
		return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;

	return ERROR_OK;
}

static int dap_read_part_id(struct adiv5_ap *ap, uint32_t component_base, uint32_t *cid, uint64_t *pid)
{
	assert((component_base & 0xFFF) == 0);
	assert(ap != NULL && cid != NULL && pid != NULL);

	uint32_t cid0, cid1, cid2, cid3;
	uint32_t pid0, pid1, pid2, pid3, pid4;
	int retval;

	/* IDs are in last 4K section */
	retval = mem_ap_read_u32(ap, component_base + 0xFE0, &pid0);
	if (retval != ERROR_OK)
		return retval;
	retval = mem_ap_read_u32(ap, component_base + 0xFE4, &pid1);
	if (retval != ERROR_OK)
		return retval;
	retval = mem_ap_read_u32(ap, component_base + 0xFE8, &pid2);
	if (retval != ERROR_OK)
		return retval;
	retval = mem_ap_read_u32(ap, component_base + 0xFEC, &pid3);
	if (retval != ERROR_OK)
		return retval;
	retval = mem_ap_read_u32(ap, component_base + 0xFD0, &pid4);
	if (retval != ERROR_OK)
		return retval;
	retval = mem_ap_read_u32(ap, component_base + 0xFF0, &cid0);
	if (retval != ERROR_OK)
		return retval;
	retval = mem_ap_read_u32(ap, component_base + 0xFF4, &cid1);
	if (retval != ERROR_OK)
		return retval;
	retval = mem_ap_read_u32(ap, component_base + 0xFF8, &cid2);
	if (retval != ERROR_OK)
		return retval;
	retval = mem_ap_read_u32(ap, component_base + 0xFFC, &cid3);
	if (retval != ERROR_OK)
		return retval;

	retval = dap_run(ap->dap);
	if (retval != ERROR_OK)
		return retval;

	*cid = (cid3 & 0xff) << 24
			| (cid2 & 0xff) << 16
			| (cid1 & 0xff) << 8
			| (cid0 & 0xff);
	*pid = (uint64_t)(pid4 & 0xff) << 32
			| (pid3 & 0xff) << 24
			| (pid2 & 0xff) << 16
			| (pid1 & 0xff) << 8
			| (pid0 & 0xff);

	return ERROR_OK;
}

/* The designer identity code is encoded as:
 * bits 11:8 : JEP106 Bank (number of continuation codes), only valid when bit 7 is 1.
 * bit 7     : Set when bits 6:0 represent a JEP106 ID and cleared when bits 6:0 represent
 *             a legacy ASCII Identity Code.
 * bits 6:0  : JEP106 Identity Code (without parity) or legacy ASCII code according to bit 7.
 * JEP106 is a standard available from jedec.org
 */

/* Part number interpretations are from Cortex
 * core specs, the CoreSight components TRM
 * (ARM DDI 0314H), CoreSight System Design
 * Guide (ARM DGI 0012D) and ETM specs; also
 * from chip observation (e.g. TI SDTI).
 */

/* The legacy code only used the part number field to identify CoreSight peripherals.
 * This meant that the same part number from two different manufacturers looked the same.
 * It is desirable for all future additions to identify with both part number and JEP106.
 * "ANY_ID" is a wildcard (any JEP106) only to preserve legacy behavior for legacy entries.
 */

#define ANY_ID 0x1000

#define ARM_ID 0x4BB

static const struct {
	uint16_t designer_id;
	uint16_t part_num;
	const char *type;
	const char *full;
} dap_partnums[] = {
	{ ARM_ID, 0x000, "Cortex-M3 SCS",              "(System Control Space)", },
	{ ARM_ID, 0x001, "Cortex-M3 ITM",              "(Instrumentation Trace Module)", },
	{ ARM_ID, 0x002, "Cortex-M3 DWT",              "(Data Watchpoint and Trace)", },
	{ ARM_ID, 0x003, "Cortex-M3 FPB",              "(Flash Patch and Breakpoint)", },
	{ ARM_ID, 0x008, "Cortex-M0 SCS",              "(System Control Space)", },
	{ ARM_ID, 0x00a, "Cortex-M0 DWT",              "(Data Watchpoint and Trace)", },
	{ ARM_ID, 0x00b, "Cortex-M0 BPU",              "(Breakpoint Unit)", },
	{ ARM_ID, 0x00c, "Cortex-M4 SCS",              "(System Control Space)", },
	{ ARM_ID, 0x00d, "CoreSight ETM11",            "(Embedded Trace)", },
	{ ARM_ID, 0x00e, "Cortex-M7 FPB",              "(Flash Patch and Breakpoint)", },
	{ ARM_ID, 0x470, "Cortex-M1 ROM",              "(ROM Table)", },
	{ ARM_ID, 0x471, "Cortex-M0 ROM",              "(ROM Table)", },
	{ ARM_ID, 0x490, "Cortex-A15 GIC",             "(Generic Interrupt Controller)", },
	{ ARM_ID, 0x4a1, "Cortex-A53 ROM",             "(v8 Memory Map ROM Table)", },
	{ ARM_ID, 0x4a2, "Cortex-A57 ROM",             "(ROM Table)", },
	{ ARM_ID, 0x4a3, "Cortex-A53 ROM",             "(v7 Memory Map ROM Table)", },
	{ ARM_ID, 0x4a4, "Cortex-A72 ROM",             "(ROM Table)", },
	{ ARM_ID, 0x4a9, "Cortex-A9 ROM",              "(ROM Table)", },
	{ ARM_ID, 0x4aa, "Cortex-A35 ROM",             "(v8 Memory Map ROM Table)", },
	{ ARM_ID, 0x4af, "Cortex-A15 ROM",             "(ROM Table)", },
	{ ARM_ID, 0x4b5, "Cortex-R5 ROM",              "(ROM Table)", },
	{ ARM_ID, 0x4c0, "Cortex-M0+ ROM",             "(ROM Table)", },
	{ ARM_ID, 0x4c3, "Cortex-M3 ROM",              "(ROM Table)", },
	{ ARM_ID, 0x4c4, "Cortex-M4 ROM",              "(ROM Table)", },
	{ ARM_ID, 0x4c7, "Cortex-M7 PPB ROM",          "(Private Peripheral Bus ROM Table)", },
	{ ARM_ID, 0x4c8, "Cortex-M7 ROM",              "(ROM Table)", },
	{ ARM_ID, 0x4e0, "Cortex-A35 ROM",             "(v7 Memory Map ROM Table)", },
	{ ARM_ID, 0x906, "CoreSight CTI",              "(Cross Trigger)", },
	{ ARM_ID, 0x907, "CoreSight ETB",              "(Trace Buffer)", },
	{ ARM_ID, 0x908, "CoreSight CSTF",             "(Trace Funnel)", },
	{ ARM_ID, 0x909, "CoreSight ATBR",             "(Advanced Trace Bus Replicator)", },
	{ ARM_ID, 0x910, "CoreSight ETM9",             "(Embedded Trace)", },
	{ ARM_ID, 0x912, "CoreSight TPIU",             "(Trace Port Interface Unit)", },
	{ ARM_ID, 0x913, "CoreSight ITM",              "(Instrumentation Trace Macrocell)", },
	{ ARM_ID, 0x914, "CoreSight SWO",              "(Single Wire Output)", },
	{ ARM_ID, 0x917, "CoreSight HTM",              "(AHB Trace Macrocell)", },
	{ ARM_ID, 0x920, "CoreSight ETM11",            "(Embedded Trace)", },
	{ ARM_ID, 0x921, "Cortex-A8 ETM",              "(Embedded Trace)", },
	{ ARM_ID, 0x922, "Cortex-A8 CTI",              "(Cross Trigger)", },
	{ ARM_ID, 0x923, "Cortex-M3 TPIU",             "(Trace Port Interface Unit)", },
	{ ARM_ID, 0x924, "Cortex-M3 ETM",              "(Embedded Trace)", },
	{ ARM_ID, 0x925, "Cortex-M4 ETM",              "(Embedded Trace)", },
	{ ARM_ID, 0x930, "Cortex-R4 ETM",              "(Embedded Trace)", },
	{ ARM_ID, 0x931, "Cortex-R5 ETM",              "(Embedded Trace)", },
	{ ARM_ID, 0x932, "CoreSight MTB-M0+",          "(Micro Trace Buffer)", },
	{ ARM_ID, 0x941, "CoreSight TPIU-Lite",        "(Trace Port Interface Unit)", },
	{ ARM_ID, 0x950, "Cortex-A9 PTM",              "(Program Trace Macrocell)", },
	{ ARM_ID, 0x955, "Cortex-A5 ETM",              "(Embedded Trace)", },
	{ ARM_ID, 0x95a, "Cortex-A72 ETM",             "(Embedded Trace)", },
	{ ARM_ID, 0x95b, "Cortex-A17 PTM",             "(Program Trace Macrocell)", },
	{ ARM_ID, 0x95d, "Cortex-A53 ETM",             "(Embedded Trace)", },
	{ ARM_ID, 0x95e, "Cortex-A57 ETM",             "(Embedded Trace)", },
	{ ARM_ID, 0x95f, "Cortex-A15 PTM",             "(Program Trace Macrocell)", },
	{ ARM_ID, 0x961, "CoreSight TMC",              "(Trace Memory Controller)", },
	{ ARM_ID, 0x962, "CoreSight STM",              "(System Trace Macrocell)", },
	{ ARM_ID, 0x975, "Cortex-M7 ETM",              "(Embedded Trace)", },
	{ ARM_ID, 0x9a0, "CoreSight PMU",              "(Performance Monitoring Unit)", },
	{ ARM_ID, 0x9a1, "Cortex-M4 TPIU",             "(Trace Port Interface Unit)", },
	{ ARM_ID, 0x9a4, "CoreSight GPR",              "(Granular Power Requester)", },
	{ ARM_ID, 0x9a5, "Cortex-A5 PMU",              "(Performance Monitor Unit)", },
	{ ARM_ID, 0x9a7, "Cortex-A7 PMU",              "(Performance Monitor Unit)", },
	{ ARM_ID, 0x9a8, "Cortex-A53 CTI",             "(Cross Trigger)", },
	{ ARM_ID, 0x9a9, "Cortex-M7 TPIU",             "(Trace Port Interface Unit)", },
	{ ARM_ID, 0x9ae, "Cortex-A17 PMU",             "(Performance Monitor Unit)", },
	{ ARM_ID, 0x9af, "Cortex-A15 PMU",             "(Performance Monitor Unit)", },
	{ ARM_ID, 0x9b7, "Cortex-R7 PMU",              "(Performance Monitor Unit)", },
	{ ARM_ID, 0x9d3, "Cortex-A53 PMU",             "(Performance Monitor Unit)", },
	{ ARM_ID, 0x9d7, "Cortex-A57 PMU",             "(Performance Monitor Unit)", },
	{ ARM_ID, 0x9d8, "Cortex-A72 PMU",             "(Performance Monitor Unit)", },
	{ ARM_ID, 0x9da, "Cortex-A35 PMU/CTI/ETM",     "(Performance Monitor Unit/Cross Trigger/ETM)", },
	{ ARM_ID, 0xc05, "Cortex-A5 Debug",            "(Debug Unit)", },
	{ ARM_ID, 0xc07, "Cortex-A7 Debug",            "(Debug Unit)", },
	{ ARM_ID, 0xc08, "Cortex-A8 Debug",            "(Debug Unit)", },
	{ ARM_ID, 0xc09, "Cortex-A9 Debug",            "(Debug Unit)", },
	{ ARM_ID, 0xc0e, "Cortex-A17 Debug",           "(Debug Unit)", },
	{ ARM_ID, 0xc0f, "Cortex-A15 Debug",           "(Debug Unit)", },
	{ ARM_ID, 0xc14, "Cortex-R4 Debug",            "(Debug Unit)", },
	{ ARM_ID, 0xc15, "Cortex-R5 Debug",            "(Debug Unit)", },
	{ ARM_ID, 0xc17, "Cortex-R7 Debug",            "(Debug Unit)", },
	{ ARM_ID, 0xd03, "Cortex-A53 Debug",           "(Debug Unit)", },
	{ ARM_ID, 0xd04, "Cortex-A35 Debug",           "(Debug Unit)", },
	{ ARM_ID, 0xd07, "Cortex-A57 Debug",           "(Debug Unit)", },
	{ ARM_ID, 0xd08, "Cortex-A72 Debug",           "(Debug Unit)", },
	{ 0x097,  0x9af, "MSP432 ROM",                 "(ROM Table)" },
	{ 0x09f,  0xcd0, "Atmel CPU with DSU",         "(CPU)" },
	{ 0x0c1,  0x1db, "XMC4500 ROM",                "(ROM Table)" },
	{ 0x0c1,  0x1df, "XMC4700/4800 ROM",           "(ROM Table)" },
	{ 0x0c1,  0x1ed, "XMC1000 ROM",                "(ROM Table)" },
	{ 0x0E5,  0x000, "SHARC+/Blackfin+",           "", },
	{ 0x0F0,  0x440, "Qualcomm QDSS Component v1", "(Qualcomm Designed CoreSight Component v1)", },
	{ 0x3eb,  0x181, "Tegra 186 ROM",              "(ROM Table)", },
	{ 0x3eb,  0x202, "Denver ETM",                 "(Denver Embedded Trace)", },
	{ 0x3eb,  0x211, "Tegra 210 ROM",              "(ROM Table)", },
	{ 0x3eb,  0x302, "Denver Debug",               "(Debug Unit)", },
	{ 0x3eb,  0x402, "Denver PMU",                 "(Performance Monitor Unit)", },
	/* legacy comment: 0x113: what? */
	{ ANY_ID, 0x120, "TI SDTI",                    "(System Debug Trace Interface)", }, /* from OMAP3 memmap */
	{ ANY_ID, 0x343, "TI DAPCTL",                  "", }, /* from OMAP3 memmap */
};

static int dap_rom_display(struct command_invocation *cmd,
				struct adiv5_ap *ap, uint32_t dbgbase, int depth)
{
	int retval;
	uint64_t pid;
	uint32_t cid;
	char tabs[16] = "";

	if (depth > 16) {
		command_print(cmd, "\tTables too deep");
		return ERROR_FAIL;
	}

	if (depth)
		snprintf(tabs, sizeof(tabs), "[L%02d] ", depth);

	uint32_t base_addr = dbgbase & 0xFFFFF000;
	command_print(cmd, "\t\tComponent base address 0x%08" PRIx32, base_addr);

	retval = dap_read_part_id(ap, base_addr, &cid, &pid);
	if (retval != ERROR_OK) {
		command_print(cmd, "\t\tCan't read component, the corresponding core might be turned off");
		return ERROR_OK; /* Don't abort recursion */
	}

	if (!is_dap_cid_ok(cid)) {
		command_print(cmd, "\t\tInvalid CID 0x%08" PRIx32, cid);
		return ERROR_OK; /* Don't abort recursion */
	}

	/* component may take multiple 4K pages */
	uint32_t size = (pid >> 36) & 0xf;
	if (size > 0)
		command_print(cmd, "\t\tStart address 0x%08" PRIx32, (uint32_t)(base_addr - 0x1000 * size));

	command_print(cmd, "\t\tPeripheral ID 0x%010" PRIx64, pid);

	uint8_t class = (cid >> 12) & 0xf;
	uint16_t part_num = pid & 0xfff;
	uint16_t designer_id = ((pid >> 32) & 0xf) << 8 | ((pid >> 12) & 0xff);

	if (designer_id & 0x80) {
		/* JEP106 code */
		command_print(cmd, "\t\tDesigner is 0x%03" PRIx16 ", %s",
				designer_id, jep106_manufacturer(designer_id >> 8, designer_id & 0x7f));
	} else {
		/* Legacy ASCII ID, clear invalid bits */
		designer_id &= 0x7f;
		command_print(cmd, "\t\tDesigner ASCII code 0x%02" PRIx16 ", %s",
				designer_id, designer_id == 0x41 ? "ARM" : "<unknown>");
	}

	/* default values to be overwritten upon finding a match */
	const char *type = "Unrecognized";
	const char *full = "";

	/* search dap_partnums[] array for a match */
	for (unsigned entry = 0; entry < ARRAY_SIZE(dap_partnums); entry++) {

		if ((dap_partnums[entry].designer_id != designer_id) && (dap_partnums[entry].designer_id != ANY_ID))
			continue;

		if (dap_partnums[entry].part_num != part_num)
			continue;

		type = dap_partnums[entry].type;
		full = dap_partnums[entry].full;
		break;
	}

	command_print(cmd, "\t\tPart is 0x%" PRIx16", %s %s", part_num, type, full);
	command_print(cmd, "\t\tComponent class is 0x%" PRIx8 ", %s", class, class_description[class]);

	if (class == 1) { /* ROM Table */
		uint32_t memtype;
		retval = mem_ap_read_atomic_u32(ap, base_addr | 0xFCC, &memtype);
		if (retval != ERROR_OK)
			return retval;

		if (memtype & 0x01)
			command_print(cmd, "\t\tMEMTYPE system memory present on bus");
		else
			command_print(cmd, "\t\tMEMTYPE system memory not present: dedicated debug bus");

		/* Read ROM table entries from base address until we get 0x00000000 or reach the reserved area */
		for (uint16_t entry_offset = 0; entry_offset < 0xF00; entry_offset += 4) {
			uint32_t romentry;
			retval = mem_ap_read_atomic_u32(ap, base_addr | entry_offset, &romentry);
			if (retval != ERROR_OK)
				return retval;
			command_print(cmd, "\t%sROMTABLE[0x%x] = 0x%" PRIx32 "",
					tabs, entry_offset, romentry);
			if (romentry & 0x01) {
				/* Recurse */
				retval = dap_rom_display(cmd, ap, base_addr + (romentry & 0xFFFFF000), depth + 1);
				if (retval != ERROR_OK)
					return retval;
			} else if (romentry != 0) {
				command_print(cmd, "\t\tComponent not present");
			} else {
				command_print(cmd, "\t%s\tEnd of ROM table", tabs);
				break;
			}
		}
	} else if (class == 9) { /* CoreSight component */
		const char *major = "Reserved", *subtype = "Reserved";

		uint32_t devtype;
		retval = mem_ap_read_atomic_u32(ap, base_addr | 0xFCC, &devtype);
		if (retval != ERROR_OK)
			return retval;
		unsigned minor = (devtype >> 4) & 0x0f;
		switch (devtype & 0x0f) {
		case 0:
			major = "Miscellaneous";
			switch (minor) {
			case 0:
				subtype = "other";
				break;
			case 4:
				subtype = "Validation component";
				break;
			}
			break;
		case 1:
			major = "Trace Sink";
			switch (minor) {
			case 0:
				subtype = "other";
				break;
			case 1:
				subtype = "Port";
				break;
			case 2:
				subtype = "Buffer";
				break;
			case 3:
				subtype = "Router";
				break;
			}
			break;
		case 2:
			major = "Trace Link";
			switch (minor) {
			case 0:
				subtype = "other";
				break;
			case 1:
				subtype = "Funnel, router";
				break;
			case 2:
				subtype = "Filter";
				break;
			case 3:
				subtype = "FIFO, buffer";
				break;
			}
			break;
		case 3:
			major = "Trace Source";
			switch (minor) {
			case 0:
				subtype = "other";
				break;
			case 1:
				subtype = "Processor";
				break;
			case 2:
				subtype = "DSP";
				break;
			case 3:
				subtype = "Engine/Coprocessor";
				break;
			case 4:
				subtype = "Bus";
				break;
			case 6:
				subtype = "Software";
				break;
			}
			break;
		case 4:
			major = "Debug Control";
			switch (minor) {
			case 0:
				subtype = "other";
				break;
			case 1:
				subtype = "Trigger Matrix";
				break;
			case 2:
				subtype = "Debug Auth";
				break;
			case 3:
				subtype = "Power Requestor";
				break;
			}
			break;
		case 5:
			major = "Debug Logic";
			switch (minor) {
			case 0:
				subtype = "other";
				break;
			case 1:
				subtype = "Processor";
				break;
			case 2:
				subtype = "DSP";
				break;
			case 3:
				subtype = "Engine/Coprocessor";
				break;
			case 4:
				subtype = "Bus";
				break;
			case 5:
				subtype = "Memory";
				break;
			}
			break;
		case 6:
			major = "Performance Monitor";
			switch (minor) {
			case 0:
				subtype = "other";
				break;
			case 1:
				subtype = "Processor";
				break;
			case 2:
				subtype = "DSP";
				break;
			case 3:
				subtype = "Engine/Coprocessor";
				break;
			case 4:
				subtype = "Bus";
				break;
			case 5:
				subtype = "Memory";
				break;
			}
			break;
		}
		command_print(cmd, "\t\tType is 0x%02" PRIx8 ", %s, %s",
				(uint8_t)(devtype & 0xff),
				major, subtype);
		/* REVISIT also show 0xfc8 DevId */
	}

	return ERROR_OK;
}

int dap_info_command(struct command_invocation *cmd,
		struct adiv5_ap *ap)
{
	int retval;
	uint32_t dbgbase, apid;
	uint8_t mem_ap;

	/* Now we read ROM table ID registers, ref. ARM IHI 0029B sec  */
	retval = dap_get_debugbase(ap, &dbgbase, &apid);
	if (retval != ERROR_OK)
		return retval;

	command_print(cmd, "AP ID register 0x%8.8" PRIx32, apid);
	if (apid == 0) {
		command_print(cmd, "No AP found at this ap 0x%x", ap->ap_num);
		return ERROR_FAIL;
	}

	switch (apid & (IDR_JEP106 | IDR_TYPE)) {
	case IDR_JEP106_ARM | AP_TYPE_JTAG_AP:
		command_print(cmd, "\tType is JTAG-AP");
		break;
	case IDR_JEP106_ARM | AP_TYPE_AHB3_AP:
		command_print(cmd, "\tType is MEM-AP AHB3");
		break;
	case IDR_JEP106_ARM | AP_TYPE_AHB5_AP:
		command_print(cmd, "\tType is MEM-AP AHB5");
		break;
	case IDR_JEP106_ARM | AP_TYPE_APB_AP:
		command_print(cmd, "\tType is MEM-AP APB");
		break;
	case IDR_JEP106_ARM | AP_TYPE_AXI_AP:
		command_print(cmd, "\tType is MEM-AP AXI");
		break;
	default:
		command_print(cmd, "\tUnknown AP type");
		break;
	}

	/* NOTE: a MEM-AP may have a single CoreSight component that's
	 * not a ROM table ... or have no such components at all.
	 */
	mem_ap = (apid & IDR_CLASS) == AP_CLASS_MEM_AP;
	if (mem_ap) {
		command_print(cmd, "MEM-AP BASE 0x%8.8" PRIx32, dbgbase);

		if (dbgbase == 0xFFFFFFFF || (dbgbase & 0x3) == 0x2) {
			command_print(cmd, "\tNo ROM table present");
		} else {
			if (dbgbase & 0x01)
				command_print(cmd, "\tValid ROM table present");
			else
				command_print(cmd, "\tROM table in legacy format");

			dap_rom_display(cmd, ap, dbgbase & 0xFFFFF000, 0);
		}
	}

	return ERROR_OK;
}

enum adiv5_cfg_param {
	CFG_DAP,
	CFG_AP_NUM,
	CFG_BASEADDR,
	CFG_CTIBASE, /* DEPRECATED */
};

static const struct jim_nvp nvp_config_opts[] = {
	{ .name = "-dap",       .value = CFG_DAP },
	{ .name = "-ap-num",    .value = CFG_AP_NUM },
	{ .name = "-baseaddr",  .value = CFG_BASEADDR },
	{ .name = "-ctibase",   .value = CFG_CTIBASE }, /* DEPRECATED */
	{ .name = NULL, .value = -1 }
};

static int adiv5_jim_spot_configure(struct jim_getopt_info *goi,
		struct adiv5_dap **dap_p, int *ap_num_p, uint32_t *base_p)
{
	if (!goi->argc)
		return JIM_OK;

	Jim_SetEmptyResult(goi->interp);

	struct jim_nvp *n;
	int e = jim_nvp_name2value_obj(goi->interp, nvp_config_opts,
				goi->argv[0], &n);
	if (e != JIM_OK)
		return JIM_CONTINUE;

	/* base_p can be NULL, then '-baseaddr' option is treated as unknown */
	if (!base_p && (n->value == CFG_BASEADDR || n->value == CFG_CTIBASE))
		return JIM_CONTINUE;

	e = jim_getopt_obj(goi, NULL);
	if (e != JIM_OK)
		return e;

	switch (n->value) {
	case CFG_DAP:
		if (goi->isconfigure) {
			Jim_Obj *o_t;
			struct adiv5_dap *dap;
			e = jim_getopt_obj(goi, &o_t);
			if (e != JIM_OK)
				return e;
			dap = dap_instance_by_jim_obj(goi->interp, o_t);
			if (!dap) {
				Jim_SetResultString(goi->interp, "DAP name invalid!", -1);
				return JIM_ERR;
			}
			if (*dap_p && *dap_p != dap) {
				Jim_SetResultString(goi->interp,
					"DAP assignment cannot be changed!", -1);
				return JIM_ERR;
			}
			*dap_p = dap;
		} else {
			if (goi->argc)
				goto err_no_param;
			if (!*dap_p) {
				Jim_SetResultString(goi->interp, "DAP not configured", -1);
				return JIM_ERR;
			}
			Jim_SetResultString(goi->interp, adiv5_dap_name(*dap_p), -1);
		}
		break;

	case CFG_AP_NUM:
		if (goi->isconfigure) {
			jim_wide ap_num;
			e = jim_getopt_wide(goi, &ap_num);
			if (e != JIM_OK)
				return e;
			if (ap_num < 0 || ap_num > DP_APSEL_MAX) {
				Jim_SetResultString(goi->interp, "Invalid AP number!", -1);
				return JIM_ERR;
			}
			*ap_num_p = ap_num;
		} else {
			if (goi->argc)
				goto err_no_param;
			if (*ap_num_p == DP_APSEL_INVALID) {
				Jim_SetResultString(goi->interp, "AP number not configured", -1);
				return JIM_ERR;
			}
			Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, *ap_num_p));
		}
		break;

	case CFG_CTIBASE:
		LOG_WARNING("DEPRECATED! use \'-baseaddr' not \'-ctibase\'");
		/* fall through */
	case CFG_BASEADDR:
		if (goi->isconfigure) {
			jim_wide base;
			e = jim_getopt_wide(goi, &base);
			if (e != JIM_OK)
				return e;
			*base_p = (uint32_t)base;
		} else {
			if (goi->argc)
				goto err_no_param;
			Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, *base_p));
		}
		break;
	};

	return JIM_OK;

err_no_param:
	Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "NO PARAMS");
	return JIM_ERR;
}

int adiv5_jim_configure(struct target *target, struct jim_getopt_info *goi)
{
	struct adiv5_private_config *pc;
	int e;

	pc = (struct adiv5_private_config *)target->private_config;
	if (pc == NULL) {
		pc = calloc(1, sizeof(struct adiv5_private_config));
		pc->ap_num = DP_APSEL_INVALID;
		target->private_config = pc;
	}

	target->has_dap = true;

	e = adiv5_jim_spot_configure(goi, &pc->dap, &pc->ap_num, NULL);
	if (e != JIM_OK)
		return e;

	if (pc->dap && !target->dap_configured) {
		if (target->tap_configured) {
			pc->dap = NULL;
			Jim_SetResultString(goi->interp,
				"-chain-position and -dap configparams are mutually exclusive!", -1);
			return JIM_ERR;
		}
		target->tap = pc->dap->tap;
		target->dap_configured = true;
	}

	return JIM_OK;
}

int adiv5_verify_config(struct adiv5_private_config *pc)
{
	if (pc == NULL)
		return ERROR_FAIL;

	if (pc->dap == NULL)
		return ERROR_FAIL;

	return ERROR_OK;
}

int adiv5_jim_mem_ap_spot_configure(struct adiv5_mem_ap_spot *cfg,
		struct jim_getopt_info *goi)
{
	return adiv5_jim_spot_configure(goi, &cfg->dap, &cfg->ap_num, &cfg->base);
}

int adiv5_mem_ap_spot_init(struct adiv5_mem_ap_spot *p)
{
	p->dap = NULL;
	p->ap_num = DP_APSEL_INVALID;
	p->base = 0;
	return ERROR_OK;
}

COMMAND_HANDLER(handle_dap_info_command)
{
	struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
	uint32_t apsel;

	switch (CMD_ARGC) {
	case 0:
		apsel = dap->apsel;
		break;
	case 1:
		COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
		if (apsel > DP_APSEL_MAX) {
			command_print(CMD, "Invalid AP number");
			return ERROR_COMMAND_ARGUMENT_INVALID;
		}
		break;
	default:
		return ERROR_COMMAND_SYNTAX_ERROR;
	}

	return dap_info_command(CMD, &dap->ap[apsel]);
}

COMMAND_HANDLER(dap_baseaddr_command)
{
	struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
	uint32_t apsel, baseaddr;
	int retval;

	switch (CMD_ARGC) {
	case 0:
		apsel = dap->apsel;
		break;
	case 1:
		COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
		/* AP address is in bits 31:24 of DP_SELECT */
		if (apsel > DP_APSEL_MAX) {
			command_print(CMD, "Invalid AP number");
			return ERROR_COMMAND_ARGUMENT_INVALID;
		}
		break;
	default:
		return ERROR_COMMAND_SYNTAX_ERROR;
	}

	/* NOTE:  assumes we're talking to a MEM-AP, which
	 * has a base address.  There are other kinds of AP,
	 * though they're not common for now.  This should
	 * use the ID register to verify it's a MEM-AP.
	 */
	retval = dap_queue_ap_read(dap_ap(dap, apsel), MEM_AP_REG_BASE, &baseaddr);
	if (retval != ERROR_OK)
		return retval;
	retval = dap_run(dap);
	if (retval != ERROR_OK)
		return retval;

	command_print(CMD, "0x%8.8" PRIx32, baseaddr);

	return retval;
}

COMMAND_HANDLER(dap_memaccess_command)
{
	struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
	uint32_t memaccess_tck;

	switch (CMD_ARGC) {
	case 0:
		memaccess_tck = dap->ap[dap->apsel].memaccess_tck;
		break;
	case 1:
		COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
		break;
	default:
		return ERROR_COMMAND_SYNTAX_ERROR;
	}
	dap->ap[dap->apsel].memaccess_tck = memaccess_tck;

	command_print(CMD, "memory bus access delay set to %" PRIu32 " tck",
			dap->ap[dap->apsel].memaccess_tck);

	return ERROR_OK;
}

COMMAND_HANDLER(dap_apsel_command)
{
	struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
	uint32_t apsel;

	switch (CMD_ARGC) {
	case 0:
		command_print(CMD, "%" PRIu32, dap->apsel);
		return ERROR_OK;
	case 1:
		COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
		/* AP address is in bits 31:24 of DP_SELECT */
		if (apsel > DP_APSEL_MAX) {
			command_print(CMD, "Invalid AP number");
			return ERROR_COMMAND_ARGUMENT_INVALID;
		}
		break;
	default:
		return ERROR_COMMAND_SYNTAX_ERROR;
	}

	dap->apsel = apsel;
	return ERROR_OK;
}

COMMAND_HANDLER(dap_apcsw_command)
{
	struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
	uint32_t apcsw = dap->ap[dap->apsel].csw_default;
	uint32_t csw_val, csw_mask;

	switch (CMD_ARGC) {
	case 0:
		command_print(CMD, "ap %" PRIu32 " selected, csw 0x%8.8" PRIx32,
			dap->apsel, apcsw);
		return ERROR_OK;
	case 1:
		if (strcmp(CMD_ARGV[0], "default") == 0)
			csw_val = CSW_AHB_DEFAULT;
		else
			COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], csw_val);

		if (csw_val & (CSW_SIZE_MASK | CSW_ADDRINC_MASK)) {
			LOG_ERROR("CSW value cannot include 'Size' and 'AddrInc' bit-fields");
			return ERROR_COMMAND_ARGUMENT_INVALID;
		}
		apcsw = csw_val;
		break;
	case 2:
		COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], csw_val);
		COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], csw_mask);
		if (csw_mask & (CSW_SIZE_MASK | CSW_ADDRINC_MASK)) {
			LOG_ERROR("CSW mask cannot include 'Size' and 'AddrInc' bit-fields");
			return ERROR_COMMAND_ARGUMENT_INVALID;
		}
		apcsw = (apcsw & ~csw_mask) | (csw_val & csw_mask);
		break;
	default:
		return ERROR_COMMAND_SYNTAX_ERROR;
	}
	dap->ap[dap->apsel].csw_default = apcsw;

	return 0;
}



COMMAND_HANDLER(dap_apid_command)
{
	struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
	uint32_t apsel, apid;
	int retval;

	switch (CMD_ARGC) {
	case 0:
		apsel = dap->apsel;
		break;
	case 1:
		COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
		/* AP address is in bits 31:24 of DP_SELECT */
		if (apsel > DP_APSEL_MAX) {
			command_print(CMD, "Invalid AP number");
			return ERROR_COMMAND_ARGUMENT_INVALID;
		}
		break;
	default:
		return ERROR_COMMAND_SYNTAX_ERROR;
	}

	retval = dap_queue_ap_read(dap_ap(dap, apsel), AP_REG_IDR, &apid);
	if (retval != ERROR_OK)
		return retval;
	retval = dap_run(dap);
	if (retval != ERROR_OK)
		return retval;

	command_print(CMD, "0x%8.8" PRIx32, apid);

	return retval;
}

COMMAND_HANDLER(dap_apreg_command)
{
	struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
	uint32_t apsel, reg, value;
	struct adiv5_ap *ap;
	int retval;

	if (CMD_ARGC < 2 || CMD_ARGC > 3)
		return ERROR_COMMAND_SYNTAX_ERROR;

	COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
	/* AP address is in bits 31:24 of DP_SELECT */
	if (apsel > DP_APSEL_MAX) {
		command_print(CMD, "Invalid AP number");
		return ERROR_COMMAND_ARGUMENT_INVALID;
	}

	ap = dap_ap(dap, apsel);

	COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], reg);
	if (reg >= 256 || (reg & 3)) {
		command_print(CMD, "Invalid reg value (should be less than 256 and 4 bytes aligned)");
		return ERROR_COMMAND_ARGUMENT_INVALID;
	}

	if (CMD_ARGC == 3) {
		COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], value);
		switch (reg) {
		case MEM_AP_REG_CSW:
			ap->csw_value = 0;  /* invalid, in case write fails */
			retval = dap_queue_ap_write(ap, reg, value);
			if (retval == ERROR_OK)
				ap->csw_value = value;
			break;
		case MEM_AP_REG_TAR:
			ap->tar_valid = false;  /* invalid, force write */
			retval = mem_ap_setup_tar(ap, value);
			break;
		default:
			retval = dap_queue_ap_write(ap, reg, value);
			break;
		}
	} else {
		retval = dap_queue_ap_read(ap, reg, &value);
	}
	if (retval == ERROR_OK)
		retval = dap_run(dap);

	if (retval != ERROR_OK)
		return retval;

	if (CMD_ARGC == 2)
		command_print(CMD, "0x%08" PRIx32, value);

	return retval;
}

COMMAND_HANDLER(dap_dpreg_command)
{
	struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
	uint32_t reg, value;
	int retval;

	if (CMD_ARGC < 1 || CMD_ARGC > 2)
		return ERROR_COMMAND_SYNTAX_ERROR;

	COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], reg);
	if (reg >= 256 || (reg & 3)) {
		command_print(CMD, "Invalid reg value (should be less than 256 and 4 bytes aligned)");
		return ERROR_COMMAND_ARGUMENT_INVALID;
	}

	if (CMD_ARGC == 2) {
		COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
		retval = dap_queue_dp_write(dap, reg, value);
	} else {
		retval = dap_queue_dp_read(dap, reg, &value);
	}
	if (retval == ERROR_OK)
		retval = dap_run(dap);

	if (retval != ERROR_OK)
		return retval;

	if (CMD_ARGC == 1)
		command_print(CMD, "0x%08" PRIx32, value);

	return retval;
}

COMMAND_HANDLER(dap_ti_be_32_quirks_command)
{
	struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
	return CALL_COMMAND_HANDLER(handle_command_parse_bool, &dap->ti_be_32_quirks,
		"TI BE-32 quirks mode");
}

const struct command_registration dap_instance_commands[] = {
	{
		.name = "info",
		.handler = handle_dap_info_command,
		.mode = COMMAND_EXEC,
		.help = "display ROM table for MEM-AP "
			"(default currently selected AP)",
		.usage = "[ap_num]",
	},
	{
		.name = "apsel",
		.handler = dap_apsel_command,
		.mode = COMMAND_ANY,
		.help = "Set the currently selected AP (default 0) "
			"and display the result",
		.usage = "[ap_num]",
	},
	{
		.name = "apcsw",
		.handler = dap_apcsw_command,
		.mode = COMMAND_ANY,
		.help = "Set CSW default bits",
		.usage = "[value [mask]]",
	},

	{
		.name = "apid",
		.handler = dap_apid_command,
		.mode = COMMAND_EXEC,
		.help = "return ID register from AP "
			"(default currently selected AP)",
		.usage = "[ap_num]",
	},
	{
		.name = "apreg",
		.handler = dap_apreg_command,
		.mode = COMMAND_EXEC,
		.help = "read/write a register from AP "
			"(reg is byte address of a word register, like 0 4 8...)",
		.usage = "ap_num reg [value]",
	},
	{
		.name = "dpreg",
		.handler = dap_dpreg_command,
		.mode = COMMAND_EXEC,
		.help = "read/write a register from DP "
			"(reg is byte address (bank << 4 | reg) of a word register, like 0 4 8...)",
		.usage = "reg [value]",
	},
	{
		.name = "baseaddr",
		.handler = dap_baseaddr_command,
		.mode = COMMAND_EXEC,
		.help = "return debug base address from MEM-AP "
			"(default currently selected AP)",
		.usage = "[ap_num]",
	},
	{
		.name = "memaccess",
		.handler = dap_memaccess_command,
		.mode = COMMAND_EXEC,
		.help = "set/get number of extra tck for MEM-AP memory "
			"bus access [0-255]",
		.usage = "[cycles]",
	},
	{
		.name = "ti_be_32_quirks",
		.handler = dap_ti_be_32_quirks_command,
		.mode = COMMAND_CONFIG,
		.help = "set/get quirks mode for TI TMS450/TMS570 processors",
		.usage = "[enable]",
	},
	COMMAND_REGISTRATION_DONE
};