1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
|
/* SPDX-License-Identifier: GPL-2.0-or-later */
/***************************************************************************
* Copyright (C) 2004, 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* Copyright (C) 2007,2008 Øyvind Harboe *
* oyvind.harboe@zylin.com *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "helper/replacements.h"
#include "log.h"
#include "binarybuffer.h"
static const unsigned char bit_reverse_table256[] = {
0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0,
0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8,
0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4,
0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC,
0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2,
0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,
0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6,
0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,
0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,
0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9,
0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,
0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,
0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3,
0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,
0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7,
0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF
};
static const char hex_digits[] = {
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'a', 'b', 'c', 'd', 'e', 'f'
};
void *buf_cpy(const void *from, void *_to, unsigned size)
{
if (!from || !_to)
return NULL;
/* copy entire buffer */
memcpy(_to, from, DIV_ROUND_UP(size, 8));
/* mask out bits that don't belong to the buffer */
unsigned trailing_bits = size % 8;
if (trailing_bits) {
uint8_t *to = _to;
to[size / 8] &= (1 << trailing_bits) - 1;
}
return _to;
}
static bool buf_cmp_masked(uint8_t a, uint8_t b, uint8_t m)
{
return (a & m) != (b & m);
}
static bool buf_cmp_trailing(uint8_t a, uint8_t b, uint8_t m, unsigned trailing)
{
uint8_t mask = (1 << trailing) - 1;
return buf_cmp_masked(a, b, mask & m);
}
bool buf_cmp(const void *_buf1, const void *_buf2, unsigned size)
{
if (!_buf1 || !_buf2)
return _buf1 != _buf2;
unsigned last = size / 8;
if (memcmp(_buf1, _buf2, last) != 0)
return false;
unsigned trailing = size % 8;
if (!trailing)
return false;
const uint8_t *buf1 = _buf1, *buf2 = _buf2;
return buf_cmp_trailing(buf1[last], buf2[last], 0xff, trailing);
}
bool buf_cmp_mask(const void *_buf1, const void *_buf2,
const void *_mask, unsigned size)
{
if (!_buf1 || !_buf2)
return _buf1 != _buf2 || _buf1 != _mask;
const uint8_t *buf1 = _buf1, *buf2 = _buf2, *mask = _mask;
unsigned last = size / 8;
for (unsigned i = 0; i < last; i++) {
if (buf_cmp_masked(buf1[i], buf2[i], mask[i]))
return true;
}
unsigned trailing = size % 8;
if (!trailing)
return false;
return buf_cmp_trailing(buf1[last], buf2[last], mask[last], trailing);
}
void *buf_set_ones(void *_buf, unsigned size)
{
uint8_t *buf = _buf;
if (!buf)
return NULL;
memset(buf, 0xff, size / 8);
unsigned trailing_bits = size % 8;
if (trailing_bits)
buf[size / 8] = (1 << trailing_bits) - 1;
return buf;
}
void *buf_set_buf(const void *_src, unsigned src_start,
void *_dst, unsigned dst_start, unsigned len)
{
const uint8_t *src = _src;
uint8_t *dst = _dst;
unsigned i, sb, db, sq, dq, lb, lq;
sb = src_start / 8;
db = dst_start / 8;
sq = src_start % 8;
dq = dst_start % 8;
lb = len / 8;
lq = len % 8;
src += sb;
dst += db;
/* check if both buffers are on byte boundary and
* len is a multiple of 8bit so we can simple copy
* the buffer */
if ((sq == 0) && (dq == 0) && (lq == 0)) {
for (i = 0; i < lb; i++)
*dst++ = *src++;
return _dst;
}
/* fallback to slow bit copy */
for (i = 0; i < len; i++) {
if (((*src >> (sq&7)) & 1) == 1)
*dst |= 1 << (dq&7);
else
*dst &= ~(1 << (dq&7));
if (sq++ == 7) {
sq = 0;
src++;
}
if (dq++ == 7) {
dq = 0;
dst++;
}
}
return _dst;
}
uint32_t flip_u32(uint32_t value, unsigned int num)
{
uint32_t c = (bit_reverse_table256[value & 0xff] << 24) |
(bit_reverse_table256[(value >> 8) & 0xff] << 16) |
(bit_reverse_table256[(value >> 16) & 0xff] << 8) |
(bit_reverse_table256[(value >> 24) & 0xff]);
if (num < 32)
c = c >> (32 - num);
return c;
}
static int ceil_f_to_u32(float x)
{
if (x < 0) /* return zero for negative numbers */
return 0;
uint32_t y = x; /* cut off fraction */
if ((x - y) > 0.0) /* if there was a fractional part, increase by one */
y++;
return y;
}
char *buf_to_hex_str(const void *_buf, unsigned buf_len)
{
unsigned len_bytes = DIV_ROUND_UP(buf_len, 8);
char *str = calloc(len_bytes * 2 + 1, 1);
const uint8_t *buf = _buf;
for (unsigned i = 0; i < len_bytes; i++) {
uint8_t tmp = buf[len_bytes - i - 1];
if ((i == 0) && (buf_len % 8))
tmp &= (0xff >> (8 - (buf_len % 8)));
str[2 * i] = hex_digits[tmp >> 4];
str[2 * i + 1] = hex_digits[tmp & 0xf];
}
return str;
}
/** identify radix, and skip radix-prefix (0, 0x or 0X) */
static void str_radix_guess(const char **_str, unsigned *_str_len,
unsigned *_radix)
{
unsigned radix = *_radix;
if (radix != 0)
return;
const char *str = *_str;
unsigned str_len = *_str_len;
if (str[0] == '0' && (str[1] == 'x' || str[1] == 'X')) {
radix = 16;
str += 2;
str_len -= 2;
} else if ((str[0] == '0') && (str_len != 1)) {
radix = 8;
str += 1;
str_len -= 1;
} else
radix = 10;
*_str = str;
*_str_len = str_len;
*_radix = radix;
}
int str_to_buf(const char *str, unsigned str_len,
void *_buf, unsigned buf_len, unsigned radix)
{
str_radix_guess(&str, &str_len, &radix);
float factor;
if (radix == 16)
factor = 0.5; /* log(16) / log(256) = 0.5 */
else if (radix == 10)
factor = 0.41524; /* log(10) / log(256) = 0.41524 */
else if (radix == 8)
factor = 0.375; /* log(8) / log(256) = 0.375 */
else
return 0;
/* copy to zero-terminated buffer */
char *charbuf = strndup(str, str_len);
/* number of digits in base-256 notation */
unsigned b256_len = ceil_f_to_u32(str_len * factor);
uint8_t *b256_buf = calloc(b256_len, 1);
/* go through zero terminated buffer
* input digits (ASCII) */
unsigned i;
for (i = 0; charbuf[i]; i++) {
uint32_t tmp = charbuf[i];
if ((tmp >= '0') && (tmp <= '9'))
tmp = (tmp - '0');
else if ((tmp >= 'a') && (tmp <= 'f'))
tmp = (tmp - 'a' + 10);
else if ((tmp >= 'A') && (tmp <= 'F'))
tmp = (tmp - 'A' + 10);
else
continue; /* skip characters other than [0-9,a-f,A-F] */
if (tmp >= radix)
continue; /* skip digits invalid for the current radix */
/* base-256 digits */
for (unsigned j = 0; j < b256_len; j++) {
tmp += (uint32_t)b256_buf[j] * radix;
b256_buf[j] = (uint8_t)(tmp & 0xFF);
tmp >>= 8;
}
}
uint8_t *buf = _buf;
for (unsigned j = 0; j < DIV_ROUND_UP(buf_len, 8); j++) {
if (j < b256_len)
buf[j] = b256_buf[j];
else
buf[j] = 0;
}
/* mask out bits that don't belong to the buffer */
if (buf_len % 8)
buf[(buf_len / 8)] &= 0xff >> (8 - (buf_len % 8));
free(b256_buf);
free(charbuf);
return i;
}
void bit_copy_queue_init(struct bit_copy_queue *q)
{
INIT_LIST_HEAD(&q->list);
}
int bit_copy_queued(struct bit_copy_queue *q, uint8_t *dst, unsigned dst_offset, const uint8_t *src,
unsigned src_offset, unsigned bit_count)
{
struct bit_copy_queue_entry *qe = malloc(sizeof(*qe));
if (!qe)
return ERROR_FAIL;
qe->dst = dst;
qe->dst_offset = dst_offset;
qe->src = src;
qe->src_offset = src_offset;
qe->bit_count = bit_count;
list_add_tail(&qe->list, &q->list);
return ERROR_OK;
}
void bit_copy_execute(struct bit_copy_queue *q)
{
struct bit_copy_queue_entry *qe;
struct bit_copy_queue_entry *tmp;
list_for_each_entry_safe(qe, tmp, &q->list, list) {
bit_copy(qe->dst, qe->dst_offset, qe->src, qe->src_offset, qe->bit_count);
list_del(&qe->list);
free(qe);
}
}
void bit_copy_discard(struct bit_copy_queue *q)
{
struct bit_copy_queue_entry *qe;
struct bit_copy_queue_entry *tmp;
list_for_each_entry_safe(qe, tmp, &q->list, list) {
list_del(&qe->list);
free(qe);
}
}
/**
* Convert a string of hexadecimal pairs into its binary
* representation.
*
* @param[out] bin Buffer to store binary representation. The buffer size must
* be at least @p count.
* @param[in] hex String with hexadecimal pairs to convert into its binary
* representation.
* @param[in] count Number of hexadecimal pairs to convert.
*
* @return The number of converted hexadecimal pairs.
*/
size_t unhexify(uint8_t *bin, const char *hex, size_t count)
{
size_t i;
char tmp;
if (!bin || !hex)
return 0;
memset(bin, 0, count);
for (i = 0; i < 2 * count; i++) {
if (hex[i] >= 'a' && hex[i] <= 'f')
tmp = hex[i] - 'a' + 10;
else if (hex[i] >= 'A' && hex[i] <= 'F')
tmp = hex[i] - 'A' + 10;
else if (hex[i] >= '0' && hex[i] <= '9')
tmp = hex[i] - '0';
else
return i / 2;
bin[i / 2] |= tmp << (4 * ((i + 1) % 2));
}
return i / 2;
}
/**
* Convert binary data into a string of hexadecimal pairs.
*
* @param[out] hex Buffer to store string of hexadecimal pairs. The buffer size
* must be at least @p length.
* @param[in] bin Buffer with binary data to convert into hexadecimal pairs.
* @param[in] count Number of bytes to convert.
* @param[in] length Maximum number of characters, including null-terminator,
* to store into @p hex.
*
* @returns The length of the converted string excluding null-terminator.
*/
size_t hexify(char *hex, const uint8_t *bin, size_t count, size_t length)
{
size_t i;
uint8_t tmp;
if (!length)
return 0;
for (i = 0; i < length - 1 && i < 2 * count; i++) {
tmp = (bin[i / 2] >> (4 * ((i + 1) % 2))) & 0x0f;
hex[i] = hex_digits[tmp];
}
hex[i] = 0;
return i;
}
void buffer_shr(void *_buf, unsigned buf_len, unsigned count)
{
unsigned i;
unsigned char *buf = _buf;
unsigned bytes_to_remove;
unsigned shift;
bytes_to_remove = count / 8;
shift = count - (bytes_to_remove * 8);
for (i = 0; i < (buf_len - 1); i++)
buf[i] = (buf[i] >> shift) | ((buf[i+1] << (8 - shift)) & 0xff);
buf[(buf_len - 1)] = buf[(buf_len - 1)] >> shift;
if (bytes_to_remove) {
memmove(buf, &buf[bytes_to_remove], buf_len - bytes_to_remove);
memset(&buf[buf_len - bytes_to_remove], 0, bytes_to_remove);
}
}
|