1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
|
/***************************************************************************
* Copyright (C) 2017 by STMicroelectronics *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include <helper/binarybuffer.h>
#include <target/algorithm.h>
#include <target/armv7m.h>
/* Erase time can be as high as 1000ms, 10x this and it's toast... */
#define FLASH_ERASE_TIMEOUT 10000
#define FLASH_WRITE_TIMEOUT 5
/* RM 433 */
/* Same Flash registers for both banks, */
/* access depends on Flash Base address */
#define FLASH_ACR 0x00
#define FLASH_KEYR 0x04
#define FLASH_OPTKEYR 0x08
#define FLASH_CR 0x0C
#define FLASH_SR 0x10
#define FLASH_CCR 0x14
#define FLASH_OPTCR 0x18
#define FLASH_OPTSR_CUR 0x1C
#define FLASH_OPTSR_PRG 0x20
#define FLASH_OPTCCR 0x24
#define FLASH_WPSN_CUR 0x38
#define FLASH_WPSN_PRG 0x3C
/* FLASH_CR register bits */
#define FLASH_LOCK (1 << 0)
#define FLASH_PG (1 << 1)
#define FLASH_SER (1 << 2)
#define FLASH_BER (1 << 3)
#define FLASH_PSIZE_8 (0 << 4)
#define FLASH_PSIZE_16 (1 << 4)
#define FLASH_PSIZE_32 (2 << 4)
#define FLASH_PSIZE_64 (3 << 4)
#define FLASH_FW (1 << 6)
#define FLASH_START (1 << 7)
/* FLASH_SR register bits */
#define FLASH_BSY (1 << 0) /* Operation in progress */
#define FLASH_QW (1 << 2) /* Operation queue in progress */
#define FLASH_WRPERR (1 << 17) /* Write protection error */
#define FLASH_PGSERR (1 << 18) /* Programming sequence error */
#define FLASH_STRBERR (1 << 19) /* Strobe error */
#define FLASH_INCERR (1 << 21) /* Inconsistency error */
#define FLASH_OPERR (1 << 22) /* Operation error */
#define FLASH_RDPERR (1 << 23) /* Read Protection error */
#define FLASH_RDSERR (1 << 24) /* Secure Protection error */
#define FLASH_SNECCERR (1 << 25) /* Single ECC error */
#define FLASH_DBECCERR (1 << 26) /* Double ECC error */
#define FLASH_ERROR (FLASH_WRPERR | FLASH_PGSERR | FLASH_STRBERR | FLASH_INCERR | FLASH_OPERR | \
FLASH_RDPERR | FLASH_RDSERR | FLASH_SNECCERR | FLASH_DBECCERR)
/* FLASH_OPTCR register bits */
#define OPT_LOCK (1 << 0)
#define OPT_START (1 << 1)
/* FLASH_OPTSR register bits */
#define OPT_BSY (1 << 0)
#define OPT_RDP_POS 8
#define OPT_RDP_MASK (0xff << OPT_RDP_POS)
#define OPT_OPTCHANGEERR (1 << 30)
/* FLASH_OPTCCR register bits */
#define OPT_CLR_OPTCHANGEERR (1 << 30)
/* register unlock keys */
#define KEY1 0x45670123
#define KEY2 0xCDEF89AB
/* option register unlock key */
#define OPTKEY1 0x08192A3B
#define OPTKEY2 0x4C5D6E7F
#define DBGMCU_IDCODE_REGISTER 0x5C001000
#define FLASH_BANK0_ADDRESS 0x08000000
#define FLASH_BANK1_ADDRESS 0x08100000
#define FLASH_REG_BASE_B0 0x52002000
#define FLASH_REG_BASE_B1 0x52002100
struct stm32h7x_rev {
uint16_t rev;
const char *str;
};
/* stm32h7x_part_info permits the store each device information and specificities.
* the default unit is byte unless the suffix '_kb' is used. */
struct stm32h7x_part_info {
uint16_t id;
const char *device_str;
const struct stm32h7x_rev *revs;
size_t num_revs;
unsigned int page_size_kb;
unsigned int block_size; /* flash write word size in bytes */
uint16_t max_flash_size_kb;
bool has_dual_bank;
uint16_t max_bank_size_kb; /* Used when has_dual_bank is true */
uint32_t fsize_addr; /* Location of FSIZE register */
uint32_t wps_group_size; /* write protection group sectors' count */
uint32_t wps_mask;
/* function to compute flash_cr register values */
uint32_t (*compute_flash_cr)(uint32_t cmd, int snb);
};
struct stm32h7x_flash_bank {
bool probed;
uint32_t idcode;
uint32_t user_bank_size;
uint32_t flash_regs_base; /* Address of flash reg controller */
const struct stm32h7x_part_info *part_info;
};
enum stm32h7x_opt_rdp {
OPT_RDP_L0 = 0xaa,
OPT_RDP_L1 = 0x00,
OPT_RDP_L2 = 0xcc
};
static const struct stm32h7x_rev stm32_450_revs[] = {
{ 0x1000, "A" }, { 0x1001, "Z" }, { 0x1003, "Y" }, { 0x2001, "X" }, { 0x2003, "V" },
};
static const struct stm32h7x_rev stm32_480_revs[] = {
{ 0x1000, "A"},
};
static const struct stm32h7x_rev stm32_483_revs[] = {
{ 0x1000, "A" }, { 0x1001, "Z" },
};
static uint32_t stm32x_compute_flash_cr_450_483(uint32_t cmd, int snb)
{
return cmd | (snb << 8);
}
static uint32_t stm32x_compute_flash_cr_480(uint32_t cmd, int snb)
{
/* save FW and START bits, to be right shifted by 2 bits later */
const uint32_t tmp = cmd & (FLASH_FW | FLASH_START);
/* mask parallelism (ignored), FW and START bits */
cmd &= ~(FLASH_PSIZE_64 | FLASH_FW | FLASH_START);
return cmd | (tmp >> 2) | (snb << 6);
}
static const struct stm32h7x_part_info stm32h7x_parts[] = {
{
.id = 0x450,
.revs = stm32_450_revs,
.num_revs = ARRAY_SIZE(stm32_450_revs),
.device_str = "STM32H74x/75x",
.page_size_kb = 128,
.block_size = 32,
.max_flash_size_kb = 2048,
.max_bank_size_kb = 1024,
.has_dual_bank = true,
.fsize_addr = 0x1FF1E880,
.wps_group_size = 1,
.wps_mask = 0xFF,
.compute_flash_cr = stm32x_compute_flash_cr_450_483,
},
{
.id = 0x480,
.revs = stm32_480_revs,
.num_revs = ARRAY_SIZE(stm32_480_revs),
.device_str = "STM32H7Ax/7Bx",
.page_size_kb = 8,
.block_size = 16,
.max_flash_size_kb = 2048,
.max_bank_size_kb = 1024,
.has_dual_bank = true,
.fsize_addr = 0x08FFF80C,
.wps_group_size = 4,
.wps_mask = 0xFFFFFFFF,
.compute_flash_cr = stm32x_compute_flash_cr_480,
},
{
.id = 0x483,
.revs = stm32_483_revs,
.num_revs = ARRAY_SIZE(stm32_483_revs),
.device_str = "STM32H72x/73x",
.page_size_kb = 128,
.block_size = 32,
.max_flash_size_kb = 1024,
.max_bank_size_kb = 1024,
.has_dual_bank = false,
.fsize_addr = 0x1FF1E880,
.wps_group_size = 1,
.wps_mask = 0xFF,
.compute_flash_cr = stm32x_compute_flash_cr_450_483,
},
};
/* flash bank stm32x <base> <size> 0 0 <target#> */
FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command)
{
struct stm32h7x_flash_bank *stm32x_info;
if (CMD_ARGC < 6)
return ERROR_COMMAND_SYNTAX_ERROR;
stm32x_info = malloc(sizeof(struct stm32h7x_flash_bank));
bank->driver_priv = stm32x_info;
stm32x_info->probed = false;
stm32x_info->user_bank_size = bank->size;
return ERROR_OK;
}
static inline uint32_t stm32x_get_flash_reg(struct flash_bank *bank, uint32_t reg_offset)
{
struct stm32h7x_flash_bank *stm32x_info = bank->driver_priv;
return reg_offset + stm32x_info->flash_regs_base;
}
static inline int stm32x_read_flash_reg(struct flash_bank *bank, uint32_t reg_offset, uint32_t *value)
{
uint32_t reg_addr = stm32x_get_flash_reg(bank, reg_offset);
int retval = target_read_u32(bank->target, reg_addr, value);
if (retval != ERROR_OK)
LOG_ERROR("error while reading from address 0x%" PRIx32, reg_addr);
return retval;
}
static inline int stm32x_write_flash_reg(struct flash_bank *bank, uint32_t reg_offset, uint32_t value)
{
uint32_t reg_addr = stm32x_get_flash_reg(bank, reg_offset);
int retval = target_write_u32(bank->target, reg_addr, value);
if (retval != ERROR_OK)
LOG_ERROR("error while writing to address 0x%" PRIx32, reg_addr);
return retval;
}
static inline int stm32x_get_flash_status(struct flash_bank *bank, uint32_t *status)
{
return stm32x_read_flash_reg(bank, FLASH_SR, status);
}
static int stm32x_wait_flash_op_queue(struct flash_bank *bank, int timeout)
{
uint32_t status;
int retval;
/* wait for flash operations completion */
for (;;) {
retval = stm32x_get_flash_status(bank, &status);
if (retval != ERROR_OK)
return retval;
if ((status & FLASH_QW) == 0)
break;
if (timeout-- <= 0) {
LOG_ERROR("wait_flash_op_queue, time out expired, status: 0x%" PRIx32, status);
return ERROR_FAIL;
}
alive_sleep(1);
}
if (status & FLASH_WRPERR) {
LOG_ERROR("wait_flash_op_queue, WRPERR detected");
retval = ERROR_FAIL;
}
/* Clear error + EOP flags but report errors */
if (status & FLASH_ERROR) {
if (retval == ERROR_OK)
retval = ERROR_FAIL;
/* If this operation fails, we ignore it and report the original retval */
stm32x_write_flash_reg(bank, FLASH_CCR, status);
}
return retval;
}
static int stm32x_unlock_reg(struct flash_bank *bank)
{
uint32_t ctrl;
/* first check if not already unlocked
* otherwise writing on FLASH_KEYR will fail
*/
int retval = stm32x_read_flash_reg(bank, FLASH_CR, &ctrl);
if (retval != ERROR_OK)
return retval;
if ((ctrl & FLASH_LOCK) == 0)
return ERROR_OK;
/* unlock flash registers for bank */
retval = stm32x_write_flash_reg(bank, FLASH_KEYR, KEY1);
if (retval != ERROR_OK)
return retval;
retval = stm32x_write_flash_reg(bank, FLASH_KEYR, KEY2);
if (retval != ERROR_OK)
return retval;
retval = stm32x_read_flash_reg(bank, FLASH_CR, &ctrl);
if (retval != ERROR_OK)
return retval;
if (ctrl & FLASH_LOCK) {
LOG_ERROR("flash not unlocked STM32_FLASH_CRx: 0x%" PRIx32, ctrl);
return ERROR_TARGET_FAILURE;
}
return ERROR_OK;
}
static int stm32x_unlock_option_reg(struct flash_bank *bank)
{
uint32_t ctrl;
int retval = stm32x_read_flash_reg(bank, FLASH_OPTCR, &ctrl);
if (retval != ERROR_OK)
return retval;
if ((ctrl & OPT_LOCK) == 0)
return ERROR_OK;
/* unlock option registers */
retval = stm32x_write_flash_reg(bank, FLASH_OPTKEYR, OPTKEY1);
if (retval != ERROR_OK)
return retval;
retval = stm32x_write_flash_reg(bank, FLASH_OPTKEYR, OPTKEY2);
if (retval != ERROR_OK)
return retval;
retval = stm32x_read_flash_reg(bank, FLASH_OPTCR, &ctrl);
if (retval != ERROR_OK)
return retval;
if (ctrl & OPT_LOCK) {
LOG_ERROR("options not unlocked STM32_FLASH_OPTCR: 0x%" PRIx32, ctrl);
return ERROR_TARGET_FAILURE;
}
return ERROR_OK;
}
static inline int stm32x_lock_reg(struct flash_bank *bank)
{
return stm32x_write_flash_reg(bank, FLASH_CR, FLASH_LOCK);
}
static inline int stm32x_lock_option_reg(struct flash_bank *bank)
{
return stm32x_write_flash_reg(bank, FLASH_OPTCR, OPT_LOCK);
}
static int stm32x_write_option(struct flash_bank *bank, uint32_t reg_offset, uint32_t value)
{
int retval, retval2;
/* unlock option bytes for modification */
retval = stm32x_unlock_option_reg(bank);
if (retval != ERROR_OK)
goto flash_options_lock;
/* write option bytes */
retval = stm32x_write_flash_reg(bank, reg_offset, value);
if (retval != ERROR_OK)
goto flash_options_lock;
/* Remove OPT error flag before programming */
retval = stm32x_write_flash_reg(bank, FLASH_OPTCCR, OPT_CLR_OPTCHANGEERR);
if (retval != ERROR_OK)
goto flash_options_lock;
/* start programming cycle */
retval = stm32x_write_flash_reg(bank, FLASH_OPTCR, OPT_START);
if (retval != ERROR_OK)
goto flash_options_lock;
/* wait for completion */
int timeout = FLASH_ERASE_TIMEOUT;
uint32_t status;
for (;;) {
retval = stm32x_read_flash_reg(bank, FLASH_OPTSR_CUR, &status);
if (retval != ERROR_OK) {
LOG_ERROR("stm32x_options_program: failed to read FLASH_OPTSR_CUR");
goto flash_options_lock;
}
if ((status & OPT_BSY) == 0)
break;
if (timeout-- <= 0) {
LOG_ERROR("waiting for OBL launch, time out expired, OPTSR: 0x%" PRIx32, status);
retval = ERROR_FAIL;
goto flash_options_lock;
}
alive_sleep(1);
}
/* check for failure */
if (status & OPT_OPTCHANGEERR) {
LOG_ERROR("error changing option bytes (OPTCHANGEERR=1)");
retval = ERROR_FLASH_OPERATION_FAILED;
}
flash_options_lock:
retval2 = stm32x_lock_option_reg(bank);
if (retval2 != ERROR_OK)
LOG_ERROR("error during the lock of flash options");
return (retval == ERROR_OK) ? retval2 : retval;
}
static int stm32x_modify_option(struct flash_bank *bank, uint32_t reg_offset, uint32_t value, uint32_t mask)
{
uint32_t data;
int retval = stm32x_read_flash_reg(bank, reg_offset, &data);
if (retval != ERROR_OK)
return retval;
data = (data & ~mask) | (value & mask);
return stm32x_write_option(bank, reg_offset, data);
}
static int stm32x_protect_check(struct flash_bank *bank)
{
uint32_t protection;
/* read 'write protection' settings */
int retval = stm32x_read_flash_reg(bank, FLASH_WPSN_CUR, &protection);
if (retval != ERROR_OK) {
LOG_DEBUG("unable to read WPSN_CUR register");
return retval;
}
for (unsigned int i = 0; i < bank->num_prot_blocks; i++)
bank->prot_blocks[i].is_protected = protection & (1 << i) ? 0 : 1;
return ERROR_OK;
}
static int stm32x_erase(struct flash_bank *bank, unsigned int first,
unsigned int last)
{
struct stm32h7x_flash_bank *stm32x_info = bank->driver_priv;
int retval, retval2;
assert(first < bank->num_sectors);
assert(last < bank->num_sectors);
if (bank->target->state != TARGET_HALTED)
return ERROR_TARGET_NOT_HALTED;
retval = stm32x_unlock_reg(bank);
if (retval != ERROR_OK)
goto flash_lock;
/*
Sector Erase
To erase a sector, follow the procedure below:
1. Check that no Flash memory operation is ongoing by checking the QW bit in the
FLASH_SR register
2. Set the SER bit and select the sector
you wish to erase (SNB) in the FLASH_CR register
3. Set the STRT bit in the FLASH_CR register
4. Wait for flash operations completion
*/
for (unsigned int i = first; i <= last; i++) {
LOG_DEBUG("erase sector %u", i);
retval = stm32x_write_flash_reg(bank, FLASH_CR,
stm32x_info->part_info->compute_flash_cr(FLASH_SER | FLASH_PSIZE_64, i));
if (retval != ERROR_OK) {
LOG_ERROR("Error erase sector %u", i);
goto flash_lock;
}
retval = stm32x_write_flash_reg(bank, FLASH_CR,
stm32x_info->part_info->compute_flash_cr(FLASH_SER | FLASH_PSIZE_64 | FLASH_START, i));
if (retval != ERROR_OK) {
LOG_ERROR("Error erase sector %u", i);
goto flash_lock;
}
retval = stm32x_wait_flash_op_queue(bank, FLASH_ERASE_TIMEOUT);
if (retval != ERROR_OK) {
LOG_ERROR("erase time-out or operation error sector %u", i);
goto flash_lock;
}
bank->sectors[i].is_erased = 1;
}
flash_lock:
retval2 = stm32x_lock_reg(bank);
if (retval2 != ERROR_OK)
LOG_ERROR("error during the lock of flash");
return (retval == ERROR_OK) ? retval2 : retval;
}
static int stm32x_protect(struct flash_bank *bank, int set, unsigned int first,
unsigned int last)
{
struct target *target = bank->target;
uint32_t protection;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* read 'write protection' settings */
int retval = stm32x_read_flash_reg(bank, FLASH_WPSN_CUR, &protection);
if (retval != ERROR_OK) {
LOG_DEBUG("unable to read WPSN_CUR register");
return retval;
}
for (unsigned int i = first; i <= last; i++) {
if (set)
protection &= ~(1 << i);
else
protection |= (1 << i);
}
/* apply WRPSN mask */
protection &= 0xff;
LOG_DEBUG("stm32x_protect, option_bytes written WPSN 0x%" PRIx32, protection);
/* apply new option value */
return stm32x_write_option(bank, FLASH_WPSN_PRG, protection);
}
static int stm32x_write_block(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
struct stm32h7x_flash_bank *stm32x_info = bank->driver_priv;
/*
* If the size of the data part of the buffer is not a multiple of .block_size, we get
* "corrupted fifo read" pointer in target_run_flash_async_algorithm()
*/
uint32_t data_size = 512 * stm32x_info->part_info->block_size;
uint32_t buffer_size = 8 + data_size;
struct working_area *write_algorithm;
struct working_area *source;
uint32_t address = bank->base + offset;
struct reg_param reg_params[6];
struct armv7m_algorithm armv7m_info;
int retval = ERROR_OK;
static const uint8_t stm32x_flash_write_code[] = {
#include "../../../contrib/loaders/flash/stm32/stm32h7x.inc"
};
if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code),
&write_algorithm) != ERROR_OK) {
LOG_WARNING("no working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
retval = target_write_buffer(target, write_algorithm->address,
sizeof(stm32x_flash_write_code),
stm32x_flash_write_code);
if (retval != ERROR_OK) {
target_free_working_area(target, write_algorithm);
return retval;
}
/* memory buffer */
while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
data_size /= 2;
buffer_size = 8 + data_size;
if (data_size <= 256) {
/* we already allocated the writing code, but failed to get a
* buffer, free the algorithm */
target_free_working_area(target, write_algorithm);
LOG_WARNING("no large enough working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
}
LOG_DEBUG("target_alloc_working_area_try : buffer_size -> 0x%" PRIx32, buffer_size);
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARM_MODE_THREAD;
init_reg_param(®_params[0], "r0", 32, PARAM_IN_OUT); /* buffer start, status (out) */
init_reg_param(®_params[1], "r1", 32, PARAM_OUT); /* buffer end */
init_reg_param(®_params[2], "r2", 32, PARAM_OUT); /* target address */
init_reg_param(®_params[3], "r3", 32, PARAM_OUT); /* count of words (word size = .block_size (bytes) */
init_reg_param(®_params[4], "r4", 32, PARAM_OUT); /* word size in bytes */
init_reg_param(®_params[5], "r5", 32, PARAM_OUT); /* flash reg base */
buf_set_u32(reg_params[0].value, 0, 32, source->address);
buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size);
buf_set_u32(reg_params[2].value, 0, 32, address);
buf_set_u32(reg_params[3].value, 0, 32, count);
buf_set_u32(reg_params[4].value, 0, 32, stm32x_info->part_info->block_size);
buf_set_u32(reg_params[5].value, 0, 32, stm32x_info->flash_regs_base);
retval = target_run_flash_async_algorithm(target,
buffer,
count,
stm32x_info->part_info->block_size,
0, NULL,
ARRAY_SIZE(reg_params), reg_params,
source->address, source->size,
write_algorithm->address, 0,
&armv7m_info);
if (retval == ERROR_FLASH_OPERATION_FAILED) {
LOG_ERROR("error executing stm32h7x flash write algorithm");
uint32_t flash_sr = buf_get_u32(reg_params[0].value, 0, 32);
if (flash_sr & FLASH_WRPERR)
LOG_ERROR("flash memory write protected");
if ((flash_sr & FLASH_ERROR) != 0) {
LOG_ERROR("flash write failed, FLASH_SR = 0x%08" PRIx32, flash_sr);
/* Clear error + EOP flags but report errors */
stm32x_write_flash_reg(bank, FLASH_CCR, flash_sr);
retval = ERROR_FAIL;
}
}
target_free_working_area(target, source);
target_free_working_area(target, write_algorithm);
destroy_reg_param(®_params[0]);
destroy_reg_param(®_params[1]);
destroy_reg_param(®_params[2]);
destroy_reg_param(®_params[3]);
destroy_reg_param(®_params[4]);
destroy_reg_param(®_params[5]);
return retval;
}
static int stm32x_write(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
struct stm32h7x_flash_bank *stm32x_info = bank->driver_priv;
uint32_t address = bank->base + offset;
int retval, retval2;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* should be enforced via bank->write_start_alignment */
assert(!(offset % stm32x_info->part_info->block_size));
/* should be enforced via bank->write_end_alignment */
assert(!(count % stm32x_info->part_info->block_size));
retval = stm32x_unlock_reg(bank);
if (retval != ERROR_OK)
goto flash_lock;
uint32_t blocks_remaining = count / stm32x_info->part_info->block_size;
/* multiple words (n * .block_size) to be programmed in block */
if (blocks_remaining) {
retval = stm32x_write_block(bank, buffer, offset, blocks_remaining);
if (retval != ERROR_OK) {
if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
/* if block write failed (no sufficient working area),
* we use normal (slow) dword accesses */
LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
}
} else {
buffer += blocks_remaining * stm32x_info->part_info->block_size;
address += blocks_remaining * stm32x_info->part_info->block_size;
blocks_remaining = 0;
}
if ((retval != ERROR_OK) && (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE))
goto flash_lock;
}
/*
Standard programming
The Flash memory programming sequence is as follows:
1. Check that no main Flash memory operation is ongoing by checking the QW bit in the
FLASH_SR register.
2. Set the PG bit in the FLASH_CR register
3. 8 x Word access (or Force Write FW)
4. Wait for flash operations completion
*/
while (blocks_remaining > 0) {
retval = stm32x_write_flash_reg(bank, FLASH_CR,
stm32x_info->part_info->compute_flash_cr(FLASH_PG | FLASH_PSIZE_64, 0));
if (retval != ERROR_OK)
goto flash_lock;
retval = target_write_buffer(target, address, stm32x_info->part_info->block_size, buffer);
if (retval != ERROR_OK)
goto flash_lock;
retval = stm32x_wait_flash_op_queue(bank, FLASH_WRITE_TIMEOUT);
if (retval != ERROR_OK)
goto flash_lock;
buffer += stm32x_info->part_info->block_size;
address += stm32x_info->part_info->block_size;
blocks_remaining--;
}
flash_lock:
retval2 = stm32x_lock_reg(bank);
if (retval2 != ERROR_OK)
LOG_ERROR("error during the lock of flash");
return (retval == ERROR_OK) ? retval2 : retval;
}
static int stm32x_read_id_code(struct flash_bank *bank, uint32_t *id)
{
/* read stm32 device id register */
int retval = target_read_u32(bank->target, DBGMCU_IDCODE_REGISTER, id);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static int stm32x_probe(struct flash_bank *bank)
{
struct target *target = bank->target;
struct stm32h7x_flash_bank *stm32x_info = bank->driver_priv;
uint16_t flash_size_in_kb;
uint32_t device_id;
stm32x_info->probed = false;
stm32x_info->part_info = NULL;
int retval = stm32x_read_id_code(bank, &stm32x_info->idcode);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("device id = 0x%08" PRIx32, stm32x_info->idcode);
device_id = stm32x_info->idcode & 0xfff;
for (unsigned int n = 0; n < ARRAY_SIZE(stm32h7x_parts); n++) {
if (device_id == stm32h7x_parts[n].id)
stm32x_info->part_info = &stm32h7x_parts[n];
}
if (!stm32x_info->part_info) {
LOG_WARNING("Cannot identify target as a STM32H7xx family.");
return ERROR_FAIL;
} else {
LOG_INFO("Device: %s", stm32x_info->part_info->device_str);
}
/* update the address of controller */
if (bank->base == FLASH_BANK0_ADDRESS)
stm32x_info->flash_regs_base = FLASH_REG_BASE_B0;
else if (bank->base == FLASH_BANK1_ADDRESS)
stm32x_info->flash_regs_base = FLASH_REG_BASE_B1;
else {
LOG_WARNING("Flash register base not defined for bank %u", bank->bank_number);
return ERROR_FAIL;
}
LOG_DEBUG("flash_regs_base: 0x%" PRIx32, stm32x_info->flash_regs_base);
/* get flash size from target */
retval = target_read_u16(target, stm32x_info->part_info->fsize_addr, &flash_size_in_kb);
if (retval != ERROR_OK) {
/* read error when device has invalid value, set max flash size */
flash_size_in_kb = stm32x_info->part_info->max_flash_size_kb;
} else
LOG_INFO("flash size probed value %" PRIu16, flash_size_in_kb);
/* setup bank size */
const uint32_t bank1_base = FLASH_BANK0_ADDRESS;
const uint32_t bank2_base = bank1_base + stm32x_info->part_info->max_bank_size_kb * 1024;
bool has_dual_bank = stm32x_info->part_info->has_dual_bank;
switch (device_id) {
case 0x450:
case 0x480:
/* For STM32H74x/75x and STM32H7Ax/Bx
* - STM32H7xxxI devices contains dual bank, 1 Mbyte each
* - STM32H7xxxG devices contains dual bank, 512 Kbyte each
* - STM32H7xxxB devices contains single bank, 128 Kbyte
* - the second bank starts always from 0x08100000
*/
if (flash_size_in_kb == 128)
has_dual_bank = false;
else
/* flash size is 2M or 1M */
flash_size_in_kb /= 2;
break;
case 0x483:
break;
default:
LOG_ERROR("unsupported device");
return ERROR_FAIL;
}
if (has_dual_bank) {
LOG_INFO("STM32H7 flash has dual banks");
if (bank->base != bank1_base && bank->base != bank2_base) {
LOG_ERROR("STM32H7 flash bank base address config is incorrect. "
TARGET_ADDR_FMT " but should rather be 0x%" PRIx32 " or 0x%" PRIx32,
bank->base, bank1_base, bank2_base);
return ERROR_FAIL;
}
} else {
LOG_INFO("STM32H7 flash has a single bank");
if (bank->base == bank2_base) {
LOG_ERROR("this device has a single bank only");
return ERROR_FAIL;
} else if (bank->base != bank1_base) {
LOG_ERROR("STM32H7 flash bank base address config is incorrect. "
TARGET_ADDR_FMT " but should be 0x%" PRIx32,
bank->base, bank1_base);
return ERROR_FAIL;
}
}
LOG_INFO("Bank (%u) size is %" PRIu16 " kb, base address is " TARGET_ADDR_FMT,
bank->bank_number, flash_size_in_kb, bank->base);
/* if the user sets the size manually then ignore the probed value
* this allows us to work around devices that have an invalid flash size register value */
if (stm32x_info->user_bank_size) {
LOG_INFO("ignoring flash probed value, using configured bank size");
flash_size_in_kb = stm32x_info->user_bank_size / 1024;
} else if (flash_size_in_kb == 0xffff) {
/* die flash size */
flash_size_in_kb = stm32x_info->part_info->max_flash_size_kb;
}
/* did we assign flash size? */
assert(flash_size_in_kb != 0xffff);
bank->size = flash_size_in_kb * 1024;
bank->write_start_alignment = stm32x_info->part_info->block_size;
bank->write_end_alignment = stm32x_info->part_info->block_size;
/* setup sectors */
bank->num_sectors = flash_size_in_kb / stm32x_info->part_info->page_size_kb;
assert(bank->num_sectors > 0);
free(bank->sectors);
bank->sectors = alloc_block_array(0, stm32x_info->part_info->page_size_kb * 1024,
bank->num_sectors);
if (bank->sectors == NULL) {
LOG_ERROR("failed to allocate bank sectors");
return ERROR_FAIL;
}
/* setup protection blocks */
const uint32_t wpsn = stm32x_info->part_info->wps_group_size;
assert(bank->num_sectors % wpsn == 0);
bank->num_prot_blocks = bank->num_sectors / wpsn;
assert(bank->num_prot_blocks > 0);
free(bank->prot_blocks);
bank->prot_blocks = alloc_block_array(0, stm32x_info->part_info->page_size_kb * wpsn * 1024,
bank->num_prot_blocks);
if (bank->prot_blocks == NULL) {
LOG_ERROR("failed to allocate bank prot_block");
return ERROR_FAIL;
}
stm32x_info->probed = true;
return ERROR_OK;
}
static int stm32x_auto_probe(struct flash_bank *bank)
{
struct stm32h7x_flash_bank *stm32x_info = bank->driver_priv;
if (stm32x_info->probed)
return ERROR_OK;
return stm32x_probe(bank);
}
/* This method must return a string displaying information about the bank */
static int stm32x_get_info(struct flash_bank *bank, struct command_invocation *cmd)
{
struct stm32h7x_flash_bank *stm32x_info = bank->driver_priv;
const struct stm32h7x_part_info *info = stm32x_info->part_info;
if (!stm32x_info->probed) {
int retval = stm32x_probe(bank);
if (retval != ERROR_OK) {
command_print_sameline(cmd, "Unable to find bank information.");
return retval;
}
}
if (info) {
const char *rev_str = NULL;
uint16_t rev_id = stm32x_info->idcode >> 16;
for (unsigned int i = 0; i < info->num_revs; i++)
if (rev_id == info->revs[i].rev)
rev_str = info->revs[i].str;
if (rev_str != NULL) {
command_print_sameline(cmd, "%s - Rev: %s",
stm32x_info->part_info->device_str, rev_str);
} else {
command_print_sameline(cmd,
"%s - Rev: unknown (0x%04" PRIx16 ")",
stm32x_info->part_info->device_str, rev_id);
}
} else {
command_print_sameline(cmd, "Cannot identify target as a STM32H7x");
return ERROR_FAIL;
}
return ERROR_OK;
}
static int stm32x_set_rdp(struct flash_bank *bank, enum stm32h7x_opt_rdp new_rdp)
{
struct target *target = bank->target;
uint32_t optsr, cur_rdp;
int retval;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
retval = stm32x_read_flash_reg(bank, FLASH_OPTSR_PRG, &optsr);
if (retval != ERROR_OK) {
LOG_DEBUG("unable to read FLASH_OPTSR_PRG register");
return retval;
}
/* get current RDP, and check if there is a change */
cur_rdp = (optsr & OPT_RDP_MASK) >> OPT_RDP_POS;
if (new_rdp == cur_rdp) {
LOG_INFO("the requested RDP value is already programmed");
return ERROR_OK;
}
switch (new_rdp) {
case OPT_RDP_L0:
LOG_WARNING("unlocking the entire flash device");
break;
case OPT_RDP_L1:
LOG_WARNING("locking the entire flash device");
break;
case OPT_RDP_L2:
LOG_WARNING("locking the entire flash device, irreversible");
break;
}
/* apply new RDP */
optsr = (optsr & ~OPT_RDP_MASK) | (new_rdp << OPT_RDP_POS);
/* apply new option value */
return stm32x_write_option(bank, FLASH_OPTSR_PRG, optsr);
}
COMMAND_HANDLER(stm32x_handle_lock_command)
{
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
retval = stm32x_set_rdp(bank, OPT_RDP_L1);
if (retval != ERROR_OK)
command_print(CMD, "%s failed to lock device", bank->driver->name);
else
command_print(CMD, "%s locked", bank->driver->name);
return retval;
}
COMMAND_HANDLER(stm32x_handle_unlock_command)
{
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
retval = stm32x_set_rdp(bank, OPT_RDP_L0);
if (retval != ERROR_OK)
command_print(CMD, "%s failed to unlock device", bank->driver->name);
else
command_print(CMD, "%s unlocked", bank->driver->name);
return retval;
}
static int stm32x_mass_erase(struct flash_bank *bank)
{
int retval, retval2;
struct target *target = bank->target;
struct stm32h7x_flash_bank *stm32x_info = bank->driver_priv;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
retval = stm32x_unlock_reg(bank);
if (retval != ERROR_OK)
goto flash_lock;
/* mass erase flash memory bank */
retval = stm32x_write_flash_reg(bank, FLASH_CR,
stm32x_info->part_info->compute_flash_cr(FLASH_BER | FLASH_PSIZE_64, 0));
if (retval != ERROR_OK)
goto flash_lock;
retval = stm32x_write_flash_reg(bank, FLASH_CR,
stm32x_info->part_info->compute_flash_cr(FLASH_BER | FLASH_PSIZE_64 | FLASH_START, 0));
if (retval != ERROR_OK)
goto flash_lock;
retval = stm32x_wait_flash_op_queue(bank, 30000);
if (retval != ERROR_OK)
goto flash_lock;
flash_lock:
retval2 = stm32x_lock_reg(bank);
if (retval2 != ERROR_OK)
LOG_ERROR("error during the lock of flash");
return (retval == ERROR_OK) ? retval2 : retval;
}
COMMAND_HANDLER(stm32x_handle_mass_erase_command)
{
if (CMD_ARGC < 1) {
command_print(CMD, "stm32h7x mass_erase <bank>");
return ERROR_COMMAND_SYNTAX_ERROR;
}
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
retval = stm32x_mass_erase(bank);
if (retval == ERROR_OK) {
/* set all sectors as erased */
for (unsigned int i = 0; i < bank->num_sectors; i++)
bank->sectors[i].is_erased = 1;
command_print(CMD, "stm32h7x mass erase complete");
} else {
command_print(CMD, "stm32h7x mass erase failed");
}
return retval;
}
COMMAND_HANDLER(stm32x_handle_option_read_command)
{
if (CMD_ARGC < 2) {
command_print(CMD, "stm32h7x option_read <bank> <option_reg offset>");
return ERROR_COMMAND_SYNTAX_ERROR;
}
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
uint32_t reg_offset, value;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], reg_offset);
retval = stm32x_read_flash_reg(bank, reg_offset, &value);
if (retval != ERROR_OK)
return retval;
command_print(CMD, "Option Register: <0x%" PRIx32 "> = 0x%" PRIx32,
stm32x_get_flash_reg(bank, reg_offset), value);
return retval;
}
COMMAND_HANDLER(stm32x_handle_option_write_command)
{
if (CMD_ARGC < 3) {
command_print(CMD, "stm32h7x option_write <bank> <option_reg offset> <value> [mask]");
return ERROR_COMMAND_SYNTAX_ERROR;
}
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
uint32_t reg_offset, value, mask = 0xffffffff;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], reg_offset);
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], value);
if (CMD_ARGC > 3)
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], mask);
return stm32x_modify_option(bank, reg_offset, value, mask);
}
static const struct command_registration stm32x_exec_command_handlers[] = {
{
.name = "lock",
.handler = stm32x_handle_lock_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Lock entire flash device.",
},
{
.name = "unlock",
.handler = stm32x_handle_unlock_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Unlock entire protected flash device.",
},
{
.name = "mass_erase",
.handler = stm32x_handle_mass_erase_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Erase entire flash device.",
},
{
.name = "option_read",
.handler = stm32x_handle_option_read_command,
.mode = COMMAND_EXEC,
.usage = "bank_id reg_offset",
.help = "Read and display device option bytes.",
},
{
.name = "option_write",
.handler = stm32x_handle_option_write_command,
.mode = COMMAND_EXEC,
.usage = "bank_id reg_offset value [mask]",
.help = "Write device option bit fields with provided value.",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration stm32x_command_handlers[] = {
{
.name = "stm32h7x",
.mode = COMMAND_ANY,
.help = "stm32h7x flash command group",
.usage = "",
.chain = stm32x_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
const struct flash_driver stm32h7x_flash = {
.name = "stm32h7x",
.commands = stm32x_command_handlers,
.flash_bank_command = stm32x_flash_bank_command,
.erase = stm32x_erase,
.protect = stm32x_protect,
.write = stm32x_write,
.read = default_flash_read,
.probe = stm32x_probe,
.auto_probe = stm32x_auto_probe,
.erase_check = default_flash_blank_check,
.protect_check = stm32x_protect_check,
.info = stm32x_get_info,
.free_driver_priv = default_flash_free_driver_priv,
};
|