aboutsummaryrefslogtreecommitdiff
path: root/src/flash/nor/stm32l4x.c
blob: abbb75b466b6a52968fa3a6988fda8f1706a78e6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
/***************************************************************************
 *   Copyright (C) 2015 by Uwe Bonnes                                      *
 *   bon@elektron.ikp.physik.tu-darmstadt.de                               *
 *                                                                         *
 *   Copyright (C) 2019 by Tarek Bochkati for STMicroelectronics           *
 *   tarek.bouchkati@gmail.com                                             *
 *                                                                         *
 *   This program is free software; you can redistribute it and/or modify  *
 *   it under the terms of the GNU General Public License as published by  *
 *   the Free Software Foundation; either version 2 of the License, or     *
 *   (at your option) any later version.                                   *
 *                                                                         *
 *   This program is distributed in the hope that it will be useful,       *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
 *   GNU General Public License for more details.                          *
 *                                                                         *
 *   You should have received a copy of the GNU General Public License     *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
 ***************************************************************************/

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include "imp.h"
#include <helper/binarybuffer.h>
#include <target/algorithm.h>
#include <target/armv7m.h>
#include "bits.h"

/* STM32L4xxx series for reference.
 *
 * RM0351 (STM32L4x5/STM32L4x6)
 * http://www.st.com/resource/en/reference_manual/dm00083560.pdf
 *
 * RM0394 (STM32L43x/44x/45x/46x)
 * http://www.st.com/resource/en/reference_manual/dm00151940.pdf
 *
 * RM0432 (STM32L4R/4Sxx)
 * http://www.st.com/resource/en/reference_manual/dm00310109.pdf
 *
 * STM32L476RG Datasheet (for erase timing)
 * http://www.st.com/resource/en/datasheet/stm32l476rg.pdf
 *
 * The RM0351 devices have normally two banks, but on 512 and 256 kiB devices
 * an option byte is available to map all sectors to the first bank.
 * Both STM32 banks are treated as one OpenOCD bank, as other STM32 devices
 * handlers do!
 *
 * RM0394 devices have a single bank only.
 *
 * RM0432 devices have single and dual bank operating modes.
 *  - for STM32L4R/Sxx the FLASH size is 2Mbyte or 1Mbyte.
 *  - for STM32L4P/Q5x the FLASH size is 1Mbyte or 512Kbyte.
 * Bank page (sector) size is 4Kbyte (dual mode) or 8Kbyte (single mode).
 *
 * Bank mode is controlled by two different bits in option bytes register.
 *  - for STM32L4R/Sxx
 *    In 2M FLASH devices bit 22 (DBANK) controls Dual Bank mode.
 *    In 1M FLASH devices bit 21 (DB1M) controls Dual Bank mode.
 *  - for STM32L4P5/Q5x
 *    In 1M FLASH devices bit 22 (DBANK) controls Dual Bank mode.
 *    In 512K FLASH devices bit 21 (DB512K) controls Dual Bank mode.
 *
 */

/* Erase time can be as high as 25ms, 10x this and assume it's toast... */

#define FLASH_ERASE_TIMEOUT 250

/* Flash registers offsets */
#define STM32_FLASH_ACR     0x00
#define STM32_FLASH_KEYR    0x08
#define STM32_FLASH_OPTKEYR 0x0c
#define STM32_FLASH_SR      0x10
#define STM32_FLASH_CR      0x14
#define STM32_FLASH_OPTR    0x20
#define STM32_FLASH_WRP1AR  0x2c
#define STM32_FLASH_WRP1BR  0x30
#define STM32_FLASH_WRP2AR  0x4c
#define STM32_FLASH_WRP2BR  0x50

/* FLASH_CR register bits */
#define FLASH_PG        (1 << 0)
#define FLASH_PER       (1 << 1)
#define FLASH_MER1      (1 << 2)
#define FLASH_PAGE_SHIFT      3
#define FLASH_CR_BKER   (1 << 11)
#define FLASH_MER2      (1 << 15)
#define FLASH_STRT      (1 << 16)
#define FLASH_OPTSTRT   (1 << 17)
#define FLASH_EOPIE     (1 << 24)
#define FLASH_ERRIE     (1 << 25)
#define FLASH_OBLLAUNCH (1 << 27)
#define FLASH_OPTLOCK   (1 << 30)
#define FLASH_LOCK      (1 << 31)

/* FLASH_SR register bits */
#define FLASH_BSY      (1 << 16)
/* Fast programming not used => related errors not used*/
#define FLASH_PGSERR   (1 << 7) /* Programming sequence error */
#define FLASH_SIZERR   (1 << 6) /* Size error */
#define FLASH_PGAERR   (1 << 5) /* Programming alignment error */
#define FLASH_WRPERR   (1 << 4) /* Write protection error */
#define FLASH_PROGERR  (1 << 3) /* Programming error */
#define FLASH_OPERR    (1 << 1) /* Operation error */
#define FLASH_EOP      (1 << 0) /* End of operation */
#define FLASH_ERROR (FLASH_PGSERR | FLASH_SIZERR | FLASH_PGAERR | FLASH_WRPERR | FLASH_PROGERR | FLASH_OPERR)

/* register unlock keys */
#define KEY1           0x45670123
#define KEY2           0xCDEF89AB

/* option register unlock key */
#define OPTKEY1        0x08192A3B
#define OPTKEY2        0x4C5D6E7F

#define RDP_LEVEL_0	   0xAA
#define RDP_LEVEL_1	   0xBB
#define RDP_LEVEL_2	   0xCC


/* other registers */
#define DBGMCU_IDCODE	0xE0042000


struct stm32l4_rev {
	const uint16_t rev;
	const char *str;
};

struct stm32l4_part_info {
	uint16_t id;
	const char *device_str;
	const struct stm32l4_rev *revs;
	const size_t num_revs;
	const uint16_t max_flash_size_kb;
	const bool has_dual_bank;
	const uint32_t flash_regs_base;
	const uint32_t fsize_addr;
};

struct stm32l4_flash_bank {
	bool probed;
	uint32_t idcode;
	int bank1_sectors;
	bool dual_bank_mode;
	int hole_sectors;
	const struct stm32l4_part_info *part_info;
};

static const struct stm32l4_rev stm32_415_revs[] = {
	{ 0x1000, "1" }, { 0x1001, "2" }, { 0x1003, "3" }, { 0x1007, "4" }
};

static const struct stm32l4_rev stm32_435_revs[] = {
	{ 0x1000, "A" }, { 0x1001, "Z" }, { 0x2001, "Y" },
};

static const struct stm32l4_rev stm32_461_revs[] = {
	{ 0x1000, "A" }, { 0x2000, "B" },
};

static const struct stm32l4_rev stm32_462_revs[] = {
		{ 0x1000, "A" }, { 0x1001, "Z" }, { 0x2001, "Y" },
};

static const struct stm32l4_rev stm32_464_revs[] = {
	{ 0x1000, "A" },
};

static const struct stm32l4_rev stm32_470_revs[] = {
	{ 0x1000, "A" }, { 0x1001, "Z" }, { 0x1003, "Y" }, { 0x100F, "W" },
};

static const struct stm32l4_rev stm32_471_revs[] = {
	{ 0x1000, "1" },
};

static const struct stm32l4_rev stm32_495_revs[] = {
	{ 0x2001, "2.1" },
};

static const struct stm32l4_part_info stm32l4_parts[] = {
	{
	  .id                    = 0x415,
	  .revs                  = stm32_415_revs,
	  .num_revs              = ARRAY_SIZE(stm32_415_revs),
	  .device_str            = "STM32L47/L48xx",
	  .max_flash_size_kb     = 1024,
	  .has_dual_bank         = true,
	  .flash_regs_base       = 0x40022000,
	  .fsize_addr            = 0x1FFF75E0,
	},
	{
	  .id                    = 0x435,
	  .revs                  = stm32_435_revs,
	  .num_revs              = ARRAY_SIZE(stm32_435_revs),
	  .device_str            = "STM32L43/L44xx",
	  .max_flash_size_kb     = 256,
	  .has_dual_bank         = false,
	  .flash_regs_base       = 0x40022000,
	  .fsize_addr            = 0x1FFF75E0,
	},
	{
	  .id                    = 0x461,
	  .revs                  = stm32_461_revs,
	  .num_revs              = ARRAY_SIZE(stm32_461_revs),
	  .device_str            = "STM32L49/L4Axx",
	  .max_flash_size_kb     = 1024,
	  .has_dual_bank         = true,
	  .flash_regs_base       = 0x40022000,
	  .fsize_addr            = 0x1FFF75E0,
	},
	{
	  .id                    = 0x462,
	  .revs                  = stm32_462_revs,
	  .num_revs              = ARRAY_SIZE(stm32_462_revs),
	  .device_str            = "STM32L45/L46xx",
	  .max_flash_size_kb     = 512,
	  .has_dual_bank         = false,
	  .flash_regs_base       = 0x40022000,
	  .fsize_addr            = 0x1FFF75E0,
	},
	{
	  .id                    = 0x464,
	  .revs                  = stm32_464_revs,
	  .num_revs              = ARRAY_SIZE(stm32_464_revs),
	  .device_str            = "STM32L41/L42xx",
	  .max_flash_size_kb     = 128,
	  .has_dual_bank         = false,
	  .flash_regs_base       = 0x40022000,
	  .fsize_addr            = 0x1FFF75E0,
	},
	{
	  .id                    = 0x470,
	  .revs                  = stm32_470_revs,
	  .num_revs              = ARRAY_SIZE(stm32_470_revs),
	  .device_str            = "STM32L4R/L4Sxx",
	  .max_flash_size_kb     = 2048,
	  .has_dual_bank         = true,
	  .flash_regs_base       = 0x40022000,
	  .fsize_addr            = 0x1FFF75E0,
	},
	{
	  .id                    = 0x471,
	  .revs                  = stm32_471_revs,
	  .num_revs              = ARRAY_SIZE(stm32_471_revs),
	  .device_str            = "STM32L4P5/L4Q5x",
	  .max_flash_size_kb     = 1024,
	  .has_dual_bank         = true,
	  .flash_regs_base       = 0x40022000,
	  .fsize_addr            = 0x1FFF75E0,
	},
	{
	  .id                    = 0x495,
	  .revs                  = stm32_495_revs,
	  .num_revs              = ARRAY_SIZE(stm32_495_revs),
	  .device_str            = "STM32WB5x",
	  .max_flash_size_kb     = 1024,
	  .has_dual_bank         = false,
	  .flash_regs_base       = 0x58004000,
	  .fsize_addr            = 0x1FFF75E0,
	},
};

/* flash bank stm32l4x <base> <size> 0 0 <target#> */
FLASH_BANK_COMMAND_HANDLER(stm32l4_flash_bank_command)
{
	struct stm32l4_flash_bank *stm32l4_info;

	if (CMD_ARGC < 6)
		return ERROR_COMMAND_SYNTAX_ERROR;

	stm32l4_info = malloc(sizeof(struct stm32l4_flash_bank));
	if (!stm32l4_info)
		return ERROR_FAIL; /* Checkme: What better error to use?*/
	bank->driver_priv = stm32l4_info;

	/* The flash write must be aligned to a double word (8-bytes) boundary.
	 * Ask the flash infrastructure to ensure required alignment */
	bank->write_start_alignment = bank->write_end_alignment = 8;

	stm32l4_info->probed = false;

	return ERROR_OK;
}

static inline uint32_t stm32l4_get_flash_reg(struct flash_bank *bank, uint32_t reg_offset)
{
	struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
	return stm32l4_info->part_info->flash_regs_base + reg_offset;
}

static inline int stm32l4_read_flash_reg(struct flash_bank *bank, uint32_t reg_offset, uint32_t *value)
{
	return target_read_u32(bank->target, stm32l4_get_flash_reg(bank, reg_offset), value);
}

static inline int stm32l4_write_flash_reg(struct flash_bank *bank, uint32_t reg_offset, uint32_t value)
{
	return target_write_u32(bank->target, stm32l4_get_flash_reg(bank, reg_offset), value);
}

static int stm32l4_wait_status_busy(struct flash_bank *bank, int timeout)
{
	uint32_t status;
	int retval = ERROR_OK;

	/* wait for busy to clear */
	for (;;) {
		retval = stm32l4_read_flash_reg(bank, STM32_FLASH_SR, &status);
		if (retval != ERROR_OK)
			return retval;
		LOG_DEBUG("status: 0x%" PRIx32 "", status);
		if ((status & FLASH_BSY) == 0)
			break;
		if (timeout-- <= 0) {
			LOG_ERROR("timed out waiting for flash");
			return ERROR_FAIL;
		}
		alive_sleep(1);
	}


	if (status & FLASH_WRPERR) {
		LOG_ERROR("stm32x device protected");
		retval = ERROR_FAIL;
	}

	/* Clear but report errors */
	if (status & FLASH_ERROR) {
		if (retval == ERROR_OK)
			retval = ERROR_FAIL;
		/* If this operation fails, we ignore it and report the original
		 * retval
		 */
		stm32l4_write_flash_reg(bank, STM32_FLASH_SR, status & FLASH_ERROR);
	}

	return retval;
}

static int stm32l4_unlock_reg(struct flash_bank *bank)
{
	uint32_t ctrl;

	/* first check if not already unlocked
	 * otherwise writing on STM32_FLASH_KEYR will fail
	 */
	int retval = stm32l4_read_flash_reg(bank, STM32_FLASH_CR, &ctrl);
	if (retval != ERROR_OK)
		return retval;

	if ((ctrl & FLASH_LOCK) == 0)
		return ERROR_OK;

	/* unlock flash registers */
	retval = stm32l4_write_flash_reg(bank, STM32_FLASH_KEYR, KEY1);
	if (retval != ERROR_OK)
		return retval;

	retval = stm32l4_write_flash_reg(bank, STM32_FLASH_KEYR, KEY2);
	if (retval != ERROR_OK)
		return retval;

	retval = stm32l4_read_flash_reg(bank, STM32_FLASH_CR, &ctrl);
	if (retval != ERROR_OK)
		return retval;

	if (ctrl & FLASH_LOCK) {
		LOG_ERROR("flash not unlocked STM32_FLASH_CR: %" PRIx32, ctrl);
		return ERROR_TARGET_FAILURE;
	}

	return ERROR_OK;
}

static int stm32l4_unlock_option_reg(struct flash_bank *bank)
{
	uint32_t ctrl;

	int retval = stm32l4_read_flash_reg(bank, STM32_FLASH_CR, &ctrl);
	if (retval != ERROR_OK)
		return retval;

	if ((ctrl & FLASH_OPTLOCK) == 0)
		return ERROR_OK;

	/* unlock option registers */
	retval = stm32l4_write_flash_reg(bank, STM32_FLASH_OPTKEYR, OPTKEY1);
	if (retval != ERROR_OK)
		return retval;

	retval = stm32l4_write_flash_reg(bank, STM32_FLASH_OPTKEYR, OPTKEY2);
	if (retval != ERROR_OK)
		return retval;

	retval = stm32l4_read_flash_reg(bank, STM32_FLASH_CR, &ctrl);
	if (retval != ERROR_OK)
		return retval;

	if (ctrl & FLASH_OPTLOCK) {
		LOG_ERROR("options not unlocked STM32_FLASH_CR: %" PRIx32, ctrl);
		return ERROR_TARGET_FAILURE;
	}

	return ERROR_OK;
}

static int stm32l4_write_option(struct flash_bank *bank, uint32_t reg_offset, uint32_t value, uint32_t mask)
{
	uint32_t optiondata;
	int retval, retval2;

	retval = stm32l4_read_flash_reg(bank, reg_offset, &optiondata);
	if (retval != ERROR_OK)
		return retval;

	retval = stm32l4_unlock_reg(bank);
	if (retval != ERROR_OK)
		goto err_lock;

	retval = stm32l4_unlock_option_reg(bank);
	if (retval != ERROR_OK)
		goto err_lock;

	optiondata = (optiondata & ~mask) | (value & mask);

	retval = stm32l4_write_flash_reg(bank, reg_offset, optiondata);
	if (retval != ERROR_OK)
		goto err_lock;

	retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_OPTSTRT);
	if (retval != ERROR_OK)
		goto err_lock;

	retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);

err_lock:
	retval2 = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_LOCK | FLASH_OPTLOCK);

	if (retval != ERROR_OK)
		return retval;

	return retval2;
}

static int stm32l4_protect_check(struct flash_bank *bank)
{
	struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;

	uint32_t wrp1ar, wrp1br, wrp2ar, wrp2br;
	stm32l4_read_flash_reg(bank, STM32_FLASH_WRP1AR, &wrp1ar);
	stm32l4_read_flash_reg(bank, STM32_FLASH_WRP1BR, &wrp1br);
	stm32l4_read_flash_reg(bank, STM32_FLASH_WRP2AR, &wrp2ar);
	stm32l4_read_flash_reg(bank, STM32_FLASH_WRP2BR, &wrp2br);

	const uint8_t wrp1a_start = wrp1ar & 0xFF;
	const uint8_t wrp1a_end = (wrp1ar >> 16) & 0xFF;
	const uint8_t wrp1b_start = wrp1br & 0xFF;
	const uint8_t wrp1b_end = (wrp1br >> 16) & 0xFF;
	const uint8_t wrp2a_start = wrp2ar & 0xFF;
	const uint8_t wrp2a_end = (wrp2ar >> 16) & 0xFF;
	const uint8_t wrp2b_start = wrp2br & 0xFF;
	const uint8_t wrp2b_end = (wrp2br >> 16) & 0xFF;

	for (int i = 0; i < bank->num_sectors; i++) {
		if (i < stm32l4_info->bank1_sectors) {
			if (((i >= wrp1a_start) &&
				 (i <= wrp1a_end)) ||
				((i >= wrp1b_start) &&
				 (i <= wrp1b_end)))
				bank->sectors[i].is_protected = 1;
			else
				bank->sectors[i].is_protected = 0;
		} else {
			uint8_t snb;
			snb = i - stm32l4_info->bank1_sectors;
			if (((snb >= wrp2a_start) &&
				 (snb <= wrp2a_end)) ||
				((snb >= wrp2b_start) &&
				 (snb <= wrp2b_end)))
				bank->sectors[i].is_protected = 1;
			else
				bank->sectors[i].is_protected = 0;
		}
	}
	return ERROR_OK;
}

static int stm32l4_erase(struct flash_bank *bank, int first, int last)
{
	struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
	int i;
	int retval, retval2;

	assert(first < bank->num_sectors);
	assert(last < bank->num_sectors);

	if (bank->target->state != TARGET_HALTED) {
		LOG_ERROR("Target not halted");
		return ERROR_TARGET_NOT_HALTED;
	}

	retval = stm32l4_unlock_reg(bank);
	if (retval != ERROR_OK)
		goto err_lock;

	/*
	Sector Erase
	To erase a sector, follow the procedure below:
	1. Check that no Flash memory operation is ongoing by
       checking the BSY bit in the FLASH_SR register
	2. Set the PER bit and select the page and bank
	   you wish to erase in the FLASH_CR register
	3. Set the STRT bit in the FLASH_CR register
	4. Wait for the BSY bit to be cleared
	 */

	for (i = first; i <= last; i++) {
		uint32_t erase_flags;
		erase_flags = FLASH_PER | FLASH_STRT;

		if (i >= stm32l4_info->bank1_sectors) {
			uint8_t snb;
			snb = i - stm32l4_info->bank1_sectors;
			erase_flags |= snb << FLASH_PAGE_SHIFT | FLASH_CR_BKER;
		} else
			erase_flags |= i << FLASH_PAGE_SHIFT;
		retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, erase_flags);
		if (retval != ERROR_OK)
			break;

		retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
		if (retval != ERROR_OK)
			break;

		bank->sectors[i].is_erased = 1;
	}

err_lock:
	retval2 = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_LOCK);

	if (retval != ERROR_OK)
		return retval;

	return retval2;
}

static int stm32l4_protect(struct flash_bank *bank, int set, int first, int last)
{
	struct target *target = bank->target;
	struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;

	if (target->state != TARGET_HALTED) {
		LOG_ERROR("Target not halted");
		return ERROR_TARGET_NOT_HALTED;
	}

	int ret = ERROR_OK;
	/* Bank 2 */
	uint32_t reg_value = 0xFF; /* Default to bank un-protected */
	if (last >= stm32l4_info->bank1_sectors) {
		if (set == 1) {
			uint8_t begin = first > stm32l4_info->bank1_sectors ? first : 0x00;
			reg_value = ((last & 0xFF) << 16) | begin;
		}

		ret = stm32l4_write_option(bank, STM32_FLASH_WRP2AR, reg_value, 0xffffffff);
	}
	/* Bank 1 */
	reg_value = 0xFF; /* Default to bank un-protected */
	if (first < stm32l4_info->bank1_sectors) {
		if (set == 1) {
			uint8_t end = last >= stm32l4_info->bank1_sectors ? 0xFF : last;
			reg_value = (end << 16) | (first & 0xFF);
		}

		ret = stm32l4_write_option(bank, STM32_FLASH_WRP1AR, reg_value, 0xffffffff);
	}

	return ret;
}

/* Count is in double-words */
static int stm32l4_write_block(struct flash_bank *bank, const uint8_t *buffer,
		uint32_t offset, uint32_t count)
{
	struct target *target = bank->target;
	struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
	uint32_t buffer_size = 16384;
	struct working_area *write_algorithm;
	struct working_area *source;
	uint32_t address = bank->base + offset;
	struct reg_param reg_params[5];
	struct armv7m_algorithm armv7m_info;
	int retval = ERROR_OK;

	static const uint8_t stm32l4_flash_write_code[] = {
#include "../../../contrib/loaders/flash/stm32/stm32l4x.inc"
	};

	if (target_alloc_working_area(target, sizeof(stm32l4_flash_write_code),
			&write_algorithm) != ERROR_OK) {
		LOG_WARNING("no working area available, can't do block memory writes");
		return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
	}

	retval = target_write_buffer(target, write_algorithm->address,
			sizeof(stm32l4_flash_write_code),
			stm32l4_flash_write_code);
	if (retval != ERROR_OK) {
		target_free_working_area(target, write_algorithm);
		return retval;
	}

	/* memory buffer */
	while (target_alloc_working_area_try(target, buffer_size, &source) !=
		   ERROR_OK) {
		buffer_size /= 2;
		if (buffer_size <= 256) {
			/* we already allocated the writing code, but failed to get a
			 * buffer, free the algorithm */
			target_free_working_area(target, write_algorithm);

			LOG_WARNING("large enough working area not available, can't do block memory writes");
			return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
		}
	}

	armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
	armv7m_info.core_mode = ARM_MODE_THREAD;

	init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);	/* buffer start, status (out) */
	init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);	/* buffer end */
	init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);	/* target address */
	init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);	/* count (double word-64bit) */
	init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);	/* flash regs base */

	buf_set_u32(reg_params[0].value, 0, 32, source->address);
	buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size);
	buf_set_u32(reg_params[2].value, 0, 32, address);
	buf_set_u32(reg_params[3].value, 0, 32, count);
	buf_set_u32(reg_params[4].value, 0, 32, stm32l4_info->part_info->flash_regs_base);

	retval = target_run_flash_async_algorithm(target, buffer, count, 8,
			0, NULL,
			5, reg_params,
			source->address, source->size,
			write_algorithm->address, 0,
			&armv7m_info);

	if (retval == ERROR_FLASH_OPERATION_FAILED) {
		LOG_ERROR("error executing stm32l4 flash write algorithm");

		uint32_t error = buf_get_u32(reg_params[0].value, 0, 32) & FLASH_ERROR;

		if (error & FLASH_WRPERR)
			LOG_ERROR("flash memory write protected");

		if (error != 0) {
			LOG_ERROR("flash write failed = %08" PRIx32, error);
			/* Clear but report errors */
			stm32l4_write_flash_reg(bank, STM32_FLASH_SR, error);
			retval = ERROR_FAIL;
		}
	}

	target_free_working_area(target, source);
	target_free_working_area(target, write_algorithm);

	destroy_reg_param(&reg_params[0]);
	destroy_reg_param(&reg_params[1]);
	destroy_reg_param(&reg_params[2]);
	destroy_reg_param(&reg_params[3]);
	destroy_reg_param(&reg_params[4]);

	return retval;
}

static int stm32l4_write(struct flash_bank *bank, const uint8_t *buffer,
		uint32_t offset, uint32_t count)
{
	int retval, retval2;

	if (bank->target->state != TARGET_HALTED) {
		LOG_ERROR("Target not halted");
		return ERROR_TARGET_NOT_HALTED;
	}

	/* The flash write must be aligned to a double word (8-bytes) boundary.
	 * The flash infrastructure ensures it, do just a security check */
	assert(offset % 8 == 0);
	assert(count % 8 == 0);

	retval = stm32l4_unlock_reg(bank);
	if (retval != ERROR_OK)
		goto err_lock;

	retval = stm32l4_write_block(bank, buffer, offset, count / 8);

err_lock:
	retval2 = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_LOCK);

	if (retval != ERROR_OK) {
		LOG_ERROR("block write failed");
		return retval;
	}
	return retval2;
}

static int stm32l4_read_idcode(struct flash_bank *bank, uint32_t *id)
{
	int retval = target_read_u32(bank->target, DBGMCU_IDCODE, id);
	if (retval != ERROR_OK)
		return retval;

	return retval;
}

static int stm32l4_probe(struct flash_bank *bank)
{
	struct target *target = bank->target;
	struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
	const struct stm32l4_part_info *part_info;
	uint16_t flash_size_in_kb = 0xffff;
	uint32_t device_id;
	uint32_t options;

	stm32l4_info->probed = false;

	/* read stm32 device id register */
	int retval = stm32l4_read_idcode(bank, &stm32l4_info->idcode);
	if (retval != ERROR_OK)
		return retval;

	device_id = stm32l4_info->idcode & 0xFFF;

	for (unsigned int n = 0; n < ARRAY_SIZE(stm32l4_parts); n++) {
		if (device_id == stm32l4_parts[n].id)
			stm32l4_info->part_info = &stm32l4_parts[n];
	}

	if (!stm32l4_info->part_info) {
		LOG_WARNING("Cannot identify target as an STM32 L4 or WB family device.");
		return ERROR_FAIL;
	}

	part_info = stm32l4_info->part_info;

	char device_info[1024];
	retval = bank->driver->info(bank, device_info, sizeof(device_info));
	if (retval != ERROR_OK)
		return retval;

	LOG_INFO("device idcode = 0x%08" PRIx32 " (%s)", stm32l4_info->idcode, device_info);

	/* get flash size from target. */
	retval = target_read_u16(target, part_info->fsize_addr, &flash_size_in_kb);

	/* failed reading flash size or flash size invalid (early silicon),
	 * default to max target family */
	if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0
			|| flash_size_in_kb > part_info->max_flash_size_kb) {
		LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %dk flash",
			part_info->max_flash_size_kb);
		flash_size_in_kb = part_info->max_flash_size_kb;
	}

	LOG_INFO("flash size = %dkbytes", flash_size_in_kb);

	/* did we assign a flash size? */
	assert((flash_size_in_kb != 0xffff) && flash_size_in_kb);

	/* read flash option register */
	retval = stm32l4_read_flash_reg(bank, STM32_FLASH_OPTR, &options);
	if (retval != ERROR_OK)
		return retval;

	stm32l4_info->bank1_sectors = 0;
	stm32l4_info->hole_sectors = 0;

	int num_pages = 0;
	int page_size = 0;

	stm32l4_info->dual_bank_mode = false;

	switch (device_id) {
	case 0x415:
	case 0x461:
		/* if flash size is max (1M) the device is always dual bank
		 * 0x415: has variants with 512K
		 * 0x461: has variants with 512 and 256
		 * for these variants:
		 *   if DUAL_BANK = 0 -> single bank
		 *   else -> dual bank without gap
		 * note: the page size is invariant
		 */
		page_size = 2048;
		num_pages = flash_size_in_kb / 2;
		stm32l4_info->bank1_sectors = num_pages;

		/* check DUAL_BANK bit[21] if the flash is less than 1M */
		if (flash_size_in_kb == 1024 || (options & BIT(21))) {
			stm32l4_info->dual_bank_mode = true;
			stm32l4_info->bank1_sectors = num_pages / 2;
		}
		break;
	case 0x435:
	case 0x462:
	case 0x464:
		/* single bank flash */
		page_size = 2048;
		num_pages = flash_size_in_kb / 2;
		stm32l4_info->bank1_sectors = num_pages;
		break;
	case 0x470:
	case 0x471:
		/* STM32L4R/S can be single/dual bank:
		 *   if size = 2M check DBANK bit(22)
		 *   if size = 1M check DB1M bit(21)
		 * STM32L4P/Q can be single/dual bank
		 *   if size = 1M check DBANK bit(22)
		 *   if size = 512K check DB512K bit(21)
		 * in single bank configuration the page size is 8K
		 * else (dual bank) the page size is 4K without gap between banks
		 */
		page_size = 8192;
		num_pages = flash_size_in_kb / 8;
		stm32l4_info->bank1_sectors = num_pages;
		const bool use_dbank_bit = flash_size_in_kb == part_info->max_flash_size_kb;
		if ((use_dbank_bit && (options & BIT(22))) ||
			(!use_dbank_bit && (options & BIT(21)))) {
			stm32l4_info->dual_bank_mode = true;
			page_size = 4096;
			num_pages = flash_size_in_kb / 4;
			stm32l4_info->bank1_sectors = num_pages / 2;
		}
		break;
	case 0x495:
		/* single bank flash */
		page_size = 4096;
		num_pages = flash_size_in_kb / 4;
		stm32l4_info->bank1_sectors = num_pages;
		break;
	default:
		LOG_ERROR("unsupported device");
		return ERROR_FAIL;
	}

	LOG_INFO("flash mode : %s-bank", stm32l4_info->dual_bank_mode ? "dual" : "single");

	const int gap_size = stm32l4_info->hole_sectors * page_size;

	if (stm32l4_info->dual_bank_mode & gap_size) {
		LOG_INFO("gap detected starting from %0x08" PRIx32 " to %0x08" PRIx32,
				0x8000000 + stm32l4_info->bank1_sectors * page_size,
				0x8000000 + stm32l4_info->bank1_sectors * page_size + gap_size);
	}

	if (bank->sectors) {
		free(bank->sectors);
		bank->sectors = NULL;
	}

	bank->size = flash_size_in_kb * 1024 + gap_size;
	bank->base = 0x08000000;
	bank->num_sectors = num_pages;
	bank->sectors = malloc(sizeof(struct flash_sector) * bank->num_sectors);
	if (bank->sectors == NULL) {
		LOG_ERROR("failed to allocate bank sectors");
		return ERROR_FAIL;
	}

	for (int i = 0; i < bank->num_sectors; i++) {
		bank->sectors[i].offset = i * page_size;
		/* in dual bank configuration, if there is a gap between banks
		 * we fix up the sector offset to consider this gap */
		if (i >= stm32l4_info->bank1_sectors && stm32l4_info->hole_sectors)
			bank->sectors[i].offset += gap_size;
		bank->sectors[i].size = page_size;
		bank->sectors[i].is_erased = -1;
		bank->sectors[i].is_protected = 1;
	}

	stm32l4_info->probed = true;
	return ERROR_OK;
}

static int stm32l4_auto_probe(struct flash_bank *bank)
{
	struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
	if (stm32l4_info->probed)
		return ERROR_OK;

	return stm32l4_probe(bank);
}

static int get_stm32l4_info(struct flash_bank *bank, char *buf, int buf_size)
{
	struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
	const struct stm32l4_part_info *part_info = stm32l4_info->part_info;

	if (part_info) {
		const char *rev_str = NULL;
		uint16_t rev_id = stm32l4_info->idcode >> 16;
		for (unsigned int i = 0; i < part_info->num_revs; i++) {
			if (rev_id == part_info->revs[i].rev) {
				rev_str = part_info->revs[i].str;

				if (rev_str != NULL) {
					snprintf(buf, buf_size, "%s - Rev: %s",
							part_info->device_str, rev_str);
					return ERROR_OK;
				}
			}
		}

		snprintf(buf, buf_size, "%s - Rev: unknown (0x%04x)",
				part_info->device_str, rev_id);
		return ERROR_OK;
	} else {
		snprintf(buf, buf_size, "Cannot identify target as an STM32 L4 or WB device");
		return ERROR_FAIL;
	}

	return ERROR_OK;
}

static int stm32l4_mass_erase(struct flash_bank *bank)
{
	int retval, retval2;
	struct target *target = bank->target;
	struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;

	uint32_t action = FLASH_MER1;

	if (stm32l4_info->part_info->has_dual_bank)
		action |= FLASH_MER2;

	if (target->state != TARGET_HALTED) {
		LOG_ERROR("Target not halted");
		return ERROR_TARGET_NOT_HALTED;
	}

	retval = stm32l4_unlock_reg(bank);
	if (retval != ERROR_OK)
		goto err_lock;

	/* mass erase flash memory */
	retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT / 10);
	if (retval != ERROR_OK)
		goto err_lock;

	retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, action);
	if (retval != ERROR_OK)
		goto err_lock;

	retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, action | FLASH_STRT);
	if (retval != ERROR_OK)
		goto err_lock;

	retval = stm32l4_wait_status_busy(bank,  FLASH_ERASE_TIMEOUT);

err_lock:
	retval2 = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_LOCK);

	if (retval != ERROR_OK)
		return retval;

	return retval2;
}

COMMAND_HANDLER(stm32l4_handle_mass_erase_command)
{
	if (CMD_ARGC < 1) {
		command_print(CMD, "stm32l4x mass_erase <STM32L4 bank>");
		return ERROR_COMMAND_SYNTAX_ERROR;
	}

	struct flash_bank *bank;
	int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
	if (ERROR_OK != retval)
		return retval;

	retval = stm32l4_mass_erase(bank);
	if (retval == ERROR_OK) {
		/* set all sectors as erased */
		for (int i = 0; i < bank->num_sectors; i++)
			bank->sectors[i].is_erased = 1;

		command_print(CMD, "stm32l4x mass erase complete");
	} else {
		command_print(CMD, "stm32l4x mass erase failed");
	}

	return retval;
}

COMMAND_HANDLER(stm32l4_handle_option_read_command)
{
	if (CMD_ARGC < 2) {
		command_print(CMD, "stm32l4x option_read <STM32L4 bank> <option_reg offset>");
		return ERROR_COMMAND_SYNTAX_ERROR;
	}

	struct flash_bank *bank;
	int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
	if (ERROR_OK != retval)
		return retval;

	uint32_t reg_offset, reg_addr;
	uint32_t value = 0;

	reg_offset = strtoul(CMD_ARGV[1], NULL, 16);
	reg_addr = stm32l4_get_flash_reg(bank, reg_offset);

	retval = stm32l4_read_flash_reg(bank, reg_offset, &value);
	if (ERROR_OK != retval)
		return retval;

	command_print(CMD, "Option Register: <0x%" PRIx32 "> = 0x%" PRIx32 "", reg_addr, value);

	return retval;
}

COMMAND_HANDLER(stm32l4_handle_option_write_command)
{
	if (CMD_ARGC < 3) {
		command_print(CMD, "stm32l4x option_write <STM32L4 bank> <option_reg offset> <value> [mask]");
		return ERROR_COMMAND_SYNTAX_ERROR;
	}

	struct flash_bank *bank;
	int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
	if (ERROR_OK != retval)
		return retval;

	uint32_t reg_offset;
	uint32_t value = 0;
	uint32_t mask = 0xFFFFFFFF;

	reg_offset = strtoul(CMD_ARGV[1], NULL, 16);
	value = strtoul(CMD_ARGV[2], NULL, 16);
	if (CMD_ARGC > 3)
		mask = strtoul(CMD_ARGV[3], NULL, 16);

	command_print(CMD, "%s Option written.\n"
				"INFO: a reset or power cycle is required "
				"for the new settings to take effect.", bank->driver->name);

	retval = stm32l4_write_option(bank, reg_offset, value, mask);
	return retval;
}

COMMAND_HANDLER(stm32l4_handle_option_load_command)
{
	if (CMD_ARGC < 1)
		return ERROR_COMMAND_SYNTAX_ERROR;

	struct flash_bank *bank;
	int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
	if (ERROR_OK != retval)
		return retval;

	retval = stm32l4_unlock_reg(bank);
	if (ERROR_OK != retval)
		return retval;

	retval = stm32l4_unlock_option_reg(bank);
	if (ERROR_OK != retval)
		return retval;

	/* Write the OBLLAUNCH bit in CR -> Cause device "POR" and option bytes reload */
	retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_OBLLAUNCH);

	command_print(CMD, "stm32l4x option load (POR) completed.");
	return retval;
}

COMMAND_HANDLER(stm32l4_handle_lock_command)
{
	struct target *target = NULL;

	if (CMD_ARGC < 1)
		return ERROR_COMMAND_SYNTAX_ERROR;

	struct flash_bank *bank;
	int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
	if (ERROR_OK != retval)
		return retval;

	target = bank->target;

	if (target->state != TARGET_HALTED) {
		LOG_ERROR("Target not halted");
		return ERROR_TARGET_NOT_HALTED;
	}

	/* set readout protection level 1 by erasing the RDP option byte */
	if (stm32l4_write_option(bank, STM32_FLASH_OPTR, 0, 0x000000FF) != ERROR_OK) {
		command_print(CMD, "%s failed to lock device", bank->driver->name);
		return ERROR_OK;
	}

	return ERROR_OK;
}

COMMAND_HANDLER(stm32l4_handle_unlock_command)
{
	struct target *target = NULL;

	if (CMD_ARGC < 1)
		return ERROR_COMMAND_SYNTAX_ERROR;

	struct flash_bank *bank;
	int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
	if (ERROR_OK != retval)
		return retval;

	target = bank->target;

	if (target->state != TARGET_HALTED) {
		LOG_ERROR("Target not halted");
		return ERROR_TARGET_NOT_HALTED;
	}

	if (stm32l4_write_option(bank, STM32_FLASH_OPTR, RDP_LEVEL_0, 0x000000FF) != ERROR_OK) {
		command_print(CMD, "%s failed to unlock device", bank->driver->name);
		return ERROR_OK;
	}

	return ERROR_OK;
}

static const struct command_registration stm32l4_exec_command_handlers[] = {
	{
		.name = "lock",
		.handler = stm32l4_handle_lock_command,
		.mode = COMMAND_EXEC,
		.usage = "bank_id",
		.help = "Lock entire flash device.",
	},
	{
		.name = "unlock",
		.handler = stm32l4_handle_unlock_command,
		.mode = COMMAND_EXEC,
		.usage = "bank_id",
		.help = "Unlock entire protected flash device.",
	},
	{
		.name = "mass_erase",
		.handler = stm32l4_handle_mass_erase_command,
		.mode = COMMAND_EXEC,
		.usage = "bank_id",
		.help = "Erase entire flash device.",
	},
	{
		.name = "option_read",
		.handler = stm32l4_handle_option_read_command,
		.mode = COMMAND_EXEC,
		.usage = "bank_id reg_offset",
		.help = "Read & Display device option bytes.",
	},
	{
		.name = "option_write",
		.handler = stm32l4_handle_option_write_command,
		.mode = COMMAND_EXEC,
		.usage = "bank_id reg_offset value mask",
		.help = "Write device option bit fields with provided value.",
	},
	{
		.name = "option_load",
		.handler = stm32l4_handle_option_load_command,
		.mode = COMMAND_EXEC,
		.usage = "bank_id",
		.help = "Force re-load of device options (will cause device reset).",
	},
	COMMAND_REGISTRATION_DONE
};

static const struct command_registration stm32l4_command_handlers[] = {
	{
		.name = "stm32l4x",
		.mode = COMMAND_ANY,
		.help = "stm32l4x flash command group",
		.usage = "",
		.chain = stm32l4_exec_command_handlers,
	},
	COMMAND_REGISTRATION_DONE
};

const struct flash_driver stm32l4x_flash = {
	.name = "stm32l4x",
	.commands = stm32l4_command_handlers,
	.flash_bank_command = stm32l4_flash_bank_command,
	.erase = stm32l4_erase,
	.protect = stm32l4_protect,
	.write = stm32l4_write,
	.read = default_flash_read,
	.probe = stm32l4_probe,
	.auto_probe = stm32l4_auto_probe,
	.erase_check = default_flash_blank_check,
	.protect_check = stm32l4_protect_check,
	.info = get_stm32l4_info,
	.free_driver_priv = default_flash_free_driver_priv,
};