1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
|
// SPDX-License-Identifier: GPL-2.0-or-later
/***************************************************************************
* Copyright (C) 2011 by Mathias Kuester *
* kesmtp@freenet.de *
* *
* Copyright (C) 2011 sleep(5) ltd *
* tomas@sleepfive.com *
* *
* Copyright (C) 2012 by Christopher D. Kilgour *
* techie at whiterocker.com *
* *
* Copyright (C) 2013 Nemui Trinomius *
* nemuisan_kawausogasuki@live.jp *
* *
* Copyright (C) 2015 Tomas Vanek *
* vanekt@fbl.cz *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "jtag/interface.h"
#include "imp.h"
#include <helper/binarybuffer.h>
#include <helper/time_support.h>
#include <target/target_type.h>
#include <target/algorithm.h>
#include <target/arm_adi_v5.h>
#include <target/armv7m.h>
#include <target/cortex_m.h>
/*
* Implementation Notes
*
* The persistent memories in the Kinetis chip families K10 through
* K70 are all manipulated with the Flash Memory Module. Some
* variants call this module the FTFE, others call it the FTFL. To
* indicate that both are considered here, we use FTFX.
*
* Within the module, according to the chip variant, the persistent
* memory is divided into what Freescale terms Program Flash, FlexNVM,
* and FlexRAM. All chip variants have Program Flash. Some chip
* variants also have FlexNVM and FlexRAM, which always appear
* together.
*
* A given Kinetis chip may have 1, 2 or 4 blocks of flash. Here we map
* each block to a separate bank. Each block size varies by chip and
* may be determined by the read-only SIM_FCFG1 register. The sector
* size within each bank/block varies by chip, and may be 1, 2 or 4k.
* The sector size may be different for flash and FlexNVM.
*
* The first half of the flash (1 or 2 blocks) is always Program Flash
* and always starts at address 0x00000000. The "PFLSH" flag, bit 23
* of the read-only SIM_FCFG2 register, determines whether the second
* half of the flash is also Program Flash or FlexNVM+FlexRAM. When
* PFLSH is set, the second from the first half. When PFLSH is clear,
* the second half of flash is FlexNVM and always starts at address
* 0x10000000. FlexRAM, which is also present when PFLSH is clear,
* always starts at address 0x14000000.
*
* The Flash Memory Module provides a register set where flash
* commands are loaded to perform flash operations like erase and
* program. Different commands are available depending on whether
* Program Flash or FlexNVM/FlexRAM is being manipulated. Although
* the commands used are quite consistent between flash blocks, the
* parameters they accept differ according to the flash sector size.
*
*/
/* Addresses */
#define FCF_ADDRESS 0x00000400
#define FCF_FPROT 0x8
#define FCF_FSEC 0xc
#define FCF_FOPT 0xd
#define FCF_FDPROT 0xf
#define FCF_SIZE 0x10
#define FLEXRAM 0x14000000
#define MSCM_OCMDR0 0x40001400
#define FMC_PFB01CR 0x4001f004
#define FTFX_FSTAT 0x40020000
#define FTFX_FCNFG 0x40020001
#define FTFX_FCCOB3 0x40020004
#define FTFX_FPROT3 0x40020010
#define FTFX_FDPROT 0x40020017
#define SIM_BASE 0x40047000
#define SIM_BASE_KL28 0x40074000
#define SIM_COPC 0x40048100
/* SIM_COPC does not exist on devices with changed SIM_BASE */
#define WDOG_BASE 0x40052000
#define WDOG32_KE1X 0x40052000
#define WDOG32_KL28 0x40076000
#define SMC_PMCTRL 0x4007E001
#define SMC_PMSTAT 0x4007E003
#define SMC32_PMCTRL 0x4007E00C
#define SMC32_PMSTAT 0x4007E014
#define PMC_REGSC 0x4007D002
#define MC_PMCTRL 0x4007E003
#define MCM_PLACR 0xF000300C
/* Offsets */
#define SIM_SOPT1_OFFSET 0x0000
#define SIM_SDID_OFFSET 0x1024
#define SIM_FCFG1_OFFSET 0x104c
#define SIM_FCFG2_OFFSET 0x1050
#define WDOG_STCTRLH_OFFSET 0
#define WDOG32_CS_OFFSET 0
/* Values */
#define PM_STAT_RUN 0x01
#define PM_STAT_VLPR 0x04
#define PM_CTRL_RUNM_RUN 0x00
/* Commands */
#define FTFX_CMD_BLOCKSTAT 0x00
#define FTFX_CMD_SECTSTAT 0x01
#define FTFX_CMD_LWORDPROG 0x06
#define FTFX_CMD_SECTERASE 0x09
#define FTFX_CMD_SECTWRITE 0x0b
#define FTFX_CMD_MASSERASE 0x44
#define FTFX_CMD_PGMPART 0x80
#define FTFX_CMD_SETFLEXRAM 0x81
/* The older Kinetis K series uses the following SDID layout :
* Bit 31-16 : 0
* Bit 15-12 : REVID
* Bit 11-7 : DIEID
* Bit 6-4 : FAMID
* Bit 3-0 : PINID
*
* The newer Kinetis series uses the following SDID layout :
* Bit 31-28 : FAMID
* Bit 27-24 : SUBFAMID
* Bit 23-20 : SERIESID
* Bit 19-16 : SRAMSIZE
* Bit 15-12 : REVID
* Bit 6-4 : Reserved (0)
* Bit 3-0 : PINID
*
* We assume that if bits 31-16 are 0 then it's an older
* K-series MCU.
*/
#define KINETIS_SOPT1_RAMSIZE_MASK 0x0000F000
#define KINETIS_SOPT1_RAMSIZE_K24FN1M 0x0000B000
#define KINETIS_SDID_K_SERIES_MASK 0x0000FFFF
#define KINETIS_SDID_DIEID_MASK 0x00000F80
#define KINETIS_SDID_DIEID_K22FN128 0x00000680 /* smaller pflash with FTFA */
#define KINETIS_SDID_DIEID_K22FN256 0x00000A80
#define KINETIS_SDID_DIEID_K22FN512 0x00000E80
#define KINETIS_SDID_DIEID_K24FN256 0x00000700
#define KINETIS_SDID_DIEID_K24FN1M 0x00000300 /* Detect Errata 7534 */
/* We can't rely solely on the FAMID field to determine the MCU
* type since some FAMID values identify multiple MCUs with
* different flash sector sizes (K20 and K22 for instance).
* Therefore we combine it with the DIEID bits which may possibly
* break if Freescale bumps the DIEID for a particular MCU. */
#define KINETIS_K_SDID_TYPE_MASK 0x00000FF0
#define KINETIS_K_SDID_K10_M50 0x00000000
#define KINETIS_K_SDID_K10_M72 0x00000080
#define KINETIS_K_SDID_K10_M100 0x00000100
#define KINETIS_K_SDID_K10_M120 0x00000180
#define KINETIS_K_SDID_K11 0x00000220
#define KINETIS_K_SDID_K12 0x00000200
#define KINETIS_K_SDID_K20_M50 0x00000010
#define KINETIS_K_SDID_K20_M72 0x00000090
#define KINETIS_K_SDID_K20_M100 0x00000110
#define KINETIS_K_SDID_K20_M120 0x00000190
#define KINETIS_K_SDID_K21_M50 0x00000230
#define KINETIS_K_SDID_K21_M120 0x00000330
#define KINETIS_K_SDID_K22_M50 0x00000210
#define KINETIS_K_SDID_K22_M120 0x00000310
#define KINETIS_K_SDID_K30_M72 0x000000A0
#define KINETIS_K_SDID_K30_M100 0x00000120
#define KINETIS_K_SDID_K40_M72 0x000000B0
#define KINETIS_K_SDID_K40_M100 0x00000130
#define KINETIS_K_SDID_K50_M72 0x000000E0
#define KINETIS_K_SDID_K51_M72 0x000000F0
#define KINETIS_K_SDID_K53 0x00000170
#define KINETIS_K_SDID_K60_M100 0x00000140
#define KINETIS_K_SDID_K60_M150 0x000001C0
#define KINETIS_K_SDID_K70_M150 0x000001D0
#define KINETIS_K_REVID_MASK 0x0000F000
#define KINETIS_K_REVID_SHIFT 12
#define KINETIS_SDID_SERIESID_MASK 0x00F00000
#define KINETIS_SDID_SERIESID_K 0x00000000
#define KINETIS_SDID_SERIESID_KL 0x00100000
#define KINETIS_SDID_SERIESID_KE 0x00200000
#define KINETIS_SDID_SERIESID_KW 0x00500000
#define KINETIS_SDID_SERIESID_KV 0x00600000
#define KINETIS_SDID_SUBFAMID_SHIFT 24
#define KINETIS_SDID_SUBFAMID_MASK 0x0F000000
#define KINETIS_SDID_SUBFAMID_KX0 0x00000000
#define KINETIS_SDID_SUBFAMID_KX1 0x01000000
#define KINETIS_SDID_SUBFAMID_KX2 0x02000000
#define KINETIS_SDID_SUBFAMID_KX3 0x03000000
#define KINETIS_SDID_SUBFAMID_KX4 0x04000000
#define KINETIS_SDID_SUBFAMID_KX5 0x05000000
#define KINETIS_SDID_SUBFAMID_KX6 0x06000000
#define KINETIS_SDID_SUBFAMID_KX7 0x07000000
#define KINETIS_SDID_SUBFAMID_KX8 0x08000000
#define KINETIS_SDID_FAMILYID_SHIFT 28
#define KINETIS_SDID_FAMILYID_MASK 0xF0000000
#define KINETIS_SDID_FAMILYID_K0X 0x00000000
#define KINETIS_SDID_FAMILYID_K1X 0x10000000
#define KINETIS_SDID_FAMILYID_K2X 0x20000000
#define KINETIS_SDID_FAMILYID_K3X 0x30000000
#define KINETIS_SDID_FAMILYID_K4X 0x40000000
#define KINETIS_SDID_FAMILYID_K5X 0x50000000
#define KINETIS_SDID_FAMILYID_K6X 0x60000000
#define KINETIS_SDID_FAMILYID_K7X 0x70000000
#define KINETIS_SDID_FAMILYID_K8X 0x80000000
#define KINETIS_SDID_FAMILYID_KL8X 0x90000000
/* The field originally named DIEID has new name/meaning on KE1x */
#define KINETIS_SDID_PROJECTID_MASK KINETIS_SDID_DIEID_MASK
#define KINETIS_SDID_PROJECTID_KE1XF 0x00000080
#define KINETIS_SDID_PROJECTID_KE1XZ 0x00000100
struct kinetis_flash_bank {
struct kinetis_chip *k_chip;
bool probed;
unsigned bank_number; /* bank number in particular chip */
struct flash_bank *bank;
uint32_t sector_size;
uint32_t protection_size;
uint32_t prog_base; /* base address for FTFx operations */
/* usually same as bank->base for pflash, differs for FlexNVM */
uint32_t protection_block; /* number of first protection block in this bank */
enum {
FC_AUTO = 0,
FC_PFLASH,
FC_FLEX_NVM,
FC_FLEX_RAM,
} flash_class;
};
#define KINETIS_MAX_BANKS 4u
struct kinetis_chip {
struct target *target;
bool probed;
uint32_t sim_sdid;
uint32_t sim_fcfg1;
uint32_t sim_fcfg2;
uint32_t fcfg2_maxaddr0_shifted;
uint32_t fcfg2_maxaddr1_shifted;
unsigned num_pflash_blocks, num_nvm_blocks;
unsigned pflash_sector_size, nvm_sector_size;
unsigned max_flash_prog_size;
uint32_t pflash_base;
uint32_t pflash_size;
uint32_t nvm_base;
uint32_t nvm_size; /* whole FlexNVM */
uint32_t dflash_size; /* accessible rest of FlexNVM if EEPROM backup uses part of FlexNVM */
uint32_t progr_accel_ram;
uint32_t sim_base;
enum {
FS_PROGRAM_SECTOR = 1,
FS_PROGRAM_LONGWORD = 2,
FS_PROGRAM_PHRASE = 4, /* Unsupported */
FS_NO_CMD_BLOCKSTAT = 0x40,
FS_WIDTH_256BIT = 0x80,
FS_ECC = 0x100,
} flash_support;
enum {
KINETIS_CACHE_NONE,
KINETIS_CACHE_K, /* invalidate using FMC->PFB0CR/PFB01CR */
KINETIS_CACHE_L, /* invalidate using MCM->PLACR */
KINETIS_CACHE_MSCM, /* devices like KE1xF, invalidate MSCM->OCMDR0 */
} cache_type;
enum {
KINETIS_WDOG_NONE,
KINETIS_WDOG_K,
KINETIS_WDOG_COP,
KINETIS_WDOG32_KE1X,
KINETIS_WDOG32_KL28,
} watchdog_type;
enum {
KINETIS_SMC,
KINETIS_SMC32,
KINETIS_MC,
} sysmodectrlr_type;
char name[40];
unsigned num_banks;
struct kinetis_flash_bank banks[KINETIS_MAX_BANKS];
};
struct kinetis_type {
uint32_t sdid;
char *name;
};
static const struct kinetis_type kinetis_types_old[] = {
{ KINETIS_K_SDID_K10_M50, "MK10D%s5" },
{ KINETIS_K_SDID_K10_M72, "MK10D%s7" },
{ KINETIS_K_SDID_K10_M100, "MK10D%s10" },
{ KINETIS_K_SDID_K10_M120, "MK10F%s12" },
{ KINETIS_K_SDID_K11, "MK11D%s5" },
{ KINETIS_K_SDID_K12, "MK12D%s5" },
{ KINETIS_K_SDID_K20_M50, "MK20D%s5" },
{ KINETIS_K_SDID_K20_M72, "MK20D%s7" },
{ KINETIS_K_SDID_K20_M100, "MK20D%s10" },
{ KINETIS_K_SDID_K20_M120, "MK20F%s12" },
{ KINETIS_K_SDID_K21_M50, "MK21D%s5" },
{ KINETIS_K_SDID_K21_M120, "MK21F%s12" },
{ KINETIS_K_SDID_K22_M50, "MK22D%s5" },
{ KINETIS_K_SDID_K22_M120, "MK22F%s12" },
{ KINETIS_K_SDID_K30_M72, "MK30D%s7" },
{ KINETIS_K_SDID_K30_M100, "MK30D%s10" },
{ KINETIS_K_SDID_K40_M72, "MK40D%s7" },
{ KINETIS_K_SDID_K40_M100, "MK40D%s10" },
{ KINETIS_K_SDID_K50_M72, "MK50D%s7" },
{ KINETIS_K_SDID_K51_M72, "MK51D%s7" },
{ KINETIS_K_SDID_K53, "MK53D%s10" },
{ KINETIS_K_SDID_K60_M100, "MK60D%s10" },
{ KINETIS_K_SDID_K60_M150, "MK60F%s15" },
{ KINETIS_K_SDID_K70_M150, "MK70F%s15" },
};
#define MDM_AP 1
#define MDM_REG_STAT 0x00
#define MDM_REG_CTRL 0x04
#define MDM_REG_ID 0xfc
#define MDM_STAT_FMEACK (1<<0)
#define MDM_STAT_FREADY (1<<1)
#define MDM_STAT_SYSSEC (1<<2)
#define MDM_STAT_SYSRES (1<<3)
#define MDM_STAT_FMEEN (1<<5)
#define MDM_STAT_BACKDOOREN (1<<6)
#define MDM_STAT_LPEN (1<<7)
#define MDM_STAT_VLPEN (1<<8)
#define MDM_STAT_LLSMODEXIT (1<<9)
#define MDM_STAT_VLLSXMODEXIT (1<<10)
#define MDM_STAT_CORE_HALTED (1<<16)
#define MDM_STAT_CORE_SLEEPDEEP (1<<17)
#define MDM_STAT_CORESLEEPING (1<<18)
#define MDM_CTRL_FMEIP (1<<0)
#define MDM_CTRL_DBG_DIS (1<<1)
#define MDM_CTRL_DBG_REQ (1<<2)
#define MDM_CTRL_SYS_RES_REQ (1<<3)
#define MDM_CTRL_CORE_HOLD_RES (1<<4)
#define MDM_CTRL_VLLSX_DBG_REQ (1<<5)
#define MDM_CTRL_VLLSX_DBG_ACK (1<<6)
#define MDM_CTRL_VLLSX_STAT_ACK (1<<7)
#define MDM_ACCESS_TIMEOUT 500 /* msec */
static bool allow_fcf_writes;
static uint8_t fcf_fopt = 0xff;
static bool create_banks;
const struct flash_driver kinetis_flash;
static int kinetis_write_inner(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count);
static int kinetis_probe_chip(struct kinetis_chip *k_chip);
static int kinetis_auto_probe(struct flash_bank *bank);
static int kinetis_mdm_write_register(struct adiv5_dap *dap, unsigned reg, uint32_t value)
{
LOG_DEBUG("MDM_REG[0x%02x] <- %08" PRIX32, reg, value);
struct adiv5_ap *ap = dap_get_ap(dap, MDM_AP);
if (!ap) {
LOG_DEBUG("MDM: failed to get AP");
return ERROR_FAIL;
}
int retval = dap_queue_ap_write(ap, reg, value);
if (retval != ERROR_OK) {
LOG_DEBUG("MDM: failed to queue a write request");
dap_put_ap(ap);
return retval;
}
retval = dap_run(dap);
dap_put_ap(ap);
if (retval != ERROR_OK) {
LOG_DEBUG("MDM: dap_run failed");
return retval;
}
return ERROR_OK;
}
static int kinetis_mdm_read_register(struct adiv5_dap *dap, unsigned reg, uint32_t *result)
{
struct adiv5_ap *ap = dap_get_ap(dap, MDM_AP);
if (!ap) {
LOG_DEBUG("MDM: failed to get AP");
return ERROR_FAIL;
}
int retval = dap_queue_ap_read(ap, reg, result);
if (retval != ERROR_OK) {
LOG_DEBUG("MDM: failed to queue a read request");
dap_put_ap(ap);
return retval;
}
retval = dap_run(dap);
dap_put_ap(ap);
if (retval != ERROR_OK) {
LOG_DEBUG("MDM: dap_run failed");
return retval;
}
LOG_DEBUG("MDM_REG[0x%02x]: %08" PRIX32, reg, *result);
return ERROR_OK;
}
static int kinetis_mdm_poll_register(struct adiv5_dap *dap, unsigned reg,
uint32_t mask, uint32_t value, uint32_t timeout_ms)
{
uint32_t val;
int retval;
int64_t ms_timeout = timeval_ms() + timeout_ms;
do {
retval = kinetis_mdm_read_register(dap, reg, &val);
if (retval != ERROR_OK || (val & mask) == value)
return retval;
alive_sleep(1);
} while (timeval_ms() < ms_timeout);
LOG_DEBUG("MDM: polling timed out");
return ERROR_FAIL;
}
/*
* This command can be used to break a watchdog reset loop when
* connecting to an unsecured target. Unlike other commands, halt will
* automatically retry as it does not know how far into the boot process
* it is when the command is called.
*/
COMMAND_HANDLER(kinetis_mdm_halt)
{
struct target *target = get_current_target(CMD_CTX);
struct cortex_m_common *cortex_m = target_to_cm(target);
struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
int retval;
int tries = 0;
uint32_t stat;
int64_t ms_timeout = timeval_ms() + MDM_ACCESS_TIMEOUT;
if (!dap) {
LOG_ERROR("Cannot perform halt with a high-level adapter");
return ERROR_FAIL;
}
while (true) {
tries++;
kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_CORE_HOLD_RES);
alive_sleep(1);
retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &stat);
if (retval != ERROR_OK) {
LOG_DEBUG("MDM: failed to read MDM_REG_STAT");
continue;
}
/* Repeat setting MDM_CTRL_CORE_HOLD_RES until system is out of
* reset with flash ready and without security
*/
if ((stat & (MDM_STAT_FREADY | MDM_STAT_SYSSEC | MDM_STAT_SYSRES))
== (MDM_STAT_FREADY | MDM_STAT_SYSRES))
break;
if (timeval_ms() >= ms_timeout) {
LOG_ERROR("MDM: halt timed out");
return ERROR_FAIL;
}
}
LOG_DEBUG("MDM: halt succeeded after %d attempts.", tries);
target_poll(target);
/* enable polling in case kinetis_check_flash_security_status disabled it */
jtag_poll_set_enabled(true);
alive_sleep(100);
target->reset_halt = true;
target->type->assert_reset(target);
retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
if (retval != ERROR_OK) {
LOG_ERROR("MDM: failed to clear MDM_REG_CTRL");
return retval;
}
target->type->deassert_reset(target);
return ERROR_OK;
}
COMMAND_HANDLER(kinetis_mdm_reset)
{
struct target *target = get_current_target(CMD_CTX);
struct cortex_m_common *cortex_m = target_to_cm(target);
struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
int retval;
if (!dap) {
LOG_ERROR("Cannot perform reset with a high-level adapter");
return ERROR_FAIL;
}
retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ);
if (retval != ERROR_OK) {
LOG_ERROR("MDM: failed to write MDM_REG_CTRL");
return retval;
}
retval = kinetis_mdm_poll_register(dap, MDM_REG_STAT, MDM_STAT_SYSRES, 0, 500);
if (retval != ERROR_OK) {
LOG_ERROR("MDM: failed to assert reset");
return retval;
}
retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
if (retval != ERROR_OK) {
LOG_ERROR("MDM: failed to clear MDM_REG_CTRL");
return retval;
}
return ERROR_OK;
}
/*
* This function implements the procedure to mass erase the flash via
* SWD/JTAG on Kinetis K and L series of devices as it is described in
* AN4835 "Production Flash Programming Best Practices for Kinetis K-
* and L-series MCUs" Section 4.2.1. To prevent a watchdog reset loop,
* the core remains halted after this function completes as suggested
* by the application note.
*/
COMMAND_HANDLER(kinetis_mdm_mass_erase)
{
struct target *target = get_current_target(CMD_CTX);
struct cortex_m_common *cortex_m = target_to_cm(target);
struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
if (!dap) {
LOG_ERROR("Cannot perform mass erase with a high-level adapter");
return ERROR_FAIL;
}
int retval;
/*
* ... Power on the processor, or if power has already been
* applied, assert the RESET pin to reset the processor. For
* devices that do not have a RESET pin, write the System
* Reset Request bit in the MDM-AP control register after
* establishing communication...
*/
/* assert SRST if configured */
bool has_srst = jtag_get_reset_config() & RESET_HAS_SRST;
if (has_srst)
adapter_assert_reset();
retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ);
if (retval != ERROR_OK && !has_srst) {
LOG_ERROR("MDM: failed to assert reset");
goto deassert_reset_and_exit;
}
/*
* ... Read the MDM-AP status register repeatedly and wait for
* stable conditions suitable for mass erase:
* - mass erase is enabled
* - flash is ready
* - reset is finished
*
* Mass erase is started as soon as all conditions are met in 32
* subsequent status reads.
*
* In case of not stable conditions (RESET/WDOG loop in secured device)
* the user is asked for manual pressing of RESET button
* as a last resort.
*/
int cnt_mass_erase_disabled = 0;
int cnt_ready = 0;
int64_t ms_start = timeval_ms();
bool man_reset_requested = false;
do {
uint32_t stat = 0;
int64_t ms_elapsed = timeval_ms() - ms_start;
if (!man_reset_requested && ms_elapsed > 100) {
LOG_INFO("MDM: Press RESET button now if possible.");
man_reset_requested = true;
}
if (ms_elapsed > 3000) {
LOG_ERROR("MDM: waiting for mass erase conditions timed out.");
LOG_INFO("Mass erase of a secured MCU is not possible without hardware reset.");
LOG_INFO("Connect SRST, use 'reset_config srst_only' and retry.");
goto deassert_reset_and_exit;
}
retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &stat);
if (retval != ERROR_OK) {
cnt_ready = 0;
continue;
}
if (!(stat & MDM_STAT_FMEEN)) {
cnt_ready = 0;
cnt_mass_erase_disabled++;
if (cnt_mass_erase_disabled > 10) {
LOG_ERROR("MDM: mass erase is disabled");
goto deassert_reset_and_exit;
}
continue;
}
if ((stat & (MDM_STAT_FREADY | MDM_STAT_SYSRES)) == MDM_STAT_FREADY)
cnt_ready++;
else
cnt_ready = 0;
} while (cnt_ready < 32);
/*
* ... Write the MDM-AP control register to set the Flash Mass
* Erase in Progress bit. This will start the mass erase
* process...
*/
retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ | MDM_CTRL_FMEIP);
if (retval != ERROR_OK) {
LOG_ERROR("MDM: failed to start mass erase");
goto deassert_reset_and_exit;
}
/*
* ... Read the MDM-AP control register until the Flash Mass
* Erase in Progress bit clears...
* Data sheed defines erase time <3.6 sec/512kB flash block.
* The biggest device has 4 pflash blocks => timeout 16 sec.
*/
retval = kinetis_mdm_poll_register(dap, MDM_REG_CTRL, MDM_CTRL_FMEIP, 0, 16000);
if (retval != ERROR_OK) {
LOG_ERROR("MDM: mass erase timeout");
goto deassert_reset_and_exit;
}
target_poll(target);
/* enable polling in case kinetis_check_flash_security_status disabled it */
jtag_poll_set_enabled(true);
alive_sleep(100);
target->reset_halt = true;
target->type->assert_reset(target);
/*
* ... Negate the RESET signal or clear the System Reset Request
* bit in the MDM-AP control register.
*/
retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
if (retval != ERROR_OK)
LOG_ERROR("MDM: failed to clear MDM_REG_CTRL");
target->type->deassert_reset(target);
return retval;
deassert_reset_and_exit:
kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
if (has_srst)
adapter_deassert_reset();
return retval;
}
static const uint32_t kinetis_known_mdm_ids[] = {
0x001C0000, /* Kinetis-K Series */
0x001C0020, /* Kinetis-L/M/V/E Series */
0x001C0030, /* Kinetis with a Cortex-M7, in time of writing KV58 */
};
/*
* This function implements the procedure to connect to
* SWD/JTAG on Kinetis K and L series of devices as it is described in
* AN4835 "Production Flash Programming Best Practices for Kinetis K-
* and L-series MCUs" Section 4.1.1
*/
COMMAND_HANDLER(kinetis_check_flash_security_status)
{
struct target *target = get_current_target(CMD_CTX);
struct cortex_m_common *cortex_m = target_to_cm(target);
struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
if (!dap) {
LOG_WARNING("Cannot check flash security status with a high-level adapter");
return ERROR_OK;
}
if (!dap->ops)
return ERROR_OK; /* too early to check, in JTAG mode ops may not be initialised */
uint32_t val;
int retval;
/*
* ... The MDM-AP ID register can be read to verify that the
* connection is working correctly...
*/
retval = kinetis_mdm_read_register(dap, MDM_REG_ID, &val);
if (retval != ERROR_OK) {
LOG_ERROR("MDM: failed to read ID register");
return ERROR_OK;
}
if (val == 0)
return ERROR_OK; /* dap not yet initialised */
bool found = false;
for (size_t i = 0; i < ARRAY_SIZE(kinetis_known_mdm_ids); i++) {
if (val == kinetis_known_mdm_ids[i]) {
found = true;
break;
}
}
if (!found)
LOG_WARNING("MDM: unknown ID %08" PRIX32, val);
/*
* ... Read the System Security bit to determine if security is enabled.
* If System Security = 0, then proceed. If System Security = 1, then
* communication with the internals of the processor, including the
* flash, will not be possible without issuing a mass erase command or
* unsecuring the part through other means (backdoor key unlock)...
*/
retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &val);
if (retval != ERROR_OK) {
LOG_ERROR("MDM: failed to read MDM_REG_STAT");
return ERROR_OK;
}
/*
* System Security bit is also active for short time during reset.
* If a MCU has blank flash and runs in RESET/WDOG loop,
* System Security bit is active most of time!
* We should observe Flash Ready bit and read status several times
* to avoid false detection of secured MCU
*/
int secured_score = 0, flash_not_ready_score = 0;
if ((val & (MDM_STAT_SYSSEC | MDM_STAT_FREADY)) != MDM_STAT_FREADY) {
uint32_t stats[32];
struct adiv5_ap *ap = dap_get_ap(dap, MDM_AP);
if (!ap) {
LOG_ERROR("MDM: failed to get AP");
return ERROR_OK;
}
for (unsigned int i = 0; i < 32; i++) {
stats[i] = MDM_STAT_FREADY;
dap_queue_ap_read(ap, MDM_REG_STAT, &stats[i]);
}
retval = dap_run(dap);
dap_put_ap(ap);
if (retval != ERROR_OK) {
LOG_DEBUG("MDM: dap_run failed when validating secured state");
return ERROR_OK;
}
for (unsigned int i = 0; i < 32; i++) {
if (stats[i] & MDM_STAT_SYSSEC)
secured_score++;
if (!(stats[i] & MDM_STAT_FREADY))
flash_not_ready_score++;
}
}
if (flash_not_ready_score <= 8 && secured_score > 24) {
jtag_poll_set_enabled(false);
LOG_WARNING("*********** ATTENTION! ATTENTION! ATTENTION! ATTENTION! **********");
LOG_WARNING("**** ****");
LOG_WARNING("**** Your Kinetis MCU is in secured state, which means that, ****");
LOG_WARNING("**** with exception for very basic communication, JTAG/SWD ****");
LOG_WARNING("**** interface will NOT work. In order to restore its ****");
LOG_WARNING("**** functionality please issue 'kinetis mdm mass_erase' ****");
LOG_WARNING("**** command, power cycle the MCU and restart OpenOCD. ****");
LOG_WARNING("**** ****");
LOG_WARNING("*********** ATTENTION! ATTENTION! ATTENTION! ATTENTION! **********");
} else if (flash_not_ready_score > 24) {
jtag_poll_set_enabled(false);
LOG_WARNING("**** Your Kinetis MCU is probably locked-up in RESET/WDOG loop. ****");
LOG_WARNING("**** Common reason is a blank flash (at least a reset vector). ****");
LOG_WARNING("**** Issue 'kinetis mdm halt' command or if SRST is connected ****");
LOG_WARNING("**** and configured, use 'reset halt' ****");
LOG_WARNING("**** If MCU cannot be halted, it is likely secured and running ****");
LOG_WARNING("**** in RESET/WDOG loop. Issue 'kinetis mdm mass_erase' ****");
} else {
LOG_INFO("MDM: Chip is unsecured. Continuing.");
jtag_poll_set_enabled(true);
}
return ERROR_OK;
}
static struct kinetis_chip *kinetis_get_chip(struct target *target)
{
struct flash_bank *bank_iter;
struct kinetis_flash_bank *k_bank;
/* iterate over all kinetis banks */
for (bank_iter = flash_bank_list(); bank_iter; bank_iter = bank_iter->next) {
if (bank_iter->driver != &kinetis_flash
|| bank_iter->target != target)
continue;
k_bank = bank_iter->driver_priv;
if (!k_bank)
continue;
if (k_bank->k_chip)
return k_bank->k_chip;
}
return NULL;
}
static int kinetis_chip_options(struct kinetis_chip *k_chip, int argc, const char *argv[])
{
for (int i = 0; i < argc; i++) {
if (strcmp(argv[i], "-sim-base") == 0) {
if (i + 1 < argc)
k_chip->sim_base = strtoul(argv[++i], NULL, 0);
} else
LOG_ERROR("Unsupported flash bank option %s", argv[i]);
}
return ERROR_OK;
}
FLASH_BANK_COMMAND_HANDLER(kinetis_flash_bank_command)
{
struct target *target = bank->target;
struct kinetis_chip *k_chip;
struct kinetis_flash_bank *k_bank;
int retval;
if (CMD_ARGC < 6)
return ERROR_COMMAND_SYNTAX_ERROR;
LOG_INFO("add flash_bank kinetis %s", bank->name);
k_chip = kinetis_get_chip(target);
if (!k_chip) {
k_chip = calloc(sizeof(struct kinetis_chip), 1);
if (!k_chip) {
LOG_ERROR("No memory");
return ERROR_FAIL;
}
k_chip->target = target;
/* only the first defined bank can define chip options */
retval = kinetis_chip_options(k_chip, CMD_ARGC - 6, CMD_ARGV + 6);
if (retval != ERROR_OK)
return retval;
}
if (k_chip->num_banks >= KINETIS_MAX_BANKS) {
LOG_ERROR("Only %u Kinetis flash banks are supported", KINETIS_MAX_BANKS);
return ERROR_FAIL;
}
bank->driver_priv = k_bank = &(k_chip->banks[k_chip->num_banks]);
k_bank->k_chip = k_chip;
k_bank->bank_number = k_chip->num_banks;
k_bank->bank = bank;
k_chip->num_banks++;
return ERROR_OK;
}
static void kinetis_free_driver_priv(struct flash_bank *bank)
{
struct kinetis_flash_bank *k_bank = bank->driver_priv;
if (!k_bank)
return;
struct kinetis_chip *k_chip = k_bank->k_chip;
if (!k_chip)
return;
k_chip->num_banks--;
if (k_chip->num_banks == 0)
free(k_chip);
}
static int kinetis_create_missing_banks(struct kinetis_chip *k_chip)
{
unsigned num_blocks;
struct kinetis_flash_bank *k_bank;
struct flash_bank *bank;
char base_name[69], name[87], num[11];
char *class, *p;
num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks;
if (num_blocks > KINETIS_MAX_BANKS) {
LOG_ERROR("Only %u Kinetis flash banks are supported", KINETIS_MAX_BANKS);
return ERROR_FAIL;
}
bank = k_chip->banks[0].bank;
if (bank && bank->name) {
strncpy(base_name, bank->name, sizeof(base_name) - 1);
base_name[sizeof(base_name) - 1] = '\0';
p = strstr(base_name, ".pflash");
if (p) {
*p = '\0';
if (k_chip->num_pflash_blocks > 1) {
/* rename first bank if numbering is needed */
snprintf(name, sizeof(name), "%s.pflash0", base_name);
free(bank->name);
bank->name = strdup(name);
}
}
} else {
strncpy(base_name, target_name(k_chip->target), sizeof(base_name) - 1);
base_name[sizeof(base_name) - 1] = '\0';
p = strstr(base_name, ".cpu");
if (p)
*p = '\0';
}
for (unsigned int bank_idx = 1; bank_idx < num_blocks; bank_idx++) {
k_bank = &(k_chip->banks[bank_idx]);
bank = k_bank->bank;
if (bank)
continue;
num[0] = '\0';
if (bank_idx < k_chip->num_pflash_blocks) {
class = "pflash";
if (k_chip->num_pflash_blocks > 1)
snprintf(num, sizeof(num), "%u", bank_idx);
} else {
class = "flexnvm";
if (k_chip->num_nvm_blocks > 1)
snprintf(num, sizeof(num), "%u",
bank_idx - k_chip->num_pflash_blocks);
}
bank = calloc(sizeof(struct flash_bank), 1);
if (!bank)
return ERROR_FAIL;
bank->target = k_chip->target;
bank->driver = &kinetis_flash;
bank->default_padded_value = bank->erased_value = 0xff;
snprintf(name, sizeof(name), "%s.%s%s",
base_name, class, num);
bank->name = strdup(name);
bank->driver_priv = k_bank = &(k_chip->banks[k_chip->num_banks]);
k_bank->k_chip = k_chip;
k_bank->bank_number = bank_idx;
k_bank->bank = bank;
if (k_chip->num_banks <= bank_idx)
k_chip->num_banks = bank_idx + 1;
flash_bank_add(bank);
}
return ERROR_OK;
}
static int kinetis_disable_wdog_algo(struct target *target, size_t code_size, const uint8_t *code, uint32_t wdog_base)
{
struct working_area *wdog_algorithm;
struct armv7m_algorithm armv7m_info;
struct reg_param reg_params[1];
int retval;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
retval = target_alloc_working_area(target, code_size, &wdog_algorithm);
if (retval != ERROR_OK)
return retval;
retval = target_write_buffer(target, wdog_algorithm->address,
code_size, code);
if (retval == ERROR_OK) {
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARM_MODE_THREAD;
init_reg_param(®_params[0], "r0", 32, PARAM_OUT);
buf_set_u32(reg_params[0].value, 0, 32, wdog_base);
retval = target_run_algorithm(target, 0, NULL, 1, reg_params,
wdog_algorithm->address,
wdog_algorithm->address + code_size - 2,
500, &armv7m_info);
destroy_reg_param(®_params[0]);
if (retval != ERROR_OK)
LOG_ERROR("Error executing Kinetis WDOG unlock algorithm");
}
target_free_working_area(target, wdog_algorithm);
return retval;
}
/* Disable the watchdog on Kinetis devices
* Standard Kx WDOG peripheral checks timing and therefore requires to run algo.
*/
static int kinetis_disable_wdog_kx(struct target *target)
{
const uint32_t wdog_base = WDOG_BASE;
uint16_t wdog;
int retval;
static const uint8_t kinetis_unlock_wdog_code[] = {
#include "../../../contrib/loaders/watchdog/armv7m_kinetis_wdog.inc"
};
retval = target_read_u16(target, wdog_base + WDOG_STCTRLH_OFFSET, &wdog);
if (retval != ERROR_OK)
return retval;
if ((wdog & 0x1) == 0) {
/* watchdog already disabled */
return ERROR_OK;
}
LOG_INFO("Disabling Kinetis watchdog (initial WDOG_STCTRLH = 0x%04" PRIx16 ")", wdog);
retval = kinetis_disable_wdog_algo(target, sizeof(kinetis_unlock_wdog_code), kinetis_unlock_wdog_code, wdog_base);
if (retval != ERROR_OK)
return retval;
retval = target_read_u16(target, wdog_base + WDOG_STCTRLH_OFFSET, &wdog);
if (retval != ERROR_OK)
return retval;
LOG_INFO("WDOG_STCTRLH = 0x%04" PRIx16, wdog);
return (wdog & 0x1) ? ERROR_FAIL : ERROR_OK;
}
static int kinetis_disable_wdog32(struct target *target, uint32_t wdog_base)
{
uint32_t wdog_cs;
int retval;
static const uint8_t kinetis_unlock_wdog_code[] = {
#include "../../../contrib/loaders/watchdog/armv7m_kinetis_wdog32.inc"
};
retval = target_read_u32(target, wdog_base + WDOG32_CS_OFFSET, &wdog_cs);
if (retval != ERROR_OK)
return retval;
if ((wdog_cs & 0x80) == 0)
return ERROR_OK; /* watchdog already disabled */
LOG_INFO("Disabling Kinetis watchdog (initial WDOG_CS 0x%08" PRIx32 ")", wdog_cs);
retval = kinetis_disable_wdog_algo(target, sizeof(kinetis_unlock_wdog_code), kinetis_unlock_wdog_code, wdog_base);
if (retval != ERROR_OK)
return retval;
retval = target_read_u32(target, wdog_base + WDOG32_CS_OFFSET, &wdog_cs);
if (retval != ERROR_OK)
return retval;
if ((wdog_cs & 0x80) == 0)
return ERROR_OK; /* watchdog disabled successfully */
LOG_ERROR("Cannot disable Kinetis watchdog (WDOG_CS 0x%08" PRIx32 "), issue 'reset init'", wdog_cs);
return ERROR_FAIL;
}
static int kinetis_disable_wdog(struct kinetis_chip *k_chip)
{
struct target *target = k_chip->target;
uint8_t sim_copc;
int retval;
if (!k_chip->probed) {
retval = kinetis_probe_chip(k_chip);
if (retval != ERROR_OK)
return retval;
}
switch (k_chip->watchdog_type) {
case KINETIS_WDOG_K:
return kinetis_disable_wdog_kx(target);
case KINETIS_WDOG_COP:
retval = target_read_u8(target, SIM_COPC, &sim_copc);
if (retval != ERROR_OK)
return retval;
if ((sim_copc & 0xc) == 0)
return ERROR_OK; /* watchdog already disabled */
LOG_INFO("Disabling Kinetis watchdog (initial SIM_COPC 0x%02" PRIx8 ")", sim_copc);
retval = target_write_u8(target, SIM_COPC, sim_copc & ~0xc);
if (retval != ERROR_OK)
return retval;
retval = target_read_u8(target, SIM_COPC, &sim_copc);
if (retval != ERROR_OK)
return retval;
if ((sim_copc & 0xc) == 0)
return ERROR_OK; /* watchdog disabled successfully */
LOG_ERROR("Cannot disable Kinetis watchdog (SIM_COPC 0x%02" PRIx8 "), issue 'reset init'", sim_copc);
return ERROR_FAIL;
case KINETIS_WDOG32_KE1X:
return kinetis_disable_wdog32(target, WDOG32_KE1X);
case KINETIS_WDOG32_KL28:
return kinetis_disable_wdog32(target, WDOG32_KL28);
default:
return ERROR_OK;
}
}
COMMAND_HANDLER(kinetis_disable_wdog_handler)
{
int result;
struct target *target = get_current_target(CMD_CTX);
struct kinetis_chip *k_chip = kinetis_get_chip(target);
if (!k_chip)
return ERROR_FAIL;
if (CMD_ARGC > 0)
return ERROR_COMMAND_SYNTAX_ERROR;
result = kinetis_disable_wdog(k_chip);
return result;
}
static int kinetis_ftfx_decode_error(uint8_t fstat)
{
if (fstat & 0x20) {
LOG_ERROR("Flash operation failed, illegal command");
return ERROR_FLASH_OPER_UNSUPPORTED;
} else if (fstat & 0x10)
LOG_ERROR("Flash operation failed, protection violated");
else if (fstat & 0x40)
LOG_ERROR("Flash operation failed, read collision");
else if (fstat & 0x80)
return ERROR_OK;
else
LOG_ERROR("Flash operation timed out");
return ERROR_FLASH_OPERATION_FAILED;
}
static int kinetis_ftfx_clear_error(struct target *target)
{
/* reset error flags */
return target_write_u8(target, FTFX_FSTAT, 0x70);
}
static int kinetis_ftfx_prepare(struct target *target)
{
int result;
uint8_t fstat;
/* wait until busy */
for (unsigned int i = 0; i < 50; i++) {
result = target_read_u8(target, FTFX_FSTAT, &fstat);
if (result != ERROR_OK)
return result;
if (fstat & 0x80)
break;
}
if ((fstat & 0x80) == 0) {
LOG_ERROR("Flash controller is busy");
return ERROR_FLASH_OPERATION_FAILED;
}
if (fstat != 0x80) {
/* reset error flags */
result = kinetis_ftfx_clear_error(target);
}
return result;
}
/* Kinetis Program-LongWord Microcodes */
static const uint8_t kinetis_flash_write_code[] = {
#include "../../../contrib/loaders/flash/kinetis/kinetis_flash.inc"
};
/* Program LongWord Block Write */
static int kinetis_write_block(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t wcount)
{
struct target *target = bank->target;
uint32_t buffer_size;
struct working_area *write_algorithm;
struct working_area *source;
struct kinetis_flash_bank *k_bank = bank->driver_priv;
uint32_t address = k_bank->prog_base + offset;
uint32_t end_address;
struct reg_param reg_params[5];
struct armv7m_algorithm armv7m_info;
int retval;
uint8_t fstat;
/* allocate working area with flash programming code */
if (target_alloc_working_area(target, sizeof(kinetis_flash_write_code),
&write_algorithm) != ERROR_OK) {
LOG_WARNING("no working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
retval = target_write_buffer(target, write_algorithm->address,
sizeof(kinetis_flash_write_code), kinetis_flash_write_code);
if (retval != ERROR_OK)
return retval;
/* memory buffer, size *must* be multiple of word */
buffer_size = target_get_working_area_avail(target) & ~(sizeof(uint32_t) - 1);
if (buffer_size < 256) {
LOG_WARNING("large enough working area not available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
} else if (buffer_size > 16384) {
/* probably won't benefit from more than 16k ... */
buffer_size = 16384;
}
if (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK) {
LOG_ERROR("allocating working area failed");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARM_MODE_THREAD;
init_reg_param(®_params[0], "r0", 32, PARAM_IN_OUT); /* address */
init_reg_param(®_params[1], "r1", 32, PARAM_OUT); /* word count */
init_reg_param(®_params[2], "r2", 32, PARAM_OUT);
init_reg_param(®_params[3], "r3", 32, PARAM_OUT);
init_reg_param(®_params[4], "r4", 32, PARAM_OUT);
buf_set_u32(reg_params[0].value, 0, 32, address);
buf_set_u32(reg_params[1].value, 0, 32, wcount);
buf_set_u32(reg_params[2].value, 0, 32, source->address);
buf_set_u32(reg_params[3].value, 0, 32, source->address + source->size);
buf_set_u32(reg_params[4].value, 0, 32, FTFX_FSTAT);
retval = target_run_flash_async_algorithm(target, buffer, wcount, 4,
0, NULL,
5, reg_params,
source->address, source->size,
write_algorithm->address, 0,
&armv7m_info);
if (retval == ERROR_FLASH_OPERATION_FAILED) {
end_address = buf_get_u32(reg_params[0].value, 0, 32);
LOG_ERROR("Error writing flash at %08" PRIx32, end_address);
retval = target_read_u8(target, FTFX_FSTAT, &fstat);
if (retval == ERROR_OK) {
retval = kinetis_ftfx_decode_error(fstat);
/* reset error flags */
target_write_u8(target, FTFX_FSTAT, 0x70);
}
} else if (retval != ERROR_OK)
LOG_ERROR("Error executing kinetis Flash programming algorithm");
target_free_working_area(target, source);
target_free_working_area(target, write_algorithm);
destroy_reg_param(®_params[0]);
destroy_reg_param(®_params[1]);
destroy_reg_param(®_params[2]);
destroy_reg_param(®_params[3]);
destroy_reg_param(®_params[4]);
return retval;
}
static int kinetis_protect(struct flash_bank *bank, int set, unsigned int first,
unsigned int last)
{
if (allow_fcf_writes) {
LOG_ERROR("Protection setting is possible with 'kinetis fcf_source protection' only!");
return ERROR_FAIL;
}
if (!bank->prot_blocks || bank->num_prot_blocks == 0) {
LOG_ERROR("No protection possible for current bank!");
return ERROR_FLASH_BANK_INVALID;
}
for (unsigned int i = first; i < bank->num_prot_blocks && i <= last; i++)
bank->prot_blocks[i].is_protected = set;
LOG_INFO("Protection bits will be written at the next FCF sector erase or write.");
LOG_INFO("Do not issue 'flash info' command until protection is written,");
LOG_INFO("doing so would re-read protection status from MCU.");
return ERROR_OK;
}
static int kinetis_protect_check(struct flash_bank *bank)
{
struct kinetis_flash_bank *k_bank = bank->driver_priv;
int result;
int b;
uint32_t fprot;
if (k_bank->flash_class == FC_PFLASH) {
/* read protection register */
result = target_read_u32(bank->target, FTFX_FPROT3, &fprot);
if (result != ERROR_OK)
return result;
/* Every bit protects 1/32 of the full flash (not necessarily just this bank) */
} else if (k_bank->flash_class == FC_FLEX_NVM) {
uint8_t fdprot;
/* read protection register */
result = target_read_u8(bank->target, FTFX_FDPROT, &fdprot);
if (result != ERROR_OK)
return result;
fprot = fdprot;
} else {
LOG_ERROR("Protection checks for FlexRAM not supported");
return ERROR_FLASH_BANK_INVALID;
}
b = k_bank->protection_block;
for (unsigned int i = 0; i < bank->num_prot_blocks; i++) {
if ((fprot >> b) & 1)
bank->prot_blocks[i].is_protected = 0;
else
bank->prot_blocks[i].is_protected = 1;
b++;
}
return ERROR_OK;
}
static int kinetis_fill_fcf(struct flash_bank *bank, uint8_t *fcf)
{
uint32_t fprot = 0xffffffff;
uint8_t fsec = 0xfe; /* set MCU unsecure */
uint8_t fdprot = 0xff;
unsigned num_blocks;
uint32_t pflash_bit;
uint8_t dflash_bit;
struct flash_bank *bank_iter;
struct kinetis_flash_bank *k_bank = bank->driver_priv;
struct kinetis_chip *k_chip = k_bank->k_chip;
memset(fcf, 0xff, FCF_SIZE);
pflash_bit = 1;
dflash_bit = 1;
/* iterate over all kinetis banks */
/* current bank is bank 0, it contains FCF */
num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks;
for (unsigned int bank_idx = 0; bank_idx < num_blocks; bank_idx++) {
k_bank = &(k_chip->banks[bank_idx]);
bank_iter = k_bank->bank;
if (!bank_iter) {
LOG_WARNING("Missing bank %u configuration, FCF protection flags may be incomplete", bank_idx);
continue;
}
kinetis_auto_probe(bank_iter);
assert(bank_iter->prot_blocks);
if (k_bank->flash_class == FC_PFLASH) {
for (unsigned int i = 0; i < bank_iter->num_prot_blocks; i++) {
if (bank_iter->prot_blocks[i].is_protected == 1)
fprot &= ~pflash_bit;
pflash_bit <<= 1;
}
} else if (k_bank->flash_class == FC_FLEX_NVM) {
for (unsigned int i = 0; i < bank_iter->num_prot_blocks; i++) {
if (bank_iter->prot_blocks[i].is_protected == 1)
fdprot &= ~dflash_bit;
dflash_bit <<= 1;
}
}
}
target_buffer_set_u32(bank->target, fcf + FCF_FPROT, fprot);
fcf[FCF_FSEC] = fsec;
fcf[FCF_FOPT] = fcf_fopt;
fcf[FCF_FDPROT] = fdprot;
return ERROR_OK;
}
static int kinetis_ftfx_command(struct target *target, uint8_t fcmd, uint32_t faddr,
uint8_t fccob4, uint8_t fccob5, uint8_t fccob6, uint8_t fccob7,
uint8_t fccob8, uint8_t fccob9, uint8_t fccoba, uint8_t fccobb,
uint8_t *ftfx_fstat)
{
uint8_t command[12] = {faddr & 0xff, (faddr >> 8) & 0xff, (faddr >> 16) & 0xff, fcmd,
fccob7, fccob6, fccob5, fccob4,
fccobb, fccoba, fccob9, fccob8};
int result;
uint8_t fstat;
int64_t ms_timeout = timeval_ms() + 250;
result = target_write_memory(target, FTFX_FCCOB3, 4, 3, command);
if (result != ERROR_OK)
return result;
/* start command */
result = target_write_u8(target, FTFX_FSTAT, 0x80);
if (result != ERROR_OK)
return result;
/* wait for done */
do {
result = target_read_u8(target, FTFX_FSTAT, &fstat);
if (result != ERROR_OK)
return result;
if (fstat & 0x80)
break;
} while (timeval_ms() < ms_timeout);
if (ftfx_fstat)
*ftfx_fstat = fstat;
if ((fstat & 0xf0) != 0x80) {
LOG_DEBUG("ftfx command failed FSTAT: %02X FCCOB: %02X%02X%02X%02X %02X%02X%02X%02X %02X%02X%02X%02X",
fstat, command[3], command[2], command[1], command[0],
command[7], command[6], command[5], command[4],
command[11], command[10], command[9], command[8]);
return kinetis_ftfx_decode_error(fstat);
}
return ERROR_OK;
}
static int kinetis_read_pmstat(struct kinetis_chip *k_chip, uint8_t *pmstat)
{
int result;
uint32_t stat32;
struct target *target = k_chip->target;
switch (k_chip->sysmodectrlr_type) {
case KINETIS_SMC:
result = target_read_u8(target, SMC_PMSTAT, pmstat);
return result;
case KINETIS_SMC32:
result = target_read_u32(target, SMC32_PMSTAT, &stat32);
if (result == ERROR_OK)
*pmstat = stat32 & 0xff;
return result;
case KINETIS_MC:
/* emulate SMC by reading PMC_REGSC bit 3 (VLPRS) */
result = target_read_u8(target, PMC_REGSC, pmstat);
if (result == ERROR_OK) {
if (*pmstat & 0x08)
*pmstat = PM_STAT_VLPR;
else
*pmstat = PM_STAT_RUN;
}
return result;
}
return ERROR_FAIL;
}
static int kinetis_check_run_mode(struct kinetis_chip *k_chip)
{
int result;
uint8_t pmstat;
struct target *target;
if (!k_chip) {
LOG_ERROR("Chip not probed.");
return ERROR_FAIL;
}
target = k_chip->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
result = kinetis_read_pmstat(k_chip, &pmstat);
if (result != ERROR_OK)
return result;
if (pmstat == PM_STAT_RUN)
return ERROR_OK;
if (pmstat == PM_STAT_VLPR) {
/* It is safe to switch from VLPR to RUN mode without changing clock */
LOG_INFO("Switching from VLPR to RUN mode.");
switch (k_chip->sysmodectrlr_type) {
case KINETIS_SMC:
result = target_write_u8(target, SMC_PMCTRL, PM_CTRL_RUNM_RUN);
break;
case KINETIS_SMC32:
result = target_write_u32(target, SMC32_PMCTRL, PM_CTRL_RUNM_RUN);
break;
case KINETIS_MC:
result = target_write_u32(target, MC_PMCTRL, PM_CTRL_RUNM_RUN);
break;
}
if (result != ERROR_OK)
return result;
for (unsigned int i = 100; i > 0; i--) {
result = kinetis_read_pmstat(k_chip, &pmstat);
if (result != ERROR_OK)
return result;
if (pmstat == PM_STAT_RUN)
return ERROR_OK;
}
}
LOG_ERROR("Flash operation not possible in current run mode: SMC_PMSTAT: 0x%x", pmstat);
LOG_ERROR("Issue a 'reset init' command.");
return ERROR_TARGET_NOT_HALTED;
}
static void kinetis_invalidate_flash_cache(struct kinetis_chip *k_chip)
{
struct target *target = k_chip->target;
switch (k_chip->cache_type) {
case KINETIS_CACHE_K:
target_write_u8(target, FMC_PFB01CR + 2, 0xf0);
/* Set CINV_WAY bits - request invalidate of all cache ways */
/* FMC_PFB0CR has same address and CINV_WAY bits as FMC_PFB01CR */
break;
case KINETIS_CACHE_L:
target_write_u8(target, MCM_PLACR + 1, 0x04);
/* set bit CFCC - Clear Flash Controller Cache */
break;
case KINETIS_CACHE_MSCM:
target_write_u32(target, MSCM_OCMDR0, 0x30);
/* disable data prefetch and flash speculate */
break;
default:
break;
}
}
static int kinetis_erase(struct flash_bank *bank, unsigned int first,
unsigned int last)
{
int result;
struct kinetis_flash_bank *k_bank = bank->driver_priv;
struct kinetis_chip *k_chip = k_bank->k_chip;
result = kinetis_check_run_mode(k_chip);
if (result != ERROR_OK)
return result;
/* reset error flags */
result = kinetis_ftfx_prepare(bank->target);
if (result != ERROR_OK)
return result;
if ((first > bank->num_sectors) || (last > bank->num_sectors))
return ERROR_FLASH_OPERATION_FAILED;
/*
* FIXME: TODO: use the 'Erase Flash Block' command if the
* requested erase is PFlash or NVM and encompasses the entire
* block. Should be quicker.
*/
for (unsigned int i = first; i <= last; i++) {
/* set command and sector address */
result = kinetis_ftfx_command(bank->target, FTFX_CMD_SECTERASE, k_bank->prog_base + bank->sectors[i].offset,
0, 0, 0, 0, 0, 0, 0, 0, NULL);
if (result != ERROR_OK) {
LOG_WARNING("erase sector %u failed", i);
return ERROR_FLASH_OPERATION_FAILED;
}
if (k_bank->prog_base == 0
&& bank->sectors[i].offset <= FCF_ADDRESS
&& bank->sectors[i].offset + bank->sectors[i].size > FCF_ADDRESS + FCF_SIZE) {
if (allow_fcf_writes) {
LOG_WARNING("Flash Configuration Field erased, DO NOT reset or power off the device");
LOG_WARNING("until correct FCF is programmed or MCU gets security lock.");
} else {
uint8_t fcf_buffer[FCF_SIZE];
kinetis_fill_fcf(bank, fcf_buffer);
result = kinetis_write_inner(bank, fcf_buffer, FCF_ADDRESS, FCF_SIZE);
if (result != ERROR_OK)
LOG_WARNING("Flash Configuration Field write failed");
else
LOG_DEBUG("Generated FCF written");
}
}
}
kinetis_invalidate_flash_cache(k_bank->k_chip);
return ERROR_OK;
}
static int kinetis_make_ram_ready(struct target *target)
{
int result;
uint8_t ftfx_fcnfg;
/* check if ram ready */
result = target_read_u8(target, FTFX_FCNFG, &ftfx_fcnfg);
if (result != ERROR_OK)
return result;
if (ftfx_fcnfg & (1 << 1))
return ERROR_OK; /* ram ready */
/* make flex ram available */
result = kinetis_ftfx_command(target, FTFX_CMD_SETFLEXRAM, 0x00ff0000,
0, 0, 0, 0, 0, 0, 0, 0, NULL);
if (result != ERROR_OK)
return ERROR_FLASH_OPERATION_FAILED;
/* check again */
result = target_read_u8(target, FTFX_FCNFG, &ftfx_fcnfg);
if (result != ERROR_OK)
return result;
if (ftfx_fcnfg & (1 << 1))
return ERROR_OK; /* ram ready */
return ERROR_FLASH_OPERATION_FAILED;
}
static int kinetis_write_sections(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
int result = ERROR_OK;
struct kinetis_flash_bank *k_bank = bank->driver_priv;
struct kinetis_chip *k_chip = k_bank->k_chip;
uint8_t *buffer_aligned = NULL;
/*
* Kinetis uses different terms for the granularity of
* sector writes, e.g. "phrase" or "128 bits". We use
* the generic term "chunk". The largest possible
* Kinetis "chunk" is 16 bytes (128 bits).
*/
uint32_t prog_section_chunk_bytes = k_bank->sector_size >> 8;
uint32_t prog_size_bytes = k_chip->max_flash_prog_size;
while (count > 0) {
uint32_t size = prog_size_bytes - offset % prog_size_bytes;
uint32_t align_begin = offset % prog_section_chunk_bytes;
uint32_t align_end;
uint32_t size_aligned;
uint16_t chunk_count;
uint8_t ftfx_fstat;
if (size > count)
size = count;
align_end = (align_begin + size) % prog_section_chunk_bytes;
if (align_end)
align_end = prog_section_chunk_bytes - align_end;
size_aligned = align_begin + size + align_end;
chunk_count = size_aligned / prog_section_chunk_bytes;
if (size != size_aligned) {
/* aligned section: the first, the last or the only */
if (!buffer_aligned)
buffer_aligned = malloc(prog_size_bytes);
memset(buffer_aligned, 0xff, size_aligned);
memcpy(buffer_aligned + align_begin, buffer, size);
result = target_write_memory(bank->target, k_chip->progr_accel_ram,
4, size_aligned / 4, buffer_aligned);
LOG_DEBUG("section @ " TARGET_ADDR_FMT " aligned begin %" PRIu32
", end %" PRIu32,
bank->base + offset, align_begin, align_end);
} else
result = target_write_memory(bank->target, k_chip->progr_accel_ram,
4, size_aligned / 4, buffer);
LOG_DEBUG("write section @ " TARGET_ADDR_FMT " with length %" PRIu32
" bytes",
bank->base + offset, size);
if (result != ERROR_OK) {
LOG_ERROR("target_write_memory failed");
break;
}
/* execute section-write command */
result = kinetis_ftfx_command(bank->target, FTFX_CMD_SECTWRITE,
k_bank->prog_base + offset - align_begin,
chunk_count>>8, chunk_count, 0, 0,
0, 0, 0, 0, &ftfx_fstat);
if (result != ERROR_OK) {
LOG_ERROR("Error writing section at " TARGET_ADDR_FMT,
bank->base + offset);
break;
}
if (ftfx_fstat & 0x01) {
LOG_ERROR("Flash write error at " TARGET_ADDR_FMT,
bank->base + offset);
if (k_bank->prog_base == 0 && offset == FCF_ADDRESS + FCF_SIZE
&& (k_chip->flash_support & FS_WIDTH_256BIT)) {
LOG_ERROR("Flash write immediately after the end of Flash Config Field shows error");
LOG_ERROR("because the flash memory is 256 bits wide (data were written correctly).");
LOG_ERROR("Either change the linker script to add a gap of 16 bytes after FCF");
LOG_ERROR("or set 'kinetis fcf_source write'");
}
}
buffer += size;
offset += size;
count -= size;
keep_alive();
}
free(buffer_aligned);
return result;
}
static int kinetis_write_inner(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
int result;
bool fallback = false;
struct kinetis_flash_bank *k_bank = bank->driver_priv;
struct kinetis_chip *k_chip = k_bank->k_chip;
if (!(k_chip->flash_support & FS_PROGRAM_SECTOR)) {
/* fallback to longword write */
fallback = true;
LOG_INFO("This device supports Program Longword execution only.");
} else {
result = kinetis_make_ram_ready(bank->target);
if (result != ERROR_OK) {
fallback = true;
LOG_WARNING("FlexRAM not ready, fallback to slow longword write.");
}
}
LOG_DEBUG("flash write @ " TARGET_ADDR_FMT, bank->base + offset);
if (!fallback) {
/* program section command */
kinetis_write_sections(bank, buffer, offset, count);
} else if (k_chip->flash_support & FS_PROGRAM_LONGWORD) {
/* program longword command, not supported in FTFE */
uint8_t *new_buffer = NULL;
/* check word alignment */
if (offset & 0x3) {
LOG_ERROR("offset 0x%" PRIx32 " breaks the required alignment", offset);
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
}
if (count & 0x3) {
uint32_t old_count = count;
count = (old_count | 3) + 1;
new_buffer = malloc(count);
if (!new_buffer) {
LOG_ERROR("odd number of bytes to write and no memory "
"for padding buffer");
return ERROR_FAIL;
}
LOG_INFO("odd number of bytes to write (%" PRIu32 "), extending to %" PRIu32 " "
"and padding with 0xff", old_count, count);
memset(new_buffer + old_count, 0xff, count - old_count);
buffer = memcpy(new_buffer, buffer, old_count);
}
uint32_t words_remaining = count / 4;
kinetis_disable_wdog(k_chip);
/* try using a block write */
result = kinetis_write_block(bank, buffer, offset, words_remaining);
if (result == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
/* if block write failed (no sufficient working area),
* we use normal (slow) single word accesses */
LOG_WARNING("couldn't use block writes, falling back to single "
"memory accesses");
while (words_remaining) {
uint8_t ftfx_fstat;
LOG_DEBUG("write longword @ %08" PRIx32, (uint32_t)(bank->base + offset));
result = kinetis_ftfx_command(bank->target, FTFX_CMD_LWORDPROG, k_bank->prog_base + offset,
buffer[3], buffer[2], buffer[1], buffer[0],
0, 0, 0, 0, &ftfx_fstat);
if (result != ERROR_OK) {
LOG_ERROR("Error writing longword at " TARGET_ADDR_FMT,
bank->base + offset);
break;
}
if (ftfx_fstat & 0x01)
LOG_ERROR("Flash write error at " TARGET_ADDR_FMT,
bank->base + offset);
buffer += 4;
offset += 4;
words_remaining--;
keep_alive();
}
}
free(new_buffer);
} else {
LOG_ERROR("Flash write strategy not implemented");
return ERROR_FLASH_OPERATION_FAILED;
}
kinetis_invalidate_flash_cache(k_chip);
return result;
}
static int kinetis_write(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
int result;
bool set_fcf = false;
bool fcf_in_data_valid = false;
bool fcf_differs = false;
int sect = 0;
struct kinetis_flash_bank *k_bank = bank->driver_priv;
struct kinetis_chip *k_chip = k_bank->k_chip;
uint8_t fcf_buffer[FCF_SIZE];
uint8_t fcf_current[FCF_SIZE];
uint8_t fcf_in_data[FCF_SIZE];
result = kinetis_check_run_mode(k_chip);
if (result != ERROR_OK)
return result;
/* reset error flags */
result = kinetis_ftfx_prepare(bank->target);
if (result != ERROR_OK)
return result;
if (k_bank->prog_base == 0 && !allow_fcf_writes) {
if (bank->sectors[1].offset <= FCF_ADDRESS)
sect = 1; /* 1kb sector, FCF in 2nd sector */
if (offset < bank->sectors[sect].offset + bank->sectors[sect].size
&& offset + count > bank->sectors[sect].offset)
set_fcf = true; /* write to any part of sector with FCF */
}
if (set_fcf) {
kinetis_fill_fcf(bank, fcf_buffer);
fcf_in_data_valid = offset <= FCF_ADDRESS
&& offset + count >= FCF_ADDRESS + FCF_SIZE;
if (fcf_in_data_valid) {
memcpy(fcf_in_data, buffer + FCF_ADDRESS - offset, FCF_SIZE);
if (memcmp(fcf_in_data, fcf_buffer, 8)) {
fcf_differs = true;
LOG_INFO("Setting of backdoor key is not supported in mode 'kinetis fcf_source protection'.");
}
if (memcmp(fcf_in_data + FCF_FPROT, fcf_buffer + FCF_FPROT, 4)) {
fcf_differs = true;
LOG_INFO("Flash protection requested in the programmed file differs from current setting.");
}
if (fcf_in_data[FCF_FDPROT] != fcf_buffer[FCF_FDPROT]) {
fcf_differs = true;
LOG_INFO("Data flash protection requested in the programmed file differs from current setting.");
}
if ((fcf_in_data[FCF_FSEC] & 3) != 2) {
fcf_in_data_valid = false;
LOG_INFO("Device security requested in the programmed file! Write denied.");
} else if (fcf_in_data[FCF_FSEC] != fcf_buffer[FCF_FSEC]) {
fcf_differs = true;
LOG_INFO("Strange unsecure mode 0x%02" PRIx8
" requested in the programmed file, set FSEC = 0x%02" PRIx8
" in the startup code!",
fcf_in_data[FCF_FSEC], fcf_buffer[FCF_FSEC]);
}
if (fcf_in_data[FCF_FOPT] != fcf_buffer[FCF_FOPT]) {
fcf_differs = true;
LOG_INFO("FOPT requested in the programmed file differs from current setting, set 'kinetis fopt 0x%02"
PRIx8 "'.", fcf_in_data[FCF_FOPT]);
}
/* If the device has ECC flash, then we cannot re-program FCF */
if (fcf_differs) {
if (k_chip->flash_support & FS_ECC) {
fcf_in_data_valid = false;
LOG_INFO("Cannot re-program FCF. Expect verify errors at FCF (0x400-0x40f).");
} else {
LOG_INFO("Trying to re-program FCF.");
if (!(k_chip->flash_support & FS_PROGRAM_LONGWORD))
LOG_INFO("Flash re-programming may fail on this device!");
}
}
}
}
if (set_fcf && !fcf_in_data_valid) {
if (offset < FCF_ADDRESS) {
/* write part preceding FCF */
result = kinetis_write_inner(bank, buffer, offset, FCF_ADDRESS - offset);
if (result != ERROR_OK)
return result;
}
result = target_read_memory(bank->target, bank->base + FCF_ADDRESS, 4, FCF_SIZE / 4, fcf_current);
if (result == ERROR_OK && memcmp(fcf_current, fcf_buffer, FCF_SIZE) == 0)
set_fcf = false;
if (set_fcf) {
/* write FCF if differs from flash - eliminate multiple writes */
result = kinetis_write_inner(bank, fcf_buffer, FCF_ADDRESS, FCF_SIZE);
if (result != ERROR_OK)
return result;
}
LOG_WARNING("Flash Configuration Field written.");
LOG_WARNING("Reset or power off the device to make settings effective.");
if (offset + count > FCF_ADDRESS + FCF_SIZE) {
uint32_t delta = FCF_ADDRESS + FCF_SIZE - offset;
/* write part after FCF */
result = kinetis_write_inner(bank, buffer + delta, FCF_ADDRESS + FCF_SIZE, count - delta);
}
return result;
} else {
/* no FCF fiddling, normal write */
return kinetis_write_inner(bank, buffer, offset, count);
}
}
static int kinetis_probe_chip(struct kinetis_chip *k_chip)
{
int result;
uint8_t fcfg1_nvmsize, fcfg1_pfsize, fcfg1_eesize, fcfg1_depart;
uint8_t fcfg2_pflsh;
uint32_t ee_size = 0;
uint32_t pflash_size_k, nvm_size_k, dflash_size_k;
uint32_t pflash_size_m;
unsigned num_blocks = 0;
unsigned maxaddr_shift = 13;
struct target *target = k_chip->target;
unsigned familyid = 0, subfamid = 0;
unsigned cpu_mhz = 120;
bool use_nvm_marking = false;
char flash_marking[12], nvm_marking[2];
char name[40];
k_chip->probed = false;
k_chip->pflash_sector_size = 0;
k_chip->pflash_base = 0;
k_chip->nvm_base = 0x10000000;
k_chip->progr_accel_ram = FLEXRAM;
name[0] = '\0';
if (k_chip->sim_base)
result = target_read_u32(target, k_chip->sim_base + SIM_SDID_OFFSET, &k_chip->sim_sdid);
else {
result = target_read_u32(target, SIM_BASE + SIM_SDID_OFFSET, &k_chip->sim_sdid);
if (result == ERROR_OK)
k_chip->sim_base = SIM_BASE;
else {
result = target_read_u32(target, SIM_BASE_KL28 + SIM_SDID_OFFSET, &k_chip->sim_sdid);
if (result == ERROR_OK)
k_chip->sim_base = SIM_BASE_KL28;
}
}
if (result != ERROR_OK)
return result;
if ((k_chip->sim_sdid & (~KINETIS_SDID_K_SERIES_MASK)) == 0) {
/* older K-series MCU */
uint32_t mcu_type = k_chip->sim_sdid & KINETIS_K_SDID_TYPE_MASK;
k_chip->cache_type = KINETIS_CACHE_K;
k_chip->watchdog_type = KINETIS_WDOG_K;
switch (mcu_type) {
case KINETIS_K_SDID_K10_M50:
case KINETIS_K_SDID_K20_M50:
/* 1kB sectors */
k_chip->pflash_sector_size = 1<<10;
k_chip->nvm_sector_size = 1<<10;
num_blocks = 2;
k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR;
break;
case KINETIS_K_SDID_K10_M72:
case KINETIS_K_SDID_K20_M72:
case KINETIS_K_SDID_K30_M72:
case KINETIS_K_SDID_K30_M100:
case KINETIS_K_SDID_K40_M72:
case KINETIS_K_SDID_K40_M100:
case KINETIS_K_SDID_K50_M72:
/* 2kB sectors, 1kB FlexNVM sectors */
k_chip->pflash_sector_size = 2<<10;
k_chip->nvm_sector_size = 1<<10;
num_blocks = 2;
k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR;
k_chip->max_flash_prog_size = 1<<10;
break;
case KINETIS_K_SDID_K10_M100:
case KINETIS_K_SDID_K20_M100:
case KINETIS_K_SDID_K11:
case KINETIS_K_SDID_K12:
case KINETIS_K_SDID_K21_M50:
case KINETIS_K_SDID_K22_M50:
case KINETIS_K_SDID_K51_M72:
case KINETIS_K_SDID_K53:
case KINETIS_K_SDID_K60_M100:
/* 2kB sectors */
k_chip->pflash_sector_size = 2<<10;
k_chip->nvm_sector_size = 2<<10;
num_blocks = 2;
k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR;
break;
case KINETIS_K_SDID_K21_M120:
case KINETIS_K_SDID_K22_M120:
/* 4kB sectors (MK21FN1M0, MK21FX512, MK22FN1M0, MK22FX512) */
k_chip->pflash_sector_size = 4<<10;
k_chip->max_flash_prog_size = 1<<10;
k_chip->nvm_sector_size = 4<<10;
num_blocks = 2;
k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
break;
case KINETIS_K_SDID_K10_M120:
case KINETIS_K_SDID_K20_M120:
case KINETIS_K_SDID_K60_M150:
case KINETIS_K_SDID_K70_M150:
/* 4kB sectors */
k_chip->pflash_sector_size = 4<<10;
k_chip->nvm_sector_size = 4<<10;
num_blocks = 4;
k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
break;
default:
LOG_ERROR("Unsupported K-family FAMID");
}
for (size_t idx = 0; idx < ARRAY_SIZE(kinetis_types_old); idx++) {
if (kinetis_types_old[idx].sdid == mcu_type) {
strcpy(name, kinetis_types_old[idx].name);
use_nvm_marking = true;
break;
}
}
/* first revision of some devices has no SMC */
switch (mcu_type) {
case KINETIS_K_SDID_K10_M100:
case KINETIS_K_SDID_K20_M100:
case KINETIS_K_SDID_K30_M100:
case KINETIS_K_SDID_K40_M100:
case KINETIS_K_SDID_K60_M100:
{
uint32_t revid = (k_chip->sim_sdid & KINETIS_K_REVID_MASK) >> KINETIS_K_REVID_SHIFT;
/* highest bit set corresponds to rev 2.x */
if (revid <= 7) {
k_chip->sysmodectrlr_type = KINETIS_MC;
strcat(name, " Rev 1.x");
}
}
break;
}
} else {
/* Newer K-series or KL series MCU */
familyid = (k_chip->sim_sdid & KINETIS_SDID_FAMILYID_MASK) >> KINETIS_SDID_FAMILYID_SHIFT;
subfamid = (k_chip->sim_sdid & KINETIS_SDID_SUBFAMID_MASK) >> KINETIS_SDID_SUBFAMID_SHIFT;
switch (k_chip->sim_sdid & KINETIS_SDID_SERIESID_MASK) {
case KINETIS_SDID_SERIESID_K:
use_nvm_marking = true;
k_chip->cache_type = KINETIS_CACHE_K;
k_chip->watchdog_type = KINETIS_WDOG_K;
switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
case KINETIS_SDID_FAMILYID_K0X | KINETIS_SDID_SUBFAMID_KX2:
/* K02FN64, K02FN128: FTFA, 2kB sectors */
k_chip->pflash_sector_size = 2<<10;
num_blocks = 1;
k_chip->flash_support = FS_PROGRAM_LONGWORD;
cpu_mhz = 100;
break;
case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX2: {
/* MK24FN1M reports as K22, this should detect it (according to errata note 1N83J) */
uint32_t sopt1;
result = target_read_u32(target, k_chip->sim_base + SIM_SOPT1_OFFSET, &sopt1);
if (result != ERROR_OK)
return result;
if (((k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K24FN1M) &&
((sopt1 & KINETIS_SOPT1_RAMSIZE_MASK) == KINETIS_SOPT1_RAMSIZE_K24FN1M)) {
/* MK24FN1M */
k_chip->pflash_sector_size = 4<<10;
num_blocks = 2;
k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
k_chip->max_flash_prog_size = 1<<10;
subfamid = 4; /* errata 1N83J fix */
break;
}
if ((k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN128
|| (k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN256
|| (k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN512) {
/* K22 with new-style SDID - smaller pflash with FTFA, 2kB sectors */
k_chip->pflash_sector_size = 2<<10;
/* autodetect 1 or 2 blocks */
k_chip->flash_support = FS_PROGRAM_LONGWORD;
break;
}
LOG_ERROR("Unsupported Kinetis K22 DIEID");
break;
}
case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX4:
k_chip->pflash_sector_size = 4<<10;
if ((k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K24FN256) {
/* K24FN256 - smaller pflash with FTFA */
num_blocks = 1;
k_chip->flash_support = FS_PROGRAM_LONGWORD;
break;
}
/* K24FN1M without errata 7534 */
num_blocks = 2;
k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
k_chip->max_flash_prog_size = 1<<10;
break;
case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX1: /* errata 7534 - should be K63 */
case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX2: /* errata 7534 - should be K64 */
subfamid += 2; /* errata 7534 fix */
/* fallthrough */
case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX3:
/* K63FN1M0 */
case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX4:
/* K64FN1M0, K64FX512 */
k_chip->pflash_sector_size = 4<<10;
k_chip->nvm_sector_size = 4<<10;
k_chip->max_flash_prog_size = 1<<10;
num_blocks = 2;
k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
break;
case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX6:
/* K26FN2M0 */
case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX6:
/* K66FN2M0, K66FX1M0 */
k_chip->pflash_sector_size = 4<<10;
k_chip->nvm_sector_size = 4<<10;
k_chip->max_flash_prog_size = 1<<10;
num_blocks = 4;
k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_ECC;
cpu_mhz = 180;
break;
case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX7:
/* K27FN2M0 */
case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX8:
/* K28FN2M0 */
k_chip->pflash_sector_size = 4<<10;
k_chip->max_flash_prog_size = 1<<10;
num_blocks = 4;
k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_ECC;
cpu_mhz = 150;
break;
case KINETIS_SDID_FAMILYID_K8X | KINETIS_SDID_SUBFAMID_KX0:
case KINETIS_SDID_FAMILYID_K8X | KINETIS_SDID_SUBFAMID_KX1:
case KINETIS_SDID_FAMILYID_K8X | KINETIS_SDID_SUBFAMID_KX2:
/* K80FN256, K81FN256, K82FN256 */
k_chip->pflash_sector_size = 4<<10;
num_blocks = 1;
k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_NO_CMD_BLOCKSTAT;
cpu_mhz = 150;
break;
case KINETIS_SDID_FAMILYID_KL8X | KINETIS_SDID_SUBFAMID_KX1:
case KINETIS_SDID_FAMILYID_KL8X | KINETIS_SDID_SUBFAMID_KX2:
/* KL81Z128, KL82Z128 */
k_chip->pflash_sector_size = 2<<10;
num_blocks = 1;
k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_NO_CMD_BLOCKSTAT;
k_chip->cache_type = KINETIS_CACHE_L;
use_nvm_marking = false;
snprintf(name, sizeof(name), "MKL8%uZ%%s7",
subfamid);
break;
default:
LOG_ERROR("Unsupported Kinetis FAMILYID SUBFAMID");
}
if (name[0] == '\0')
snprintf(name, sizeof(name), "MK%u%uF%%s%u",
familyid, subfamid, cpu_mhz / 10);
break;
case KINETIS_SDID_SERIESID_KL:
/* KL-series */
k_chip->pflash_sector_size = 1<<10;
k_chip->nvm_sector_size = 1<<10;
/* autodetect 1 or 2 blocks */
k_chip->flash_support = FS_PROGRAM_LONGWORD;
k_chip->cache_type = KINETIS_CACHE_L;
k_chip->watchdog_type = KINETIS_WDOG_COP;
cpu_mhz = 48;
switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX3:
case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX3:
subfamid = 7;
break;
case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX8:
cpu_mhz = 72;
k_chip->pflash_sector_size = 2<<10;
num_blocks = 2;
k_chip->watchdog_type = KINETIS_WDOG32_KL28;
k_chip->sysmodectrlr_type = KINETIS_SMC32;
break;
}
snprintf(name, sizeof(name), "MKL%u%uZ%%s%u",
familyid, subfamid, cpu_mhz / 10);
break;
case KINETIS_SDID_SERIESID_KW:
/* Newer KW-series (all KW series except KW2xD, KW01Z) */
cpu_mhz = 48;
switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX0:
/* KW40Z */
case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX0:
/* KW30Z */
case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX0:
/* KW20Z */
/* FTFA, 1kB sectors */
k_chip->pflash_sector_size = 1<<10;
k_chip->nvm_sector_size = 1<<10;
/* autodetect 1 or 2 blocks */
k_chip->flash_support = FS_PROGRAM_LONGWORD;
k_chip->cache_type = KINETIS_CACHE_L;
k_chip->watchdog_type = KINETIS_WDOG_COP;
break;
case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX1:
/* KW41Z */
case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX1:
/* KW31Z */
case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX1:
/* KW21Z */
/* FTFA, 2kB sectors */
k_chip->pflash_sector_size = 2<<10;
k_chip->nvm_sector_size = 2<<10;
/* autodetect 1 or 2 blocks */
k_chip->flash_support = FS_PROGRAM_LONGWORD;
k_chip->cache_type = KINETIS_CACHE_L;
k_chip->watchdog_type = KINETIS_WDOG_COP;
break;
default:
LOG_ERROR("Unsupported KW FAMILYID SUBFAMID");
}
snprintf(name, sizeof(name), "MKW%u%uZ%%s%u",
familyid, subfamid, cpu_mhz / 10);
break;
case KINETIS_SDID_SERIESID_KV:
/* KV-series */
k_chip->watchdog_type = KINETIS_WDOG_K;
switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX0:
/* KV10: FTFA, 1kB sectors */
k_chip->pflash_sector_size = 1<<10;
num_blocks = 1;
k_chip->flash_support = FS_PROGRAM_LONGWORD;
k_chip->cache_type = KINETIS_CACHE_L;
strcpy(name, "MKV10Z%s7");
break;
case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX1:
/* KV11: FTFA, 2kB sectors */
k_chip->pflash_sector_size = 2<<10;
num_blocks = 1;
k_chip->flash_support = FS_PROGRAM_LONGWORD;
k_chip->cache_type = KINETIS_CACHE_L;
strcpy(name, "MKV11Z%s7");
break;
case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX0:
/* KV30: FTFA, 2kB sectors, 1 block */
case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX1:
/* KV31: FTFA, 2kB sectors, 2 blocks */
k_chip->pflash_sector_size = 2<<10;
/* autodetect 1 or 2 blocks */
k_chip->flash_support = FS_PROGRAM_LONGWORD;
k_chip->cache_type = KINETIS_CACHE_K;
break;
case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX2:
case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX4:
case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX6:
/* KV4x: FTFA, 4kB sectors */
k_chip->pflash_sector_size = 4<<10;
num_blocks = 1;
k_chip->flash_support = FS_PROGRAM_LONGWORD;
k_chip->cache_type = KINETIS_CACHE_K;
cpu_mhz = 168;
break;
case KINETIS_SDID_FAMILYID_K5X | KINETIS_SDID_SUBFAMID_KX6:
case KINETIS_SDID_FAMILYID_K5X | KINETIS_SDID_SUBFAMID_KX8:
/* KV5x: FTFE, 8kB sectors */
k_chip->pflash_sector_size = 8<<10;
k_chip->max_flash_prog_size = 1<<10;
num_blocks = 1;
maxaddr_shift = 14;
k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_WIDTH_256BIT | FS_ECC;
k_chip->pflash_base = 0x10000000;
k_chip->progr_accel_ram = 0x18000000;
cpu_mhz = 240;
break;
default:
LOG_ERROR("Unsupported KV FAMILYID SUBFAMID");
}
if (name[0] == '\0')
snprintf(name, sizeof(name), "MKV%u%uF%%s%u",
familyid, subfamid, cpu_mhz / 10);
break;
case KINETIS_SDID_SERIESID_KE:
/* KE1x-series */
k_chip->watchdog_type = KINETIS_WDOG32_KE1X;
switch (k_chip->sim_sdid &
(KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK | KINETIS_SDID_PROJECTID_MASK)) {
case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX4 | KINETIS_SDID_PROJECTID_KE1XZ:
case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX5 | KINETIS_SDID_PROJECTID_KE1XZ:
/* KE1xZ: FTFE, 2kB sectors */
k_chip->pflash_sector_size = 2<<10;
k_chip->nvm_sector_size = 2<<10;
k_chip->max_flash_prog_size = 1<<9;
num_blocks = 2;
k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
k_chip->cache_type = KINETIS_CACHE_L;
cpu_mhz = 72;
snprintf(name, sizeof(name), "MKE%u%uZ%%s%u",
familyid, subfamid, cpu_mhz / 10);
break;
case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX4 | KINETIS_SDID_PROJECTID_KE1XF:
case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX6 | KINETIS_SDID_PROJECTID_KE1XF:
case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX8 | KINETIS_SDID_PROJECTID_KE1XF:
/* KE1xF: FTFE, 4kB sectors */
k_chip->pflash_sector_size = 4<<10;
k_chip->nvm_sector_size = 2<<10;
k_chip->max_flash_prog_size = 1<<10;
num_blocks = 2;
k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
k_chip->cache_type = KINETIS_CACHE_MSCM;
cpu_mhz = 168;
snprintf(name, sizeof(name), "MKE%u%uF%%s%u",
familyid, subfamid, cpu_mhz / 10);
break;
default:
LOG_ERROR("Unsupported KE FAMILYID SUBFAMID");
}
break;
default:
LOG_ERROR("Unsupported K-series");
}
}
if (k_chip->pflash_sector_size == 0) {
LOG_ERROR("MCU is unsupported, SDID 0x%08" PRIx32, k_chip->sim_sdid);
return ERROR_FLASH_OPER_UNSUPPORTED;
}
result = target_read_u32(target, k_chip->sim_base + SIM_FCFG1_OFFSET, &k_chip->sim_fcfg1);
if (result != ERROR_OK)
return result;
result = target_read_u32(target, k_chip->sim_base + SIM_FCFG2_OFFSET, &k_chip->sim_fcfg2);
if (result != ERROR_OK)
return result;
LOG_DEBUG("SDID: 0x%08" PRIX32 " FCFG1: 0x%08" PRIX32 " FCFG2: 0x%08" PRIX32, k_chip->sim_sdid,
k_chip->sim_fcfg1, k_chip->sim_fcfg2);
fcfg1_nvmsize = (uint8_t)((k_chip->sim_fcfg1 >> 28) & 0x0f);
fcfg1_pfsize = (uint8_t)((k_chip->sim_fcfg1 >> 24) & 0x0f);
fcfg1_eesize = (uint8_t)((k_chip->sim_fcfg1 >> 16) & 0x0f);
fcfg1_depart = (uint8_t)((k_chip->sim_fcfg1 >> 8) & 0x0f);
fcfg2_pflsh = (uint8_t)((k_chip->sim_fcfg2 >> 23) & 0x01);
k_chip->fcfg2_maxaddr0_shifted = ((k_chip->sim_fcfg2 >> 24) & 0x7f) << maxaddr_shift;
k_chip->fcfg2_maxaddr1_shifted = ((k_chip->sim_fcfg2 >> 16) & 0x7f) << maxaddr_shift;
if (num_blocks == 0)
num_blocks = k_chip->fcfg2_maxaddr1_shifted ? 2 : 1;
else if (k_chip->fcfg2_maxaddr1_shifted == 0 && num_blocks >= 2 && fcfg2_pflsh) {
/* fcfg2_maxaddr1 may be zero due to partitioning whole NVM as EEPROM backup
* Do not adjust block count in this case! */
num_blocks = 1;
LOG_WARNING("MAXADDR1 is zero, number of flash banks adjusted to 1");
} else if (k_chip->fcfg2_maxaddr1_shifted != 0 && num_blocks == 1) {
num_blocks = 2;
LOG_WARNING("MAXADDR1 is non zero, number of flash banks adjusted to 2");
}
/* when the PFLSH bit is set, there is no FlexNVM/FlexRAM */
if (!fcfg2_pflsh) {
switch (fcfg1_nvmsize) {
case 0x03:
case 0x05:
case 0x07:
case 0x09:
case 0x0b:
k_chip->nvm_size = 1 << (14 + (fcfg1_nvmsize >> 1));
break;
case 0x0f:
if (k_chip->pflash_sector_size >= 4<<10)
k_chip->nvm_size = 512<<10;
else
/* K20_100 */
k_chip->nvm_size = 256<<10;
break;
default:
k_chip->nvm_size = 0;
break;
}
switch (fcfg1_eesize) {
case 0x00:
case 0x01:
case 0x02:
case 0x03:
case 0x04:
case 0x05:
case 0x06:
case 0x07:
case 0x08:
case 0x09:
ee_size = (16 << (10 - fcfg1_eesize));
break;
default:
ee_size = 0;
break;
}
switch (fcfg1_depart) {
case 0x01:
case 0x02:
case 0x03:
case 0x04:
case 0x05:
case 0x06:
k_chip->dflash_size = k_chip->nvm_size - (4096 << fcfg1_depart);
break;
case 0x07:
case 0x08:
k_chip->dflash_size = 0;
break;
case 0x09:
case 0x0a:
case 0x0b:
case 0x0c:
case 0x0d:
k_chip->dflash_size = 4096 << (fcfg1_depart & 0x7);
break;
default:
k_chip->dflash_size = k_chip->nvm_size;
break;
}
}
switch (fcfg1_pfsize) {
case 0x00:
k_chip->pflash_size = 8192;
break;
case 0x01:
case 0x03:
case 0x05:
case 0x07:
case 0x09:
case 0x0b:
case 0x0d:
k_chip->pflash_size = 1 << (14 + (fcfg1_pfsize >> 1));
break;
case 0x0f:
/* a peculiar case: Freescale states different sizes for 0xf
* KL03P24M48SF0RM 32 KB .... duplicate of code 0x3
* K02P64M100SFARM 128 KB ... duplicate of code 0x7
* K22P121M120SF8RM 256 KB ... duplicate of code 0x9
* K22P121M120SF7RM 512 KB ... duplicate of code 0xb
* K22P100M120SF5RM 1024 KB ... duplicate of code 0xd
* K26P169M180SF5RM 2048 KB ... the only unique value
* fcfg2_maxaddr0 seems to be the only clue to pflash_size
* Checking fcfg2_maxaddr0 in bank probe is pointless then
*/
if (fcfg2_pflsh)
k_chip->pflash_size = k_chip->fcfg2_maxaddr0_shifted * num_blocks;
else
k_chip->pflash_size = k_chip->fcfg2_maxaddr0_shifted * num_blocks / 2;
if (k_chip->pflash_size != 2048<<10)
LOG_WARNING("SIM_FCFG1 PFSIZE = 0xf: please check if pflash is %" PRIu32 " KB", k_chip->pflash_size>>10);
break;
default:
k_chip->pflash_size = 0;
break;
}
if (k_chip->flash_support & FS_PROGRAM_SECTOR && k_chip->max_flash_prog_size == 0) {
k_chip->max_flash_prog_size = k_chip->pflash_sector_size;
/* Program section size is equal to sector size by default */
}
if (fcfg2_pflsh) {
k_chip->num_pflash_blocks = num_blocks;
k_chip->num_nvm_blocks = 0;
} else {
k_chip->num_pflash_blocks = (num_blocks + 1) / 2;
k_chip->num_nvm_blocks = num_blocks - k_chip->num_pflash_blocks;
}
if (use_nvm_marking) {
nvm_marking[0] = k_chip->num_nvm_blocks ? 'X' : 'N';
nvm_marking[1] = '\0';
} else
nvm_marking[0] = '\0';
pflash_size_k = k_chip->pflash_size / 1024;
pflash_size_m = pflash_size_k / 1024;
if (pflash_size_m)
snprintf(flash_marking, sizeof(flash_marking), "%s%" PRIu32 "M0xxx", nvm_marking, pflash_size_m);
else
snprintf(flash_marking, sizeof(flash_marking), "%s%" PRIu32 "xxx", nvm_marking, pflash_size_k);
snprintf(k_chip->name, sizeof(k_chip->name), name, flash_marking);
LOG_INFO("Kinetis %s detected: %u flash blocks", k_chip->name, num_blocks);
LOG_INFO("%u PFlash banks: %" PRIu32 " KiB total", k_chip->num_pflash_blocks, pflash_size_k);
if (k_chip->num_nvm_blocks) {
nvm_size_k = k_chip->nvm_size / 1024;
dflash_size_k = k_chip->dflash_size / 1024;
LOG_INFO("%u FlexNVM banks: %" PRIu32 " KiB total, %" PRIu32 " KiB available as data flash, %"
PRIu32 " bytes FlexRAM", k_chip->num_nvm_blocks, nvm_size_k, dflash_size_k, ee_size);
}
k_chip->probed = true;
if (create_banks)
kinetis_create_missing_banks(k_chip);
return ERROR_OK;
}
static int kinetis_probe(struct flash_bank *bank)
{
int result;
uint8_t fcfg2_maxaddr0, fcfg2_pflsh, fcfg2_maxaddr1;
unsigned num_blocks, first_nvm_bank;
uint32_t size_k;
struct kinetis_flash_bank *k_bank = bank->driver_priv;
struct kinetis_chip *k_chip;
assert(k_bank);
k_chip = k_bank->k_chip;
k_bank->probed = false;
if (!k_chip->probed) {
result = kinetis_probe_chip(k_chip);
if (result != ERROR_OK)
return result;
}
num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks;
first_nvm_bank = k_chip->num_pflash_blocks;
if (k_bank->bank_number < k_chip->num_pflash_blocks) {
/* pflash, banks start at address zero */
k_bank->flash_class = FC_PFLASH;
bank->size = (k_chip->pflash_size / k_chip->num_pflash_blocks);
bank->base = k_chip->pflash_base + bank->size * k_bank->bank_number;
k_bank->prog_base = 0x00000000 + bank->size * k_bank->bank_number;
k_bank->sector_size = k_chip->pflash_sector_size;
/* pflash is divided into 32 protection areas for
* parts with more than 32K of PFlash. For parts with
* less the protection unit is set to 1024 bytes */
k_bank->protection_size = MAX(k_chip->pflash_size / 32, 1024);
bank->num_prot_blocks = bank->size / k_bank->protection_size;
k_bank->protection_block = bank->num_prot_blocks * k_bank->bank_number;
size_k = bank->size / 1024;
LOG_DEBUG("Kinetis bank %u: %" PRIu32 "k PFlash, FTFx base 0x%08" PRIx32 ", sect %" PRIu32,
k_bank->bank_number, size_k, k_bank->prog_base, k_bank->sector_size);
} else if (k_bank->bank_number < num_blocks) {
/* nvm, banks start at address 0x10000000 */
unsigned nvm_ord = k_bank->bank_number - first_nvm_bank;
uint32_t limit;
k_bank->flash_class = FC_FLEX_NVM;
bank->size = k_chip->nvm_size / k_chip->num_nvm_blocks;
bank->base = k_chip->nvm_base + bank->size * nvm_ord;
k_bank->prog_base = 0x00800000 + bank->size * nvm_ord;
k_bank->sector_size = k_chip->nvm_sector_size;
if (k_chip->dflash_size == 0) {
k_bank->protection_size = 0;
} else {
int i;
for (i = k_chip->dflash_size; ~i & 1; i >>= 1)
;
if (i == 1)
k_bank->protection_size = k_chip->dflash_size / 8; /* data flash size = 2^^n */
else
k_bank->protection_size = k_chip->nvm_size / 8; /* TODO: verify on SF1, not documented in RM */
}
bank->num_prot_blocks = 8 / k_chip->num_nvm_blocks;
k_bank->protection_block = bank->num_prot_blocks * nvm_ord;
/* EEPROM backup part of FlexNVM is not accessible, use dflash_size as a limit */
if (k_chip->dflash_size > bank->size * nvm_ord)
limit = k_chip->dflash_size - bank->size * nvm_ord;
else
limit = 0;
if (bank->size > limit) {
bank->size = limit;
LOG_DEBUG("FlexNVM bank %u limited to 0x%08" PRIx32 " due to active EEPROM backup",
k_bank->bank_number, limit);
}
size_k = bank->size / 1024;
LOG_DEBUG("Kinetis bank %u: %" PRIu32 "k FlexNVM, FTFx base 0x%08" PRIx32 ", sect %" PRIu32,
k_bank->bank_number, size_k, k_bank->prog_base, k_bank->sector_size);
} else {
LOG_ERROR("Cannot determine parameters for bank %u, only %u banks on device",
k_bank->bank_number, num_blocks);
return ERROR_FLASH_BANK_INVALID;
}
fcfg2_pflsh = (uint8_t)((k_chip->sim_fcfg2 >> 23) & 0x01);
fcfg2_maxaddr0 = (uint8_t)((k_chip->sim_fcfg2 >> 24) & 0x7f);
fcfg2_maxaddr1 = (uint8_t)((k_chip->sim_fcfg2 >> 16) & 0x7f);
if (k_bank->bank_number == 0 && k_chip->fcfg2_maxaddr0_shifted != bank->size)
LOG_WARNING("MAXADDR0 0x%02" PRIx8 " check failed,"
" please report to OpenOCD mailing list", fcfg2_maxaddr0);
if (fcfg2_pflsh) {
if (k_bank->bank_number == 1 && k_chip->fcfg2_maxaddr1_shifted != bank->size)
LOG_WARNING("MAXADDR1 0x%02" PRIx8 " check failed,"
" please report to OpenOCD mailing list", fcfg2_maxaddr1);
} else {
if (k_bank->bank_number == first_nvm_bank
&& k_chip->fcfg2_maxaddr1_shifted != k_chip->dflash_size)
LOG_WARNING("FlexNVM MAXADDR1 0x%02" PRIx8 " check failed,"
" please report to OpenOCD mailing list", fcfg2_maxaddr1);
}
free(bank->sectors);
bank->sectors = NULL;
free(bank->prot_blocks);
bank->prot_blocks = NULL;
if (k_bank->sector_size == 0) {
LOG_ERROR("Unknown sector size for bank %u", bank->bank_number);
return ERROR_FLASH_BANK_INVALID;
}
bank->num_sectors = bank->size / k_bank->sector_size;
if (bank->num_sectors > 0) {
/* FlexNVM bank can be used for EEPROM backup therefore zero sized */
bank->sectors = alloc_block_array(0, k_bank->sector_size, bank->num_sectors);
if (!bank->sectors)
return ERROR_FAIL;
bank->prot_blocks = alloc_block_array(0, k_bank->protection_size, bank->num_prot_blocks);
if (!bank->prot_blocks)
return ERROR_FAIL;
} else {
bank->num_prot_blocks = 0;
}
k_bank->probed = true;
return ERROR_OK;
}
static int kinetis_auto_probe(struct flash_bank *bank)
{
struct kinetis_flash_bank *k_bank = bank->driver_priv;
if (k_bank && k_bank->probed)
return ERROR_OK;
return kinetis_probe(bank);
}
static int kinetis_info(struct flash_bank *bank, struct command_invocation *cmd)
{
const char *bank_class_names[] = {
"(ANY)", "PFlash", "FlexNVM", "FlexRAM"
};
struct kinetis_flash_bank *k_bank = bank->driver_priv;
struct kinetis_chip *k_chip = k_bank->k_chip;
uint32_t size_k = bank->size / 1024;
command_print_sameline(cmd,
"%s %s: %" PRIu32 "k %s bank %s at " TARGET_ADDR_FMT,
bank->driver->name, k_chip->name,
size_k, bank_class_names[k_bank->flash_class],
bank->name, bank->base);
return ERROR_OK;
}
static int kinetis_blank_check(struct flash_bank *bank)
{
struct kinetis_flash_bank *k_bank = bank->driver_priv;
struct kinetis_chip *k_chip = k_bank->k_chip;
int result;
/* surprisingly blank check does not work in VLPR and HSRUN modes */
result = kinetis_check_run_mode(k_chip);
if (result != ERROR_OK)
return result;
/* reset error flags */
result = kinetis_ftfx_prepare(bank->target);
if (result != ERROR_OK)
return result;
if (k_bank->flash_class == FC_PFLASH || k_bank->flash_class == FC_FLEX_NVM) {
bool block_dirty = true;
bool use_block_cmd = !(k_chip->flash_support & FS_NO_CMD_BLOCKSTAT);
uint8_t ftfx_fstat;
if (use_block_cmd && k_bank->flash_class == FC_FLEX_NVM) {
uint8_t fcfg1_depart = (uint8_t)((k_chip->sim_fcfg1 >> 8) & 0x0f);
/* block operation cannot be used on FlexNVM when EEPROM backup partition is set */
if (fcfg1_depart != 0xf && fcfg1_depart != 0)
use_block_cmd = false;
}
if (use_block_cmd) {
/* check if whole bank is blank */
result = kinetis_ftfx_command(bank->target, FTFX_CMD_BLOCKSTAT, k_bank->prog_base,
0, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
if (result != ERROR_OK)
kinetis_ftfx_clear_error(bank->target);
else if ((ftfx_fstat & 0x01) == 0)
block_dirty = false;
}
if (block_dirty) {
/* the whole bank is not erased, check sector-by-sector */
for (unsigned int i = 0; i < bank->num_sectors; i++) {
/* normal margin */
result = kinetis_ftfx_command(bank->target, FTFX_CMD_SECTSTAT,
k_bank->prog_base + bank->sectors[i].offset,
1, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
if (result == ERROR_OK) {
bank->sectors[i].is_erased = !(ftfx_fstat & 0x01);
} else {
LOG_DEBUG("Ignoring error on PFlash sector blank-check");
kinetis_ftfx_clear_error(bank->target);
bank->sectors[i].is_erased = -1;
}
}
} else {
/* the whole bank is erased, update all sectors */
for (unsigned int i = 0; i < bank->num_sectors; i++)
bank->sectors[i].is_erased = 1;
}
} else {
LOG_WARNING("kinetis_blank_check not supported yet for FlexRAM");
return ERROR_FLASH_OPERATION_FAILED;
}
return ERROR_OK;
}
COMMAND_HANDLER(kinetis_nvm_partition)
{
int result;
unsigned bank_idx;
unsigned num_blocks, first_nvm_bank;
unsigned long par, log2 = 0, ee1 = 0, ee2 = 0;
enum { SHOW_INFO, DF_SIZE, EEBKP_SIZE } sz_type = SHOW_INFO;
bool enable;
uint8_t load_flex_ram = 1;
uint8_t ee_size_code = 0x3f;
uint8_t flex_nvm_partition_code = 0;
uint8_t ee_split = 3;
struct target *target = get_current_target(CMD_CTX);
struct kinetis_chip *k_chip;
uint32_t sim_fcfg1;
k_chip = kinetis_get_chip(target);
if (CMD_ARGC >= 2) {
if (strcmp(CMD_ARGV[0], "dataflash") == 0)
sz_type = DF_SIZE;
else if (strcmp(CMD_ARGV[0], "eebkp") == 0)
sz_type = EEBKP_SIZE;
COMMAND_PARSE_NUMBER(ulong, CMD_ARGV[1], par);
while (par >> (log2 + 3))
log2++;
}
switch (sz_type) {
case SHOW_INFO:
if (!k_chip) {
LOG_ERROR("Chip not probed.");
return ERROR_FAIL;
}
result = target_read_u32(target, k_chip->sim_base + SIM_FCFG1_OFFSET, &sim_fcfg1);
if (result != ERROR_OK)
return result;
flex_nvm_partition_code = (uint8_t)((sim_fcfg1 >> 8) & 0x0f);
switch (flex_nvm_partition_code) {
case 0:
command_print(CMD, "No EEPROM backup, data flash only");
break;
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
command_print(CMD, "EEPROM backup %d KB", 4 << flex_nvm_partition_code);
break;
case 8:
command_print(CMD, "No data flash, EEPROM backup only");
break;
case 0x9:
case 0xA:
case 0xB:
case 0xC:
case 0xD:
case 0xE:
command_print(CMD, "data flash %d KB", 4 << (flex_nvm_partition_code & 7));
break;
case 0xf:
command_print(CMD, "No EEPROM backup, data flash only (DEPART not set)");
break;
default:
command_print(CMD, "Unsupported EEPROM backup size code 0x%02" PRIx8, flex_nvm_partition_code);
}
return ERROR_OK;
case DF_SIZE:
flex_nvm_partition_code = 0x8 | log2;
break;
case EEBKP_SIZE:
flex_nvm_partition_code = log2;
break;
}
if (CMD_ARGC == 3) {
unsigned long eex;
COMMAND_PARSE_NUMBER(ulong, CMD_ARGV[2], eex);
ee1 = ee2 = eex / 2;
} else if (CMD_ARGC >= 4) {
COMMAND_PARSE_NUMBER(ulong, CMD_ARGV[2], ee1);
COMMAND_PARSE_NUMBER(ulong, CMD_ARGV[3], ee2);
}
enable = ee1 + ee2 > 0;
if (enable) {
for (log2 = 2; ; log2++) {
if (ee1 + ee2 == (16u << 10) >> log2)
break;
if (ee1 + ee2 > (16u << 10) >> log2 || log2 >= 9) {
LOG_ERROR("Unsupported EEPROM size");
return ERROR_FLASH_OPERATION_FAILED;
}
}
if (ee1 * 3 == ee2)
ee_split = 1;
else if (ee1 * 7 == ee2)
ee_split = 0;
else if (ee1 != ee2) {
LOG_ERROR("Unsupported EEPROM sizes ratio");
return ERROR_FLASH_OPERATION_FAILED;
}
ee_size_code = log2 | ee_split << 4;
}
if (CMD_ARGC >= 5)
COMMAND_PARSE_ON_OFF(CMD_ARGV[4], enable);
if (enable)
load_flex_ram = 0;
LOG_INFO("DEPART 0x%" PRIx8 ", EEPROM size code 0x%" PRIx8,
flex_nvm_partition_code, ee_size_code);
result = kinetis_check_run_mode(k_chip);
if (result != ERROR_OK)
return result;
/* reset error flags */
result = kinetis_ftfx_prepare(target);
if (result != ERROR_OK)
return result;
result = kinetis_ftfx_command(target, FTFX_CMD_PGMPART, load_flex_ram,
ee_size_code, flex_nvm_partition_code, 0, 0,
0, 0, 0, 0, NULL);
if (result != ERROR_OK)
return result;
command_print(CMD, "FlexNVM partition set. Please reset MCU.");
if (k_chip) {
first_nvm_bank = k_chip->num_pflash_blocks;
num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks;
for (bank_idx = first_nvm_bank; bank_idx < num_blocks; bank_idx++)
k_chip->banks[bank_idx].probed = false; /* re-probe before next use */
k_chip->probed = false;
}
command_print(CMD, "FlexNVM banks will be re-probed to set new data flash size.");
return ERROR_OK;
}
COMMAND_HANDLER(kinetis_fcf_source_handler)
{
if (CMD_ARGC > 1)
return ERROR_COMMAND_SYNTAX_ERROR;
if (CMD_ARGC == 1) {
if (strcmp(CMD_ARGV[0], "write") == 0)
allow_fcf_writes = true;
else if (strcmp(CMD_ARGV[0], "protection") == 0)
allow_fcf_writes = false;
else
return ERROR_COMMAND_SYNTAX_ERROR;
}
if (allow_fcf_writes) {
command_print(CMD, "Arbitrary Flash Configuration Field writes enabled.");
command_print(CMD, "Protection info writes to FCF disabled.");
LOG_WARNING("BEWARE: incorrect flash configuration may permanently lock the device.");
} else {
command_print(CMD, "Protection info writes to Flash Configuration Field enabled.");
command_print(CMD, "Arbitrary FCF writes disabled. Mode safe from unwanted locking of the device.");
}
return ERROR_OK;
}
COMMAND_HANDLER(kinetis_fopt_handler)
{
if (CMD_ARGC > 1)
return ERROR_COMMAND_SYNTAX_ERROR;
if (CMD_ARGC == 1) {
COMMAND_PARSE_NUMBER(u8, CMD_ARGV[0], fcf_fopt);
} else {
command_print(CMD, "FCF_FOPT 0x%02" PRIx8, fcf_fopt);
}
return ERROR_OK;
}
COMMAND_HANDLER(kinetis_create_banks_handler)
{
if (CMD_ARGC > 0)
return ERROR_COMMAND_SYNTAX_ERROR;
create_banks = true;
return ERROR_OK;
}
static const struct command_registration kinetis_security_command_handlers[] = {
{
.name = "check_security",
.mode = COMMAND_EXEC,
.help = "Check status of device security lock",
.usage = "",
.handler = kinetis_check_flash_security_status,
},
{
.name = "halt",
.mode = COMMAND_EXEC,
.help = "Issue a halt via the MDM-AP",
.usage = "",
.handler = kinetis_mdm_halt,
},
{
.name = "mass_erase",
.mode = COMMAND_EXEC,
.help = "Issue a complete flash erase via the MDM-AP",
.usage = "",
.handler = kinetis_mdm_mass_erase,
},
{
.name = "reset",
.mode = COMMAND_EXEC,
.help = "Issue a reset via the MDM-AP",
.usage = "",
.handler = kinetis_mdm_reset,
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration kinetis_exec_command_handlers[] = {
{
.name = "mdm",
.mode = COMMAND_ANY,
.help = "MDM-AP command group",
.usage = "",
.chain = kinetis_security_command_handlers,
},
{
.name = "disable_wdog",
.mode = COMMAND_EXEC,
.help = "Disable the watchdog timer",
.usage = "",
.handler = kinetis_disable_wdog_handler,
},
{
.name = "nvm_partition",
.mode = COMMAND_EXEC,
.help = "Show/set data flash or EEPROM backup size in kilobytes,"
" set two EEPROM sizes in bytes and FlexRAM loading during reset",
.usage = "('info'|'dataflash' size|'eebkp' size) [eesize1 eesize2] ['on'|'off']",
.handler = kinetis_nvm_partition,
},
{
.name = "fcf_source",
.mode = COMMAND_EXEC,
.help = "Use protection as a source for Flash Configuration Field or allow writing arbitrary values to the FCF"
" Mode 'protection' is safe from unwanted locking of the device.",
.usage = "['protection'|'write']",
.handler = kinetis_fcf_source_handler,
},
{
.name = "fopt",
.mode = COMMAND_EXEC,
.help = "FCF_FOPT value source in 'kinetis fcf_source protection' mode",
.usage = "[num]",
.handler = kinetis_fopt_handler,
},
{
.name = "create_banks",
.mode = COMMAND_CONFIG,
.help = "Driver creates additional banks if device with two/four flash blocks is probed",
.handler = kinetis_create_banks_handler,
.usage = "",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration kinetis_command_handler[] = {
{
.name = "kinetis",
.mode = COMMAND_ANY,
.help = "Kinetis flash controller commands",
.usage = "",
.chain = kinetis_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
const struct flash_driver kinetis_flash = {
.name = "kinetis",
.commands = kinetis_command_handler,
.flash_bank_command = kinetis_flash_bank_command,
.erase = kinetis_erase,
.protect = kinetis_protect,
.write = kinetis_write,
.read = default_flash_read,
.probe = kinetis_probe,
.auto_probe = kinetis_auto_probe,
.erase_check = kinetis_blank_check,
.protect_check = kinetis_protect_check,
.info = kinetis_info,
.free_driver_priv = kinetis_free_driver_priv,
};
|