1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
|
/**************************************************************************
* Copyright (C) 2015 Jeff Ciesielski <jeffciesielski@gmail.com> *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include <helper/binarybuffer.h>
#include <target/algorithm.h>
#include <target/armv7m.h>
/* Maximum number of sectors */
#define MAX_XMC_SECTORS 12
/* System control unit registers */
#define SCU_REG_BASE 0x50004000
#define SCU_ID_CHIP 0x04
/* Base of the non-cached flash memory */
#define PFLASH_BASE 0x0C000000
/* User configuration block offsets */
#define UCB0_BASE 0x00000000
#define UCB1_BASE 0x00000400
#define UCB2_BASE 0x00000800
/* Flash register base */
#define FLASH_REG_BASE 0x58000000
/* PMU ID Registers */
#define FLASH_REG_PMU_ID (FLASH_REG_BASE | 0x0508)
/* PMU Fields */
#define PMU_MOD_REV_MASK 0xFF
#define PMU_MOD_TYPE_MASK 0xFF00
#define PMU_MOD_NO_MASK 0xFFFF0000
/* Prefetch Config */
#define FLASH_REG_PREF_PCON (FLASH_REG_BASE | 0x4000)
/* Prefetch Fields */
#define PCON_IBYP (1 << 0)
#define PCON_IINV (1 << 1)
/* Flash ID Register */
#define FLASH_REG_FLASH0_ID (FLASH_REG_BASE | 0x2008)
/* Flash Status Register */
#define FLASH_REG_FLASH0_FSR (FLASH_REG_BASE | 0x2010)
#define FSR_PBUSY (0)
#define FSR_FABUSY (1)
#define FSR_PROG (4)
#define FSR_ERASE (5)
#define FSR_PFPAGE (6)
#define FSR_PFOPER (8)
#define FSR_SQER (10)
#define FSR_PROER (11)
#define FSR_PFSBER (12)
#define FSR_PFDBER (14)
#define FSR_PROIN (16)
#define FSR_RPROIN (18)
#define FSR_RPRODIS (19)
#define FSR_WPROIN0 (21)
#define FSR_WPROIN1 (22)
#define FSR_WPROIN2 (23)
#define FSR_WPRODIS0 (25)
#define FSR_WPRODIS1 (26)
#define FSR_SLM (28)
#define FSR_VER (31)
#define FSR_PBUSY_MASK (0x01 << FSR_PBUSY)
#define FSR_FABUSY_MASK (0x01 << FSR_FABUSY)
#define FSR_PROG_MASK (0x01 << FSR_PROG)
#define FSR_ERASE_MASK (0x01 << FSR_ERASE)
#define FSR_PFPAGE_MASK (0x01 << FSR_PFPAGE)
#define FSR_PFOPER_MASK (0x01 << FSR_PFOPER)
#define FSR_SQER_MASK (0x01 << FSR_SQER)
#define FSR_PROER_MASK (0x01 << FSR_PROER)
#define FSR_PFSBER_MASK (0x01 << FSR_PFSBER)
#define FSR_PFDBER_MASK (0x01 << FSR_PFDBER)
#define FSR_PROIN_MASK (0x01 << FSR_PROIN)
#define FSR_RPROIN_MASK (0x01 << FSR_RPROIN)
#define FSR_RPRODIS_MASK (0x01 << FSR_RPRODIS)
#define FSR_WPROIN0_MASK (0x01 << FSR_WPROIN0)
#define FSR_WPROIN1_MASK (0x01 << FSR_WPROIN1)
#define FSR_WPROIN2_MASK (0x01 << FSR_WPROIN2)
#define FSR_WPRODIS0_MASK (0x01 << FSR_WPRODIS0)
#define FSR_WPRODIS1_MASK (0x01 << FSR_WPRODIS1)
#define FSR_SLM_MASK (0x01 << FSR_SLM)
#define FSR_VER_MASK (0x01 << FSR_VER)
/* Flash Config Register */
#define FLASH_REG_FLASH0_FCON (FLASH_REG_BASE | 0x2014)
#define FCON_WSPFLASH (0)
#define FCON_WSECPF (4)
#define FCON_IDLE (13)
#define FCON_ESLDIS (14)
#define FCON_SLEEP (15)
#define FCON_RPA (16)
#define FCON_DCF (17)
#define FCON_DDF (18)
#define FCON_VOPERM (24)
#define FCON_SQERM (25)
#define FCON_PROERM (26)
#define FCON_PFSBERM (27)
#define FCON_PFDBERM (29)
#define FCON_EOBM (31)
#define FCON_WSPFLASH_MASK (0x0f << FCON_WSPFLASH)
#define FCON_WSECPF_MASK (0x01 << FCON_WSECPF)
#define FCON_IDLE_MASK (0x01 << FCON_IDLE)
#define FCON_ESLDIS_MASK (0x01 << FCON_ESLDIS)
#define FCON_SLEEP_MASK (0x01 << FCON_SLEEP)
#define FCON_RPA_MASK (0x01 << FCON_RPA)
#define FCON_DCF_MASK (0x01 << FCON_DCF)
#define FCON_DDF_MASK (0x01 << FCON_DDF)
#define FCON_VOPERM_MASK (0x01 << FCON_VOPERM)
#define FCON_SQERM_MASK (0x01 << FCON_SQERM)
#define FCON_PROERM_MASK (0x01 << FCON_PROERM)
#define FCON_PFSBERM_MASK (0x01 << FCON_PFSBERM)
#define FCON_PFDBERM_MASK (0x01 << FCON_PFDBERM)
#define FCON_EOBM_MASK (0x01 << FCON_EOBM)
/* Flash Margin Control Register */
#define FLASH_REG_FLASH0_MARP (FLASH_REG_BASE | 0x2018)
#define MARP_MARGIN (0)
#define MARP_TRAPDIS (15)
#define MARP_MARGIN_MASK (0x0f << MARP_MARGIN)
#define MARP_TRAPDIS_MASK (0x01 << MARP_TRAPDIS)
/* Flash Protection Registers */
#define FLASH_REG_FLASH0_PROCON0 (FLASH_REG_BASE | 0x2020)
#define FLASH_REG_FLASH0_PROCON1 (FLASH_REG_BASE | 0x2024)
#define FLASH_REG_FLASH0_PROCON2 (FLASH_REG_BASE | 0x2028)
#define PROCON_S0L (0)
#define PROCON_S1L (1)
#define PROCON_S2L (2)
#define PROCON_S3L (3)
#define PROCON_S4L (4)
#define PROCON_S5L (5)
#define PROCON_S6L (6)
#define PROCON_S7L (7)
#define PROCON_S8L (8)
#define PROCON_S9L (9)
#define PROCON_S10_S11L (10)
#define PROCON_RPRO (15)
#define PROCON_S0L_MASK (0x01 << PROCON_S0L)
#define PROCON_S1L_MASK (0x01 << PROCON_S1L)
#define PROCON_S2L_MASK (0x01 << PROCON_S2L)
#define PROCON_S3L_MASK (0x01 << PROCON_S3L)
#define PROCON_S4L_MASK (0x01 << PROCON_S4L)
#define PROCON_S5L_MASK (0x01 << PROCON_S5L)
#define PROCON_S6L_MASK (0x01 << PROCON_S6L)
#define PROCON_S7L_MASK (0x01 << PROCON_S7L)
#define PROCON_S8L_MASK (0x01 << PROCON_S8L)
#define PROCON_S9L_MASK (0x01 << PROCON_S9L)
#define PROCON_S10_S11L_MASK (0x01 << PROCON_S10_S11L)
#define PROCON_RPRO_MASK (0x01 << PROCON_RPRO)
#define FLASH_PROTECT_CONFIRMATION_CODE 0x8AFE15C3
/* Flash controller configuration values */
#define FLASH_ID_XMC4500 0xA2
#define FLASH_ID_XMC4300_XMC4700_4800 0x92
#define FLASH_ID_XMC4100_4200 0x9C
#define FLASH_ID_XMC4400 0x9F
/* Timeouts */
#define FLASH_OP_TIMEOUT 5000
/* Flash commands (write/erase/protect) are performed using special
* command sequences that are written to magic addresses in the flash controller */
/* Command sequence addresses. See reference manual, section 8: Flash Command Sequences */
#define FLASH_CMD_ERASE_1 0x0C005554
#define FLASH_CMD_ERASE_2 0x0C00AAA8
#define FLASH_CMD_ERASE_3 FLASH_CMD_ERASE_1
#define FLASH_CMD_ERASE_4 FLASH_CMD_ERASE_1
#define FLASH_CMD_ERASE_5 FLASH_CMD_ERASE_2
/* ERASE_6 is the sector base address */
#define FLASH_CMD_CLEAR_STATUS FLASH_CMD_ERASE_1
#define FLASH_CMD_ENTER_PAGEMODE FLASH_CMD_ERASE_1
#define FLASH_CMD_LOAD_PAGE_1 0x0C0055F0
#define FLASH_CMD_LOAD_PAGE_2 0x0C0055F4
#define FLASH_CMD_WRITE_PAGE_1 FLASH_CMD_ERASE_1
#define FLASH_CMD_WRITE_PAGE_2 FLASH_CMD_ERASE_2
#define FLASH_CMD_WRITE_PAGE_3 FLASH_CMD_ERASE_1
/* WRITE_PAGE_4 is the page base address */
#define FLASH_CMD_TEMP_UNPROT_1 FLASH_CMD_ERASE_1
#define FLASH_CMD_TEMP_UNPROT_2 FLASH_CMD_ERASE_2
#define FLASH_CMD_TEMP_UNPROT_3 0x0C00553C
#define FLASH_CMD_TEMP_UNPROT_4 FLASH_CMD_ERASE_2
#define FLASH_CMD_TEMP_UNPROT_5 FLASH_CMD_ERASE_2
#define FLASH_CMD_TEMP_UNPROT_6 0x0C005558
struct xmc4xxx_flash_bank {
bool probed;
/* We need the flash controller ID to choose the sector layout */
uint32_t fcon_id;
/* Passwords used for protection operations */
uint32_t pw1;
uint32_t pw2;
bool pw_set;
/* Protection flags */
bool read_protected;
bool write_prot_otp[MAX_XMC_SECTORS];
};
struct xmc4xxx_command_seq {
uint32_t address;
uint32_t magic;
};
/* Sector capacities. See section 8 of xmc4x00_rm */
static const unsigned int sector_capacity_8[8] = {
16, 16, 16, 16, 16, 16, 16, 128
};
static const unsigned int sector_capacity_9[9] = {
16, 16, 16, 16, 16, 16, 16, 128, 256
};
static const unsigned int sector_capacity_12[12] = {
16, 16, 16, 16, 16, 16, 16, 16, 128, 256, 256, 256
};
static const unsigned int sector_capacity_16[16] = {
16, 16, 16, 16, 16, 16, 16, 16, 128, 256, 256, 256, 256, 256, 256, 256
};
static int xmc4xxx_write_command_sequence(struct flash_bank *bank,
struct xmc4xxx_command_seq *seq,
int seq_len)
{
int res = ERROR_OK;
for (int i = 0; i < seq_len; i++) {
res = target_write_u32(bank->target, seq[i].address,
seq[i].magic);
if (res != ERROR_OK)
return res;
}
return ERROR_OK;
}
static int xmc4xxx_load_bank_layout(struct flash_bank *bank)
{
const unsigned int *capacity = NULL;
/* At this point, we know which flash controller ID we're
* talking to and simply need to fill out the bank structure accordingly */
LOG_DEBUG("%u sectors", bank->num_sectors);
switch (bank->num_sectors) {
case 8:
capacity = sector_capacity_8;
break;
case 9:
capacity = sector_capacity_9;
break;
case 12:
capacity = sector_capacity_12;
break;
case 16:
capacity = sector_capacity_16;
break;
default:
LOG_ERROR("Unexpected number of sectors, %u\n",
bank->num_sectors);
return ERROR_FAIL;
}
/* This looks like a bank that we understand, now we know the
* corresponding sector capacities and we can add those up into the
* bank size. */
uint32_t total_offset = 0;
bank->sectors = calloc(bank->num_sectors,
sizeof(struct flash_sector));
for (unsigned int i = 0; i < bank->num_sectors; i++) {
bank->sectors[i].size = capacity[i] * 1024;
bank->sectors[i].offset = total_offset;
bank->sectors[i].is_erased = -1;
bank->sectors[i].is_protected = -1;
bank->size += bank->sectors[i].size;
LOG_DEBUG("\t%d: %uk", i, capacity[i]);
total_offset += bank->sectors[i].size;
}
/* This part doesn't follow the typical standard of 0xff
* being the erased value.*/
bank->default_padded_value = bank->erased_value = 0x00;
return ERROR_OK;
}
static int xmc4xxx_probe(struct flash_bank *bank)
{
int res;
uint32_t devid, config;
struct xmc4xxx_flash_bank *fb = bank->driver_priv;
uint8_t flash_id;
if (fb->probed)
return ERROR_OK;
/* It's not possible for the DAP to access the OTP locations needed for
* probing the part info and Flash geometry so we require that the target
* be halted before proceeding. */
if (bank->target->state != TARGET_HALTED) {
LOG_WARNING("Cannot communicate... target not halted.");
return ERROR_TARGET_NOT_HALTED;
}
/* The SCU registers contain the ID of the chip */
res = target_read_u32(bank->target, SCU_REG_BASE + SCU_ID_CHIP, &devid);
if (res != ERROR_OK) {
LOG_ERROR("Cannot read device identification register.");
return res;
}
/* Make sure this is a XMC4000 family device */
if ((devid & 0xF0000) != 0x40000 && devid != 0) {
LOG_ERROR("Platform ID doesn't match XMC4xxx: 0x%08" PRIx32, devid);
return ERROR_FAIL;
}
LOG_DEBUG("Found XMC4xxx with devid: 0x%08" PRIx32, devid);
/* Now sanity-check the Flash controller itself. */
res = target_read_u32(bank->target, FLASH_REG_FLASH0_ID,
&config);
if (res != ERROR_OK) {
LOG_ERROR("Cannot read Flash bank configuration.");
return res;
}
flash_id = (config & 0xff0000) >> 16;
/* The Flash configuration register is our only means of
* determining the sector layout. We need to make sure that
* we understand the type of controller we're dealing with */
switch (flash_id) {
case FLASH_ID_XMC4100_4200:
bank->num_sectors = 8;
LOG_DEBUG("XMC4xxx: XMC4100/4200 detected.");
break;
case FLASH_ID_XMC4400:
bank->num_sectors = 9;
LOG_DEBUG("XMC4xxx: XMC4400 detected.");
break;
case FLASH_ID_XMC4500:
bank->num_sectors = 12;
LOG_DEBUG("XMC4xxx: XMC4500 detected.");
break;
case FLASH_ID_XMC4300_XMC4700_4800:
bank->num_sectors = 16;
LOG_DEBUG("XMC4xxx: XMC4700/4800 detected.");
break;
default:
LOG_ERROR("XMC4xxx: Unexpected flash ID. got %02" PRIx8,
flash_id);
return ERROR_FAIL;
}
/* Retrieve information about the particular bank we're probing and fill in
* the bank structure accordingly. */
res = xmc4xxx_load_bank_layout(bank);
if (res == ERROR_OK) {
/* We're done */
fb->probed = true;
} else {
LOG_ERROR("Unable to load bank information.");
return ERROR_FAIL;
}
return ERROR_OK;
}
static int xmc4xxx_get_sector_start_addr(struct flash_bank *bank,
unsigned int sector, uint32_t *ret_addr)
{
/* Make sure we understand this sector */
if (sector > bank->num_sectors)
return ERROR_FAIL;
*ret_addr = bank->base + bank->sectors[sector].offset;
return ERROR_OK;
}
static int xmc4xxx_clear_flash_status(struct flash_bank *bank)
{
int res;
/* TODO: Do we need to check for sequence error? */
LOG_INFO("Clearing flash status");
res = target_write_u32(bank->target, FLASH_CMD_CLEAR_STATUS,
0xF5);
if (res != ERROR_OK) {
LOG_ERROR("Unable to write erase command sequence");
return res;
}
return ERROR_OK;
}
static int xmc4xxx_get_flash_status(struct flash_bank *bank, uint32_t *status)
{
int res;
res = target_read_u32(bank->target, FLASH_REG_FLASH0_FSR, status);
if (res != ERROR_OK)
LOG_ERROR("Cannot read flash status register.");
return res;
}
static int xmc4xxx_wait_status_busy(struct flash_bank *bank, int timeout)
{
int res;
uint32_t status;
res = xmc4xxx_get_flash_status(bank, &status);
if (res != ERROR_OK)
return res;
/* While the flash controller is busy, wait */
while (status & FSR_PBUSY_MASK) {
res = xmc4xxx_get_flash_status(bank, &status);
if (res != ERROR_OK)
return res;
if (timeout-- <= 0) {
LOG_ERROR("Timed out waiting for flash");
return ERROR_FAIL;
}
alive_sleep(1);
keep_alive();
}
if (status & FSR_PROER_MASK) {
LOG_ERROR("XMC4xxx flash protected");
res = ERROR_FAIL;
}
return res;
}
static int xmc4xxx_erase_sector(struct flash_bank *bank, uint32_t address,
bool user_config)
{
int res;
uint32_t status;
/* See reference manual table 8.4: Command Sequences for Flash Control */
struct xmc4xxx_command_seq erase_cmd_seq[6] = {
{FLASH_CMD_ERASE_1, 0xAA},
{FLASH_CMD_ERASE_2, 0x55},
{FLASH_CMD_ERASE_3, 0x80},
{FLASH_CMD_ERASE_4, 0xAA},
{FLASH_CMD_ERASE_5, 0x55},
{0xFF, 0xFF} /* Needs filled in */
};
/* We need to fill in the base address of the sector we'll be
* erasing, as well as the magic code that determines whether
* this is a standard flash sector or a user configuration block */
erase_cmd_seq[5].address = address;
if (user_config) {
/* Removing flash protection requires the addition of
* the base address */
erase_cmd_seq[5].address += bank->base;
erase_cmd_seq[5].magic = 0xC0;
} else {
erase_cmd_seq[5].magic = 0x30;
}
res = xmc4xxx_write_command_sequence(bank, erase_cmd_seq,
ARRAY_SIZE(erase_cmd_seq));
if (res != ERROR_OK)
return res;
/* Read the flash status register */
res = target_read_u32(bank->target, FLASH_REG_FLASH0_FSR, &status);
if (res != ERROR_OK) {
LOG_ERROR("Cannot read flash status register.");
return res;
}
/* Check for a sequence error */
if (status & FSR_SQER_MASK) {
LOG_ERROR("Error with flash erase sequence");
return ERROR_FAIL;
}
/* Make sure a flash erase was triggered */
if (!(status & FSR_ERASE_MASK)) {
LOG_ERROR("Flash failed to erase");
return ERROR_FAIL;
}
/* Now we must wait for the erase operation to end */
res = xmc4xxx_wait_status_busy(bank, FLASH_OP_TIMEOUT);
return res;
}
static int xmc4xxx_erase(struct flash_bank *bank, unsigned int first,
unsigned int last)
{
struct xmc4xxx_flash_bank *fb = bank->driver_priv;
int res;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Unable to erase, target is not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (!fb->probed) {
res = xmc4xxx_probe(bank);
if (res != ERROR_OK)
return res;
}
uint32_t tmp_addr;
/* Loop through the sectors and erase each one */
for (unsigned int i = first; i <= last; i++) {
res = xmc4xxx_get_sector_start_addr(bank, i, &tmp_addr);
if (res != ERROR_OK) {
LOG_ERROR("Invalid sector %u", i);
return res;
}
LOG_DEBUG("Erasing sector %u @ 0x%08"PRIx32, i, tmp_addr);
res = xmc4xxx_erase_sector(bank, tmp_addr, false);
if (res != ERROR_OK) {
LOG_ERROR("Unable to write erase command sequence");
goto clear_status_and_exit;
}
/* Now we must wait for the erase operation to end */
res = xmc4xxx_wait_status_busy(bank, FLASH_OP_TIMEOUT);
if (res != ERROR_OK)
goto clear_status_and_exit;
bank->sectors[i].is_erased = 1;
}
clear_status_and_exit:
res = xmc4xxx_clear_flash_status(bank);
return res;
}
static int xmc4xxx_enter_page_mode(struct flash_bank *bank)
{
int res;
uint32_t status;
res = target_write_u32(bank->target, FLASH_CMD_ENTER_PAGEMODE, 0x50);
if (res != ERROR_OK) {
LOG_ERROR("Unable to write enter page mode command");
return ERROR_FAIL;
}
res = xmc4xxx_get_flash_status(bank, &status);
if (res != ERROR_OK)
return res;
/* Make sure we're in page mode */
if (!(status & FSR_PFPAGE_MASK)) {
LOG_ERROR("Unable to enter page mode");
return ERROR_FAIL;
}
/* Make sure we didn't encounter a sequence error */
if (status & FSR_SQER_MASK) {
LOG_ERROR("Sequence error while entering page mode");
return ERROR_FAIL;
}
return res;
}
static int xmc4xxx_write_page(struct flash_bank *bank, const uint8_t *pg_buf,
uint32_t offset, bool user_config)
{
int res;
uint32_t status;
/* Base of the flash write command */
struct xmc4xxx_command_seq write_cmd_seq[4] = {
{FLASH_CMD_WRITE_PAGE_1, 0xAA},
{FLASH_CMD_WRITE_PAGE_2, 0x55},
{FLASH_CMD_WRITE_PAGE_3, 0xFF}, /* Needs filled in */
{0xFF, 0xFF} /* Needs filled in */
};
/* The command sequence differs depending on whether this is
* being written to standard flash or the user configuration
* area */
if (user_config)
write_cmd_seq[2].magic = 0xC0;
else
write_cmd_seq[2].magic = 0xA0;
/* Finally, we need to add the address that this page will be
* written to */
write_cmd_seq[3].address = bank->base + offset;
write_cmd_seq[3].magic = 0xAA;
/* Flash pages are written 256 bytes at a time. For each 256
* byte chunk, we need to:
* 1. Enter page mode. This activates the flash write buffer
* 2. Load the page buffer with data (2x 32 bit words at a time)
* 3. Burn the page buffer into its intended location
* If the starting offset is not on a 256 byte boundary, we
* will need to pad the beginning of the write buffer
* accordingly. Likewise, if the last page does not fill the
* buffer, we should pad it to avoid leftover data from being
* written to flash
*/
res = xmc4xxx_enter_page_mode(bank);
if (res != ERROR_OK)
return res;
/* Copy the data into the page buffer*/
for (int i = 0; i < 256; i += 8) {
uint32_t w_lo = target_buffer_get_u32(bank->target, &pg_buf[i]);
uint32_t w_hi = target_buffer_get_u32(bank->target, &pg_buf[i + 4]);
LOG_DEBUG("WLO: %08"PRIx32, w_lo);
LOG_DEBUG("WHI: %08"PRIx32, w_hi);
/* Data is loaded 2x 32 bit words at a time */
res = target_write_u32(bank->target, FLASH_CMD_LOAD_PAGE_1, w_lo);
if (res != ERROR_OK)
return res;
res = target_write_u32(bank->target, FLASH_CMD_LOAD_PAGE_2, w_hi);
if (res != ERROR_OK)
return res;
/* Check for an error */
res = xmc4xxx_get_flash_status(bank, &status);
if (res != ERROR_OK)
return res;
if (status & FSR_SQER_MASK) {
LOG_ERROR("Error loading page buffer");
return ERROR_FAIL;
}
}
/* The page buffer is now full, time to commit it to flash */
res = xmc4xxx_write_command_sequence(bank, write_cmd_seq, ARRAY_SIZE(write_cmd_seq));
if (res != ERROR_OK) {
LOG_ERROR("Unable to enter write command sequence");
return res;
}
/* Read the flash status register */
res = xmc4xxx_get_flash_status(bank, &status);
if (res != ERROR_OK)
return res;
/* Check for a sequence error */
if (status & FSR_SQER_MASK) {
LOG_ERROR("Error with flash write sequence");
return ERROR_FAIL;
}
/* Make sure a flash write was triggered */
if (!(status & FSR_PROG_MASK)) {
LOG_ERROR("Failed to write flash page");
return ERROR_FAIL;
}
/* Wait for the write operation to end */
res = xmc4xxx_wait_status_busy(bank, FLASH_OP_TIMEOUT);
if (res != ERROR_OK)
return res;
/* TODO: Verify that page was written without error */
return res;
}
static int xmc4xxx_write(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct xmc4xxx_flash_bank *fb = bank->driver_priv;
int res = ERROR_OK;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Unable to erase, target is not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (!fb->probed) {
res = xmc4xxx_probe(bank);
if (res != ERROR_OK)
return res;
}
/* Make sure we won't run off the end of the flash bank */
if ((offset + count) > (bank->size)) {
LOG_ERROR("Attempting to write past the end of flash");
return ERROR_FAIL;
}
/* Attempt to write the passed in buffer to flash */
/* Pages are written 256 bytes at a time, we need to handle
* scenarios where padding is required at the beginning and
* end of a page */
while (count) {
/* page working area */
uint8_t tmp_buf[256] = {0};
/* Amount of data we'll be writing to this page */
int remaining;
int end_pad;
remaining = MIN(count, sizeof(tmp_buf));
end_pad = sizeof(tmp_buf) - remaining;
/* Make sure we're starting on a page boundary */
int start_pad = offset % 256;
if (start_pad) {
LOG_INFO("Write does not start on a 256 byte boundary. "
"Padding by %d bytes", start_pad);
memset(tmp_buf, 0xff, start_pad);
/* Subtract the amount of start offset from
* the amount of data we'll need to write */
remaining -= start_pad;
}
/* Remove the amount we'll be writing from the total count */
count -= remaining;
/* Now copy in the remaining data */
memcpy(&tmp_buf[start_pad], buffer, remaining);
if (end_pad) {
LOG_INFO("Padding end of page @" TARGET_ADDR_FMT " by %d bytes",
bank->base + offset, end_pad);
memset(&tmp_buf[256 - end_pad], 0xff, end_pad);
}
/* Now commit this page to flash, if there was start
* padding, we should subtract that from the target offset */
res = xmc4xxx_write_page(bank, tmp_buf, (offset - start_pad), false);
if (res != ERROR_OK) {
LOG_ERROR("Unable to write flash page");
goto abort_write_and_exit;
}
/* Advance the buffer pointer */
buffer += remaining;
/* Advance the offset */
offset += remaining;
}
abort_write_and_exit:
xmc4xxx_clear_flash_status(bank);
return res;
}
static int xmc4xxx_get_info_command(struct flash_bank *bank, struct command_invocation *cmd)
{
struct xmc4xxx_flash_bank *fb = bank->driver_priv;
uint32_t scu_idcode;
if (bank->target->state != TARGET_HALTED) {
LOG_WARNING("Cannot communicate... target not halted.");
return ERROR_TARGET_NOT_HALTED;
}
/* The SCU registers contain the ID of the chip */
int res = target_read_u32(bank->target, SCU_REG_BASE + SCU_ID_CHIP, &scu_idcode);
if (res != ERROR_OK) {
LOG_ERROR("Cannot read device identification register.");
return res;
}
uint16_t dev_id = (scu_idcode & 0xfff0) >> 4;
uint16_t rev_id = scu_idcode & 0xf;
const char *dev_str;
const char *rev_str = NULL;
switch (dev_id) {
case 0x100:
dev_str = "XMC4100";
switch (rev_id) {
case 0x1:
rev_str = "AA";
break;
case 0x2:
rev_str = "AB";
break;
}
break;
case 0x200:
dev_str = "XMC4200";
switch (rev_id) {
case 0x1:
rev_str = "AA";
break;
case 0x2:
rev_str = "AB";
break;
}
break;
case 0x300:
dev_str = "XMC4300";
switch (rev_id) {
case 0x1:
rev_str = "AA";
}
break;
case 0x400:
dev_str = "XMC4400";
switch (rev_id) {
case 0x1:
rev_str = "AA";
break;
case 0x2:
rev_str = "AB";
break;
}
break;
case 0:
/* XMC4500 EES AA13 with date codes before GE212
* had zero SCU_IDCHIP
*/
dev_str = "XMC4500 EES";
rev_str = "AA13";
break;
case 0x500:
dev_str = "XMC4500";
switch (rev_id) {
case 0x2:
rev_str = "AA";
break;
case 0x3:
rev_str = "AB";
break;
case 0x4:
rev_str = "AC";
break;
}
break;
case 0x700:
dev_str = "XMC4700";
switch (rev_id) {
case 0x1:
rev_str = "EES-AA";
break;
}
break;
case 0x800:
dev_str = "XMC4800";
switch (rev_id) {
case 0x1:
rev_str = "EES-AA";
break;
}
break;
default:
command_print_sameline(cmd, "Cannot identify target as an XMC4xxx. SCU_ID: %"PRIx32 "\n", scu_idcode);
return ERROR_OK;
}
/* String to declare protection data held in the private driver */
char prot_str[512] = {0};
if (fb->read_protected)
snprintf(prot_str, sizeof(prot_str), "\nFlash is read protected");
bool otp_enabled = false;
for (unsigned int i = 0; i < bank->num_sectors; i++)
if (fb->write_prot_otp[i])
otp_enabled = true;
/* If OTP Write protection is enabled (User 2), list each
* sector that has it enabled */
char otp_str[14];
if (otp_enabled) {
strcat(prot_str, "\nOTP Protection is enabled for sectors:\n");
for (unsigned int i = 0; i < bank->num_sectors; i++) {
if (fb->write_prot_otp[i]) {
snprintf(otp_str, sizeof(otp_str), "- %d\n", i);
strncat(prot_str, otp_str, sizeof(prot_str) - strlen(prot_str) - 1);
}
}
}
if (rev_str)
command_print_sameline(cmd, "%s - Rev: %s%s", dev_str, rev_str, prot_str);
else
command_print_sameline(cmd, "%s - Rev: unknown (0x%01x)%s", dev_str, rev_id, prot_str);
return ERROR_OK;
}
static int xmc4xxx_temp_unprotect(struct flash_bank *bank, int user_level)
{
struct xmc4xxx_flash_bank *fb;
int res = ERROR_OK;
uint32_t status = 0;
struct xmc4xxx_command_seq temp_unprot_seq[6] = {
{FLASH_CMD_TEMP_UNPROT_1, 0xAA},
{FLASH_CMD_TEMP_UNPROT_2, 0x55},
{FLASH_CMD_TEMP_UNPROT_3, 0xFF}, /* Needs filled in */
{FLASH_CMD_TEMP_UNPROT_4, 0xFF}, /* Needs filled in */
{FLASH_CMD_TEMP_UNPROT_5, 0xFF}, /* Needs filled in */
{FLASH_CMD_TEMP_UNPROT_6, 0x05}
};
if (user_level < 0 || user_level > 2) {
LOG_ERROR("Invalid user level, must be 0-2");
return ERROR_FAIL;
}
fb = bank->driver_priv;
/* Fill in the user level and passwords */
temp_unprot_seq[2].magic = user_level;
temp_unprot_seq[3].magic = fb->pw1;
temp_unprot_seq[4].magic = fb->pw2;
res = xmc4xxx_write_command_sequence(bank, temp_unprot_seq,
ARRAY_SIZE(temp_unprot_seq));
if (res != ERROR_OK) {
LOG_ERROR("Unable to write temp unprotect sequence");
return res;
}
res = xmc4xxx_get_flash_status(bank, &status);
if (res != ERROR_OK)
return res;
if (status & FSR_WPRODIS0) {
LOG_INFO("Flash is temporarily unprotected");
} else {
LOG_INFO("Unable to disable flash protection");
res = ERROR_FAIL;
}
return res;
}
static int xmc4xxx_flash_unprotect(struct flash_bank *bank, int32_t level)
{
uint32_t addr;
int res;
switch (level) {
case 0:
addr = UCB0_BASE;
break;
case 1:
addr = UCB1_BASE;
break;
default:
LOG_ERROR("Invalid user level. Must be 0-1");
return ERROR_FAIL;
}
res = xmc4xxx_erase_sector(bank, addr, true);
if (res != ERROR_OK)
LOG_ERROR("Error erasing user configuration block");
return res;
}
/* Reference: "XMC4500 Flash Protection.pptx" app note */
static int xmc4xxx_flash_protect(struct flash_bank *bank, int level, bool read_protect,
unsigned int first, unsigned int last)
{
/* User configuration block buffers */
uint8_t ucp0_buf[8 * sizeof(uint32_t)] = {0};
uint32_t ucb_base = 0;
uint32_t procon = 0;
int res = ERROR_OK;
uint32_t status = 0;
bool proin = false;
struct xmc4xxx_flash_bank *fb = bank->driver_priv;
/* Read protect only works for user 0, make sure we don't try
* to do something silly */
if (level != 0 && read_protect) {
LOG_ERROR("Read protection is for user level 0 only!");
return ERROR_FAIL;
}
/* Check to see if protection is already installed for the
* specified user level. If it is, the user configuration
* block will need to be erased before we can continue */
/* Grab the flash status register*/
res = xmc4xxx_get_flash_status(bank, &status);
if (res != ERROR_OK)
return res;
switch (level) {
case 0:
if ((status & FSR_RPROIN_MASK) || (status & FSR_WPROIN0_MASK))
proin = true;
break;
case 1:
if (status & FSR_WPROIN1_MASK)
proin = true;
break;
case 2:
if (status & FSR_WPROIN2_MASK)
proin = true;
break;
}
if (proin) {
LOG_ERROR("Flash protection is installed for user %d"
" and must be removed before continuing", level);
return ERROR_FAIL;
}
/* If this device has 12 flash sectors, protection for
* sectors 10 & 11 are handled jointly. If we are trying to
* write all sectors, we should decrement
* last to ensure we don't write to a register bit that
* doesn't exist*/
if ((bank->num_sectors == 12) && (last == 12))
last--;
/* We need to fill out the procon register representation
* that we will be writing to the device */
for (unsigned int i = first; i <= last; i++)
procon |= 1 << i;
/* If read protection is requested, set the appropriate bit
* (we checked that this is allowed above) */
if (read_protect)
procon |= PROCON_RPRO_MASK;
LOG_DEBUG("Setting flash protection with procon:");
LOG_DEBUG("PROCON: %"PRIx32, procon);
/* First we need to copy in the procon register to the buffer
* we're going to attempt to write. This is written twice */
target_buffer_set_u32(bank->target, &ucp0_buf[0 * 4], procon);
target_buffer_set_u32(bank->target, &ucp0_buf[2 * 4], procon);
/* Now we must copy in both flash passwords. As with the
* procon data, this must be written twice (4 total words
* worth of data) */
target_buffer_set_u32(bank->target, &ucp0_buf[4 * 4], fb->pw1);
target_buffer_set_u32(bank->target, &ucp0_buf[5 * 4], fb->pw2);
target_buffer_set_u32(bank->target, &ucp0_buf[6 * 4], fb->pw1);
target_buffer_set_u32(bank->target, &ucp0_buf[7 * 4], fb->pw2);
/* Finally, (if requested) we copy in the confirmation
* code so that the protection is permanent and will
* require a password to undo. */
target_buffer_set_u32(bank->target, &ucp0_buf[0 * 4], FLASH_PROTECT_CONFIRMATION_CODE);
target_buffer_set_u32(bank->target, &ucp0_buf[2 * 4], FLASH_PROTECT_CONFIRMATION_CODE);
/* Now that the data is copied into place, we must write
* these pages into flash */
/* The user configuration block base depends on what level of
* protection we're trying to install, select the proper one */
switch (level) {
case 0:
ucb_base = UCB0_BASE;
break;
case 1:
ucb_base = UCB1_BASE;
break;
case 2:
ucb_base = UCB2_BASE;
break;
}
/* Write the user config pages */
res = xmc4xxx_write_page(bank, ucp0_buf, ucb_base, true);
if (res != ERROR_OK) {
LOG_ERROR("Error writing user configuration block 0");
return res;
}
return ERROR_OK;
}
static int xmc4xxx_protect(struct flash_bank *bank, int set, unsigned int first,
unsigned int last)
{
int ret;
struct xmc4xxx_flash_bank *fb = bank->driver_priv;
/* Check for flash passwords */
if (!fb->pw_set) {
LOG_ERROR("Flash passwords not set, use xmc4xxx flash_password to set them");
return ERROR_FAIL;
}
/* We want to clear flash protection temporarily*/
if (set == 0) {
LOG_WARNING("Flash protection will be temporarily disabled"
" for all pages (User 0 only)!");
ret = xmc4xxx_temp_unprotect(bank, 0);
return ret;
}
/* Install write protection for user 0 on the specified pages */
ret = xmc4xxx_flash_protect(bank, 0, false, first, last);
return ret;
}
static int xmc4xxx_protect_check(struct flash_bank *bank)
{
int ret;
uint32_t protection[3] = {0};
struct xmc4xxx_flash_bank *fb = bank->driver_priv;
ret = target_read_u32(bank->target, FLASH_REG_FLASH0_PROCON0, &protection[0]);
if (ret != ERROR_OK) {
LOG_ERROR("Unable to read flash User0 protection register");
return ret;
}
ret = target_read_u32(bank->target, FLASH_REG_FLASH0_PROCON1, &protection[1]);
if (ret != ERROR_OK) {
LOG_ERROR("Unable to read flash User1 protection register");
return ret;
}
ret = target_read_u32(bank->target, FLASH_REG_FLASH0_PROCON2, &protection[2]);
if (ret != ERROR_OK) {
LOG_ERROR("Unable to read flash User2 protection register");
return ret;
}
unsigned int sectors = bank->num_sectors;
/* On devices with 12 sectors, sectors 10 & 11 are protected
* together instead of individually */
if (sectors == 12)
sectors--;
/* Clear the protection status */
for (unsigned int i = 0; i < bank->num_sectors; i++) {
bank->sectors[i].is_protected = 0;
fb->write_prot_otp[i] = false;
}
fb->read_protected = false;
/* The xmc4xxx series supports 3 levels of user protection
* (User0, User1 (low priority), and User 2(OTP), we need to
* check all 3 */
for (unsigned int i = 0; i < ARRAY_SIZE(protection); i++) {
/* Check for write protection on every available
* sector */
for (unsigned int j = 0; j < sectors; j++) {
int set = (protection[i] & (1 << j)) ? 1 : 0;
bank->sectors[j].is_protected |= set;
/* Handle sector 11 */
if (j == 10)
bank->sectors[j + 1].is_protected |= set;
/* User 2 indicates this protection is
* permanent, make note in the private driver structure */
if (i == 2 && set) {
fb->write_prot_otp[j] = true;
/* Handle sector 11 */
if (j == 10)
fb->write_prot_otp[j + 1] = true;
}
}
}
/* XMC4xxx also supports read protection, make a note
* in the private driver structure */
if (protection[0] & PROCON_RPRO_MASK)
fb->read_protected = true;
return ERROR_OK;
}
FLASH_BANK_COMMAND_HANDLER(xmc4xxx_flash_bank_command)
{
bank->driver_priv = malloc(sizeof(struct xmc4xxx_flash_bank));
if (!bank->driver_priv)
return ERROR_FLASH_OPERATION_FAILED;
(void)memset(bank->driver_priv, 0, sizeof(struct xmc4xxx_flash_bank));
return ERROR_OK;
}
COMMAND_HANDLER(xmc4xxx_handle_flash_password_command)
{
int res;
struct flash_bank *bank;
if (CMD_ARGC < 3)
return ERROR_COMMAND_SYNTAX_ERROR;
res = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (res != ERROR_OK)
return res;
struct xmc4xxx_flash_bank *fb = bank->driver_priv;
errno = 0;
/* We skip over the flash bank */
fb->pw1 = strtol(CMD_ARGV[1], NULL, 16);
if (errno)
return ERROR_COMMAND_SYNTAX_ERROR;
fb->pw2 = strtol(CMD_ARGV[2], NULL, 16);
if (errno)
return ERROR_COMMAND_SYNTAX_ERROR;
fb->pw_set = true;
command_print(CMD, "XMC4xxx flash passwords set to:\n");
command_print(CMD, "-0x%08"PRIx32"\n", fb->pw1);
command_print(CMD, "-0x%08"PRIx32"\n", fb->pw2);
return ERROR_OK;
}
COMMAND_HANDLER(xmc4xxx_handle_flash_unprotect_command)
{
struct flash_bank *bank;
int res;
int32_t level;
if (CMD_ARGC < 2)
return ERROR_COMMAND_SYNTAX_ERROR;
res = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (res != ERROR_OK)
return res;
COMMAND_PARSE_NUMBER(s32, CMD_ARGV[1], level);
res = xmc4xxx_flash_unprotect(bank, level);
return res;
}
static const struct command_registration xmc4xxx_exec_command_handlers[] = {
{
.name = "flash_password",
.handler = xmc4xxx_handle_flash_password_command,
.mode = COMMAND_EXEC,
.usage = "bank_id password1 password2",
.help = "Set the flash passwords used for protect operations. "
"Passwords should be in standard hex form (0x00000000). "
"(You must call this before any other protect commands) "
"NOTE: The xmc4xxx's UCB area only allows for FOUR cycles. "
"Please use protection carefully!",
},
{
.name = "flash_unprotect",
.handler = xmc4xxx_handle_flash_unprotect_command,
.mode = COMMAND_EXEC,
.usage = "bank_id user_level[0-1]",
.help = "Permanently Removes flash protection (read and write) "
"for the specified user level",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration xmc4xxx_command_handlers[] = {
{
.name = "xmc4xxx",
.mode = COMMAND_ANY,
.help = "xmc4xxx flash command group",
.usage = "",
.chain = xmc4xxx_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
const struct flash_driver xmc4xxx_flash = {
.name = "xmc4xxx",
.commands = xmc4xxx_command_handlers,
.flash_bank_command = xmc4xxx_flash_bank_command,
.erase = xmc4xxx_erase,
.write = xmc4xxx_write,
.read = default_flash_read,
.probe = xmc4xxx_probe,
.auto_probe = xmc4xxx_probe,
.erase_check = default_flash_blank_check,
.info = xmc4xxx_get_info_command,
.protect_check = xmc4xxx_protect_check,
.protect = xmc4xxx_protect,
.free_driver_priv = default_flash_free_driver_priv,
};
|