1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
|
/***************************************************************************
* Copyright (C) 2013-2015,2019-2020 Synopsys, Inc. *
* Frank Dols <frank.dols@synopsys.com> *
* Mischa Jonker <mischa.jonker@synopsys.com> *
* Anton Kolesov <anton.kolesov@synopsys.com> *
* Evgeniy Didin <didin@synopsys.com> *
* *
* SPDX-License-Identifier: GPL-2.0-or-later *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "arc.h"
/*
* ARC architecture specific details.
*
* ARC has two types of registers:
* 1) core registers(e.g. r0,r1..) [is_core = true]
* 2) Auxiliary registers [is_core = false]..
*
* Auxiliary registers at the same time can be divided into
* read-only BCR(build configuration regs, e.g. isa_config, mpu_build) and
* R/RW non-BCR ("control" register, e.g. pc, status32_t, debug).
*
* The way of accessing to Core and AUX registers differs on Jtag level.
* BCR/non-BCR describes if the register is immutable and that reading
* unexisting register is safe RAZ, rather then an error.
* Note, core registers cannot be BCR.
*
* In arc/cpu/ tcl files all registers are defined as core, non-BCR aux
* and BCR aux, in "add-reg" command they are passed to three lists
* respectively: core_reg_descriptions, aux_reg_descriptions,
* bcr_reg_descriptions.
*
* Due to the specifics of accessing to BCR/non-BCR registers there are two
* register caches:
* 1) core_and_aux_cache - includes registers described in
* core_reg_descriptions and aux_reg_descriptions lists.
* Used during save/restore context step.
* 2) bcr_cache - includes registers described bcr_reg_descriptions.
* Currently used internally during configure step.
*/
static int arc_remove_watchpoint(struct target *target,
struct watchpoint *watchpoint);
void arc_reg_data_type_add(struct target *target,
struct arc_reg_data_type *data_type)
{
LOG_DEBUG("Adding %s reg_data_type", data_type->data_type.id);
struct arc_common *arc = target_to_arc(target);
assert(arc);
list_add_tail(&data_type->list, &arc->reg_data_types);
}
/**
* Private implementation of register_get_by_name() for ARC that
* doesn't skip not [yet] existing registers. Used in many places
* for iteration through registers and even for marking required registers as
* existing.
*/
struct reg *arc_reg_get_by_name(struct reg_cache *first,
const char *name, bool search_all)
{
unsigned int i;
struct reg_cache *cache = first;
while (cache) {
for (i = 0; i < cache->num_regs; i++) {
if (!strcmp(cache->reg_list[i].name, name))
return &(cache->reg_list[i]);
}
if (search_all)
cache = cache->next;
else
break;
}
return NULL;
}
/**
* Reset internal states of caches. Must be called when entering debugging.
*
* @param target Target for which to reset caches states.
*/
int arc_reset_caches_states(struct target *target)
{
struct arc_common *arc = target_to_arc(target);
LOG_DEBUG("Resetting internal variables of caches states");
/* Reset caches states. */
arc->dcache_flushed = false;
arc->l2cache_flushed = false;
arc->icache_invalidated = false;
arc->dcache_invalidated = false;
arc->l2cache_invalidated = false;
return ERROR_OK;
}
/* Initialize arc_common structure, which passes to openocd target instance */
static int arc_init_arch_info(struct target *target, struct arc_common *arc,
struct jtag_tap *tap)
{
arc->common_magic = ARC_COMMON_MAGIC;
target->arch_info = arc;
arc->jtag_info.tap = tap;
/* The only allowed ir_length is 4 for ARC jtag. */
if (tap->ir_length != 4) {
LOG_ERROR("ARC jtag instruction length should be equal to 4");
return ERROR_FAIL;
}
/* On most ARC targets there is a dcache, so we enable its flushing
* by default. If there no dcache, there will be no error, just a slight
* performance penalty from unnecessary JTAG operations. */
arc->has_dcache = true;
arc->has_icache = true;
/* L2$ is not available in a target by default. */
arc->has_l2cache = false;
arc_reset_caches_states(target);
/* Add standard GDB data types */
INIT_LIST_HEAD(&arc->reg_data_types);
struct arc_reg_data_type *std_types = calloc(ARRAY_SIZE(standard_gdb_types),
sizeof(*std_types));
if (!std_types) {
LOG_ERROR("Unable to allocate memory");
return ERROR_FAIL;
}
for (unsigned int i = 0; i < ARRAY_SIZE(standard_gdb_types); i++) {
std_types[i].data_type.type = standard_gdb_types[i].type;
std_types[i].data_type.id = standard_gdb_types[i].id;
arc_reg_data_type_add(target, &(std_types[i]));
}
/* Fields related to target descriptions */
INIT_LIST_HEAD(&arc->core_reg_descriptions);
INIT_LIST_HEAD(&arc->aux_reg_descriptions);
INIT_LIST_HEAD(&arc->bcr_reg_descriptions);
arc->num_regs = 0;
arc->num_core_regs = 0;
arc->num_aux_regs = 0;
arc->num_bcr_regs = 0;
arc->last_general_reg = ULONG_MAX;
arc->pc_index_in_cache = ULONG_MAX;
arc->debug_index_in_cache = ULONG_MAX;
return ERROR_OK;
}
int arc_reg_add(struct target *target, struct arc_reg_desc *arc_reg,
const char * const type_name, const size_t type_name_len)
{
assert(target);
assert(arc_reg);
struct arc_common *arc = target_to_arc(target);
assert(arc);
/* Find register type */
{
struct arc_reg_data_type *type;
list_for_each_entry(type, &arc->reg_data_types, list)
if (!strncmp(type->data_type.id, type_name, type_name_len)) {
arc_reg->data_type = &(type->data_type);
break;
}
if (!arc_reg->data_type)
return ERROR_ARC_REGTYPE_NOT_FOUND;
}
if (arc_reg->is_core) {
list_add_tail(&arc_reg->list, &arc->core_reg_descriptions);
arc->num_core_regs += 1;
} else if (arc_reg->is_bcr) {
list_add_tail(&arc_reg->list, &arc->bcr_reg_descriptions);
arc->num_bcr_regs += 1;
} else {
list_add_tail(&arc_reg->list, &arc->aux_reg_descriptions);
arc->num_aux_regs += 1;
}
arc->num_regs += 1;
LOG_DEBUG(
"added register {name=%s, num=0x%" PRIx32 ", type=%s%s%s%s}",
arc_reg->name, arc_reg->arch_num, arc_reg->data_type->id,
arc_reg->is_core ? ", core" : "", arc_reg->is_bcr ? ", bcr" : "",
arc_reg->is_general ? ", general" : ""
);
return ERROR_OK;
}
/* Reading core or aux register */
static int arc_get_register(struct reg *reg)
{
assert(reg);
struct arc_reg_desc *desc = reg->arch_info;
struct target *target = desc->target;
struct arc_common *arc = target_to_arc(target);
uint32_t value;
if (reg->valid) {
LOG_DEBUG("Get register (cached) gdb_num=%" PRIu32 ", name=%s, value=0x%" PRIx32,
reg->number, desc->name, target_buffer_get_u32(target, reg->value));
return ERROR_OK;
}
if (desc->is_core) {
/* Accessing to R61/R62 registers causes Jtag hang */
if (desc->arch_num == ARC_R61 || desc->arch_num == ARC_R62) {
LOG_ERROR("It is forbidden to read core registers 61 and 62.");
return ERROR_FAIL;
}
CHECK_RETVAL(arc_jtag_read_core_reg_one(&arc->jtag_info, desc->arch_num,
&value));
} else {
CHECK_RETVAL(arc_jtag_read_aux_reg_one(&arc->jtag_info, desc->arch_num,
&value));
}
target_buffer_set_u32(target, reg->value, value);
/* If target is unhalted all register reads should be uncached. */
if (target->state == TARGET_HALTED)
reg->valid = true;
else
reg->valid = false;
reg->dirty = false;
LOG_DEBUG("Get register gdb_num=%" PRIu32 ", name=%s, value=0x%" PRIx32,
reg->number, desc->name, value);
return ERROR_OK;
}
/* Writing core or aux register */
static int arc_set_register(struct reg *reg, uint8_t *buf)
{
struct arc_reg_desc *desc = reg->arch_info;
struct target *target = desc->target;
uint32_t value = target_buffer_get_u32(target, buf);
/* Unlike "get" function "set" is supported only if target
* is in halt mode. Async writes are not supported yet. */
if (target->state != TARGET_HALTED)
return ERROR_TARGET_NOT_HALTED;
/* Accessing to R61/R62 registers causes Jtag hang */
if (desc->is_core && (desc->arch_num == ARC_R61 ||
desc->arch_num == ARC_R62)) {
LOG_ERROR("It is forbidden to write core registers 61 and 62.");
return ERROR_FAIL;
}
target_buffer_set_u32(target, reg->value, value);
LOG_DEBUG("Set register gdb_num=%" PRIu32 ", name=%s, value=0x%08" PRIx32,
reg->number, desc->name, value);
reg->valid = true;
reg->dirty = true;
return ERROR_OK;
}
const struct reg_arch_type arc_reg_type = {
.get = arc_get_register,
.set = arc_set_register,
};
/* GDB register groups. For now we support only general and "empty" */
static const char * const reg_group_general = "general";
static const char * const reg_group_other = "";
/* Common code to initialize `struct reg` for different registers: core, aux, bcr. */
static int arc_init_reg(struct target *target, struct reg *reg,
struct arc_reg_desc *reg_desc, unsigned long number)
{
assert(target);
assert(reg);
assert(reg_desc);
struct arc_common *arc = target_to_arc(target);
/* Initialize struct reg */
reg->name = reg_desc->name;
reg->size = 32; /* All register in ARC are 32-bit */
reg->value = reg_desc->reg_value;
reg->type = &arc_reg_type;
reg->arch_info = reg_desc;
reg->caller_save = true; /* @todo should be configurable. */
reg->reg_data_type = reg_desc->data_type;
reg->feature = ®_desc->feature;
reg->feature->name = reg_desc->gdb_xml_feature;
/* reg->number is used by OpenOCD as value for @regnum. Thus when setting
* value of a register GDB will use it as a number of register in
* P-packet. OpenOCD gdbserver will then use number of register in
* P-packet as an array index in the reg_list returned by
* arc_regs_get_gdb_reg_list. So to ensure that registers are assigned
* correctly it would be required to either sort registers in
* arc_regs_get_gdb_reg_list or to assign numbers sequentially here and
* according to how registers will be sorted in
* arc_regs_get_gdb_reg_list. Second options is much more simpler. */
reg->number = number;
if (reg_desc->is_general) {
arc->last_general_reg = reg->number;
reg->group = reg_group_general;
} else {
reg->group = reg_group_other;
}
return ERROR_OK;
}
/* Building aux/core reg_cache */
static int arc_build_reg_cache(struct target *target)
{
unsigned long i = 0;
struct arc_reg_desc *reg_desc;
/* get pointers to arch-specific information */
struct arc_common *arc = target_to_arc(target);
const unsigned long num_regs = arc->num_core_regs + arc->num_aux_regs;
struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
struct reg_cache *cache = calloc(1, sizeof(*cache));
struct reg *reg_list = calloc(num_regs, sizeof(*reg_list));
if (!cache || !reg_list) {
LOG_ERROR("Not enough memory");
goto fail;
}
/* Build the process context cache */
cache->name = "arc registers";
cache->next = NULL;
cache->reg_list = reg_list;
cache->num_regs = num_regs;
arc->core_and_aux_cache = cache;
(*cache_p) = cache;
if (list_empty(&arc->core_reg_descriptions)) {
LOG_ERROR("No core registers were defined");
goto fail;
}
list_for_each_entry(reg_desc, &arc->core_reg_descriptions, list) {
CHECK_RETVAL(arc_init_reg(target, ®_list[i], reg_desc, i));
LOG_DEBUG("reg n=%3li name=%3s group=%s feature=%s", i,
reg_list[i].name, reg_list[i].group,
reg_list[i].feature->name);
i += 1;
}
if (list_empty(&arc->aux_reg_descriptions)) {
LOG_ERROR("No aux registers were defined");
goto fail;
}
list_for_each_entry(reg_desc, &arc->aux_reg_descriptions, list) {
CHECK_RETVAL(arc_init_reg(target, ®_list[i], reg_desc, i));
LOG_DEBUG("reg n=%3li name=%3s group=%s feature=%s", i,
reg_list[i].name, reg_list[i].group,
reg_list[i].feature->name);
/* PC and DEBUG are essential so we search for them. */
if (!strcmp("pc", reg_desc->name)) {
if (arc->pc_index_in_cache != ULONG_MAX) {
LOG_ERROR("Double definition of PC in configuration");
goto fail;
}
arc->pc_index_in_cache = i;
} else if (!strcmp("debug", reg_desc->name)) {
if (arc->debug_index_in_cache != ULONG_MAX) {
LOG_ERROR("Double definition of DEBUG in configuration");
goto fail;
}
arc->debug_index_in_cache = i;
}
i += 1;
}
if (arc->pc_index_in_cache == ULONG_MAX
|| arc->debug_index_in_cache == ULONG_MAX) {
LOG_ERROR("`pc' and `debug' registers must be present in target description.");
goto fail;
}
assert(i == (arc->num_core_regs + arc->num_aux_regs));
arc->core_aux_cache_built = true;
return ERROR_OK;
fail:
free(cache);
free(reg_list);
return ERROR_FAIL;
}
/* Build bcr reg_cache.
* This function must be called only after arc_build_reg_cache */
static int arc_build_bcr_reg_cache(struct target *target)
{
/* get pointers to arch-specific information */
struct arc_common *arc = target_to_arc(target);
const unsigned long num_regs = arc->num_bcr_regs;
struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
struct reg_cache *cache = malloc(sizeof(*cache));
struct reg *reg_list = calloc(num_regs, sizeof(*reg_list));
struct arc_reg_desc *reg_desc;
unsigned long i = 0;
unsigned long gdb_regnum = arc->core_and_aux_cache->num_regs;
if (!cache || !reg_list) {
LOG_ERROR("Unable to allocate memory");
goto fail;
}
/* Build the process context cache */
cache->name = "arc.bcr";
cache->next = NULL;
cache->reg_list = reg_list;
cache->num_regs = num_regs;
arc->bcr_cache = cache;
(*cache_p) = cache;
if (list_empty(&arc->bcr_reg_descriptions)) {
LOG_ERROR("No BCR registers are defined");
goto fail;
}
list_for_each_entry(reg_desc, &arc->bcr_reg_descriptions, list) {
CHECK_RETVAL(arc_init_reg(target, ®_list[i], reg_desc, gdb_regnum));
/* BCRs always semantically, they are just read-as-zero, if there is
* not real register. */
reg_list[i].exist = true;
LOG_DEBUG("reg n=%3li name=%3s group=%s feature=%s", i,
reg_list[i].name, reg_list[i].group,
reg_list[i].feature->name);
i += 1;
gdb_regnum += 1;
}
assert(i == arc->num_bcr_regs);
arc->bcr_cache_built = true;
return ERROR_OK;
fail:
free(cache);
free(reg_list);
return ERROR_FAIL;
}
static int arc_get_gdb_reg_list(struct target *target, struct reg **reg_list[],
int *reg_list_size, enum target_register_class reg_class)
{
assert(target->reg_cache);
struct arc_common *arc = target_to_arc(target);
/* get pointers to arch-specific information storage */
*reg_list_size = arc->num_regs;
*reg_list = calloc(*reg_list_size, sizeof(struct reg *));
if (!*reg_list) {
LOG_ERROR("Unable to allocate memory");
return ERROR_FAIL;
}
/* OpenOCD gdb_server API seems to be inconsistent here: when it generates
* XML tdesc it filters out !exist registers, however when creating a
* g-packet it doesn't do so. REG_CLASS_ALL is used in first case, and
* REG_CLASS_GENERAL used in the latter one. Due to this we had to filter
* out !exist register for "general", but not for "all". Attempts to filter out
* !exist for "all" as well will cause a failed check in OpenOCD GDB
* server. */
if (reg_class == REG_CLASS_ALL) {
unsigned long i = 0;
struct reg_cache *reg_cache = target->reg_cache;
while (reg_cache) {
for (unsigned j = 0; j < reg_cache->num_regs; j++, i++)
(*reg_list)[i] = ®_cache->reg_list[j];
reg_cache = reg_cache->next;
}
assert(i == arc->num_regs);
LOG_DEBUG("REG_CLASS_ALL: number of regs=%i", *reg_list_size);
} else {
unsigned long i = 0;
unsigned long gdb_reg_number = 0;
struct reg_cache *reg_cache = target->reg_cache;
while (reg_cache) {
for (unsigned j = 0;
j < reg_cache->num_regs && gdb_reg_number <= arc->last_general_reg;
j++) {
if (reg_cache->reg_list[j].exist) {
(*reg_list)[i] = ®_cache->reg_list[j];
i++;
}
gdb_reg_number += 1;
}
reg_cache = reg_cache->next;
}
*reg_list_size = i;
LOG_DEBUG("REG_CLASS_GENERAL: number of regs=%i", *reg_list_size);
}
return ERROR_OK;
}
/* Reading field of struct_type register */
int arc_reg_get_field(struct target *target, const char *reg_name,
const char *field_name, uint32_t *value_ptr)
{
struct reg_data_type_struct_field *field;
LOG_DEBUG("getting register field (reg_name=%s, field_name=%s)", reg_name, field_name);
/* Get register */
struct reg *reg = arc_reg_get_by_name(target->reg_cache, reg_name, true);
if (!reg) {
LOG_ERROR("Requested register `%s' doesn't exist.", reg_name);
return ERROR_ARC_REGISTER_NOT_FOUND;
}
if (reg->reg_data_type->type != REG_TYPE_ARCH_DEFINED
|| reg->reg_data_type->type_class != REG_TYPE_CLASS_STRUCT)
return ERROR_ARC_REGISTER_IS_NOT_STRUCT;
/* Get field in a register */
struct reg_data_type_struct *reg_struct =
reg->reg_data_type->reg_type_struct;
for (field = reg_struct->fields;
field;
field = field->next) {
if (!strcmp(field->name, field_name))
break;
}
if (!field)
return ERROR_ARC_REGISTER_FIELD_NOT_FOUND;
if (!field->use_bitfields)
return ERROR_ARC_FIELD_IS_NOT_BITFIELD;
if (!reg->valid)
CHECK_RETVAL(reg->type->get(reg));
/* First do endianness-safe read of register value
* then convert it to binary buffer for further
* field extraction */
*value_ptr = buf_get_u32(reg->value, field->bitfield->start,
field->bitfield->end - field->bitfield->start + 1);
return ERROR_OK;
}
static int arc_get_register_value(struct target *target, const char *reg_name,
uint32_t *value_ptr)
{
LOG_DEBUG("reg_name=%s", reg_name);
struct reg *reg = arc_reg_get_by_name(target->reg_cache, reg_name, true);
if (!reg)
return ERROR_ARC_REGISTER_NOT_FOUND;
if (!reg->valid)
CHECK_RETVAL(reg->type->get(reg));
*value_ptr = target_buffer_get_u32(target, reg->value);
return ERROR_OK;
}
static int arc_set_register_value(struct target *target, const char *reg_name,
uint32_t value)
{
LOG_DEBUG("reg_name=%s value=0x%08" PRIx32, reg_name, value);
if (!(target && reg_name)) {
LOG_ERROR("Arguments cannot be NULL.");
return ERROR_FAIL;
}
struct reg *reg = arc_reg_get_by_name(target->reg_cache, reg_name, true);
if (!reg)
return ERROR_ARC_REGISTER_NOT_FOUND;
uint8_t value_buf[4];
buf_set_u32(value_buf, 0, 32, value);
CHECK_RETVAL(reg->type->set(reg, value_buf));
return ERROR_OK;
}
/* Configure DCCM's */
static int arc_configure_dccm(struct target *target)
{
struct arc_common *arc = target_to_arc(target);
uint32_t dccm_build_version, dccm_build_size0, dccm_build_size1;
CHECK_RETVAL(arc_reg_get_field(target, "dccm_build", "version",
&dccm_build_version));
CHECK_RETVAL(arc_reg_get_field(target, "dccm_build", "size0",
&dccm_build_size0));
CHECK_RETVAL(arc_reg_get_field(target, "dccm_build", "size1",
&dccm_build_size1));
/* There is no yet support of configurable number of cycles,
* So there is no difference between v3 and v4 */
if ((dccm_build_version == 3 || dccm_build_version == 4) && dccm_build_size0 > 0) {
CHECK_RETVAL(arc_get_register_value(target, "aux_dccm", &(arc->dccm_start)));
uint32_t dccm_size = 0x100;
dccm_size <<= dccm_build_size0;
if (dccm_build_size0 == 0xF)
dccm_size <<= dccm_build_size1;
arc->dccm_end = arc->dccm_start + dccm_size;
LOG_DEBUG("DCCM detected start=0x%" PRIx32 " end=0x%" PRIx32,
arc->dccm_start, arc->dccm_end);
}
return ERROR_OK;
}
/* Configure ICCM's */
static int arc_configure_iccm(struct target *target)
{
struct arc_common *arc = target_to_arc(target);
/* ICCM0 */
uint32_t iccm_build_version, iccm_build_size00, iccm_build_size01;
uint32_t aux_iccm = 0;
CHECK_RETVAL(arc_reg_get_field(target, "iccm_build", "version",
&iccm_build_version));
CHECK_RETVAL(arc_reg_get_field(target, "iccm_build", "iccm0_size0",
&iccm_build_size00));
CHECK_RETVAL(arc_reg_get_field(target, "iccm_build", "iccm0_size1",
&iccm_build_size01));
if (iccm_build_version == 4 && iccm_build_size00 > 0) {
CHECK_RETVAL(arc_get_register_value(target, "aux_iccm", &aux_iccm));
uint32_t iccm0_size = 0x100;
iccm0_size <<= iccm_build_size00;
if (iccm_build_size00 == 0xF)
iccm0_size <<= iccm_build_size01;
/* iccm0 start is located in highest 4 bits of aux_iccm */
arc->iccm0_start = aux_iccm & 0xF0000000;
arc->iccm0_end = arc->iccm0_start + iccm0_size;
LOG_DEBUG("ICCM0 detected start=0x%" PRIx32 " end=0x%" PRIx32,
arc->iccm0_start, arc->iccm0_end);
}
/* ICCM1 */
uint32_t iccm_build_size10, iccm_build_size11;
CHECK_RETVAL(arc_reg_get_field(target, "iccm_build", "iccm1_size0",
&iccm_build_size10));
CHECK_RETVAL(arc_reg_get_field(target, "iccm_build", "iccm1_size1",
&iccm_build_size11));
if (iccm_build_version == 4 && iccm_build_size10 > 0) {
/* Use value read for ICCM0 */
if (!aux_iccm)
CHECK_RETVAL(arc_get_register_value(target, "aux_iccm", &aux_iccm));
uint32_t iccm1_size = 0x100;
iccm1_size <<= iccm_build_size10;
if (iccm_build_size10 == 0xF)
iccm1_size <<= iccm_build_size11;
arc->iccm1_start = aux_iccm & 0x0F000000;
arc->iccm1_end = arc->iccm1_start + iccm1_size;
LOG_DEBUG("ICCM1 detected start=0x%" PRIx32 " end=0x%" PRIx32,
arc->iccm1_start, arc->iccm1_end);
}
return ERROR_OK;
}
/* Configure some core features, depending on BCRs. */
static int arc_configure(struct target *target)
{
LOG_DEBUG("Configuring ARC ICCM and DCCM");
/* Configuring DCCM if DCCM_BUILD and AUX_DCCM are known registers. */
if (arc_reg_get_by_name(target->reg_cache, "dccm_build", true) &&
arc_reg_get_by_name(target->reg_cache, "aux_dccm", true))
CHECK_RETVAL(arc_configure_dccm(target));
/* Configuring ICCM if ICCM_BUILD and AUX_ICCM are known registers. */
if (arc_reg_get_by_name(target->reg_cache, "iccm_build", true) &&
arc_reg_get_by_name(target->reg_cache, "aux_iccm", true))
CHECK_RETVAL(arc_configure_iccm(target));
return ERROR_OK;
}
/* arc_examine is function, which is used for all arc targets*/
static int arc_examine(struct target *target)
{
uint32_t status;
struct arc_common *arc = target_to_arc(target);
CHECK_RETVAL(arc_jtag_startup(&arc->jtag_info));
if (!target_was_examined(target)) {
CHECK_RETVAL(arc_jtag_status(&arc->jtag_info, &status));
if (status & ARC_JTAG_STAT_RU)
target->state = TARGET_RUNNING;
else
target->state = TARGET_HALTED;
/* Read BCRs and configure optional registers. */
CHECK_RETVAL(arc_configure(target));
target_set_examined(target);
}
return ERROR_OK;
}
static int arc_halt(struct target *target)
{
uint32_t value, irq_state;
struct arc_common *arc = target_to_arc(target);
LOG_DEBUG("target->state: %s", target_state_name(target));
if (target->state == TARGET_HALTED) {
LOG_DEBUG("target was already halted");
return ERROR_OK;
}
if (target->state == TARGET_UNKNOWN)
LOG_WARNING("target was in unknown state when halt was requested");
if (target->state == TARGET_RESET) {
if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst()) {
LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST");
return ERROR_TARGET_FAILURE;
} else {
target->debug_reason = DBG_REASON_DBGRQ;
}
}
/* Break (stop) processor.
* Do read-modify-write sequence, or DEBUG.UB will be reset unintentionally.
* We do not use here arc_get/set_core_reg functions here because they imply
* that the processor is already halted. */
CHECK_RETVAL(arc_jtag_read_aux_reg_one(&arc->jtag_info, AUX_DEBUG_REG, &value));
value |= SET_CORE_FORCE_HALT; /* set the HALT bit */
CHECK_RETVAL(arc_jtag_write_aux_reg_one(&arc->jtag_info, AUX_DEBUG_REG, value));
alive_sleep(1);
/* Save current IRQ state */
CHECK_RETVAL(arc_jtag_read_aux_reg_one(&arc->jtag_info, AUX_STATUS32_REG, &irq_state));
if (irq_state & AUX_STATUS32_REG_IE_BIT)
arc->irq_state = 1;
else
arc->irq_state = 0;
/* update state and notify gdb*/
target->state = TARGET_HALTED;
CHECK_RETVAL(target_call_event_callbacks(target, TARGET_EVENT_HALTED));
/* some more debug information */
if (debug_level >= LOG_LVL_DEBUG) {
LOG_DEBUG("core stopped (halted) DEGUB-REG: 0x%08" PRIx32, value);
CHECK_RETVAL(arc_get_register_value(target, "status32", &value));
LOG_DEBUG("core STATUS32: 0x%08" PRIx32, value);
}
return ERROR_OK;
}
/**
* Read registers that are used in GDB g-packet. We don't read them one-by-one,
* but do that in one batch operation to improve speed. Calls to JTAG layer are
* expensive so it is better to make one big call that reads all necessary
* registers, instead of many calls, one for one register.
*/
static int arc_save_context(struct target *target)
{
int retval = ERROR_OK;
unsigned int i;
struct arc_common *arc = target_to_arc(target);
struct reg *reg_list = arc->core_and_aux_cache->reg_list;
LOG_DEBUG("Saving aux and core registers values");
assert(reg_list);
/* It is assumed that there is at least one AUX register in the list, for
* example PC. */
const uint32_t core_regs_size = arc->num_core_regs * sizeof(uint32_t);
/* last_general_reg is inclusive number. To get count of registers it is
* required to do +1. */
const uint32_t regs_to_scan =
MIN(arc->last_general_reg + 1, arc->num_regs);
const uint32_t aux_regs_size = arc->num_aux_regs * sizeof(uint32_t);
uint32_t *core_values = malloc(core_regs_size);
uint32_t *aux_values = malloc(aux_regs_size);
uint32_t *core_addrs = malloc(core_regs_size);
uint32_t *aux_addrs = malloc(aux_regs_size);
unsigned int core_cnt = 0;
unsigned int aux_cnt = 0;
if (!core_values || !core_addrs || !aux_values || !aux_addrs) {
LOG_ERROR("Unable to allocate memory");
retval = ERROR_FAIL;
goto exit;
}
memset(core_values, 0xff, core_regs_size);
memset(core_addrs, 0xff, core_regs_size);
memset(aux_values, 0xff, aux_regs_size);
memset(aux_addrs, 0xff, aux_regs_size);
for (i = 0; i < MIN(arc->num_core_regs, regs_to_scan); i++) {
struct reg *reg = &(reg_list[i]);
struct arc_reg_desc *arc_reg = reg->arch_info;
if (!reg->valid && reg->exist) {
core_addrs[core_cnt] = arc_reg->arch_num;
core_cnt += 1;
}
}
for (i = arc->num_core_regs; i < regs_to_scan; i++) {
struct reg *reg = &(reg_list[i]);
struct arc_reg_desc *arc_reg = reg->arch_info;
if (!reg->valid && reg->exist) {
aux_addrs[aux_cnt] = arc_reg->arch_num;
aux_cnt += 1;
}
}
/* Read data from target. */
if (core_cnt > 0) {
retval = arc_jtag_read_core_reg(&arc->jtag_info, core_addrs, core_cnt, core_values);
if (retval != ERROR_OK) {
LOG_ERROR("Attempt to read core registers failed.");
retval = ERROR_FAIL;
goto exit;
}
}
if (aux_cnt > 0) {
retval = arc_jtag_read_aux_reg(&arc->jtag_info, aux_addrs, aux_cnt, aux_values);
if (retval != ERROR_OK) {
LOG_ERROR("Attempt to read aux registers failed.");
retval = ERROR_FAIL;
goto exit;
}
}
/* Parse core regs */
core_cnt = 0;
for (i = 0; i < MIN(arc->num_core_regs, regs_to_scan); i++) {
struct reg *reg = &(reg_list[i]);
struct arc_reg_desc *arc_reg = reg->arch_info;
if (!reg->valid && reg->exist) {
target_buffer_set_u32(target, reg->value, core_values[core_cnt]);
core_cnt += 1;
reg->valid = true;
reg->dirty = false;
LOG_DEBUG("Get core register regnum=%u, name=%s, value=0x%08" PRIx32,
i, arc_reg->name, core_values[core_cnt]);
}
}
/* Parse aux regs */
aux_cnt = 0;
for (i = arc->num_core_regs; i < regs_to_scan; i++) {
struct reg *reg = &(reg_list[i]);
struct arc_reg_desc *arc_reg = reg->arch_info;
if (!reg->valid && reg->exist) {
target_buffer_set_u32(target, reg->value, aux_values[aux_cnt]);
aux_cnt += 1;
reg->valid = true;
reg->dirty = false;
LOG_DEBUG("Get aux register regnum=%u, name=%s, value=0x%08" PRIx32,
i, arc_reg->name, aux_values[aux_cnt]);
}
}
exit:
free(core_values);
free(core_addrs);
free(aux_values);
free(aux_addrs);
return retval;
}
/**
* Finds an actionpoint that triggered last actionpoint event, as specified by
* DEBUG.ASR.
*
* @param target
* @param actionpoint Pointer to be set to last active actionpoint. Pointer
* will be set to NULL if DEBUG.AH is 0.
*/
static int get_current_actionpoint(struct target *target,
struct arc_actionpoint **actionpoint)
{
assert(target != NULL);
assert(actionpoint != NULL);
uint32_t debug_ah;
/* Check if actionpoint caused halt */
CHECK_RETVAL(arc_reg_get_field(target, "debug", "ah",
&debug_ah));
if (debug_ah) {
struct arc_common *arc = target_to_arc(target);
unsigned int ap;
uint32_t debug_asr;
CHECK_RETVAL(arc_reg_get_field(target, "debug",
"asr", &debug_asr));
for (ap = 0; debug_asr > 1; debug_asr >>= 1)
ap += 1;
assert(ap < arc->actionpoints_num);
*actionpoint = &(arc->actionpoints_list[ap]);
} else {
*actionpoint = NULL;
}
return ERROR_OK;
}
static int arc_examine_debug_reason(struct target *target)
{
uint32_t debug_bh;
/* Only check for reason if don't know it already. */
/* BTW After singlestep at this point core is not marked as halted, so
* reading from memory to get current instruction wouldn't work anyway. */
if (target->debug_reason == DBG_REASON_DBGRQ ||
target->debug_reason == DBG_REASON_SINGLESTEP) {
return ERROR_OK;
}
CHECK_RETVAL(arc_reg_get_field(target, "debug", "bh",
&debug_bh));
if (debug_bh) {
/* DEBUG.BH is set if core halted due to BRK instruction. */
target->debug_reason = DBG_REASON_BREAKPOINT;
} else {
struct arc_actionpoint *actionpoint = NULL;
CHECK_RETVAL(get_current_actionpoint(target, &actionpoint));
if (actionpoint != NULL) {
if (!actionpoint->used)
LOG_WARNING("Target halted by an unused actionpoint.");
if (actionpoint->type == ARC_AP_BREAKPOINT)
target->debug_reason = DBG_REASON_BREAKPOINT;
else if (actionpoint->type == ARC_AP_WATCHPOINT)
target->debug_reason = DBG_REASON_WATCHPOINT;
else
LOG_WARNING("Unknown type of actionpoint.");
}
}
return ERROR_OK;
}
static int arc_debug_entry(struct target *target)
{
CHECK_RETVAL(arc_save_context(target));
/* TODO: reset internal indicators of caches states, otherwise D$/I$
* will not be flushed/invalidated when required. */
CHECK_RETVAL(arc_reset_caches_states(target));
CHECK_RETVAL(arc_examine_debug_reason(target));
return ERROR_OK;
}
static int arc_poll(struct target *target)
{
uint32_t status, value;
struct arc_common *arc = target_to_arc(target);
/* gdb calls continuously through this arc_poll() function */
CHECK_RETVAL(arc_jtag_status(&arc->jtag_info, &status));
/* check for processor halted */
if (status & ARC_JTAG_STAT_RU) {
if (target->state != TARGET_RUNNING) {
LOG_WARNING("target is still running!");
target->state = TARGET_RUNNING;
}
return ERROR_OK;
}
/* In some cases JTAG status register indicates that
* processor is in halt mode, but processor is still running.
* We check halt bit of AUX STATUS32 register for setting correct state. */
if ((target->state == TARGET_RUNNING) || (target->state == TARGET_RESET)) {
CHECK_RETVAL(arc_get_register_value(target, "status32", &value));
if (value & AUX_STATUS32_REG_HALT_BIT) {
LOG_DEBUG("ARC core in halt or reset state.");
/* Save context if target was not in reset state */
if (target->state == TARGET_RUNNING)
CHECK_RETVAL(arc_debug_entry(target));
target->state = TARGET_HALTED;
CHECK_RETVAL(target_call_event_callbacks(target, TARGET_EVENT_HALTED));
} else {
LOG_DEBUG("Discrepancy of STATUS32[0] HALT bit and ARC_JTAG_STAT_RU, "
"target is still running");
}
} else if (target->state == TARGET_DEBUG_RUNNING) {
target->state = TARGET_HALTED;
LOG_DEBUG("ARC core is in debug running mode");
CHECK_RETVAL(arc_debug_entry(target));
CHECK_RETVAL(target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED));
}
return ERROR_OK;
}
static int arc_assert_reset(struct target *target)
{
struct arc_common *arc = target_to_arc(target);
enum reset_types jtag_reset_config = jtag_get_reset_config();
bool srst_asserted = false;
LOG_DEBUG("target->state: %s", target_state_name(target));
if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
/* allow scripts to override the reset event */
target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
register_cache_invalidate(arc->core_and_aux_cache);
/* An ARC target might be in halt state after reset, so
* if script requested processor to resume, then it must
* be manually started to ensure that this request
* is satisfied. */
if (target->state == TARGET_HALTED && !target->reset_halt) {
/* Resume the target and continue from the current
* PC register value. */
LOG_DEBUG("Starting CPU execution after reset");
CHECK_RETVAL(target_resume(target, 1, 0, 0, 0));
}
target->state = TARGET_RESET;
return ERROR_OK;
}
/* some cores support connecting while srst is asserted
* use that mode if it has been configured */
if (!(jtag_reset_config & RESET_SRST_PULLS_TRST) &&
(jtag_reset_config & RESET_SRST_NO_GATING)) {
jtag_add_reset(0, 1);
srst_asserted = true;
}
if (jtag_reset_config & RESET_HAS_SRST) {
/* should issue a srst only, but we may have to assert trst as well */
if (jtag_reset_config & RESET_SRST_PULLS_TRST)
jtag_add_reset(1, 1);
else if (!srst_asserted)
jtag_add_reset(0, 1);
}
target->state = TARGET_RESET;
jtag_add_sleep(50000);
register_cache_invalidate(arc->core_and_aux_cache);
if (target->reset_halt)
CHECK_RETVAL(target_halt(target));
return ERROR_OK;
}
static int arc_deassert_reset(struct target *target)
{
LOG_DEBUG("target->state: %s", target_state_name(target));
/* deassert reset lines */
jtag_add_reset(0, 0);
return ERROR_OK;
}
static int arc_arch_state(struct target *target)
{
uint32_t pc_value;
if (debug_level < LOG_LVL_DEBUG)
return ERROR_OK;
CHECK_RETVAL(arc_get_register_value(target, "pc", &pc_value));
LOG_DEBUG("target state: %s; PC at: 0x%08" PRIx32,
target_state_name(target),
pc_value);
return ERROR_OK;
}
/**
* See arc_save_context() for reason why we want to dump all regs at once.
* This however means that if there are dependencies between registers they
* will not be observable until target will be resumed.
*/
static int arc_restore_context(struct target *target)
{
int retval = ERROR_OK;
unsigned int i;
struct arc_common *arc = target_to_arc(target);
struct reg *reg_list = arc->core_and_aux_cache->reg_list;
LOG_DEBUG("Restoring registers values");
assert(reg_list);
const uint32_t core_regs_size = arc->num_core_regs * sizeof(uint32_t);
const uint32_t aux_regs_size = arc->num_aux_regs * sizeof(uint32_t);
uint32_t *core_values = malloc(core_regs_size);
uint32_t *aux_values = malloc(aux_regs_size);
uint32_t *core_addrs = malloc(core_regs_size);
uint32_t *aux_addrs = malloc(aux_regs_size);
unsigned int core_cnt = 0;
unsigned int aux_cnt = 0;
if (!core_values || !core_addrs || !aux_values || !aux_addrs) {
LOG_ERROR("Unable to allocate memory");
retval = ERROR_FAIL;
goto exit;
}
memset(core_values, 0xff, core_regs_size);
memset(core_addrs, 0xff, core_regs_size);
memset(aux_values, 0xff, aux_regs_size);
memset(aux_addrs, 0xff, aux_regs_size);
for (i = 0; i < arc->num_core_regs; i++) {
struct reg *reg = &(reg_list[i]);
struct arc_reg_desc *arc_reg = reg->arch_info;
if (reg->valid && reg->exist && reg->dirty) {
LOG_DEBUG("Will write regnum=%u", i);
core_addrs[core_cnt] = arc_reg->arch_num;
core_values[core_cnt] = target_buffer_get_u32(target, reg->value);
core_cnt += 1;
}
}
for (i = 0; i < arc->num_aux_regs; i++) {
struct reg *reg = &(reg_list[arc->num_core_regs + i]);
struct arc_reg_desc *arc_reg = reg->arch_info;
if (reg->valid && reg->exist && reg->dirty) {
LOG_DEBUG("Will write regnum=%lu", arc->num_core_regs + i);
aux_addrs[aux_cnt] = arc_reg->arch_num;
aux_values[aux_cnt] = target_buffer_get_u32(target, reg->value);
aux_cnt += 1;
}
}
/* Write data to target.
* Check before write, if aux and core count is greater than 0. */
if (core_cnt > 0) {
retval = arc_jtag_write_core_reg(&arc->jtag_info, core_addrs, core_cnt, core_values);
if (retval != ERROR_OK) {
LOG_ERROR("Attempt to write to core registers failed.");
retval = ERROR_FAIL;
goto exit;
}
}
if (aux_cnt > 0) {
retval = arc_jtag_write_aux_reg(&arc->jtag_info, aux_addrs, aux_cnt, aux_values);
if (retval != ERROR_OK) {
LOG_ERROR("Attempt to write to aux registers failed.");
retval = ERROR_FAIL;
goto exit;
}
}
exit:
free(core_values);
free(core_addrs);
free(aux_values);
free(aux_addrs);
return retval;
}
static int arc_enable_interrupts(struct target *target, int enable)
{
uint32_t value;
struct arc_common *arc = target_to_arc(target);
CHECK_RETVAL(arc_jtag_read_aux_reg_one(&arc->jtag_info, AUX_STATUS32_REG, &value));
if (enable) {
/* enable interrupts */
value |= SET_CORE_ENABLE_INTERRUPTS;
CHECK_RETVAL(arc_jtag_write_aux_reg_one(&arc->jtag_info, AUX_STATUS32_REG, value));
LOG_DEBUG("interrupts enabled");
} else {
/* disable interrupts */
value &= ~SET_CORE_ENABLE_INTERRUPTS;
CHECK_RETVAL(arc_jtag_write_aux_reg_one(&arc->jtag_info, AUX_STATUS32_REG, value));
LOG_DEBUG("interrupts disabled");
}
return ERROR_OK;
}
static int arc_resume(struct target *target, int current, target_addr_t address,
int handle_breakpoints, int debug_execution)
{
struct arc_common *arc = target_to_arc(target);
uint32_t resume_pc = 0;
uint32_t value;
struct reg *pc = &arc->core_and_aux_cache->reg_list[arc->pc_index_in_cache];
LOG_DEBUG("current:%i, address:0x%08" TARGET_PRIxADDR ", handle_breakpoints(not supported yet):%i,"
" debug_execution:%i", current, address, handle_breakpoints, debug_execution);
/* We need to reset ARC cache variables so caches
* would be invalidated and actual data
* would be fetched from memory. */
CHECK_RETVAL(arc_reset_caches_states(target));
if (target->state != TARGET_HALTED) {
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* current = 1: continue on current PC, otherwise continue at <address> */
if (!current) {
target_buffer_set_u32(target, pc->value, address);
pc->dirty = 1;
pc->valid = 1;
LOG_DEBUG("Changing the value of current PC to 0x%08" TARGET_PRIxADDR, address);
}
if (!current)
resume_pc = address;
else
resume_pc = target_buffer_get_u32(target, pc->value);
CHECK_RETVAL(arc_restore_context(target));
LOG_DEBUG("Target resumes from PC=0x%" PRIx32 ", pc.dirty=%i, pc.valid=%i",
resume_pc, pc->dirty, pc->valid);
/* check if GDB tells to set our PC where to continue from */
if ((pc->valid == 1) && (resume_pc == target_buffer_get_u32(target, pc->value))) {
value = target_buffer_get_u32(target, pc->value);
LOG_DEBUG("resume Core (when start-core) with PC @:0x%08" PRIx32, value);
CHECK_RETVAL(arc_jtag_write_aux_reg_one(&arc->jtag_info, AUX_PC_REG, value));
}
/* Restore IRQ state if not in debug_execution*/
if (!debug_execution)
CHECK_RETVAL(arc_enable_interrupts(target, arc->irq_state));
else
CHECK_RETVAL(arc_enable_interrupts(target, !debug_execution));
target->debug_reason = DBG_REASON_NOTHALTED;
/* ready to get us going again */
target->state = TARGET_RUNNING;
CHECK_RETVAL(arc_jtag_read_aux_reg_one(&arc->jtag_info, AUX_STATUS32_REG, &value));
value &= ~SET_CORE_HALT_BIT; /* clear the HALT bit */
CHECK_RETVAL(arc_jtag_write_aux_reg_one(&arc->jtag_info, AUX_STATUS32_REG, value));
LOG_DEBUG("Core started to run");
/* registers are now invalid */
register_cache_invalidate(arc->core_and_aux_cache);
if (!debug_execution) {
target->state = TARGET_RUNNING;
CHECK_RETVAL(target_call_event_callbacks(target, TARGET_EVENT_RESUMED));
LOG_DEBUG("target resumed at 0x%08" PRIx32, resume_pc);
} else {
target->state = TARGET_DEBUG_RUNNING;
CHECK_RETVAL(target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED));
LOG_DEBUG("target debug resumed at 0x%08" PRIx32, resume_pc);
}
return ERROR_OK;
}
static int arc_init_target(struct command_context *cmd_ctx, struct target *target)
{
CHECK_RETVAL(arc_build_reg_cache(target));
CHECK_RETVAL(arc_build_bcr_reg_cache(target));
target->debug_reason = DBG_REASON_DBGRQ;
return ERROR_OK;
}
static void arc_free_reg_cache(struct reg_cache *cache)
{
free(cache->reg_list);
free(cache);
}
static void arc_deinit_target(struct target *target)
{
struct arc_common *arc = target_to_arc(target);
LOG_DEBUG("deinitialization of target");
if (arc->core_aux_cache_built)
arc_free_reg_cache(arc->core_and_aux_cache);
if (arc->bcr_cache_built)
arc_free_reg_cache(arc->bcr_cache);
struct arc_reg_data_type *type, *n;
struct arc_reg_desc *desc, *k;
/* Free arc-specific reg_data_types allocations*/
list_for_each_entry_safe_reverse(type, n, &arc->reg_data_types, list) {
if (type->data_type.type_class == REG_TYPE_CLASS_STRUCT) {
free(type->reg_type_struct_field);
free(type->bitfields);
free(type);
} else if (type->data_type.type_class == REG_TYPE_CLASS_FLAGS) {
free(type->reg_type_flags_field);
free(type->bitfields);
free(type);
}
}
/* Free standard_gdb_types reg_data_types allocations */
type = list_first_entry(&arc->reg_data_types, struct arc_reg_data_type, list);
free(type);
list_for_each_entry_safe(desc, k, &arc->aux_reg_descriptions, list)
free_reg_desc(desc);
list_for_each_entry_safe(desc, k, &arc->core_reg_descriptions, list)
free_reg_desc(desc);
list_for_each_entry_safe(desc, k, &arc->bcr_reg_descriptions, list)
free_reg_desc(desc);
free(arc->actionpoints_list);
free(arc);
}
static int arc_target_create(struct target *target, Jim_Interp *interp)
{
struct arc_common *arc = calloc(1, sizeof(*arc));
if (!arc) {
LOG_ERROR("Unable to allocate memory");
return ERROR_FAIL;
}
LOG_DEBUG("Entering");
CHECK_RETVAL(arc_init_arch_info(target, arc, target->tap));
return ERROR_OK;
}
/**
* Write 4-byte instruction to memory. This is like target_write_u32, however
* in case of little endian ARC instructions are in middle endian format, not
* little endian, so different type of conversion should be done.
* Middle endian: instruction "aabbccdd", stored as "bbaaddcc"
*/
int arc_write_instruction_u32(struct target *target, uint32_t address,
uint32_t instr)
{
uint8_t value_buf[4];
if (!target_was_examined(target)) {
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
LOG_DEBUG("Address: 0x%08" PRIx32 ", value: 0x%08" PRIx32, address,
instr);
if (target->endianness == TARGET_LITTLE_ENDIAN)
arc_h_u32_to_me(value_buf, instr);
else
h_u32_to_be(value_buf, instr);
CHECK_RETVAL(target_write_buffer(target, address, 4, value_buf));
return ERROR_OK;
}
/**
* Read 32-bit instruction from memory. It is like target_read_u32, however in
* case of little endian ARC instructions are in middle endian format, so
* different type of conversion should be done.
*/
int arc_read_instruction_u32(struct target *target, uint32_t address,
uint32_t *value)
{
uint8_t value_buf[4];
if (!target_was_examined(target)) {
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
*value = 0;
CHECK_RETVAL(target_read_buffer(target, address, 4, value_buf));
if (target->endianness == TARGET_LITTLE_ENDIAN)
*value = arc_me_to_h_u32(value_buf);
else
*value = be_to_h_u32(value_buf);
LOG_DEBUG("Address: 0x%08" PRIx32 ", value: 0x%08" PRIx32, address,
*value);
return ERROR_OK;
}
/* Actionpoint mechanism allows to setup HW breakpoints
* and watchpoints. Each actionpoint is controlled by
* 3 aux registers: Actionpoint(AP) match mask(AP_AMM), AP match value(AP_AMV)
* and AP control(AC).
* This function is for setting/unsetting actionpoints:
* at - actionpoint target: trigger on mem/reg access
* tt - transaction type : trigger on r/w. */
static int arc_configure_actionpoint(struct target *target, uint32_t ap_num,
uint32_t match_value, uint32_t control_tt, uint32_t control_at)
{
struct arc_common *arc = target_to_arc(target);
if (control_tt != AP_AC_TT_DISABLE) {
if (arc->actionpoints_num_avail < 1) {
LOG_ERROR("No free actionpoints, maximum amount is %u",
arc->actionpoints_num);
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
/* Names of register to set - 24 chars should be enough. Looks a little
* bit out-of-place for C code, but makes it aligned to the bigger
* concept of "ARC registers are defined in TCL" as far as possible.
*/
char ap_amv_reg_name[24], ap_amm_reg_name[24], ap_ac_reg_name[24];
snprintf(ap_amv_reg_name, 24, "ap_amv%" PRIu32, ap_num);
snprintf(ap_amm_reg_name, 24, "ap_amm%" PRIu32, ap_num);
snprintf(ap_ac_reg_name, 24, "ap_ac%" PRIu32, ap_num);
CHECK_RETVAL(arc_set_register_value(target, ap_amv_reg_name,
match_value));
CHECK_RETVAL(arc_set_register_value(target, ap_amm_reg_name, 0));
CHECK_RETVAL(arc_set_register_value(target, ap_ac_reg_name,
control_tt | control_at));
arc->actionpoints_num_avail--;
} else {
char ap_ac_reg_name[24];
snprintf(ap_ac_reg_name, 24, "ap_ac%" PRIu32, ap_num);
CHECK_RETVAL(arc_set_register_value(target, ap_ac_reg_name,
AP_AC_TT_DISABLE));
arc->actionpoints_num_avail++;
}
return ERROR_OK;
}
static int arc_set_breakpoint(struct target *target,
struct breakpoint *breakpoint)
{
if (breakpoint->set) {
LOG_WARNING("breakpoint already set");
return ERROR_OK;
}
if (breakpoint->type == BKPT_SOFT) {
LOG_DEBUG("bpid: %" PRIu32, breakpoint->unique_id);
if (breakpoint->length == 4) {
uint32_t verify = 0xffffffff;
CHECK_RETVAL(target_read_buffer(target, breakpoint->address, breakpoint->length,
breakpoint->orig_instr));
CHECK_RETVAL(arc_write_instruction_u32(target, breakpoint->address,
ARC_SDBBP_32));
CHECK_RETVAL(arc_read_instruction_u32(target, breakpoint->address, &verify));
if (verify != ARC_SDBBP_32) {
LOG_ERROR("Unable to set 32bit breakpoint at address @0x%" TARGET_PRIxADDR
" - check that memory is read/writable", breakpoint->address);
return ERROR_FAIL;
}
} else if (breakpoint->length == 2) {
uint16_t verify = 0xffff;
CHECK_RETVAL(target_read_buffer(target, breakpoint->address, breakpoint->length,
breakpoint->orig_instr));
CHECK_RETVAL(target_write_u16(target, breakpoint->address, ARC_SDBBP_16));
CHECK_RETVAL(target_read_u16(target, breakpoint->address, &verify));
if (verify != ARC_SDBBP_16) {
LOG_ERROR("Unable to set 16bit breakpoint at address @0x%" TARGET_PRIxADDR
" - check that memory is read/writable", breakpoint->address);
return ERROR_FAIL;
}
} else {
LOG_ERROR("Invalid breakpoint length: target supports only 2 or 4");
return ERROR_COMMAND_ARGUMENT_INVALID;
}
breakpoint->set = 64; /* Any nice value but 0 */
} else if (breakpoint->type == BKPT_HARD) {
struct arc_common *arc = target_to_arc(target);
struct arc_actionpoint *ap_list = arc->actionpoints_list;
unsigned int bp_num;
for (bp_num = 0; bp_num < arc->actionpoints_num; bp_num++) {
if (!ap_list[bp_num].used)
break;
}
if (bp_num >= arc->actionpoints_num) {
LOG_ERROR("No free actionpoints, maximum amount is %u",
arc->actionpoints_num);
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
int retval = arc_configure_actionpoint(target, bp_num,
breakpoint->address, AP_AC_TT_READWRITE, AP_AC_AT_INST_ADDR);
if (retval == ERROR_OK) {
breakpoint->set = bp_num + 1;
ap_list[bp_num].used = 1;
ap_list[bp_num].bp_value = breakpoint->address;
ap_list[bp_num].type = ARC_AP_BREAKPOINT;
LOG_DEBUG("bpid: %" PRIu32 ", bp_num %u bp_value 0x%" PRIx32,
breakpoint->unique_id, bp_num, ap_list[bp_num].bp_value);
}
} else {
LOG_DEBUG("ERROR: setting unknown breakpoint type");
return ERROR_FAIL;
}
/* core instruction cache is now invalid. */
CHECK_RETVAL(arc_cache_invalidate(target));
return ERROR_OK;
}
static int arc_unset_breakpoint(struct target *target,
struct breakpoint *breakpoint)
{
int retval = ERROR_OK;
if (!breakpoint->set) {
LOG_WARNING("breakpoint not set");
return ERROR_OK;
}
if (breakpoint->type == BKPT_SOFT) {
/* restore original instruction (kept in target endianness) */
LOG_DEBUG("bpid: %" PRIu32, breakpoint->unique_id);
if (breakpoint->length == 4) {
uint32_t current_instr;
/* check that user program has not modified breakpoint instruction */
CHECK_RETVAL(arc_read_instruction_u32(target, breakpoint->address, ¤t_instr));
if (current_instr == ARC_SDBBP_32) {
retval = target_write_buffer(target, breakpoint->address,
breakpoint->length, breakpoint->orig_instr);
if (retval != ERROR_OK)
return retval;
} else {
LOG_WARNING("Software breakpoint @0x%" TARGET_PRIxADDR
" has been overwritten outside of debugger."
"Expected: @0x%x, got: @0x%" PRIx32,
breakpoint->address, ARC_SDBBP_32, current_instr);
}
} else if (breakpoint->length == 2) {
uint16_t current_instr;
/* check that user program has not modified breakpoint instruction */
CHECK_RETVAL(target_read_u16(target, breakpoint->address, ¤t_instr));
if (current_instr == ARC_SDBBP_16) {
retval = target_write_buffer(target, breakpoint->address,
breakpoint->length, breakpoint->orig_instr);
if (retval != ERROR_OK)
return retval;
} else {
LOG_WARNING("Software breakpoint @0x%" TARGET_PRIxADDR
" has been overwritten outside of debugger. "
"Expected: 0x%04x, got: 0x%04" PRIx16,
breakpoint->address, ARC_SDBBP_16, current_instr);
}
} else {
LOG_ERROR("Invalid breakpoint length: target supports only 2 or 4");
return ERROR_COMMAND_ARGUMENT_INVALID;
}
breakpoint->set = 0;
} else if (breakpoint->type == BKPT_HARD) {
struct arc_common *arc = target_to_arc(target);
struct arc_actionpoint *ap_list = arc->actionpoints_list;
unsigned int bp_num = breakpoint->set - 1;
if ((breakpoint->set == 0) || (bp_num >= arc->actionpoints_num)) {
LOG_DEBUG("Invalid actionpoint ID: %u in breakpoint: %" PRIu32,
bp_num, breakpoint->unique_id);
return ERROR_OK;
}
retval = arc_configure_actionpoint(target, bp_num,
breakpoint->address, AP_AC_TT_DISABLE, AP_AC_AT_INST_ADDR);
if (retval == ERROR_OK) {
breakpoint->set = 0;
ap_list[bp_num].used = 0;
ap_list[bp_num].bp_value = 0;
LOG_DEBUG("bpid: %" PRIu32 " - released actionpoint ID: %i",
breakpoint->unique_id, bp_num);
}
} else {
LOG_DEBUG("ERROR: unsetting unknown breakpoint type");
return ERROR_FAIL;
}
/* core instruction cache is now invalid. */
CHECK_RETVAL(arc_cache_invalidate(target));
return retval;
}
static int arc_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
{
if (target->state == TARGET_HALTED) {
return arc_set_breakpoint(target, breakpoint);
} else {
LOG_WARNING(" > core was not halted, please try again.");
return ERROR_TARGET_NOT_HALTED;
}
}
static int arc_remove_breakpoint(struct target *target,
struct breakpoint *breakpoint)
{
if (target->state == TARGET_HALTED) {
if (breakpoint->set)
CHECK_RETVAL(arc_unset_breakpoint(target, breakpoint));
} else {
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
return ERROR_OK;
}
void arc_reset_actionpoints(struct target *target)
{
struct arc_common *arc = target_to_arc(target);
struct arc_actionpoint *ap_list = arc->actionpoints_list;
struct breakpoint *next_b;
struct watchpoint *next_w;
while (target->breakpoints) {
next_b = target->breakpoints->next;
arc_remove_breakpoint(target, target->breakpoints);
free(target->breakpoints->orig_instr);
free(target->breakpoints);
target->breakpoints = next_b;
}
while (target->watchpoints) {
next_w = target->watchpoints->next;
arc_remove_watchpoint(target, target->watchpoints);
free(target->watchpoints);
target->watchpoints = next_w;
}
for (unsigned int i = 0; i < arc->actionpoints_num; i++) {
if ((ap_list[i].used) && (ap_list[i].reg_address))
arc_remove_auxreg_actionpoint(target, ap_list[i].reg_address);
}
}
int arc_set_actionpoints_num(struct target *target, uint32_t ap_num)
{
LOG_DEBUG("target=%s actionpoints=%" PRIu32, target_name(target), ap_num);
struct arc_common *arc = target_to_arc(target);
/* Make sure that there are no enabled actionpoints in target. */
arc_reset_actionpoints(target);
/* Assume that all points have been removed from target. */
free(arc->actionpoints_list);
arc->actionpoints_num_avail = ap_num;
arc->actionpoints_num = ap_num;
/* calloc can be safely called when ncount == 0. */
arc->actionpoints_list = calloc(ap_num, sizeof(struct arc_actionpoint));
if (!arc->actionpoints_list) {
LOG_ERROR("Unable to allocate memory");
return ERROR_FAIL;
}
return ERROR_OK;
}
int arc_add_auxreg_actionpoint(struct target *target,
uint32_t auxreg_addr, uint32_t transaction)
{
unsigned int ap_num = 0;
int retval = ERROR_OK;
if (target->state != TARGET_HALTED)
return ERROR_TARGET_NOT_HALTED;
struct arc_common *arc = target_to_arc(target);
struct arc_actionpoint *ap_list = arc->actionpoints_list;
while (ap_list[ap_num].used)
ap_num++;
if (ap_num >= arc->actionpoints_num) {
LOG_ERROR("No actionpoint free, maximum amount is %u",
arc->actionpoints_num);
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
retval = arc_configure_actionpoint(target, ap_num,
auxreg_addr, transaction, AP_AC_AT_AUXREG_ADDR);
if (retval == ERROR_OK) {
ap_list[ap_num].used = 1;
ap_list[ap_num].reg_address = auxreg_addr;
}
return retval;
}
int arc_remove_auxreg_actionpoint(struct target *target, uint32_t auxreg_addr)
{
int retval = ERROR_OK;
bool ap_found = false;
unsigned int ap_num = 0;
if (target->state != TARGET_HALTED)
return ERROR_TARGET_NOT_HALTED;
struct arc_common *arc = target_to_arc(target);
struct arc_actionpoint *ap_list = arc->actionpoints_list;
while ((ap_list[ap_num].used) && (ap_num < arc->actionpoints_num)) {
if (ap_list[ap_num].reg_address == auxreg_addr) {
ap_found = true;
break;
}
ap_num++;
}
if (ap_found) {
retval = arc_configure_actionpoint(target, ap_num,
auxreg_addr, AP_AC_TT_DISABLE, AP_AC_AT_AUXREG_ADDR);
if (retval == ERROR_OK) {
ap_list[ap_num].used = 0;
ap_list[ap_num].bp_value = 0;
}
} else {
LOG_ERROR("Register actionpoint not found");
}
return retval;
}
static int arc_set_watchpoint(struct target *target,
struct watchpoint *watchpoint)
{
unsigned int wp_num;
struct arc_common *arc = target_to_arc(target);
struct arc_actionpoint *ap_list = arc->actionpoints_list;
if (watchpoint->set) {
LOG_WARNING("watchpoint already set");
return ERROR_OK;
}
for (wp_num = 0; wp_num < arc->actionpoints_num; wp_num++) {
if (!ap_list[wp_num].used)
break;
}
if (wp_num >= arc->actionpoints_num) {
LOG_ERROR("No free actionpoints, maximum amount is %u",
arc->actionpoints_num);
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
if (watchpoint->length != 4) {
LOG_ERROR("Only watchpoints of length 4 are supported");
return ERROR_TARGET_UNALIGNED_ACCESS;
}
int enable = AP_AC_TT_DISABLE;
switch (watchpoint->rw) {
case WPT_READ:
enable = AP_AC_TT_READ;
break;
case WPT_WRITE:
enable = AP_AC_TT_WRITE;
break;
case WPT_ACCESS:
enable = AP_AC_TT_READWRITE;
break;
default:
LOG_ERROR("BUG: watchpoint->rw neither read, write nor access");
return ERROR_FAIL;
}
int retval = arc_configure_actionpoint(target, wp_num,
watchpoint->address, enable, AP_AC_AT_MEMORY_ADDR);
if (retval == ERROR_OK) {
watchpoint->set = wp_num + 1;
ap_list[wp_num].used = 1;
ap_list[wp_num].bp_value = watchpoint->address;
ap_list[wp_num].type = ARC_AP_WATCHPOINT;
LOG_DEBUG("wpid: %" PRIu32 ", wp_num %u wp_value 0x%" PRIx32,
watchpoint->unique_id, wp_num, ap_list[wp_num].bp_value);
}
return retval;
}
static int arc_unset_watchpoint(struct target *target,
struct watchpoint *watchpoint)
{
/* get pointers to arch-specific information */
struct arc_common *arc = target_to_arc(target);
struct arc_actionpoint *ap_list = arc->actionpoints_list;
if (!watchpoint->set) {
LOG_WARNING("watchpoint not set");
return ERROR_OK;
}
unsigned int wp_num = watchpoint->set - 1;
if ((watchpoint->set == 0) || (wp_num >= arc->actionpoints_num)) {
LOG_DEBUG("Invalid actionpoint ID: %u in watchpoint: %" PRIu32,
wp_num, watchpoint->unique_id);
return ERROR_OK;
}
int retval = arc_configure_actionpoint(target, wp_num,
watchpoint->address, AP_AC_TT_DISABLE, AP_AC_AT_MEMORY_ADDR);
if (retval == ERROR_OK) {
watchpoint->set = 0;
ap_list[wp_num].used = 0;
ap_list[wp_num].bp_value = 0;
LOG_DEBUG("wpid: %" PRIu32 " - releasing actionpoint ID: %u",
watchpoint->unique_id, wp_num);
}
return retval;
}
static int arc_add_watchpoint(struct target *target,
struct watchpoint *watchpoint)
{
if (target->state != TARGET_HALTED) {
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
CHECK_RETVAL(arc_set_watchpoint(target, watchpoint));
return ERROR_OK;
}
static int arc_remove_watchpoint(struct target *target,
struct watchpoint *watchpoint)
{
if (target->state != TARGET_HALTED) {
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (watchpoint->set)
CHECK_RETVAL(arc_unset_watchpoint(target, watchpoint));
return ERROR_OK;
}
static int arc_hit_watchpoint(struct target *target, struct watchpoint **hit_watchpoint)
{
assert(target);
assert(hit_watchpoint);
struct arc_actionpoint *actionpoint = NULL;
CHECK_RETVAL(get_current_actionpoint(target, &actionpoint));
if (actionpoint != NULL) {
if (!actionpoint->used)
LOG_WARNING("Target halted by unused actionpoint.");
/* If this check fails - that is some sort of an error in OpenOCD. */
if (actionpoint->type != ARC_AP_WATCHPOINT)
LOG_WARNING("Target halted by breakpoint, but is treated as a watchpoint.");
for (struct watchpoint *watchpoint = target->watchpoints;
watchpoint != NULL;
watchpoint = watchpoint->next) {
if (actionpoint->bp_value == watchpoint->address) {
*hit_watchpoint = watchpoint;
LOG_DEBUG("Hit watchpoint, wpid: %" PRIu32 ", watchpoint num: %i",
watchpoint->unique_id, watchpoint->set - 1);
return ERROR_OK;
}
}
}
return ERROR_FAIL;
}
/* Helper function which switches core to single_step mode by
* doing aux r/w operations. */
int arc_config_step(struct target *target, int enable_step)
{
uint32_t value;
struct arc_common *arc = target_to_arc(target);
/* enable core debug step mode */
if (enable_step) {
CHECK_RETVAL(arc_jtag_read_aux_reg_one(&arc->jtag_info, AUX_STATUS32_REG,
&value));
value &= ~SET_CORE_AE_BIT; /* clear the AE bit */
CHECK_RETVAL(arc_jtag_write_aux_reg_one(&arc->jtag_info, AUX_STATUS32_REG,
value));
LOG_DEBUG(" [status32:0x%08" PRIx32 "]", value);
/* Doing read-modify-write, because DEBUG might contain manually set
* bits like UB or ED, which should be preserved. */
CHECK_RETVAL(arc_jtag_read_aux_reg_one(&arc->jtag_info,
AUX_DEBUG_REG, &value));
value |= SET_CORE_SINGLE_INSTR_STEP; /* set the IS bit */
CHECK_RETVAL(arc_jtag_write_aux_reg_one(&arc->jtag_info, AUX_DEBUG_REG,
value));
LOG_DEBUG("core debug step mode enabled [debug-reg:0x%08" PRIx32 "]", value);
} else { /* disable core debug step mode */
CHECK_RETVAL(arc_jtag_read_aux_reg_one(&arc->jtag_info, AUX_DEBUG_REG,
&value));
value &= ~SET_CORE_SINGLE_INSTR_STEP; /* clear the IS bit */
CHECK_RETVAL(arc_jtag_write_aux_reg_one(&arc->jtag_info, AUX_DEBUG_REG,
value));
LOG_DEBUG("core debug step mode disabled");
}
return ERROR_OK;
}
int arc_step(struct target *target, int current, target_addr_t address,
int handle_breakpoints)
{
/* get pointers to arch-specific information */
struct arc_common *arc = target_to_arc(target);
struct breakpoint *breakpoint = NULL;
struct reg *pc = &(arc->core_and_aux_cache->reg_list[arc->pc_index_in_cache]);
if (target->state != TARGET_HALTED) {
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* current = 1: continue on current pc, otherwise continue at <address> */
if (!current) {
buf_set_u32(pc->value, 0, 32, address);
pc->dirty = 1;
pc->valid = 1;
}
LOG_DEBUG("Target steps one instruction from PC=0x%" PRIx32,
buf_get_u32(pc->value, 0, 32));
/* the front-end may request us not to handle breakpoints */
if (handle_breakpoints) {
breakpoint = breakpoint_find(target, buf_get_u32(pc->value, 0, 32));
if (breakpoint)
CHECK_RETVAL(arc_unset_breakpoint(target, breakpoint));
}
/* restore context */
CHECK_RETVAL(arc_restore_context(target));
target->debug_reason = DBG_REASON_SINGLESTEP;
CHECK_RETVAL(target_call_event_callbacks(target, TARGET_EVENT_RESUMED));
/* disable interrupts while stepping */
CHECK_RETVAL(arc_enable_interrupts(target, 0));
/* do a single step */
CHECK_RETVAL(arc_config_step(target, 1));
/* make sure we done our step */
alive_sleep(1);
/* registers are now invalid */
register_cache_invalidate(arc->core_and_aux_cache);
if (breakpoint)
CHECK_RETVAL(arc_set_breakpoint(target, breakpoint));
LOG_DEBUG("target stepped ");
target->state = TARGET_HALTED;
/* Saving context */
CHECK_RETVAL(arc_debug_entry(target));
CHECK_RETVAL(target_call_event_callbacks(target, TARGET_EVENT_HALTED));
return ERROR_OK;
}
/* This function invalidates icache. */
static int arc_icache_invalidate(struct target *target)
{
uint32_t value;
struct arc_common *arc = target_to_arc(target);
/* Don't waste time if already done. */
if (!arc->has_icache || arc->icache_invalidated)
return ERROR_OK;
LOG_DEBUG("Invalidating I$.");
value = IC_IVIC_INVALIDATE; /* invalidate I$ */
CHECK_RETVAL(arc_jtag_write_aux_reg_one(&arc->jtag_info, AUX_IC_IVIC_REG, value));
arc->icache_invalidated = true;
return ERROR_OK;
}
/* This function invalidates dcache */
static int arc_dcache_invalidate(struct target *target)
{
uint32_t value, dc_ctrl_value;
struct arc_common *arc = target_to_arc(target);
if (!arc->has_dcache || arc->dcache_invalidated)
return ERROR_OK;
LOG_DEBUG("Invalidating D$.");
CHECK_RETVAL(arc_jtag_read_aux_reg_one(&arc->jtag_info, AUX_DC_CTRL_REG, &value));
dc_ctrl_value = value;
value &= ~DC_CTRL_IM;
/* set DC_CTRL invalidate mode to invalidate-only (no flushing!!) */
CHECK_RETVAL(arc_jtag_write_aux_reg_one(&arc->jtag_info, AUX_DC_CTRL_REG, value));
value = DC_IVDC_INVALIDATE; /* invalidate D$ */
CHECK_RETVAL(arc_jtag_write_aux_reg_one(&arc->jtag_info, AUX_DC_IVDC_REG, value));
/* restore DC_CTRL invalidate mode */
CHECK_RETVAL(arc_jtag_write_aux_reg_one(&arc->jtag_info, AUX_DC_CTRL_REG, dc_ctrl_value));
arc->dcache_invalidated = true;
return ERROR_OK;
}
/* This function invalidates l2 cache. */
static int arc_l2cache_invalidate(struct target *target)
{
uint32_t value, slc_ctrl_value;
struct arc_common *arc = target_to_arc(target);
if (!arc->has_l2cache || arc->l2cache_invalidated)
return ERROR_OK;
LOG_DEBUG("Invalidating L2$.");
CHECK_RETVAL(arc_jtag_read_aux_reg_one(&arc->jtag_info, SLC_AUX_CACHE_CTRL, &value));
slc_ctrl_value = value;
value &= ~L2_CTRL_IM;
/* set L2_CTRL invalidate mode to invalidate-only (no flushing!!) */
CHECK_RETVAL(arc_jtag_write_aux_reg_one(&arc->jtag_info, SLC_AUX_CACHE_CTRL, value));
/* invalidate L2$ */
CHECK_RETVAL(arc_jtag_write_aux_reg_one(&arc->jtag_info, SLC_AUX_CACHE_INV, L2_INV_IV));
/* Wait until invalidate operation ends */
do {
LOG_DEBUG("Waiting for invalidation end.");
CHECK_RETVAL(arc_jtag_read_aux_reg_one(&arc->jtag_info, SLC_AUX_CACHE_CTRL, &value));
} while (value & L2_CTRL_BS);
/* restore L2_CTRL invalidate mode */
CHECK_RETVAL(arc_jtag_write_aux_reg_one(&arc->jtag_info, SLC_AUX_CACHE_CTRL, slc_ctrl_value));
arc->l2cache_invalidated = true;
return ERROR_OK;
}
int arc_cache_invalidate(struct target *target)
{
CHECK_RETVAL(arc_icache_invalidate(target));
CHECK_RETVAL(arc_dcache_invalidate(target));
CHECK_RETVAL(arc_l2cache_invalidate(target));
return ERROR_OK;
}
/* Flush data cache. This function is cheap to call and return quickly if D$
* already has been flushed since target had been halted. JTAG debugger reads
* values directly from memory, bypassing cache, so if there are unflushed
* lines debugger will read invalid values, which will cause a lot of troubles.
* */
int arc_dcache_flush(struct target *target)
{
uint32_t value, dc_ctrl_value;
bool has_to_set_dc_ctrl_im;
struct arc_common *arc = target_to_arc(target);
/* Don't waste time if already done. */
if (!arc->has_dcache || arc->dcache_flushed)
return ERROR_OK;
LOG_DEBUG("Flushing D$.");
/* Store current value of DC_CTRL */
CHECK_RETVAL(arc_jtag_read_aux_reg_one(&arc->jtag_info, AUX_DC_CTRL_REG, &dc_ctrl_value));
/* Set DC_CTRL invalidate mode to flush (if not already set) */
has_to_set_dc_ctrl_im = (dc_ctrl_value & DC_CTRL_IM) == 0;
if (has_to_set_dc_ctrl_im) {
value = dc_ctrl_value | DC_CTRL_IM;
CHECK_RETVAL(arc_jtag_write_aux_reg_one(&arc->jtag_info, AUX_DC_CTRL_REG, value));
}
/* Flush D$ */
value = DC_IVDC_INVALIDATE;
CHECK_RETVAL(arc_jtag_write_aux_reg_one(&arc->jtag_info, AUX_DC_IVDC_REG, value));
/* Restore DC_CTRL invalidate mode (even of flush failed) */
if (has_to_set_dc_ctrl_im)
CHECK_RETVAL(arc_jtag_write_aux_reg_one(&arc->jtag_info, AUX_DC_CTRL_REG, dc_ctrl_value));
arc->dcache_flushed = true;
return ERROR_OK;
}
/* This function flushes l2cache. */
static int arc_l2cache_flush(struct target *target)
{
uint32_t value;
struct arc_common *arc = target_to_arc(target);
/* Don't waste time if already done. */
if (!arc->has_l2cache || arc->l2cache_flushed)
return ERROR_OK;
LOG_DEBUG("Flushing L2$.");
/* Flush L2 cache */
CHECK_RETVAL(arc_jtag_write_aux_reg_one(&arc->jtag_info, SLC_AUX_CACHE_FLUSH, L2_FLUSH_FL));
/* Wait until flush operation ends */
do {
LOG_DEBUG("Waiting for flushing end.");
CHECK_RETVAL(arc_jtag_read_aux_reg_one(&arc->jtag_info, SLC_AUX_CACHE_CTRL, &value));
} while (value & L2_CTRL_BS);
arc->l2cache_flushed = true;
return ERROR_OK;
}
int arc_cache_flush(struct target *target)
{
CHECK_RETVAL(arc_dcache_flush(target));
CHECK_RETVAL(arc_l2cache_flush(target));
return ERROR_OK;
}
/* ARC v2 target */
struct target_type arcv2_target = {
.name = "arcv2",
.poll = arc_poll,
.arch_state = arc_arch_state,
/* TODO That seems like something similar to metaware hostlink, so perhaps
* we can exploit this in the future. */
.target_request_data = NULL,
.halt = arc_halt,
.resume = arc_resume,
.step = arc_step,
.assert_reset = arc_assert_reset,
.deassert_reset = arc_deassert_reset,
/* TODO Implement soft_reset_halt */
.soft_reset_halt = NULL,
.get_gdb_reg_list = arc_get_gdb_reg_list,
.read_memory = arc_mem_read,
.write_memory = arc_mem_write,
.checksum_memory = NULL,
.blank_check_memory = NULL,
.add_breakpoint = arc_add_breakpoint,
.add_context_breakpoint = NULL,
.add_hybrid_breakpoint = NULL,
.remove_breakpoint = arc_remove_breakpoint,
.add_watchpoint = arc_add_watchpoint,
.remove_watchpoint = arc_remove_watchpoint,
.hit_watchpoint = arc_hit_watchpoint,
.run_algorithm = NULL,
.start_algorithm = NULL,
.wait_algorithm = NULL,
.commands = arc_monitor_command_handlers,
.target_create = arc_target_create,
.init_target = arc_init_target,
.deinit_target = arc_deinit_target,
.examine = arc_examine,
.virt2phys = NULL,
.read_phys_memory = NULL,
.write_phys_memory = NULL,
.mmu = NULL,
};
|