aboutsummaryrefslogtreecommitdiff
path: root/src/rtos/eCos.c
blob: 7048b006e0991c06a2f0c26ce6ad682241e99603 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
// SPDX-License-Identifier: GPL-2.0-or-later

/***************************************************************************
 ***************************************************************************/

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include <helper/time_support.h>
#include <jtag/jtag.h>
#include "target/target.h"
#include "target/armv7m.h"
#include "rtos.h"
#include "helper/log.h"
#include "helper/types.h"
#include "helper/bits.h"
#include "rtos_standard_stackings.h"
#include "rtos_ecos_stackings.h"
#include "server/gdb_server.h"

/* Unfortunately for the moment we are limited to returning the hardwired
 * register count (ARMV7M_NUM_CORE_REGS for Cortex-M) since the openocd RTOS
 * support does not yet support accessing all per-thread "stacked"
 * registers. e.g. For Cortex-M under eCos we have a per-thread BASEPRI, and for
 * all eCos targets we may have per-thread VFP/FPU register state.
 *
 * So, for the moment, we continue to use the hardwired limit for the depth of
 * the returned register description vector. The current openocd
 * rtos_standard_stackings.c just provides the main core regs for the Cortex_M*
 * targets regardless of whether FPU is present/enabled.
 *
 * However, this code is written with the expectation that we may eventually be
 * able to provide more register information ("m-system" and "vfp" for example)
 * and also with the expectation of supporting different register sets being
 * returned depending on the per-thread Cortex-M eCos contex_m for
 * example. Hence the fact that the eCos_stack_layout_*() functions below allow
 * for the stack context descriptor vector to be returned by those calls
 * allowing for eventual support where this code will potentially cache
 * different sets of register descriptors for the different shapes of contexts
 * in a *single* application/binary run-time.
 *
 * TODO: Extend openocd generic RTOS support to allow thread-specific system and
 * FPU register state to be returned. */

struct ecos_params;

static bool ecos_detect_rtos(struct target *target);
static int ecos_create(struct target *target);
static int ecos_update_threads(struct rtos *rtos);
static int ecos_get_thread_reg_list(struct rtos *rtos, int64_t thread_id, struct rtos_reg **reg_list, int *num_regs);
static int ecos_get_symbol_list_to_lookup(struct symbol_table_elem *symbol_list[]);
static int ecos_stack_layout_cortexm(struct rtos *rtos, struct ecos_params *param,
				int64_t stack_ptr, const struct rtos_register_stacking **si);
static int ecos_stack_layout_arm(struct rtos *rtos, struct ecos_params *param,
				int64_t stack_ptr, const struct rtos_register_stacking **si);

/* The current eCos thread IDentifier uses 0 as an unused (not a valid thread
 * ID) value. Currently the unique_id field is 16-bits, but the eCos SMP support
 * convention is that only 12-bits of the ID will be used. This
 * ECOS_MAX_THREAD_COUNT manifest is provided to limit the potential for
 * interpreting stale/inconsistent thread list state when the debug host scans
 * the thread list before the target RTOS has completed its initialisation. This
 * support will need to revisited when eCos is re-engineered to support more
 * than 16 CPU SMP setups. */
#define ECOS_MAX_THREAD_COUNT (4095)

struct ecos_thread_state {
	int value;
	const char *desc;
};

/* The status is actually a logical-OR bitmask of states: */
enum ecos_thread_state_flags {
	RUNNING    = 0, /* explicit no-bits-set value */
	SLEEPING   = BIT(0),
	COUNTSLEEP = BIT(1),
	SUSPENDED  = BIT(2),
	CREATING   = BIT(3),
	EXITED     = BIT(4),
	SLEEPSET   = (SLEEPING | COUNTSLEEP)
};

/* Cyg_Thread:: reason codes for wake and sleep fields: */
static const struct ecos_thread_state ecos_thread_reasons[] = {
	{ 0, "NONE" }, /* normally indicates "not yet started" */
	{ 1, "WAIT" }, /* wait with no timeout */
	{ 2, "DELAY" }, /* simple time delay */
	{ 3, "TIMEOUT" }, /* wait with timeout *or* timeout expired */
	{ 4, "BREAK" }, /* forced break out of sleep */
	{ 5, "DESTRUCT" }, /* wait on object being destroyed */
	{ 6, "EXIT" }, /* forced termination */
	{ 7, "DONE" } /* wait/delay completed */
};

static const char * const target_cortex_m[] = {
	"cortex_m",
	"hla_target",
	NULL
};

static const char * const target_arm[] = {
	"cortex_a",
	"arm7tdmi",
	"arm720t",
	"arm9tdmi",
	"arm920t",
	"arm926ejs",
	"arm946e",
	"arm966e",
	"arm11",
	NULL
};

/* Since individual eCos application configurations may have different thread
 * object structure layouts depending on the actual build-time enabled features
 * we provide support for applications built containing the relevant symbolic
 * support to match the actual application binary being debugged, rather than
 * relying on a set of default/fixed (and potentially incorrect)
 * offsets. However, for backwards compatibility, we do *NOT* enforce the
 * requirement for the common extra helper symbols to be present to allow the
 * fallback to the simple fixed CM3 model to avoid affecting existing users of
 * older eCos worlds. Similarly we need to provide support for per-thread
 * register context offsets, as well as for per-application-configurations,
 * since some targets can have different stacked state on a per-thread basis
 * (e.g. "cortex_m"). This is why the stacking_info is now set at run-time
 * rather than being fixed. */

struct ecos_params {
	const char * const *target_names; /* NULL terminated list of targets */
	int (*target_stack_layout)(struct rtos *rtos, struct ecos_params *param,
		int64_t stack_ptr, const struct rtos_register_stacking **si);
	bool flush_common;
	unsigned char pointer_width;
	unsigned char uid_width;
	unsigned char state_width;
	unsigned int thread_stack_offset;
	unsigned int thread_name_offset;
	unsigned int thread_state_offset;
	unsigned int thread_next_offset;
	unsigned int thread_uniqueid_offset;
	const struct rtos_register_stacking *stacking_info;
};

/* As mentioned above we provide default offset values for the "cortex_m"
 * targets for backwards compatibility with older eCos application builds and
 * previous users of this RTOS specific support that do not have the
 * configuration specific offsets provided in the symbol table. The support for
 * other targets (e.g. "cortex_a") we do expect the application to provide the
 * required symbolic information. We do not populate the stacking_info reference
 * until we have had a chance to interrogate the symbol table. */

static struct ecos_params ecos_params_list[] = {
	{
	.target_names = target_cortex_m,
	.pointer_width = 4,
	.uid_width = 2,
	.state_width = 4,
	.thread_stack_offset = 0x0c,
	.thread_name_offset = 0x9c,
	.thread_state_offset = 0x3c,
	.thread_next_offset = 0xa0,
	.thread_uniqueid_offset = 0x4c,
	.target_stack_layout = ecos_stack_layout_cortexm,
	.stacking_info = NULL
	},
	{
	.target_names = target_arm,
	.pointer_width = 0,
	.uid_width = 0,
	.state_width = 0,
	.thread_stack_offset = 0,
	.thread_name_offset = 0,
	.thread_state_offset = 0,
	.thread_next_offset = 0,
	.thread_uniqueid_offset = 0,
	.target_stack_layout = ecos_stack_layout_arm,
	.stacking_info = NULL
	}
};

#define ECOS_NUM_PARAMS ARRAY_SIZE(ecos_params_list)

/* To eventually allow for more than just the ARMV7M_NUM_CORE_REGS to be
 * returned by the Cortex-M support, and to avoid run-time lookups we manually
 * maintain our own mapping for the supplied stack register vector entries. This
 * enum needs to match the rtos_ecos_regoff_cortexm[] vector. Admittedly the
 * initial indices just match the corresponding ARMV7M_R* definitions, but after
 * the base registers the ARMV7M_* number space does not match the vector we
 * wish to populate in this eCos support code. */
enum ecos_reglist_cortexm {
	ECOS_REGLIST_R0 = 0,
	ECOS_REGLIST_R1,
	ECOS_REGLIST_R2,
	ECOS_REGLIST_R3,
	ECOS_REGLIST_R4,
	ECOS_REGLIST_R5,
	ECOS_REGLIST_R6,
	ECOS_REGLIST_R7,
	ECOS_REGLIST_R8,
	ECOS_REGLIST_R9,
	ECOS_REGLIST_R10,
	ECOS_REGLIST_R11,
	ECOS_REGLIST_R12,
	ECOS_REGLIST_R13,
	ECOS_REGLIST_R14,
	ECOS_REGLIST_PC,
	ECOS_REGLIST_XPSR,	/* ARMV7M_NUM_CORE_REGS */
	ECOS_REGLIST_BASEPRI,
	ECOS_REGLIST_FPSCR,	/* Following for FPU contexts */
	ECOS_REGLIST_D0,
	ECOS_REGLIST_D1,
	ECOS_REGLIST_D2,
	ECOS_REGLIST_D3,
	ECOS_REGLIST_D4,
	ECOS_REGLIST_D5,
	ECOS_REGLIST_D6,
	ECOS_REGLIST_D7,
	ECOS_REGLIST_D8,
	ECOS_REGLIST_D9,
	ECOS_REGLIST_D10,
	ECOS_REGLIST_D11,
	ECOS_REGLIST_D12,
	ECOS_REGLIST_D13,
	ECOS_REGLIST_D14,
	ECOS_REGLIST_D15
};

#define ECOS_CORTEXM_BASE_NUMREGS (ARMV7M_NUM_CORE_REGS)

/* NOTE: The offsets in this vector are overwritten by the architecture specific
 * layout functions depending on the specific application configuration. The
 * ordering of this vector MUST match eCos_reglist. */
static struct stack_register_offset rtos_ecos_regoff_cortexm[] = {
	{ ARMV7M_R0,      -1, 32 },	/* r0            */
	{ ARMV7M_R1,      -1, 32 },	/* r1            */
	{ ARMV7M_R2,      -1, 32 },	/* r2            */
	{ ARMV7M_R3,      -1, 32 },	/* r3            */
	{ ARMV7M_R4,      -1, 32 },	/* r4            */
	{ ARMV7M_R5,      -1, 32 },	/* r5            */
	{ ARMV7M_R6,      -1, 32 },	/* r6            */
	{ ARMV7M_R7,      -1, 32 },	/* r7            */
	{ ARMV7M_R8,      -1, 32 },	/* r8            */
	{ ARMV7M_R9,      -1, 32 },	/* r9            */
	{ ARMV7M_R10,     -1, 32 },	/* r10           */
	{ ARMV7M_R11,     -1, 32 },	/* r11           */
	{ ARMV7M_R12,     -1, 32 },	/* r12           */
	{ ARMV7M_R13,     -1, 32 },	/* sp            */
	{ ARMV7M_R14,     -1, 32 },	/* lr            */
	{ ARMV7M_PC,      -1, 32 },	/* pc            */
	{ ARMV7M_XPSR,    -1, 32 },	/* xPSR          */
	{ ARMV7M_BASEPRI, -1, 32 },     /* BASEPRI       */
	{ ARMV7M_FPSCR,   -1, 32 },     /* FPSCR         */
	{ ARMV7M_D0,      -1, 64 },     /* D0  (S0/S1)   */
	{ ARMV7M_D1,      -1, 64 },     /* D1  (S2/S3)   */
	{ ARMV7M_D2,      -1, 64 },     /* D2  (S4/S5)   */
	{ ARMV7M_D3,      -1, 64 },     /* D3  (S6/S7)   */
	{ ARMV7M_D4,      -1, 64 },     /* D4  (S8/S9)   */
	{ ARMV7M_D5,      -1, 64 },     /* D5  (S10/S11) */
	{ ARMV7M_D6,      -1, 64 },     /* D6  (S12/S13) */
	{ ARMV7M_D7,      -1, 64 },     /* D7  (S14/S15) */
	{ ARMV7M_D8,      -1, 64 },     /* D8  (S16/S17) */
	{ ARMV7M_D9,      -1, 64 },     /* D9  (S18/S19) */
	{ ARMV7M_D10,     -1, 64 },     /* D10 (S20/S21) */
	{ ARMV7M_D11,     -1, 64 },     /* D11 (S22/S23) */
	{ ARMV7M_D12,     -1, 64 },     /* D12 (S24/S25) */
	{ ARMV7M_D13,     -1, 64 },     /* D13 (S26/S27) */
	{ ARMV7M_D14,     -1, 64 },     /* D14 (S28/S29) */
	{ ARMV7M_D15,     -1, 64 },     /* D15 (S30/S31) */
};

static struct stack_register_offset rtos_ecos_regoff_arm[] = {
	{ 0,  -1, 32 },		/* r0       */
	{ 1,  -1, 32 },		/* r1       */
	{ 2,  -1, 32 },		/* r2       */
	{ 3,  -1, 32 },		/* r3       */
	{ 4,  -1, 32 },		/* r4       */
	{ 5,  -1, 32 },		/* r5       */
	{ 6,  -1, 32 },		/* r6       */
	{ 7,  -1, 32 },		/* r7       */
	{ 8,  -1, 32 },		/* r8       */
	{ 9,  -1, 32 },		/* r9       */
	{ 10, -1, 32 },		/* r10      */
	{ 11, -1, 32 },		/* r11 (fp) */
	{ 12, -1, 32 },		/* r12 (ip) */
	{ 13, -1, 32 },		/* sp (r13) */
	{ 14, -1, 32 },		/* lr (r14) */
	{ 15, -1, 32 },		/* pc (r15) */
	{ 16, -1, 32 },		/* xPSR     */
};

static struct rtos_register_stacking rtos_ecos_stacking = {
	.stack_registers_size = 0,
	.stack_growth_direction = -1,
	.num_output_registers = 0,
	.calculate_process_stack = NULL,	/* stack_alignment */
	.register_offsets = NULL
};

/* To avoid the run-time cost of matching explicit symbol names we push the
 * lookup offsets to this *manually* maintained enumeration which must match the
 * ecos_symbol_list[] order below. */
enum ecos_symbol_values {
	ECOS_VAL_THREAD_LIST = 0,
	ECOS_VAL_CURRENT_THREAD_PTR,
	ECOS_VAL_COMMON_THREAD_NEXT_OFF,
	ECOS_VAL_COMMON_THREAD_NEXT_SIZE,
	ECOS_VAL_COMMON_THREAD_STATE_OFF,
	ECOS_VAL_COMMON_THREAD_STATE_SIZE,
	ECOS_VAL_COMMON_THREAD_SLEEP_OFF,
	ECOS_VAL_COMMON_THREAD_SLEEP_SIZE,
	ECOS_VAL_COMMON_THREAD_WAKE_OFF,
	ECOS_VAL_COMMON_THREAD_WAKE_SIZE,
	ECOS_VAL_COMMON_THREAD_ID_OFF,
	ECOS_VAL_COMMON_THREAD_ID_SIZE,
	ECOS_VAL_COMMON_THREAD_NAME_OFF,
	ECOS_VAL_COMMON_THREAD_NAME_SIZE,
	ECOS_VAL_COMMON_THREAD_PRI_OFF,
	ECOS_VAL_COMMON_THREAD_PRI_SIZE,
	ECOS_VAL_COMMON_THREAD_STACK_OFF,
	ECOS_VAL_COMMON_THREAD_STACK_SIZE,
	ECOS_VAL_CORTEXM_THREAD_SAVED,
	ECOS_VAL_CORTEXM_CTX_THREAD_SIZE,
	ECOS_VAL_CORTEXM_CTX_TYPE_OFF,
	ECOS_VAL_CORTEXM_CTX_TYPE_SIZE,
	ECOS_VAL_CORTEXM_CTX_BASEPRI_OFF,
	ECOS_VAL_CORTEXM_CTX_BASEPRI_SIZE,
	ECOS_VAL_CORTEXM_CTX_SP_OFF,
	ECOS_VAL_CORTEXM_CTX_SP_SIZE,
	ECOS_VAL_CORTEXM_CTX_REG_OFF,
	ECOS_VAL_CORTEXM_CTX_REG_SIZE,
	ECOS_VAL_CORTEXM_CTX_PC_OFF,
	ECOS_VAL_CORTEXM_CTX_PC_SIZE,
	ECOS_VAL_CORTEXM_VAL_EXCEPTION,
	ECOS_VAL_CORTEXM_VAL_THREAD,
	ECOS_VAL_CORTEXM_VAL_INTERRUPT,
	ECOS_VAL_CORTEXM_VAL_FPU,
	ECOS_VAL_CORTEXM_CTX_FPSCR_OFF,
	ECOS_VAL_CORTEXM_CTX_FPSCR_SIZE,
	ECOS_VAL_CORTEXM_CTX_S_OFF,
	ECOS_VAL_CORTEXM_CTX_S_SIZE,
	ECOS_VAL_ARM_REGSIZE,
	ECOS_VAL_ARM_CTX_R0_OFF,
	ECOS_VAL_ARM_CTX_R1_OFF,
	ECOS_VAL_ARM_CTX_R2_OFF,
	ECOS_VAL_ARM_CTX_R3_OFF,
	ECOS_VAL_ARM_CTX_R4_OFF,
	ECOS_VAL_ARM_CTX_R5_OFF,
	ECOS_VAL_ARM_CTX_R6_OFF,
	ECOS_VAL_ARM_CTX_R7_OFF,
	ECOS_VAL_ARM_CTX_R8_OFF,
	ECOS_VAL_ARM_CTX_R9_OFF,
	ECOS_VAL_ARM_CTX_R10_OFF,
	ECOS_VAL_ARM_CTX_FP_OFF,
	ECOS_VAL_ARM_CTX_IP_OFF,
	ECOS_VAL_ARM_CTX_SP_OFF,
	ECOS_VAL_ARM_CTX_LR_OFF,
	ECOS_VAL_ARM_CTX_PC_OFF,
	ECOS_VAL_ARM_CTX_CPSR_OFF,
	ECOS_VAL_ARM_FPUSIZE,
	ECOS_VAL_ARM_CTX_FPSCR_OFF,
	ECOS_VAL_ARM_SCOUNT,
	ECOS_VAL_ARM_CTX_SVEC_OFF,
	ECOS_VAL_ARM_VFPCOUNT,
	ECOS_VAL_ARM_CTX_VFPVEC_OFF
};

struct symbols {
	const char *name;
	const char * const *target_names; /* non-NULL when for a specific architecture */
	bool optional;
};

#define ECOSSYM(_n, _o, _t) { .name = _n, .optional = (_o), .target_names = _t }

/* Some of offset/size helper symbols are common to all eCos
 * targets. Unfortunately, for historical reasons, some information is in
 * architecture specific namespaces leading to some duplication and a larger
 * vector below. */
static const struct symbols ecos_symbol_list[] = {
	ECOSSYM("Cyg_Thread::thread_list", false, NULL),
	ECOSSYM("Cyg_Scheduler_Base::current_thread", false, NULL),
	/* Following symbols *are* required for generic application-specific
	 * configuration support, but we mark as optional for backwards
	 * compatibility with the previous fixed Cortex-M3 only RTOS plugin
	 * implementation. */
	ECOSSYM("__ecospro_syminfo.off.cyg_thread.list_next", true, NULL),
	ECOSSYM("__ecospro_syminfo.size.cyg_thread.list_next", true, NULL),
	ECOSSYM("__ecospro_syminfo.off.cyg_thread.state", true, NULL),
	ECOSSYM("__ecospro_syminfo.size.cyg_thread.state", true, NULL),
	ECOSSYM("__ecospro_syminfo.off.cyg_thread.sleep_reason", true, NULL),
	ECOSSYM("__ecospro_syminfo.size.cyg_thread.sleep_reason", true, NULL),
	ECOSSYM("__ecospro_syminfo.off.cyg_thread.wake_reason", true, NULL),
	ECOSSYM("__ecospro_syminfo.size.cyg_thread.wake_reason", true, NULL),
	ECOSSYM("__ecospro_syminfo.off.cyg_thread.unique_id", true, NULL),
	ECOSSYM("__ecospro_syminfo.size.cyg_thread.unique_id", true, NULL),
	ECOSSYM("__ecospro_syminfo.off.cyg_thread.name", true, NULL),
	ECOSSYM("__ecospro_syminfo.size.cyg_thread.name", true, NULL),
	ECOSSYM("__ecospro_syminfo.off.cyg_thread.priority", true, NULL),
	ECOSSYM("__ecospro_syminfo.size.cyg_thread.priority", true, NULL),
	ECOSSYM("__ecospro_syminfo.off.cyg_thread.stack_ptr", true, NULL),
	ECOSSYM("__ecospro_syminfo.size.cyg_thread.stack_ptr", true, NULL),
	/* optional Cortex-M: */
	ECOSSYM("__ecospro_syminfo.cortexm.thread.saved", true, target_cortex_m),
	ECOSSYM("__ecospro_syminfo.size.HAL_SavedRegisters.Thread", true, target_cortex_m),
	ECOSSYM("__ecospro_syminfo.off.HAL_SavedRegisters.u.thread.type", true, target_cortex_m),
	ECOSSYM("__ecospro_syminfo.size.HAL_SavedRegisters.u.thread.type", true, target_cortex_m),
	ECOSSYM("__ecospro_syminfo.off.HAL_SavedRegisters.u.thread.basepri", true, target_cortex_m),
	ECOSSYM("__ecospro_syminfo.size.HAL_SavedRegisters.u.thread.basepri", true, target_cortex_m),
	ECOSSYM("__ecospro_syminfo.off.HAL_SavedRegisters.u.thread.sp", true, target_cortex_m),
	ECOSSYM("__ecospro_syminfo.size.HAL_SavedRegisters.u.thread.sp", true, target_cortex_m),
	ECOSSYM("__ecospro_syminfo.off.HAL_SavedRegisters.u.thread.r", true, target_cortex_m),
	ECOSSYM("__ecospro_syminfo.size.HAL_SavedRegisters.u.thread.r", true, target_cortex_m),
	ECOSSYM("__ecospro_syminfo.off.HAL_SavedRegisters.u.thread.pc", true, target_cortex_m),
	ECOSSYM("__ecospro_syminfo.size.HAL_SavedRegisters.u.thread.pc", true, target_cortex_m),
	ECOSSYM("__ecospro_syminfo.value.HAL_SAVEDREGISTERS.EXCEPTION", true, target_cortex_m),
	ECOSSYM("__ecospro_syminfo.value.HAL_SAVEDREGISTERS.THREAD", true, target_cortex_m),
	ECOSSYM("__ecospro_syminfo.value.HAL_SAVEDREGISTERS.INTERRUPT", true, target_cortex_m),
	/* optional Cortex-M with H/W FPU configured: */
	ECOSSYM("__ecospro_syminfo.value.HAL_SAVEDREGISTERS.WITH_FPU", true, target_cortex_m),
	ECOSSYM("__ecospro_syminfo.off.HAL_SavedRegisters.u.thread.fpscr", true, target_cortex_m),
	ECOSSYM("__ecospro_syminfo.size.HAL_SavedRegisters.u.thread.fpscr", true, target_cortex_m),
	ECOSSYM("__ecospro_syminfo.off.HAL_SavedRegisters.u.thread.s", true, target_cortex_m),
	ECOSSYM("__ecospro_syminfo.size.HAL_SavedRegisters.u.thread.s", true, target_cortex_m),
	/* optional ARM: */
	ECOSSYM("ARMREG_SIZE", true, target_arm),
	ECOSSYM("armreg_r0", true, target_arm),
	ECOSSYM("armreg_r1", true, target_arm),
	ECOSSYM("armreg_r2", true, target_arm),
	ECOSSYM("armreg_r3", true, target_arm),
	ECOSSYM("armreg_r4", true, target_arm),
	ECOSSYM("armreg_r5", true, target_arm),
	ECOSSYM("armreg_r6", true, target_arm),
	ECOSSYM("armreg_r7", true, target_arm),
	ECOSSYM("armreg_r8", true, target_arm),
	ECOSSYM("armreg_r9", true, target_arm),
	ECOSSYM("armreg_r10", true, target_arm),
	ECOSSYM("armreg_fp", true, target_arm),
	ECOSSYM("armreg_ip", true, target_arm),
	ECOSSYM("armreg_sp", true, target_arm),
	ECOSSYM("armreg_lr", true, target_arm),
	ECOSSYM("armreg_pc", true, target_arm),
	ECOSSYM("armreg_cpsr", true, target_arm),
	/* optional ARM FPU common: */
	ECOSSYM("ARMREG_FPUCONTEXT_SIZE", true, target_arm),
	ECOSSYM("armreg_fpscr", true, target_arm),
	/* optional ARM FPU single-precision: */
	ECOSSYM("ARMREG_S_COUNT", true, target_arm),
	ECOSSYM("armreg_s_vec", true, target_arm),
	/* optional ARM FPU double-precision: */
	ECOSSYM("ARMREG_VFP_COUNT", true, target_arm),
	ECOSSYM("armreg_vfp_vec", true, target_arm),
};

const struct rtos_type ecos_rtos = {
	.name = "eCos",

	.detect_rtos = ecos_detect_rtos,
	.create = ecos_create,
	.update_threads = ecos_update_threads,
	.get_thread_reg_list = ecos_get_thread_reg_list,
	.get_symbol_list_to_lookup = ecos_get_symbol_list_to_lookup,

};

static symbol_address_t ecos_value(struct rtos *rtos, unsigned int idx)
{
	if (idx < ARRAY_SIZE(ecos_symbol_list))
		return rtos->symbols[idx].address;

	/* We do not terminate, just return 0 in this case. */
	LOG_ERROR("eCos: Invalid symbol index %u", idx);
	return 0;
}

#define XMLENTRY(_c, _s) { .xc = (_c), .rs = (_s), .rlen = (sizeof(_s) - 1) }

static const struct {
	char xc;
	const char *rs;
	size_t rlen;
} xmlchars[] = {
	XMLENTRY('<', "&lt;"),
	XMLENTRY('&', "&amp;"),
	XMLENTRY('>', "&gt;"),
	XMLENTRY('\'', "&apos;"),
	XMLENTRY('"', "&quot;")
};

/** Escape any XML reserved characters in a string. */
static bool ecos_escape_string(const char *raw, char *out, size_t limit)
{
	static const char *tokens = "<&>\'\"";
	bool escaped = false;

	if (!out || !limit)
		return false;

	(void)memset(out, '\0', limit);

	while (raw && *raw && limit) {
		size_t lok = strcspn(raw, tokens);
		if (lok) {
			size_t tocopy;
			tocopy = ((limit < lok) ? limit : lok);
			(void)memcpy(out, raw, tocopy);
			limit -= tocopy;
			out += tocopy;
			raw += lok;
			continue;
		}

		char *fidx = strchr(tokens, *raw);
		if (!fidx) {
			/* Should never happen assuming xmlchars
			 * vector and tokens string match. */
			LOG_ERROR("eCos: Unexpected XML char %c", *raw);
			continue;
		}

		uint32_t cidx = (fidx - tokens);
		size_t tocopy = xmlchars[cidx].rlen;
		if (limit < tocopy)
			break;

		escaped = true;
		(void)memcpy(out, xmlchars[cidx].rs, tocopy);
		limit -= tocopy;
		out += tocopy;
		raw++;
	}

	return escaped;
}

static int ecos_check_app_info(struct rtos *rtos, struct ecos_params *param)
{
	if (!rtos || !param)
		return -1;

	if (param->flush_common) {
		if (debug_level >= LOG_LVL_DEBUG) {
			for (unsigned int idx = 0; idx < ARRAY_SIZE(ecos_symbol_list); idx++) {
				LOG_DEBUG("eCos: %s 0x%016" PRIX64 " %s",
					rtos->symbols[idx].optional ? "OPTIONAL" : "        ",
					rtos->symbols[idx].address, rtos->symbols[idx].symbol_name);
			}
		}

		/* If "__ecospro_syminfo.size.cyg_thread.list_next" is non-zero then we
		 * expect all of the generic thread structure symbols to have been
		 * provided. */
		symbol_address_t thread_next_size = ecos_value(rtos, ECOS_VAL_COMMON_THREAD_NEXT_SIZE);
		if (thread_next_size != 0) {
			param->pointer_width = thread_next_size;
			param->uid_width = ecos_value(rtos, ECOS_VAL_COMMON_THREAD_ID_SIZE);
			param->state_width = ecos_value(rtos, ECOS_VAL_COMMON_THREAD_STATE_SIZE);
			param->thread_stack_offset = ecos_value(rtos, ECOS_VAL_COMMON_THREAD_STACK_OFF);
			param->thread_name_offset = ecos_value(rtos, ECOS_VAL_COMMON_THREAD_NAME_OFF);
			param->thread_state_offset = ecos_value(rtos, ECOS_VAL_COMMON_THREAD_STATE_OFF);
			param->thread_next_offset = ecos_value(rtos, ECOS_VAL_COMMON_THREAD_NEXT_OFF);
			param->thread_uniqueid_offset = ecos_value(rtos, ECOS_VAL_COMMON_THREAD_ID_OFF);
		}

		if (param->uid_width != sizeof(uint16_t)) {
			/* Currently all eCos configurations use a 16-bit field to hold the
			 * unique thread ID. */
			LOG_WARNING("eCos: Unexpected unique_id width %" PRIu8, param->uid_width);
			param->uid_width = (unsigned char)sizeof(uint16_t);
		}

		param->stacking_info = NULL;
		param->flush_common = false;
	}

	return ERROR_OK;
}

/* The Cortex-M eCosPro "thread" contexts have a "type" indicator, which tracks
 * the context state of (THREAD | EXCEPTION | INTERRUPT) and whether FPU
 * registers are saved.
 *
 * For thread-aware debugging from GDB we are only interested in THREAD states
 * and so do not need to implement support for INTERRUPT or EXCEPTION thread
 * contexts since this code does not expose those stack contexts via the
 * constructed thread list support. */
static int ecos_stack_layout_cortexm(struct rtos *rtos,
		struct ecos_params *param, int64_t stack_ptr,
		const struct rtos_register_stacking **si)
{
	int retval = ERROR_OK;

	/* CONSIDER: We could return
	 * ecos_value(rtos, ECOS_VAL_CORTEXM_THREAD_SAVED) as the actual PC
	 * address of a context switch, with the LR being set to the context PC
	 * field to give a true representation of where the thread switch
	 * occurs. However that would require extending the common
	 * rtos_generic_stack_read() code with suitable support for applying a
	 * supplied value, or just implementing our own version of that code that
	 * can inject data into what is passed onwards to GDB. */

	/* UPDATE: When we can return VFP register state then we will NOT be
	 * basing the cached state on the single param->stacking_info value,
	 * since we will need a different stacking_info structure returned for
	 * each thread type when FPU support is enabled. The use of the single
	 * param->stacking_info is a holder whilst we are limited to the fixed
	 * ARMV7M_NUM_CORE_REGS set of descriptors. */

	if (!param->stacking_info &&
		ecos_value(rtos, ECOS_VAL_CORTEXM_THREAD_SAVED) &&
		ecos_value(rtos, ECOS_VAL_CORTEXM_VAL_THREAD)) {
		unsigned char numoutreg = ECOS_CORTEXM_BASE_NUMREGS;

		rtos_ecos_stacking.stack_registers_size = ecos_value(rtos, ECOS_VAL_CORTEXM_CTX_THREAD_SIZE);
		rtos_ecos_stacking.calculate_process_stack = rtos_generic_stack_align8;
		rtos_ecos_stacking.register_offsets = rtos_ecos_regoff_cortexm;

		rtos_ecos_regoff_cortexm[ECOS_REGLIST_R0].offset = (ecos_value(rtos, ECOS_VAL_CORTEXM_CTX_REG_OFF) + 0x00);
		rtos_ecos_regoff_cortexm[ECOS_REGLIST_R1].offset = (ecos_value(rtos, ECOS_VAL_CORTEXM_CTX_REG_OFF) + 0x04);
		rtos_ecos_regoff_cortexm[ECOS_REGLIST_R2].offset = (ecos_value(rtos, ECOS_VAL_CORTEXM_CTX_REG_OFF) + 0x08);
		rtos_ecos_regoff_cortexm[ECOS_REGLIST_R3].offset = (ecos_value(rtos, ECOS_VAL_CORTEXM_CTX_REG_OFF) + 0x0C);
		rtos_ecos_regoff_cortexm[ECOS_REGLIST_R4].offset = (ecos_value(rtos, ECOS_VAL_CORTEXM_CTX_REG_OFF) + 0x10);
		rtos_ecos_regoff_cortexm[ECOS_REGLIST_R5].offset = (ecos_value(rtos, ECOS_VAL_CORTEXM_CTX_REG_OFF) + 0x14);
		rtos_ecos_regoff_cortexm[ECOS_REGLIST_R6].offset = (ecos_value(rtos, ECOS_VAL_CORTEXM_CTX_REG_OFF) + 0x18);
		rtos_ecos_regoff_cortexm[ECOS_REGLIST_R7].offset = (ecos_value(rtos, ECOS_VAL_CORTEXM_CTX_REG_OFF) + 0x1C);
		rtos_ecos_regoff_cortexm[ECOS_REGLIST_R8].offset = (ecos_value(rtos, ECOS_VAL_CORTEXM_CTX_REG_OFF) + 0x20);
		rtos_ecos_regoff_cortexm[ECOS_REGLIST_R9].offset = (ecos_value(rtos, ECOS_VAL_CORTEXM_CTX_REG_OFF) + 0x24);
		rtos_ecos_regoff_cortexm[ECOS_REGLIST_R10].offset = (ecos_value(rtos, ECOS_VAL_CORTEXM_CTX_REG_OFF) + 0x28);
		rtos_ecos_regoff_cortexm[ECOS_REGLIST_R11].offset = (ecos_value(rtos, ECOS_VAL_CORTEXM_CTX_REG_OFF) + 0x2C);
		rtos_ecos_regoff_cortexm[ECOS_REGLIST_R12].offset = (ecos_value(rtos, ECOS_VAL_CORTEXM_CTX_REG_OFF) + 0x30);
		/* Rather than using the stacked ECOS_VAL_CORTEXM_CTX_SP_OFF
		 * value we force the reported sp to be after the stacked
		 * register context. */
		rtos_ecos_regoff_cortexm[ECOS_REGLIST_R13].offset = -2;
		rtos_ecos_regoff_cortexm[ECOS_REGLIST_R14].offset = -1;
		rtos_ecos_regoff_cortexm[ECOS_REGLIST_PC].offset = ecos_value(rtos, ECOS_VAL_CORTEXM_CTX_PC_OFF);
		rtos_ecos_regoff_cortexm[ECOS_REGLIST_XPSR].offset = -1;

		param->stacking_info = &rtos_ecos_stacking;

		/* Common Cortex-M thread register offsets for the current
		 * symbol table: */
		if (retval == ERROR_OK && param->stacking_info) {
			if (numoutreg > ECOS_REGLIST_BASEPRI) {
				rtos_ecos_regoff_cortexm[ECOS_REGLIST_BASEPRI].offset =
					ecos_value(rtos, ECOS_VAL_CORTEXM_CTX_BASEPRI_OFF);
			}

			rtos_ecos_stacking.num_output_registers = numoutreg;
		}
	}

	if (si)
		*si = param->stacking_info;

	return retval;
}

static int ecos_stack_layout_arm(struct rtos *rtos, struct ecos_params *param,
		int64_t stack_ptr, const struct rtos_register_stacking **si)
{
	int retval = ERROR_OK;

	if (!param->stacking_info && ecos_value(rtos, ECOS_VAL_ARM_REGSIZE)) {
		/* When OpenOCD is extended to allow FPU registers to be returned from a
		 * stacked thread context we can check:
		 *		if (0 != ecos_value(rtos, ECOS_VAL_ARM_FPUSIZE)) { FPU }
		 * for presence of FPU registers in the context. */

		rtos_ecos_stacking.stack_registers_size = ecos_value(rtos, ECOS_VAL_ARM_REGSIZE);
		rtos_ecos_stacking.num_output_registers = ARRAY_SIZE(rtos_ecos_regoff_arm);
		rtos_ecos_stacking.register_offsets = rtos_ecos_regoff_arm;

		rtos_ecos_regoff_arm[0].offset = ecos_value(rtos, ECOS_VAL_ARM_CTX_R0_OFF);
		rtos_ecos_regoff_arm[1].offset = ecos_value(rtos, ECOS_VAL_ARM_CTX_R1_OFF);
		rtos_ecos_regoff_arm[2].offset = ecos_value(rtos, ECOS_VAL_ARM_CTX_R2_OFF);
		rtos_ecos_regoff_arm[3].offset = ecos_value(rtos, ECOS_VAL_ARM_CTX_R3_OFF);
		rtos_ecos_regoff_arm[4].offset = ecos_value(rtos, ECOS_VAL_ARM_CTX_R4_OFF);
		rtos_ecos_regoff_arm[5].offset = ecos_value(rtos, ECOS_VAL_ARM_CTX_R5_OFF);
		rtos_ecos_regoff_arm[6].offset = ecos_value(rtos, ECOS_VAL_ARM_CTX_R6_OFF);
		rtos_ecos_regoff_arm[7].offset = ecos_value(rtos, ECOS_VAL_ARM_CTX_R7_OFF);
		rtos_ecos_regoff_arm[8].offset = ecos_value(rtos, ECOS_VAL_ARM_CTX_R8_OFF);
		rtos_ecos_regoff_arm[9].offset = ecos_value(rtos, ECOS_VAL_ARM_CTX_R9_OFF);
		rtos_ecos_regoff_arm[10].offset = ecos_value(rtos, ECOS_VAL_ARM_CTX_R10_OFF);
		rtos_ecos_regoff_arm[11].offset = ecos_value(rtos, ECOS_VAL_ARM_CTX_FP_OFF);
		rtos_ecos_regoff_arm[12].offset = ecos_value(rtos, ECOS_VAL_ARM_CTX_IP_OFF);
		rtos_ecos_regoff_arm[13].offset = ecos_value(rtos, ECOS_VAL_ARM_CTX_SP_OFF);
		rtos_ecos_regoff_arm[14].offset = ecos_value(rtos, ECOS_VAL_ARM_CTX_LR_OFF);
		rtos_ecos_regoff_arm[15].offset = ecos_value(rtos, ECOS_VAL_ARM_CTX_PC_OFF);
		rtos_ecos_regoff_arm[16].offset = ecos_value(rtos, ECOS_VAL_ARM_CTX_CPSR_OFF);

		param->stacking_info = &rtos_ecos_stacking;
	}

	if (si)
		*si = param->stacking_info;

	return retval;
}

/* We see this function called on a new connection, it looks like before and
 * after the "tar rem"/"tar extended-remote". It might be the only point we can
 * decide to cache information (to check if the symbol table has changed). */
static int ecos_update_threads(struct rtos *rtos)
{
	int retval;
	int tasks_found = 0;
	int thread_list_size = 0;
	struct ecos_params *param;

	if (!rtos)
		return -1;

	/* wipe out previous thread details if any */
	rtos_free_threadlist(rtos);

	if (!rtos->rtos_specific_params)
		return -3;

	param = rtos->rtos_specific_params;

	if (!rtos->symbols) {
		/* NOTE: We only see this when connecting from GDB the first
		 * time before the application image is loaded. So it is not a
		 * hook for detecting an application change. */
		param->flush_common = true;
		LOG_ERROR("No symbols for eCos");
		return -4;
	}

	retval = ecos_check_app_info(rtos, param);
	if (retval != ERROR_OK)
		return retval;

	if (rtos->symbols[ECOS_VAL_THREAD_LIST].address == 0) {
		LOG_ERROR("Don't have the thread list head");
		return -2;
	}

	/* determine the number of current threads */
	uint32_t thread_list_head = rtos->symbols[ECOS_VAL_THREAD_LIST].address;
	uint32_t thread_index;
	target_read_buffer(rtos->target,
		thread_list_head,
		param->pointer_width,
		(uint8_t *) &thread_index);
	uint32_t first_thread = thread_index;

	/* Even if 0==first_thread indicates a system with no defined eCos
	 * threads, instead of early exiting here we fall through the code to
	 * allow the creation of a faked "Current Execution" descriptor as
	 * needed. */

	if (first_thread) {
		/* Since the OpenOCD RTOS support can attempt to obtain thread
		 * information on initial connection when the system *may* have
		 * undefined memory state it is possible for a simple thread count scan
		 * to produce invalid results. To avoid blocking indefinitely when
		 * encountering an invalid closed loop we limit the number of threads to
		 * the maximum possible, and if we pass that limit then something is
		 * wrong so treat the system as having no threads defined. */
		do {
			thread_list_size++;
			if (thread_list_size > ECOS_MAX_THREAD_COUNT) {
				/* Treat as "no threads" case: */
				first_thread = 0;
				thread_list_size = 0;
				break;
			}
			retval = target_read_buffer(rtos->target,
					thread_index + param->thread_next_offset,
					param->pointer_width,
					(uint8_t *)&thread_index);
			if (retval != ERROR_OK)
				return retval;
		} while (thread_index != first_thread);
	}

	/* read the current thread id */
	rtos->current_thread = 0;

	uint32_t current_thread_addr;
	retval = target_read_buffer(rtos->target,
			rtos->symbols[ECOS_VAL_CURRENT_THREAD_PTR].address,
			param->pointer_width,
			(uint8_t *)&current_thread_addr);
	if (retval != ERROR_OK) {
		LOG_ERROR("Reading active thread address");
		return retval;
	}

	if (current_thread_addr) {
		uint16_t id = 0;
		retval = target_read_buffer(rtos->target,
				current_thread_addr + param->thread_uniqueid_offset,
				param->uid_width,
				(uint8_t *)&id);
		if (retval != ERROR_OK) {
			LOG_ERROR("Could not read eCos current thread from target");
			return retval;
		}
		rtos->current_thread = (threadid_t)id;
	}

	if (thread_list_size == 0 || rtos->current_thread == 0) {
		/* Either : No RTOS threads - there is always at least the current execution though */
		/* OR     : No current thread - all threads suspended - show the current execution
		 * of idling */
		static const char tmp_str[] = "Current Execution";
		thread_list_size++;
		tasks_found++;
		rtos->thread_details = malloc(
				sizeof(struct thread_detail) * thread_list_size);
		/* 1 is a valid eCos thread id, so we return 0 for this faked
		 * "current" CPU state: */
		rtos->thread_details->threadid = 0;
		rtos->thread_details->exists = true;
		rtos->thread_details->extra_info_str = NULL;
		rtos->thread_details->thread_name_str = malloc(sizeof(tmp_str));
		strcpy(rtos->thread_details->thread_name_str, tmp_str);

		/* Early exit if current CPU state our only "thread": */
		if (thread_list_size == 1) {
			rtos->thread_count = 1;
			return ERROR_OK;
		}
	} else {
		/* create space for new thread details */
		rtos->thread_details = malloc(
				sizeof(struct thread_detail) * thread_list_size);
	}

	/* loop over all threads */
	thread_index = first_thread;
	do {
		#define ECOS_THREAD_NAME_STR_SIZE (200)
		char tmp_str[ECOS_THREAD_NAME_STR_SIZE];
		uint32_t name_ptr = 0;
		uint32_t prev_thread_ptr;

		/* Save the thread ID. For eCos the thread has a unique ID distinct from
		 * the thread_index descriptor pointer. We present this scheduler ID
		 * instead of the descriptor memory address. */
		uint16_t thread_id = 0;
		retval = target_read_buffer(rtos->target,
				thread_index + param->thread_uniqueid_offset,
				param->uid_width,
				(uint8_t *)&thread_id);
		if (retval != ERROR_OK) {
			LOG_ERROR("Could not read eCos thread id from target");
			return retval;
		}
		rtos->thread_details[tasks_found].threadid = thread_id;

		/* Read the name pointer */
		retval = target_read_buffer(rtos->target,
				thread_index + param->thread_name_offset,
				param->pointer_width,
				(uint8_t *)&name_ptr);
		if (retval != ERROR_OK) {
			LOG_ERROR("Could not read eCos thread name pointer from target");
			return retval;
		}

		/* Read the thread name */
		retval =
			target_read_buffer(rtos->target,
				name_ptr,
				ECOS_THREAD_NAME_STR_SIZE,
				(uint8_t *)&tmp_str);
		if (retval != ERROR_OK) {
			LOG_ERROR("Error reading thread name from eCos target");
			return retval;
		}
		tmp_str[ECOS_THREAD_NAME_STR_SIZE-1] = '\x00';

		/* Since eCos can have arbitrary C string names we can sometimes
		 * get an internal warning from GDB about "not well-formed
		 * (invalid token)" since the XML post-processing done by GDB on
		 * the OpenOCD returned response containing the thread strings
		 * is not escaped. For example the eCos kernel testsuite
		 * application tm_basic uses the thread name "<<NULL>>" which
		 * will trigger this failure unless escaped. */
		if (tmp_str[0] == '\x00') {
			snprintf(tmp_str, ECOS_THREAD_NAME_STR_SIZE, "NoName:[0x%08" PRIX32 "]", thread_index);
		} else {
			/* The following is a workaround to avoid any issues
			 * from arbitrary eCos thread names causing GDB/OpenOCD
			 * issues. We limit the escaped thread name passed to
			 * GDB to the same length as the un-escaped just to
			 * avoid overly long strings. */
			char esc_str[ECOS_THREAD_NAME_STR_SIZE];
			bool escaped = ecos_escape_string(tmp_str, esc_str, sizeof(esc_str));
			if (escaped)
				strcpy(tmp_str, esc_str);
		}

		rtos->thread_details[tasks_found].thread_name_str =
			malloc(strlen(tmp_str)+1);
		strcpy(rtos->thread_details[tasks_found].thread_name_str, tmp_str);

		/* Read the thread status */
		int64_t thread_status = 0;
		retval = target_read_buffer(rtos->target,
				thread_index + param->thread_state_offset,
				param->state_width,
				(uint8_t *)&thread_status);
		if (retval != ERROR_OK) {
			LOG_ERROR("Error reading thread state from eCos target");
			return retval;
		}

		/* The thread_status is a BITMASK */
		char state_desc[21];		/* Enough for "suspended+countsleep\0" maximum */

		if (thread_status & SUSPENDED)
			strcpy(state_desc, "suspended+");
		else
			state_desc[0] = '\0';

		switch (thread_status & ~SUSPENDED) {
		case RUNNING:
			if (thread_index == current_thread_addr)
				strcat(state_desc, "running");
			else if (thread_status & SUSPENDED)
				state_desc[9] = '\0';	/* Drop '+' from "suspended+" */
			else
				strcat(state_desc, "ready");
			break;
		case SLEEPING:
			strcat(state_desc, "sleeping");
			break;
		case SLEEPSET:
		case COUNTSLEEP:
			strcat(state_desc, "counted sleep");
			break;
		case CREATING:
			strcpy(state_desc, "creating");
			break;
		case EXITED:
			strcpy(state_desc, "exited");
			break;
		default:
			strcpy(state_desc, "unknown state");
			break;
		}

		/* For the moment we do not bother decoding the wake reason for the
		 * active "running" thread, but it is useful providing the sleep reason
		 * for stacked threads. */
		int64_t sleep_reason = 0; /* sleep reason */

		if (thread_index != current_thread_addr &&
			ecos_value(rtos, ECOS_VAL_COMMON_THREAD_SLEEP_SIZE)) {
			retval = target_read_buffer(rtos->target,
				(thread_index + ecos_value(rtos, ECOS_VAL_COMMON_THREAD_SLEEP_OFF)),
				ecos_value(rtos, ECOS_VAL_COMMON_THREAD_SLEEP_SIZE),
				(uint8_t *)&sleep_reason);
			if (retval != ERROR_OK) {
				LOG_ERROR("Error reading thread sleep reason from eCos target");
				return retval;
			}
			if (sleep_reason < 0 ||
				sleep_reason > (int64_t)ARRAY_SIZE(ecos_thread_reasons)) {
				sleep_reason = 0;
			}
		}

		/* We do not display anything for the Cyg_Thread::NONE reason */
		size_t tr_extra = 0;
		const char *reason_desc = NULL;
		if (sleep_reason)
			reason_desc = ecos_thread_reasons[sleep_reason].desc;
		if (reason_desc)
			tr_extra = 2 + strlen(reason_desc) + 1;

		/* Display thread priority if available: */
		int64_t priority = 0;
		size_t pri_extra = 0;
		if (ecos_value(rtos, ECOS_VAL_COMMON_THREAD_PRI_SIZE)) {
			retval = target_read_buffer(rtos->target,
				(thread_index + ecos_value(rtos, ECOS_VAL_COMMON_THREAD_PRI_OFF)),
				ecos_value(rtos, ECOS_VAL_COMMON_THREAD_PRI_SIZE),
				(uint8_t *)&priority);
			if (retval != ERROR_OK) {
				LOG_ERROR("Error reading thread priority from eCos target");
				return retval;
			}
			pri_extra = (12 + 20); /* worst-case ", Priority: " */
		}

		size_t eilen = (8 + strlen(state_desc) + tr_extra + pri_extra);
		char *eistr = malloc(eilen);
		/* We do not need to treat a malloc failure as a fatal error here since
		 * the code below will just not report extra thread information if NULL,
		 * thus allowing all of the threads to be enumerated even with reduced
		 * information when the host is low on memory. However... */
		if (!eistr) {
			LOG_ERROR("OOM allocating extra information buffer");
			return ERROR_FAIL;
		}

		int soff = snprintf(eistr, eilen, "State: %s", state_desc);
		if (tr_extra && reason_desc)
			soff += snprintf(&eistr[soff], (eilen - soff), " (%s)", reason_desc);
		if (pri_extra)
			(void)snprintf(&eistr[soff], (eilen - soff), ", Priority: %" PRId64 "", priority);
		rtos->thread_details[tasks_found].extra_info_str = eistr;

		rtos->thread_details[tasks_found].exists = true;

		tasks_found++;
		prev_thread_ptr = thread_index;

		/* Get the location of the next thread structure. */
		thread_index = rtos->symbols[ECOS_VAL_THREAD_LIST].address;
		retval = target_read_buffer(rtos->target,
				prev_thread_ptr + param->thread_next_offset,
				param->pointer_width,
				(uint8_t *) &thread_index);
		if (retval != ERROR_OK) {
			LOG_ERROR("Error reading next thread pointer in eCos thread list");
			return retval;
		}
	} while (thread_index != first_thread);

	rtos->thread_count = tasks_found;
	return ERROR_OK;
}

static int ecos_get_thread_reg_list(struct rtos *rtos, int64_t thread_id,
		struct rtos_reg **reg_list, int *num_regs)
{
	int retval;
	struct ecos_params *param;

	if (!rtos)
		return -1;

	if (thread_id == 0)
		return -2;

	if (!rtos->rtos_specific_params)
		return -3;

	param = rtos->rtos_specific_params;

	retval = ecos_check_app_info(rtos, param);
	if (retval != ERROR_OK)
		return retval;

	/* We can get memory access errors reported by this function on
	 * re-connecting to a board with stale thread information in memory. The
	 * initial ecos_update_threads() is called twice and may read
	 * stale/invalid information depending on the memory state. This happens
	 * as part of the "target remote" connection so cannot be avoided by GDB
	 * scripting. It is not critical and allowing the application to run and
	 * initialise its BSS etc. will allow correct thread and register
	 * information to be obtained. This really only affects debug sessions
	 * where "info thr" is used before the initial run-time initialisation
	 * has occurred. */

	/* Find the thread with that thread id */
	uint16_t id = 0;
	uint32_t thread_list_head = rtos->symbols[ECOS_VAL_THREAD_LIST].address;
	uint32_t thread_index;
	target_read_buffer(rtos->target, thread_list_head, param->pointer_width,
			(uint8_t *)&thread_index);
	bool done = false;
	while (!done) {
		retval = target_read_buffer(rtos->target,
				thread_index + param->thread_uniqueid_offset,
				param->uid_width,
				(uint8_t *)&id);
		if (retval != ERROR_OK) {
			LOG_ERROR("Error reading unique id from eCos thread 0x%08" PRIX32 "", thread_index);
			return retval;
		}

		if (id == thread_id) {
			done = true;
			break;
		}
		target_read_buffer(rtos->target,
			thread_index + param->thread_next_offset,
			param->pointer_width,
			(uint8_t *) &thread_index);
	}

	if (done) {
		/* Read the stack pointer */
		int64_t stack_ptr = 0;
		retval = target_read_buffer(rtos->target,
				thread_index + param->thread_stack_offset,
				param->pointer_width,
				(uint8_t *)&stack_ptr);
		if (retval != ERROR_OK) {
			LOG_ERROR("Error reading stack frame from eCos thread");
			return retval;
		}

		if (!stack_ptr) {
			LOG_ERROR("NULL stack pointer in thread %" PRIu64, thread_id);
			return -5;
		}

		const struct rtos_register_stacking *stacking_info = NULL;
		if (param->target_stack_layout) {
			retval = param->target_stack_layout(rtos, param, stack_ptr, &stacking_info);
			if (retval != ERROR_OK) {
				LOG_ERROR("Error reading stack layout for eCos thread");
				return retval;
			}
		}
		if (!stacking_info)
			stacking_info = &rtos_ecos_cortex_m3_stacking;

		return rtos_generic_stack_read(rtos->target,
			stacking_info,
			stack_ptr,
			reg_list,
			num_regs);
	}

	return -1;
}

/* NOTE: This is only called once when the first GDB connection is made to
 * OpenOCD and not on subsequent connections (when the application symbol table
 * may have changed, affecting the offsets of critical fields and the stacked
 * context shape). */
static int ecos_get_symbol_list_to_lookup(struct symbol_table_elem *symbol_list[])
{
	unsigned int i;
	*symbol_list = calloc(
			ARRAY_SIZE(ecos_symbol_list), sizeof(struct symbol_table_elem));

	/* If the target reference was passed into this function we could limit
	 * the symbols we need to lookup to the target_type_name(target) based
	 * range. For the moment we need to provide a single vector with all of
	 * the symbols across all of the supported architectures. */
	for (i = 0; i < ARRAY_SIZE(ecos_symbol_list); i++) {
		(*symbol_list)[i].symbol_name = ecos_symbol_list[i].name;
		(*symbol_list)[i].optional = ecos_symbol_list[i].optional;
	}

	return 0;
}

/* NOTE: Only called by rtos.c:rtos_qsymbol() when auto-detecting the RTOS. If
 * the target configuration uses the explicit "-rtos" config option then this
 * detection routine is NOT called. */
static bool ecos_detect_rtos(struct target *target)
{
	if ((target->rtos->symbols) &&
			(target->rtos->symbols[ECOS_VAL_THREAD_LIST].address != 0)) {
		/* looks like eCos */
		return true;
	}
	return false;
}

/* Since we should never have 0 as a valid eCos thread ID we use $Hg0 as the
 * indicator of a new session as regards flushing any cached state. */
static int ecos_packet_hook(struct connection *connection,
		const char *packet, int packet_size)
{
	int64_t current_threadid;

	if (packet[0] == 'H' && packet[1] == 'g') {
		int numscan = sscanf(packet, "Hg%16" SCNx64, &current_threadid);
		if (numscan == 1 && current_threadid == 0) {
			struct target *target = get_target_from_connection(connection);
			if (target && target->rtos && target->rtos->rtos_specific_params) {
				struct ecos_params *param;
				param = target->rtos->rtos_specific_params;
				param->flush_common = true;
			}
		}
	}

	return rtos_thread_packet(connection, packet, packet_size);
}

/* Called at start of day when eCos detected or specified in config file. */
static int ecos_create(struct target *target)
{
	for (unsigned int i = 0; i < ARRAY_SIZE(ecos_params_list); i++) {
		const char * const *tnames = ecos_params_list[i].target_names;
		while (*tnames) {
			if (strcmp(*tnames, target_type_name(target)) == 0) {
				/* LOG_DEBUG("eCos: matched target \"%s\"", target_type_name(target)); */
				target->rtos->rtos_specific_params = (void *)&ecos_params_list[i];
				ecos_params_list[i].flush_common = true;
				ecos_params_list[i].stacking_info = NULL;
				target->rtos->current_thread = 0;
				target->rtos->thread_details = NULL;

				/* We use the $Hg0 packet as a new GDB connection "start-of-day" hook to
				 * force a re-cache of information. It is possible for a single OpenOCD
				 * session to be connected to a target with multiple GDB debug sessions
				 * started/stopped. With eCos it is possible for those GDB sessions to
				 * present applications with different offsets within a thread
				 * descriptor for fields used by this module, and for the stacked
				 * context within the connected target architecture to differ between
				 * applications and even between threads in a single application. So we
				 * need to ensure any information we cache is flushed on an application
				 * change, and GDB referencing an invalid eCos thread ID (0) is a good
				 * enough point, since we can accept the re-cache hit if that packet
				 * appears during an established session, whilst benefiting from not
				 * re-loading information on every update_threads or get_thread_reg_list
				 * call. */
				target->rtos->gdb_thread_packet = ecos_packet_hook;
				/* We do not currently use the target->rtos->gdb_target_for_threadid
				 * hook. */
				return 0;
			}
			tnames++;
		}
	}

	LOG_ERROR("Could not find target in eCos compatibility list");
	return -1;
}