1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
|
// SPDX-License-Identifier: GPL-2.0-or-later
/***************************************************************************
* Copyright (C) 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* Copyright (C) 2011 by Andreas Fritiofson *
* andreas.fritiofson@gmail.com *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <string.h>
#include "imp.h"
#include <helper/binarybuffer.h>
#include <target/algorithm.h>
#include <target/cortex_m.h>
/* stm32x register locations */
#define FLASH_REG_BASE_B0 0x40022000
#define FLASH_REG_BASE_B1 0x40022040
#define STM32_FLASH_ACR 0x00
#define STM32_FLASH_KEYR 0x04
#define STM32_FLASH_OPTKEYR 0x08
#define STM32_FLASH_SR 0x0C
#define STM32_FLASH_CR 0x10
#define STM32_FLASH_AR 0x14
#define STM32_FLASH_OBR 0x1C
#define STM32_FLASH_WRPR 0x20
/* TODO: Check if code using these really should be hard coded to bank 0.
* There are valid cases, on dual flash devices the protection of the
* second bank is done on the bank0 reg's. */
#define STM32_FLASH_ACR_B0 0x40022000
#define STM32_FLASH_KEYR_B0 0x40022004
#define STM32_FLASH_OPTKEYR_B0 0x40022008
#define STM32_FLASH_SR_B0 0x4002200C
#define STM32_FLASH_CR_B0 0x40022010
#define STM32_FLASH_AR_B0 0x40022014
#define STM32_FLASH_OBR_B0 0x4002201C
#define STM32_FLASH_WRPR_B0 0x40022020
/* option byte location */
#define STM32_OB_RDP 0x1FFFF800
#define STM32_OB_USER 0x1FFFF802
#define STM32_OB_DATA0 0x1FFFF804
#define STM32_OB_DATA1 0x1FFFF806
#define STM32_OB_WRP0 0x1FFFF808
#define STM32_OB_WRP1 0x1FFFF80A
#define STM32_OB_WRP2 0x1FFFF80C
#define STM32_OB_WRP3 0x1FFFF80E
/* FLASH_CR register bits */
#define FLASH_PG (1 << 0)
#define FLASH_PER (1 << 1)
#define FLASH_MER (1 << 2)
#define FLASH_OPTPG (1 << 4)
#define FLASH_OPTER (1 << 5)
#define FLASH_STRT (1 << 6)
#define FLASH_LOCK (1 << 7)
#define FLASH_OPTWRE (1 << 9)
#define FLASH_OBL_LAUNCH (1 << 13) /* except stm32f1x series */
/* FLASH_SR register bits */
#define FLASH_BSY (1 << 0)
#define FLASH_PGERR (1 << 2)
#define FLASH_WRPRTERR (1 << 4)
#define FLASH_EOP (1 << 5)
/* STM32_FLASH_OBR bit definitions (reading) */
#define OPT_ERROR 0
#define OPT_READOUT 1
#define OPT_RDWDGSW 2
#define OPT_RDRSTSTOP 3
#define OPT_RDRSTSTDBY 4
#define OPT_BFB2 5 /* dual flash bank only */
/* register unlock keys */
#define KEY1 0x45670123
#define KEY2 0xCDEF89AB
/* timeout values */
#define FLASH_WRITE_TIMEOUT 10
#define FLASH_ERASE_TIMEOUT 100
struct stm32x_options {
uint8_t rdp;
uint8_t user;
uint16_t data;
uint32_t protection;
};
struct stm32x_flash_bank {
struct stm32x_options option_bytes;
int ppage_size;
bool probed;
bool has_dual_banks;
/* used to access dual flash bank stm32xl */
bool can_load_options;
uint32_t register_base;
uint8_t default_rdp;
int user_data_offset;
int option_offset;
uint32_t user_bank_size;
};
static int stm32x_mass_erase(struct flash_bank *bank);
static int stm32x_write_block(struct flash_bank *bank, const uint8_t *buffer,
uint32_t address, uint32_t hwords_count);
/* flash bank stm32x <base> <size> 0 0 <target#>
*/
FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command)
{
struct stm32x_flash_bank *stm32x_info;
if (CMD_ARGC < 6)
return ERROR_COMMAND_SYNTAX_ERROR;
stm32x_info = malloc(sizeof(struct stm32x_flash_bank));
bank->driver_priv = stm32x_info;
stm32x_info->probed = false;
stm32x_info->has_dual_banks = false;
stm32x_info->can_load_options = false;
stm32x_info->register_base = FLASH_REG_BASE_B0;
stm32x_info->user_bank_size = bank->size;
/* The flash write must be aligned to a halfword boundary */
bank->write_start_alignment = bank->write_end_alignment = 2;
return ERROR_OK;
}
static inline int stm32x_get_flash_reg(struct flash_bank *bank, uint32_t reg)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
return reg + stm32x_info->register_base;
}
static inline int stm32x_get_flash_status(struct flash_bank *bank, uint32_t *status)
{
struct target *target = bank->target;
return target_read_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), status);
}
static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout)
{
struct target *target = bank->target;
uint32_t status;
int retval = ERROR_OK;
/* wait for busy to clear */
for (;;) {
retval = stm32x_get_flash_status(bank, &status);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("status: 0x%" PRIx32 "", status);
if ((status & FLASH_BSY) == 0)
break;
if (timeout-- <= 0) {
LOG_ERROR("timed out waiting for flash");
return ERROR_FLASH_BUSY;
}
alive_sleep(1);
}
if (status & FLASH_WRPRTERR) {
LOG_ERROR("stm32x device protected");
retval = ERROR_FLASH_PROTECTED;
}
if (status & FLASH_PGERR) {
LOG_ERROR("stm32x device programming failed / flash not erased");
retval = ERROR_FLASH_OPERATION_FAILED;
}
/* Clear but report errors */
if (status & (FLASH_WRPRTERR | FLASH_PGERR)) {
/* If this operation fails, we ignore it and report the original
* retval
*/
target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR),
FLASH_WRPRTERR | FLASH_PGERR);
}
return retval;
}
static int stm32x_check_operation_supported(struct flash_bank *bank)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
/* if we have a dual flash bank device then
* we need to perform option byte stuff on bank0 only */
if (stm32x_info->register_base != FLASH_REG_BASE_B0) {
LOG_ERROR("Option byte operations must use bank 0");
return ERROR_FLASH_OPERATION_FAILED;
}
return ERROR_OK;
}
static int stm32x_read_options(struct flash_bank *bank)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
struct target *target = bank->target;
uint32_t option_bytes;
int retval;
/* read user and read protection option bytes, user data option bytes */
retval = target_read_u32(target, STM32_FLASH_OBR_B0, &option_bytes);
if (retval != ERROR_OK)
return retval;
stm32x_info->option_bytes.rdp = (option_bytes & (1 << OPT_READOUT)) ? 0 : stm32x_info->default_rdp;
stm32x_info->option_bytes.user = (option_bytes >> stm32x_info->option_offset >> 2) & 0xff;
stm32x_info->option_bytes.data = (option_bytes >> stm32x_info->user_data_offset) & 0xffff;
/* read write protection option bytes */
retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &stm32x_info->option_bytes.protection);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static int stm32x_erase_options(struct flash_bank *bank)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
struct target *target = bank->target;
/* read current options */
stm32x_read_options(bank);
/* unlock flash registers */
int retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY2);
if (retval != ERROR_OK)
goto flash_lock;
/* unlock option flash registers */
retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY1);
if (retval != ERROR_OK)
goto flash_lock;
retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY2);
if (retval != ERROR_OK)
goto flash_lock;
/* erase option bytes */
retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTER | FLASH_OPTWRE);
if (retval != ERROR_OK)
goto flash_lock;
retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTER | FLASH_STRT | FLASH_OPTWRE);
if (retval != ERROR_OK)
goto flash_lock;
retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
if (retval != ERROR_OK)
goto flash_lock;
/* clear read protection option byte
* this will also force a device unlock if set */
stm32x_info->option_bytes.rdp = stm32x_info->default_rdp;
return ERROR_OK;
flash_lock:
target_write_u32(target, STM32_FLASH_CR_B0, FLASH_LOCK);
return retval;
}
static int stm32x_write_options(struct flash_bank *bank)
{
struct stm32x_flash_bank *stm32x_info = NULL;
struct target *target = bank->target;
stm32x_info = bank->driver_priv;
/* unlock flash registers */
int retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY2);
if (retval != ERROR_OK)
goto flash_lock;
/* unlock option flash registers */
retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY1);
if (retval != ERROR_OK)
goto flash_lock;
retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY2);
if (retval != ERROR_OK)
goto flash_lock;
/* program option bytes */
retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTPG | FLASH_OPTWRE);
if (retval != ERROR_OK)
goto flash_lock;
uint8_t opt_bytes[16];
target_buffer_set_u16(target, opt_bytes, stm32x_info->option_bytes.rdp);
target_buffer_set_u16(target, opt_bytes + 2, stm32x_info->option_bytes.user);
target_buffer_set_u16(target, opt_bytes + 4, stm32x_info->option_bytes.data & 0xff);
target_buffer_set_u16(target, opt_bytes + 6, (stm32x_info->option_bytes.data >> 8) & 0xff);
target_buffer_set_u16(target, opt_bytes + 8, stm32x_info->option_bytes.protection & 0xff);
target_buffer_set_u16(target, opt_bytes + 10, (stm32x_info->option_bytes.protection >> 8) & 0xff);
target_buffer_set_u16(target, opt_bytes + 12, (stm32x_info->option_bytes.protection >> 16) & 0xff);
target_buffer_set_u16(target, opt_bytes + 14, (stm32x_info->option_bytes.protection >> 24) & 0xff);
/* Block write is preferred in favour of operation with ancient ST-Link
* firmwares without 16-bit memory access. See
* 480: flash: stm32f1x: write option bytes using the loader
* https://review.openocd.org/c/openocd/+/480
*/
retval = stm32x_write_block(bank, opt_bytes, STM32_OB_RDP, sizeof(opt_bytes) / 2);
flash_lock:
{
int retval2 = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_LOCK);
if (retval == ERROR_OK)
retval = retval2;
}
return retval;
}
static int stm32x_protect_check(struct flash_bank *bank)
{
struct target *target = bank->target;
uint32_t protection;
int retval = stm32x_check_operation_supported(bank);
if (retval != ERROR_OK)
return retval;
/* medium density - each bit refers to a 4 sector protection block
* high density - each bit refers to a 2 sector protection block
* bit 31 refers to all remaining sectors in a bank */
retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &protection);
if (retval != ERROR_OK)
return retval;
for (unsigned int i = 0; i < bank->num_prot_blocks; i++)
bank->prot_blocks[i].is_protected = (protection & (1 << i)) ? 0 : 1;
return ERROR_OK;
}
static int stm32x_erase(struct flash_bank *bank, unsigned int first,
unsigned int last)
{
struct target *target = bank->target;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if ((first == 0) && (last == (bank->num_sectors - 1)))
return stm32x_mass_erase(bank);
/* unlock flash registers */
int retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
if (retval != ERROR_OK)
goto flash_lock;
for (unsigned int i = first; i <= last; i++) {
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PER);
if (retval != ERROR_OK)
goto flash_lock;
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_AR),
bank->base + bank->sectors[i].offset);
if (retval != ERROR_OK)
goto flash_lock;
retval = target_write_u32(target,
stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PER | FLASH_STRT);
if (retval != ERROR_OK)
goto flash_lock;
retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
if (retval != ERROR_OK)
goto flash_lock;
}
flash_lock:
{
int retval2 = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
if (retval == ERROR_OK)
retval = retval2;
}
return retval;
}
static int stm32x_protect(struct flash_bank *bank, int set, unsigned int first,
unsigned int last)
{
struct target *target = bank->target;
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
int retval = stm32x_check_operation_supported(bank);
if (retval != ERROR_OK)
return retval;
retval = stm32x_erase_options(bank);
if (retval != ERROR_OK) {
LOG_ERROR("stm32x failed to erase options");
return retval;
}
for (unsigned int i = first; i <= last; i++) {
if (set)
stm32x_info->option_bytes.protection &= ~(1 << i);
else
stm32x_info->option_bytes.protection |= (1 << i);
}
return stm32x_write_options(bank);
}
static int stm32x_write_block_async(struct flash_bank *bank, const uint8_t *buffer,
uint32_t address, uint32_t hwords_count)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
struct target *target = bank->target;
uint32_t buffer_size;
struct working_area *write_algorithm;
struct working_area *source;
struct armv7m_algorithm armv7m_info;
int retval;
static const uint8_t stm32x_flash_write_code[] = {
#include "../../../contrib/loaders/flash/stm32/stm32f1x.inc"
};
/* flash write code */
if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code),
&write_algorithm) != ERROR_OK) {
LOG_WARNING("no working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
retval = target_write_buffer(target, write_algorithm->address,
sizeof(stm32x_flash_write_code), stm32x_flash_write_code);
if (retval != ERROR_OK) {
target_free_working_area(target, write_algorithm);
return retval;
}
/* memory buffer */
buffer_size = target_get_working_area_avail(target);
buffer_size = MIN(hwords_count * 2, MAX(buffer_size, 256));
/* Normally we allocate all available working area.
* MIN shrinks buffer_size if the size of the written block is smaller.
* MAX prevents using async algo if the available working area is smaller
* than 256, the following allocation fails with
* ERROR_TARGET_RESOURCE_NOT_AVAILABLE and slow flashing takes place.
*/
retval = target_alloc_working_area(target, buffer_size, &source);
/* Allocated size is always 32-bit word aligned */
if (retval != ERROR_OK) {
target_free_working_area(target, write_algorithm);
LOG_WARNING("no large enough working area available, can't do block memory writes");
/* target_alloc_working_area() may return ERROR_FAIL if area backup fails:
* convert any error to ERROR_TARGET_RESOURCE_NOT_AVAILABLE
*/
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
struct reg_param reg_params[5];
init_reg_param(®_params[0], "r0", 32, PARAM_IN_OUT); /* flash base (in), status (out) */
init_reg_param(®_params[1], "r1", 32, PARAM_OUT); /* count (halfword-16bit) */
init_reg_param(®_params[2], "r2", 32, PARAM_OUT); /* buffer start */
init_reg_param(®_params[3], "r3", 32, PARAM_OUT); /* buffer end */
init_reg_param(®_params[4], "r4", 32, PARAM_IN_OUT); /* target address */
buf_set_u32(reg_params[0].value, 0, 32, stm32x_info->register_base);
buf_set_u32(reg_params[1].value, 0, 32, hwords_count);
buf_set_u32(reg_params[2].value, 0, 32, source->address);
buf_set_u32(reg_params[3].value, 0, 32, source->address + source->size);
buf_set_u32(reg_params[4].value, 0, 32, address);
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARM_MODE_THREAD;
retval = target_run_flash_async_algorithm(target, buffer, hwords_count, 2,
0, NULL,
ARRAY_SIZE(reg_params), reg_params,
source->address, source->size,
write_algorithm->address, 0,
&armv7m_info);
if (retval == ERROR_FLASH_OPERATION_FAILED) {
/* Actually we just need to check for programming errors
* stm32x_wait_status_busy also reports error and clears status bits.
*
* Target algo returns flash status in r0 only if properly finished.
* It is safer to re-read status register.
*/
int retval2 = stm32x_wait_status_busy(bank, 5);
if (retval2 != ERROR_OK)
retval = retval2;
LOG_ERROR("flash write failed just before address 0x%"PRIx32,
buf_get_u32(reg_params[4].value, 0, 32));
}
for (unsigned int i = 0; i < ARRAY_SIZE(reg_params); i++)
destroy_reg_param(®_params[i]);
target_free_working_area(target, source);
target_free_working_area(target, write_algorithm);
return retval;
}
static int stm32x_write_block_riscv(struct flash_bank *bank, const uint8_t *buffer,
uint32_t address, uint32_t hwords_count)
{
struct target *target = bank->target;
uint32_t buffer_size;
struct working_area *write_algorithm;
struct working_area *source;
static const uint8_t gd32vf103_flash_write_code[] = {
#include "../../../contrib/loaders/flash/gd32vf103/gd32vf103.inc"
};
/* flash write code */
if (target_alloc_working_area(target, sizeof(gd32vf103_flash_write_code),
&write_algorithm) != ERROR_OK) {
LOG_WARNING("no working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
int retval = target_write_buffer(target, write_algorithm->address,
sizeof(gd32vf103_flash_write_code), gd32vf103_flash_write_code);
if (retval != ERROR_OK) {
target_free_working_area(target, write_algorithm);
return retval;
}
/* memory buffer */
buffer_size = target_get_working_area_avail(target);
buffer_size = MIN(hwords_count * 2, MAX(buffer_size, 256));
retval = target_alloc_working_area(target, buffer_size, &source);
/* Allocated size is always word aligned */
if (retval != ERROR_OK) {
target_free_working_area(target, write_algorithm);
LOG_WARNING("no large enough working area available, can't do block memory writes");
/* target_alloc_working_area() may return ERROR_FAIL if area backup fails:
* convert any error to ERROR_TARGET_RESOURCE_NOT_AVAILABLE
*/
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
struct reg_param reg_params[4];
init_reg_param(®_params[0], "a0", 32, PARAM_OUT); /* poiner to FLASH_SR */
init_reg_param(®_params[1], "a1", 32, PARAM_OUT); /* count (halfword-16bit) */
init_reg_param(®_params[2], "a2", 32, PARAM_OUT); /* buffer start */
init_reg_param(®_params[3], "a3", 32, PARAM_IN_OUT); /* target address */
while (hwords_count > 0) {
uint32_t thisrun_hwords = source->size / 2;
/* Limit to the amount of data we actually want to write */
if (thisrun_hwords > hwords_count)
thisrun_hwords = hwords_count;
/* Write data to buffer */
retval = target_write_buffer(target, source->address,
thisrun_hwords * 2, buffer);
if (retval != ERROR_OK)
break;
buf_set_u32(reg_params[0].value, 0, 32, stm32x_get_flash_reg(bank, STM32_FLASH_SR));
buf_set_u32(reg_params[1].value, 0, 32, thisrun_hwords);
buf_set_u32(reg_params[2].value, 0, 32, source->address);
buf_set_u32(reg_params[3].value, 0, 32, address);
retval = target_run_algorithm(target,
0, NULL,
ARRAY_SIZE(reg_params), reg_params,
write_algorithm->address,
write_algorithm->address + sizeof(gd32vf103_flash_write_code) - 4,
10000, NULL);
if (retval != ERROR_OK) {
LOG_ERROR("Failed to execute algorithm at 0x%" TARGET_PRIxADDR ": %d",
write_algorithm->address, retval);
break;
}
/* Actually we just need to check for programming errors
* stm32x_wait_status_busy also reports error and clears status bits
*/
retval = stm32x_wait_status_busy(bank, 5);
if (retval != ERROR_OK) {
LOG_ERROR("flash write failed at address 0x%"PRIx32,
buf_get_u32(reg_params[3].value, 0, 32));
break;
}
/* Update counters */
buffer += thisrun_hwords * 2;
address += thisrun_hwords * 2;
hwords_count -= thisrun_hwords;
}
for (unsigned int i = 0; i < ARRAY_SIZE(reg_params); i++)
destroy_reg_param(®_params[i]);
target_free_working_area(target, source);
target_free_working_area(target, write_algorithm);
return retval;
}
/** Writes a block to flash either using target algorithm
* or use fallback, host controlled halfword-by-halfword access.
* Flash controller must be unlocked before this call.
*/
static int stm32x_write_block(struct flash_bank *bank,
const uint8_t *buffer, uint32_t address, uint32_t hwords_count)
{
struct target *target = bank->target;
/* The flash write must be aligned to a halfword boundary.
* The flash infrastructure ensures it, do just a security check
*/
assert(address % 2 == 0);
int retval;
struct arm *arm = target_to_arm(target);
if (is_arm(arm)) {
/* try using a block write - on ARM architecture or... */
retval = stm32x_write_block_async(bank, buffer, address, hwords_count);
} else {
/* ... RISC-V architecture */
retval = stm32x_write_block_riscv(bank, buffer, address, hwords_count);
}
if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
/* if block write failed (no sufficient working area),
* we use normal (slow) single halfword accesses */
LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
while (hwords_count > 0) {
retval = target_write_memory(target, address, 2, 1, buffer);
if (retval != ERROR_OK)
return retval;
retval = stm32x_wait_status_busy(bank, 5);
if (retval != ERROR_OK)
return retval;
hwords_count--;
buffer += 2;
address += 2;
}
}
return retval;
}
static int stm32x_write(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* The flash write must be aligned to a halfword boundary.
* The flash infrastructure ensures it, do just a security check
*/
assert(offset % 2 == 0);
assert(count % 2 == 0);
int retval, retval2;
/* unlock flash registers */
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
if (retval != ERROR_OK)
goto reset_pg_and_lock;
/* enable flash programming */
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PG);
if (retval != ERROR_OK)
goto reset_pg_and_lock;
/* write to flash */
retval = stm32x_write_block(bank, buffer, bank->base + offset, count / 2);
reset_pg_and_lock:
retval2 = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
if (retval == ERROR_OK)
retval = retval2;
return retval;
}
struct stm32x_property_addr {
uint32_t device_id;
uint32_t flash_size;
};
static int stm32x_get_property_addr(struct target *target, struct stm32x_property_addr *addr)
{
if (!target_was_examined(target)) {
LOG_ERROR("Target not examined yet");
return ERROR_TARGET_NOT_EXAMINED;
}
switch (cortex_m_get_partno_safe(target)) {
case CORTEX_M0_PARTNO: /* STM32F0x devices */
addr->device_id = 0x40015800;
addr->flash_size = 0x1FFFF7CC;
return ERROR_OK;
case CORTEX_M3_PARTNO: /* STM32F1x devices */
addr->device_id = 0xE0042000;
addr->flash_size = 0x1FFFF7E0;
return ERROR_OK;
case CORTEX_M4_PARTNO: /* STM32F3x devices */
addr->device_id = 0xE0042000;
addr->flash_size = 0x1FFFF7CC;
return ERROR_OK;
case CORTEX_M23_PARTNO: /* GD32E23x devices */
addr->device_id = 0x40015800;
addr->flash_size = 0x1FFFF7E0;
return ERROR_OK;
case CORTEX_M_PARTNO_INVALID:
/* Check for GD32VF103 with RISC-V CPU */
if (strcmp(target_type_name(target), "riscv") == 0
&& target_address_bits(target) == 32) {
/* There is nothing like arm common_magic in riscv_info_t
* check text name of target and if target is 32-bit
*/
addr->device_id = 0xE0042000;
addr->flash_size = 0x1FFFF7E0;
return ERROR_OK;
}
/* fallthrough */
default:
LOG_ERROR("Cannot identify target as a stm32x");
return ERROR_FAIL;
}
}
static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id)
{
struct target *target = bank->target;
struct stm32x_property_addr addr;
int retval = stm32x_get_property_addr(target, &addr);
if (retval != ERROR_OK)
return retval;
return target_read_u32(target, addr.device_id, device_id);
}
static int stm32x_get_flash_size(struct flash_bank *bank, uint16_t *flash_size_in_kb)
{
struct target *target = bank->target;
struct stm32x_property_addr addr;
int retval = stm32x_get_property_addr(target, &addr);
if (retval != ERROR_OK)
return retval;
return target_read_u16(target, addr.flash_size, flash_size_in_kb);
}
static int stm32x_probe(struct flash_bank *bank)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
uint16_t flash_size_in_kb;
uint16_t max_flash_size_in_kb;
uint32_t dbgmcu_idcode;
int page_size;
uint32_t base_address = 0x08000000;
stm32x_info->probed = false;
stm32x_info->register_base = FLASH_REG_BASE_B0;
stm32x_info->user_data_offset = 10;
stm32x_info->option_offset = 0;
/* default factory read protection level 0 */
stm32x_info->default_rdp = 0xA5;
/* read stm32 device id register */
int retval = stm32x_get_device_id(bank, &dbgmcu_idcode);
if (retval != ERROR_OK)
return retval;
LOG_INFO("device id = 0x%08" PRIx32 "", dbgmcu_idcode);
uint16_t device_id = dbgmcu_idcode & 0xfff;
uint16_t rev_id = dbgmcu_idcode >> 16;
/* set page size, protection granularity and max flash size depending on family */
switch (device_id) {
case 0x440: /* stm32f05x */
page_size = 1024;
stm32x_info->ppage_size = 4;
max_flash_size_in_kb = 64;
stm32x_info->user_data_offset = 16;
stm32x_info->option_offset = 6;
stm32x_info->default_rdp = 0xAA;
stm32x_info->can_load_options = true;
break;
case 0x444: /* stm32f03x */
case 0x445: /* stm32f04x */
page_size = 1024;
stm32x_info->ppage_size = 4;
max_flash_size_in_kb = 32;
stm32x_info->user_data_offset = 16;
stm32x_info->option_offset = 6;
stm32x_info->default_rdp = 0xAA;
stm32x_info->can_load_options = true;
break;
case 0x448: /* stm32f07x */
page_size = 2048;
stm32x_info->ppage_size = 4;
max_flash_size_in_kb = 128;
stm32x_info->user_data_offset = 16;
stm32x_info->option_offset = 6;
stm32x_info->default_rdp = 0xAA;
stm32x_info->can_load_options = true;
break;
case 0x442: /* stm32f09x */
page_size = 2048;
stm32x_info->ppage_size = 4;
max_flash_size_in_kb = 256;
stm32x_info->user_data_offset = 16;
stm32x_info->option_offset = 6;
stm32x_info->default_rdp = 0xAA;
stm32x_info->can_load_options = true;
break;
case 0x410: /* stm32f1x medium-density */
page_size = 1024;
stm32x_info->ppage_size = 4;
max_flash_size_in_kb = 128;
/* GigaDevice GD32F1x0 & GD32F3x0 & GD32E23x series devices
share DEV_ID with STM32F101/2/3 medium-density line,
however they use a REV_ID different from any STM32 device.
The main difference is another offset of user option bits
(like WDG_SW, nRST_STOP, nRST_STDBY) in option byte register
(FLASH_OBR/FMC_OBSTAT 0x4002201C).
This caused problems e.g. during flash block programming
because of unexpected active hardware watchog. */
switch (rev_id) {
case 0x1303: /* gd32f1x0 */
stm32x_info->user_data_offset = 16;
stm32x_info->option_offset = 6;
max_flash_size_in_kb = 64;
stm32x_info->can_load_options = true;
break;
case 0x1704: /* gd32f3x0 */
stm32x_info->user_data_offset = 16;
stm32x_info->option_offset = 6;
stm32x_info->can_load_options = true;
break;
case 0x1906: /* gd32vf103 */
break;
case 0x1909: /* gd32e23x */
stm32x_info->user_data_offset = 16;
stm32x_info->option_offset = 6;
max_flash_size_in_kb = 64;
stm32x_info->can_load_options = true;
break;
}
break;
case 0x412: /* stm32f1x low-density */
page_size = 1024;
stm32x_info->ppage_size = 4;
max_flash_size_in_kb = 32;
break;
case 0x414: /* stm32f1x high-density */
page_size = 2048;
stm32x_info->ppage_size = 2;
max_flash_size_in_kb = 512;
break;
case 0x418: /* stm32f1x connectivity */
page_size = 2048;
stm32x_info->ppage_size = 2;
max_flash_size_in_kb = 256;
break;
case 0x430: /* stm32f1 XL-density (dual flash banks) */
page_size = 2048;
stm32x_info->ppage_size = 2;
max_flash_size_in_kb = 1024;
stm32x_info->has_dual_banks = true;
break;
case 0x420: /* stm32f100xx low- and medium-density value line */
page_size = 1024;
stm32x_info->ppage_size = 4;
max_flash_size_in_kb = 128;
break;
case 0x428: /* stm32f100xx high-density value line */
page_size = 2048;
stm32x_info->ppage_size = 4;
max_flash_size_in_kb = 512;
break;
case 0x422: /* stm32f302/3xb/c */
page_size = 2048;
stm32x_info->ppage_size = 2;
max_flash_size_in_kb = 256;
stm32x_info->user_data_offset = 16;
stm32x_info->option_offset = 6;
stm32x_info->default_rdp = 0xAA;
stm32x_info->can_load_options = true;
break;
case 0x446: /* stm32f303xD/E */
page_size = 2048;
stm32x_info->ppage_size = 2;
max_flash_size_in_kb = 512;
stm32x_info->user_data_offset = 16;
stm32x_info->option_offset = 6;
stm32x_info->default_rdp = 0xAA;
stm32x_info->can_load_options = true;
break;
case 0x432: /* stm32f37x */
page_size = 2048;
stm32x_info->ppage_size = 2;
max_flash_size_in_kb = 256;
stm32x_info->user_data_offset = 16;
stm32x_info->option_offset = 6;
stm32x_info->default_rdp = 0xAA;
stm32x_info->can_load_options = true;
break;
case 0x438: /* stm32f33x */
case 0x439: /* stm32f302x6/8 */
page_size = 2048;
stm32x_info->ppage_size = 2;
max_flash_size_in_kb = 64;
stm32x_info->user_data_offset = 16;
stm32x_info->option_offset = 6;
stm32x_info->default_rdp = 0xAA;
stm32x_info->can_load_options = true;
break;
default:
LOG_WARNING("Cannot identify target as a STM32 family.");
return ERROR_FAIL;
}
/* get flash size from target. */
retval = stm32x_get_flash_size(bank, &flash_size_in_kb);
/* failed reading flash size or flash size invalid (early silicon),
* default to max target family */
if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %dk flash",
max_flash_size_in_kb);
flash_size_in_kb = max_flash_size_in_kb;
}
if (stm32x_info->has_dual_banks) {
/* split reported size into matching bank */
if (bank->base != 0x08080000) {
/* bank 0 will be fixed 512k */
flash_size_in_kb = 512;
} else {
flash_size_in_kb -= 512;
/* bank1 also uses a register offset */
stm32x_info->register_base = FLASH_REG_BASE_B1;
base_address = 0x08080000;
}
}
/* if the user sets the size manually then ignore the probed value
* this allows us to work around devices that have a invalid flash size register value */
if (stm32x_info->user_bank_size) {
LOG_INFO("ignoring flash probed value, using configured bank size");
flash_size_in_kb = stm32x_info->user_bank_size / 1024;
}
LOG_INFO("flash size = %d KiB", flash_size_in_kb);
/* did we assign flash size? */
assert(flash_size_in_kb != 0xffff);
/* calculate numbers of pages */
int num_pages = flash_size_in_kb * 1024 / page_size;
/* check that calculation result makes sense */
assert(num_pages > 0);
free(bank->sectors);
bank->sectors = NULL;
free(bank->prot_blocks);
bank->prot_blocks = NULL;
bank->base = base_address;
bank->size = (num_pages * page_size);
bank->num_sectors = num_pages;
bank->sectors = alloc_block_array(0, page_size, num_pages);
if (!bank->sectors)
return ERROR_FAIL;
/* calculate number of write protection blocks */
int num_prot_blocks = num_pages / stm32x_info->ppage_size;
if (num_prot_blocks > 32)
num_prot_blocks = 32;
bank->num_prot_blocks = num_prot_blocks;
bank->prot_blocks = alloc_block_array(0, stm32x_info->ppage_size * page_size, num_prot_blocks);
if (!bank->prot_blocks)
return ERROR_FAIL;
if (num_prot_blocks == 32)
bank->prot_blocks[31].size = (num_pages - (31 * stm32x_info->ppage_size)) * page_size;
stm32x_info->probed = true;
return ERROR_OK;
}
static int stm32x_auto_probe(struct flash_bank *bank)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
if (stm32x_info->probed)
return ERROR_OK;
return stm32x_probe(bank);
}
#if 0
COMMAND_HANDLER(stm32x_handle_part_id_command)
{
return ERROR_OK;
}
#endif
static const char *get_stm32f0_revision(uint16_t rev_id)
{
const char *rev_str = NULL;
switch (rev_id) {
case 0x1000:
rev_str = "1.0";
break;
case 0x2000:
rev_str = "2.0";
break;
}
return rev_str;
}
static int get_stm32x_info(struct flash_bank *bank, struct command_invocation *cmd)
{
uint32_t dbgmcu_idcode;
/* read stm32 device id register */
int retval = stm32x_get_device_id(bank, &dbgmcu_idcode);
if (retval != ERROR_OK)
return retval;
uint16_t device_id = dbgmcu_idcode & 0xfff;
uint16_t rev_id = dbgmcu_idcode >> 16;
const char *device_str;
const char *rev_str = NULL;
switch (device_id) {
case 0x410:
device_str = "STM32F10x (Medium Density)";
switch (rev_id) {
case 0x0000:
rev_str = "A";
break;
case 0x1303: /* gd32f1x0 */
device_str = "GD32F1x0";
break;
case 0x1704: /* gd32f3x0 */
device_str = "GD32F3x0";
break;
case 0x1906:
device_str = "GD32VF103";
break;
case 0x1909: /* gd32e23x */
device_str = "GD32E23x";
break;
case 0x2000:
rev_str = "B";
break;
case 0x2001:
rev_str = "Z";
break;
case 0x2003:
rev_str = "Y";
break;
}
break;
case 0x412:
device_str = "STM32F10x (Low Density)";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;
}
break;
case 0x414:
device_str = "STM32F10x (High Density)";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;
case 0x1001:
rev_str = "Z";
break;
case 0x1003:
rev_str = "Y";
break;
}
break;
case 0x418:
device_str = "STM32F10x (Connectivity)";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;
case 0x1001:
rev_str = "Z";
break;
}
break;
case 0x420:
device_str = "STM32F100 (Low/Medium Density)";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;
case 0x1001:
rev_str = "Z";
break;
}
break;
case 0x422:
device_str = "STM32F302xB/C";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;
case 0x1001:
rev_str = "Z";
break;
case 0x1003:
rev_str = "Y";
break;
case 0x2000:
rev_str = "B";
break;
}
break;
case 0x428:
device_str = "STM32F100 (High Density)";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;
case 0x1001:
rev_str = "Z";
break;
}
break;
case 0x430:
device_str = "STM32F10x (XL Density)";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;
}
break;
case 0x432:
device_str = "STM32F37x";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;
case 0x2000:
rev_str = "B";
break;
}
break;
case 0x438:
device_str = "STM32F33x";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;
}
break;
case 0x439:
device_str = "STM32F302x6/8";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;
case 0x1001:
rev_str = "Z";
break;
}
break;
case 0x444:
device_str = "STM32F03x";
rev_str = get_stm32f0_revision(rev_id);
break;
case 0x440:
device_str = "STM32F05x";
rev_str = get_stm32f0_revision(rev_id);
break;
case 0x445:
device_str = "STM32F04x";
rev_str = get_stm32f0_revision(rev_id);
break;
case 0x446:
device_str = "STM32F303xD/E";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;
}
break;
case 0x448:
device_str = "STM32F07x";
rev_str = get_stm32f0_revision(rev_id);
break;
case 0x442:
device_str = "STM32F09x";
rev_str = get_stm32f0_revision(rev_id);
break;
default:
command_print_sameline(cmd, "Cannot identify target as a STM32F0/1/3\n");
return ERROR_FAIL;
}
if (rev_str)
command_print_sameline(cmd, "%s - Rev: %s", device_str, rev_str);
else
command_print_sameline(cmd, "%s - Rev: unknown (0x%04x)", device_str, rev_id);
return ERROR_OK;
}
COMMAND_HANDLER(stm32x_handle_lock_command)
{
struct target *target = NULL;
struct stm32x_flash_bank *stm32x_info = NULL;
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
stm32x_info = bank->driver_priv;
target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
retval = stm32x_check_operation_supported(bank);
if (retval != ERROR_OK)
return retval;
if (stm32x_erase_options(bank) != ERROR_OK) {
command_print(CMD, "stm32x failed to erase options");
return ERROR_OK;
}
/* set readout protection */
stm32x_info->option_bytes.rdp = 0;
if (stm32x_write_options(bank) != ERROR_OK) {
command_print(CMD, "stm32x failed to lock device");
return ERROR_OK;
}
command_print(CMD, "stm32x locked");
return ERROR_OK;
}
COMMAND_HANDLER(stm32x_handle_unlock_command)
{
struct target *target = NULL;
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
retval = stm32x_check_operation_supported(bank);
if (retval != ERROR_OK)
return retval;
if (stm32x_erase_options(bank) != ERROR_OK) {
command_print(CMD, "stm32x failed to erase options");
return ERROR_OK;
}
if (stm32x_write_options(bank) != ERROR_OK) {
command_print(CMD, "stm32x failed to unlock device");
return ERROR_OK;
}
command_print(CMD, "stm32x unlocked.\n"
"INFO: a reset or power cycle is required "
"for the new settings to take effect.");
return ERROR_OK;
}
COMMAND_HANDLER(stm32x_handle_options_read_command)
{
uint32_t optionbyte, protection;
struct target *target = NULL;
struct stm32x_flash_bank *stm32x_info = NULL;
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
stm32x_info = bank->driver_priv;
target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
retval = stm32x_check_operation_supported(bank);
if (retval != ERROR_OK)
return retval;
retval = target_read_u32(target, STM32_FLASH_OBR_B0, &optionbyte);
if (retval != ERROR_OK)
return retval;
uint16_t user_data = optionbyte >> stm32x_info->user_data_offset;
retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &protection);
if (retval != ERROR_OK)
return retval;
if (optionbyte & (1 << OPT_ERROR))
command_print(CMD, "option byte complement error");
command_print(CMD, "option byte register = 0x%" PRIx32 "", optionbyte);
command_print(CMD, "write protection register = 0x%" PRIx32 "", protection);
command_print(CMD, "read protection: %s",
(optionbyte & (1 << OPT_READOUT)) ? "on" : "off");
/* user option bytes are offset depending on variant */
optionbyte >>= stm32x_info->option_offset;
command_print(CMD, "watchdog: %sware",
(optionbyte & (1 << OPT_RDWDGSW)) ? "soft" : "hard");
command_print(CMD, "stop mode: %sreset generated upon entry",
(optionbyte & (1 << OPT_RDRSTSTOP)) ? "no " : "");
command_print(CMD, "standby mode: %sreset generated upon entry",
(optionbyte & (1 << OPT_RDRSTSTDBY)) ? "no " : "");
if (stm32x_info->has_dual_banks)
command_print(CMD, "boot: bank %d", (optionbyte & (1 << OPT_BFB2)) ? 0 : 1);
command_print(CMD, "user data = 0x%02" PRIx16 "", user_data);
return ERROR_OK;
}
COMMAND_HANDLER(stm32x_handle_options_write_command)
{
struct target *target = NULL;
struct stm32x_flash_bank *stm32x_info = NULL;
uint8_t optionbyte;
uint16_t useropt;
if (CMD_ARGC < 2)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
stm32x_info = bank->driver_priv;
target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
retval = stm32x_check_operation_supported(bank);
if (retval != ERROR_OK)
return retval;
retval = stm32x_read_options(bank);
if (retval != ERROR_OK)
return retval;
/* start with current options */
optionbyte = stm32x_info->option_bytes.user;
useropt = stm32x_info->option_bytes.data;
/* skip over flash bank */
CMD_ARGC--;
CMD_ARGV++;
while (CMD_ARGC) {
if (strcmp("SWWDG", CMD_ARGV[0]) == 0)
optionbyte |= (1 << 0);
else if (strcmp("HWWDG", CMD_ARGV[0]) == 0)
optionbyte &= ~(1 << 0);
else if (strcmp("NORSTSTOP", CMD_ARGV[0]) == 0)
optionbyte |= (1 << 1);
else if (strcmp("RSTSTOP", CMD_ARGV[0]) == 0)
optionbyte &= ~(1 << 1);
else if (strcmp("NORSTSTNDBY", CMD_ARGV[0]) == 0)
optionbyte |= (1 << 2);
else if (strcmp("RSTSTNDBY", CMD_ARGV[0]) == 0)
optionbyte &= ~(1 << 2);
else if (strcmp("USEROPT", CMD_ARGV[0]) == 0) {
if (CMD_ARGC < 2)
return ERROR_COMMAND_SYNTAX_ERROR;
COMMAND_PARSE_NUMBER(u16, CMD_ARGV[1], useropt);
CMD_ARGC--;
CMD_ARGV++;
} else if (stm32x_info->has_dual_banks) {
if (strcmp("BOOT0", CMD_ARGV[0]) == 0)
optionbyte |= (1 << 3);
else if (strcmp("BOOT1", CMD_ARGV[0]) == 0)
optionbyte &= ~(1 << 3);
else
return ERROR_COMMAND_SYNTAX_ERROR;
} else
return ERROR_COMMAND_SYNTAX_ERROR;
CMD_ARGC--;
CMD_ARGV++;
}
if (stm32x_erase_options(bank) != ERROR_OK) {
command_print(CMD, "stm32x failed to erase options");
return ERROR_OK;
}
stm32x_info->option_bytes.user = optionbyte;
stm32x_info->option_bytes.data = useropt;
if (stm32x_write_options(bank) != ERROR_OK) {
command_print(CMD, "stm32x failed to write options");
return ERROR_OK;
}
command_print(CMD, "stm32x write options complete.\n"
"INFO: %spower cycle is required "
"for the new settings to take effect.",
stm32x_info->can_load_options
? "'stm32f1x options_load' command or " : "");
return ERROR_OK;
}
COMMAND_HANDLER(stm32x_handle_options_load_command)
{
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
if (!stm32x_info->can_load_options) {
LOG_ERROR("Command not applicable to stm32f1x devices - power cycle is "
"required instead.");
return ERROR_FAIL;
}
struct target *target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
retval = stm32x_check_operation_supported(bank);
if (retval != ERROR_OK)
return retval;
/* unlock option flash registers */
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
if (retval != ERROR_OK) {
(void)target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
return retval;
}
/* force re-load of option bytes - generates software reset */
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_OBL_LAUNCH);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static int stm32x_mass_erase(struct flash_bank *bank)
{
struct target *target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* unlock option flash registers */
int retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
if (retval != ERROR_OK)
goto flash_lock;
/* mass erase flash memory */
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_MER);
if (retval != ERROR_OK)
goto flash_lock;
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
FLASH_MER | FLASH_STRT);
if (retval != ERROR_OK)
goto flash_lock;
retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
flash_lock:
{
int retval2 = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
if (retval == ERROR_OK)
retval = retval2;
}
return retval;
}
COMMAND_HANDLER(stm32x_handle_mass_erase_command)
{
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
retval = stm32x_mass_erase(bank);
if (retval == ERROR_OK)
command_print(CMD, "stm32x mass erase complete");
else
command_print(CMD, "stm32x mass erase failed");
return retval;
}
static const struct command_registration stm32f1x_exec_command_handlers[] = {
{
.name = "lock",
.handler = stm32x_handle_lock_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Lock entire flash device.",
},
{
.name = "unlock",
.handler = stm32x_handle_unlock_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Unlock entire protected flash device.",
},
{
.name = "mass_erase",
.handler = stm32x_handle_mass_erase_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Erase entire flash device.",
},
{
.name = "options_read",
.handler = stm32x_handle_options_read_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Read and display device option bytes.",
},
{
.name = "options_write",
.handler = stm32x_handle_options_write_command,
.mode = COMMAND_EXEC,
.usage = "bank_id ('SWWDG'|'HWWDG') "
"('RSTSTNDBY'|'NORSTSTNDBY') "
"('RSTSTOP'|'NORSTSTOP') ('USEROPT' user_data)",
.help = "Replace bits in device option bytes.",
},
{
.name = "options_load",
.handler = stm32x_handle_options_load_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Force re-load of device option bytes.",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration stm32f1x_command_handlers[] = {
{
.name = "stm32f1x",
.mode = COMMAND_ANY,
.help = "stm32f1x flash command group",
.usage = "",
.chain = stm32f1x_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
const struct flash_driver stm32f1x_flash = {
.name = "stm32f1x",
.commands = stm32f1x_command_handlers,
.flash_bank_command = stm32x_flash_bank_command,
.erase = stm32x_erase,
.protect = stm32x_protect,
.write = stm32x_write,
.read = default_flash_read,
.probe = stm32x_probe,
.auto_probe = stm32x_auto_probe,
.erase_check = default_flash_blank_check,
.protect_check = stm32x_protect_check,
.info = get_stm32x_info,
.free_driver_priv = default_flash_free_driver_priv,
};
|