1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
|
/* SPDX-License-Identifier: GPL-2.0-or-later */
/***************************************************************************
* Copyright (C) 2013 by Andrey Yurovsky *
* Andrey Yurovsky <yurovsky@gmail.com> *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include "helper/binarybuffer.h"
#include <jtag/jtag.h>
#include <target/cortex_m.h>
#define SAMD_NUM_PROT_BLOCKS 16
#define SAMD_PAGE_SIZE_MAX 1024
#define SAMD_FLASH ((uint32_t)0x00000000) /* physical Flash memory */
#define SAMD_USER_ROW ((uint32_t)0x00804000) /* User Row of Flash */
#define SAMD_PAC1 0x41000000 /* Peripheral Access Control 1 */
#define SAMD_DSU 0x41002000 /* Device Service Unit */
#define SAMD_NVMCTRL 0x41004000 /* Non-volatile memory controller */
#define SAMD_DSU_STATUSA 1 /* DSU status register */
#define SAMD_DSU_DID 0x18 /* Device ID register */
#define SAMD_DSU_CTRL_EXT 0x100 /* CTRL register, external access */
#define SAMD_NVMCTRL_CTRLA 0x00 /* NVM control A register */
#define SAMD_NVMCTRL_CTRLB 0x04 /* NVM control B register */
#define SAMD_NVMCTRL_PARAM 0x08 /* NVM parameters register */
#define SAMD_NVMCTRL_INTFLAG 0x18 /* NVM Interrupt Flag Status & Clear */
#define SAMD_NVMCTRL_STATUS 0x18 /* NVM status register */
#define SAMD_NVMCTRL_ADDR 0x1C /* NVM address register */
#define SAMD_NVMCTRL_LOCK 0x20 /* NVM Lock section register */
#define SAMD_CMDEX_KEY 0xA5UL
#define SAMD_NVM_CMD(n) ((SAMD_CMDEX_KEY << 8) | (n & 0x7F))
/* NVMCTRL commands. See Table 20-4 in 42129F–SAM–10/2013 */
#define SAMD_NVM_CMD_ER 0x02 /* Erase Row */
#define SAMD_NVM_CMD_WP 0x04 /* Write Page */
#define SAMD_NVM_CMD_EAR 0x05 /* Erase Auxiliary Row */
#define SAMD_NVM_CMD_WAP 0x06 /* Write Auxiliary Page */
#define SAMD_NVM_CMD_LR 0x40 /* Lock Region */
#define SAMD_NVM_CMD_UR 0x41 /* Unlock Region */
#define SAMD_NVM_CMD_SPRM 0x42 /* Set Power Reduction Mode */
#define SAMD_NVM_CMD_CPRM 0x43 /* Clear Power Reduction Mode */
#define SAMD_NVM_CMD_PBC 0x44 /* Page Buffer Clear */
#define SAMD_NVM_CMD_SSB 0x45 /* Set Security Bit */
#define SAMD_NVM_CMD_INVALL 0x46 /* Invalidate all caches */
/* NVMCTRL bits */
#define SAMD_NVM_CTRLB_MANW 0x80
/* Known identifiers */
#define SAMD_PROCESSOR_M0 0x01
#define SAMD_FAMILY_D 0x00
#define SAMD_FAMILY_L 0x01
#define SAMD_FAMILY_C 0x02
#define SAMD_SERIES_20 0x00
#define SAMD_SERIES_21 0x01
#define SAMD_SERIES_22 0x02
#define SAMD_SERIES_10 0x02
#define SAMD_SERIES_11 0x03
#define SAMD_SERIES_09 0x04
/* Device ID macros */
#define SAMD_GET_PROCESSOR(id) (id >> 28)
#define SAMD_GET_FAMILY(id) (((id >> 23) & 0x1F))
#define SAMD_GET_SERIES(id) (((id >> 16) & 0x3F))
#define SAMD_GET_DEVSEL(id) (id & 0xFF)
/* Bits to mask out lockbits in user row */
#define NVMUSERROW_LOCKBIT_MASK ((uint64_t)0x0000FFFFFFFFFFFF)
struct samd_part {
uint8_t id;
const char *name;
uint32_t flash_kb;
uint32_t ram_kb;
};
/* Known SAMD09 parts. DID reset values missing in RM, see
* https://github.com/avrxml/asf/blob/master/sam0/utils/cmsis/samd09/include/ */
static const struct samd_part samd09_parts[] = {
{ 0x0, "SAMD09D14A", 16, 4 },
{ 0x7, "SAMD09C13A", 8, 4 },
};
/* Known SAMD10 parts */
static const struct samd_part samd10_parts[] = {
{ 0x0, "SAMD10D14AMU", 16, 4 },
{ 0x1, "SAMD10D13AMU", 8, 4 },
{ 0x2, "SAMD10D12AMU", 4, 4 },
{ 0x3, "SAMD10D14ASU", 16, 4 },
{ 0x4, "SAMD10D13ASU", 8, 4 },
{ 0x5, "SAMD10D12ASU", 4, 4 },
{ 0x6, "SAMD10C14A", 16, 4 },
{ 0x7, "SAMD10C13A", 8, 4 },
{ 0x8, "SAMD10C12A", 4, 4 },
};
/* Known SAMD11 parts */
static const struct samd_part samd11_parts[] = {
{ 0x0, "SAMD11D14AM", 16, 4 },
{ 0x1, "SAMD11D13AMU", 8, 4 },
{ 0x2, "SAMD11D12AMU", 4, 4 },
{ 0x3, "SAMD11D14ASS", 16, 4 },
{ 0x4, "SAMD11D13ASU", 8, 4 },
{ 0x5, "SAMD11D12ASU", 4, 4 },
{ 0x6, "SAMD11C14A", 16, 4 },
{ 0x7, "SAMD11C13A", 8, 4 },
{ 0x8, "SAMD11C12A", 4, 4 },
{ 0x9, "SAMD11D14AU", 16, 4 },
};
/* Known SAMD20 parts. See Table 12-8 in 42129F–SAM–10/2013 */
static const struct samd_part samd20_parts[] = {
{ 0x0, "SAMD20J18A", 256, 32 },
{ 0x1, "SAMD20J17A", 128, 16 },
{ 0x2, "SAMD20J16A", 64, 8 },
{ 0x3, "SAMD20J15A", 32, 4 },
{ 0x4, "SAMD20J14A", 16, 2 },
{ 0x5, "SAMD20G18A", 256, 32 },
{ 0x6, "SAMD20G17A", 128, 16 },
{ 0x7, "SAMD20G16A", 64, 8 },
{ 0x8, "SAMD20G15A", 32, 4 },
{ 0x9, "SAMD20G14A", 16, 2 },
{ 0xA, "SAMD20E18A", 256, 32 },
{ 0xB, "SAMD20E17A", 128, 16 },
{ 0xC, "SAMD20E16A", 64, 8 },
{ 0xD, "SAMD20E15A", 32, 4 },
{ 0xE, "SAMD20E14A", 16, 2 },
};
/* Known SAMD21 parts. */
static const struct samd_part samd21_parts[] = {
{ 0x0, "SAMD21J18A", 256, 32 },
{ 0x1, "SAMD21J17A", 128, 16 },
{ 0x2, "SAMD21J16A", 64, 8 },
{ 0x3, "SAMD21J15A", 32, 4 },
{ 0x4, "SAMD21J14A", 16, 2 },
{ 0x5, "SAMD21G18A", 256, 32 },
{ 0x6, "SAMD21G17A", 128, 16 },
{ 0x7, "SAMD21G16A", 64, 8 },
{ 0x8, "SAMD21G15A", 32, 4 },
{ 0x9, "SAMD21G14A", 16, 2 },
{ 0xA, "SAMD21E18A", 256, 32 },
{ 0xB, "SAMD21E17A", 128, 16 },
{ 0xC, "SAMD21E16A", 64, 8 },
{ 0xD, "SAMD21E15A", 32, 4 },
{ 0xE, "SAMD21E14A", 16, 2 },
/* SAMR21 parts have integrated SAMD21 with a radio */
{ 0x18, "SAMR21G19A", 256, 32 }, /* with 512k of serial flash */
{ 0x19, "SAMR21G18A", 256, 32 },
{ 0x1A, "SAMR21G17A", 128, 32 },
{ 0x1B, "SAMR21G16A", 64, 16 },
{ 0x1C, "SAMR21E18A", 256, 32 },
{ 0x1D, "SAMR21E17A", 128, 32 },
{ 0x1E, "SAMR21E16A", 64, 16 },
/* SAMD21 B Variants (Table 3-7 from rev I of datasheet) */
{ 0x20, "SAMD21J16B", 64, 8 },
{ 0x21, "SAMD21J15B", 32, 4 },
{ 0x23, "SAMD21G16B", 64, 8 },
{ 0x24, "SAMD21G15B", 32, 4 },
{ 0x26, "SAMD21E16B", 64, 8 },
{ 0x27, "SAMD21E15B", 32, 4 },
/* SAMD21 D and L Variants (from Errata)
http://ww1.microchip.com/downloads/en/DeviceDoc/
SAM-D21-Family-Silicon-Errata-and-DataSheet-Clarification-DS80000760D.pdf */
{ 0x55, "SAMD21E16BU", 64, 8 },
{ 0x56, "SAMD21E15BU", 32, 4 },
{ 0x57, "SAMD21G16L", 64, 8 },
{ 0x3E, "SAMD21E16L", 64, 8 },
{ 0x3F, "SAMD21E15L", 32, 4 },
{ 0x62, "SAMD21E16CU", 64, 8 },
{ 0x63, "SAMD21E15CU", 32, 4 },
{ 0x92, "SAMD21J17D", 128, 16 },
{ 0x93, "SAMD21G17D", 128, 16 },
{ 0x94, "SAMD21E17D", 128, 16 },
{ 0x95, "SAMD21E17DU", 128, 16 },
{ 0x96, "SAMD21G17L", 128, 16 },
{ 0x97, "SAMD21E17L", 128, 16 },
/* Known SAMDA1 parts.
SAMD-A1 series uses the same series identifier like the SAMD21
taken from http://ww1.microchip.com/downloads/en/DeviceDoc/40001895A.pdf (pages 14-17) */
{ 0x29, "SAMDA1J16A", 64, 8 },
{ 0x2A, "SAMDA1J15A", 32, 4 },
{ 0x2B, "SAMDA1J14A", 16, 4 },
{ 0x2C, "SAMDA1G16A", 64, 8 },
{ 0x2D, "SAMDA1G15A", 32, 4 },
{ 0x2E, "SAMDA1G14A", 16, 4 },
{ 0x2F, "SAMDA1E16A", 64, 8 },
{ 0x30, "SAMDA1E15A", 32, 4 },
{ 0x31, "SAMDA1E14A", 16, 4 },
{ 0x64, "SAMDA1J16B", 64, 8 },
{ 0x65, "SAMDA1J15B", 32, 4 },
{ 0x66, "SAMDA1J14B", 16, 4 },
{ 0x67, "SAMDA1G16B", 64, 8 },
{ 0x68, "SAMDA1G15B", 32, 4 },
{ 0x69, "SAMDA1G14B", 16, 4 },
{ 0x6A, "SAMDA1E16B", 64, 8 },
{ 0x6B, "SAMDA1E15B", 32, 4 },
{ 0x6C, "SAMDA1E14B", 16, 4 },
};
/* Known SAML21 parts. */
static const struct samd_part saml21_parts[] = {
{ 0x00, "SAML21J18A", 256, 32 },
{ 0x01, "SAML21J17A", 128, 16 },
{ 0x02, "SAML21J16A", 64, 8 },
{ 0x05, "SAML21G18A", 256, 32 },
{ 0x06, "SAML21G17A", 128, 16 },
{ 0x07, "SAML21G16A", 64, 8 },
{ 0x0A, "SAML21E18A", 256, 32 },
{ 0x0B, "SAML21E17A", 128, 16 },
{ 0x0C, "SAML21E16A", 64, 8 },
{ 0x0D, "SAML21E15A", 32, 4 },
{ 0x0F, "SAML21J18B", 256, 32 },
{ 0x10, "SAML21J17B", 128, 16 },
{ 0x11, "SAML21J16B", 64, 8 },
{ 0x14, "SAML21G18B", 256, 32 },
{ 0x15, "SAML21G17B", 128, 16 },
{ 0x16, "SAML21G16B", 64, 8 },
{ 0x19, "SAML21E18B", 256, 32 },
{ 0x1A, "SAML21E17B", 128, 16 },
{ 0x1B, "SAML21E16B", 64, 8 },
{ 0x1C, "SAML21E15B", 32, 4 },
/* SAMR30 parts have integrated SAML21 with a radio */
{ 0x1E, "SAMR30G18A", 256, 32 },
{ 0x1F, "SAMR30E18A", 256, 32 },
/* SAMR34/R35 parts have integrated SAML21 with a lora radio */
{ 0x28, "SAMR34J18", 256, 32 },
{ 0x2B, "SAMR35J18", 256, 32 },
};
/* Known SAML22 parts. */
static const struct samd_part saml22_parts[] = {
{ 0x00, "SAML22N18A", 256, 32 },
{ 0x01, "SAML22N17A", 128, 16 },
{ 0x02, "SAML22N16A", 64, 8 },
{ 0x05, "SAML22J18A", 256, 32 },
{ 0x06, "SAML22J17A", 128, 16 },
{ 0x07, "SAML22J16A", 64, 8 },
{ 0x0A, "SAML22G18A", 256, 32 },
{ 0x0B, "SAML22G17A", 128, 16 },
{ 0x0C, "SAML22G16A", 64, 8 },
};
/* Known SAMC20 parts. */
static const struct samd_part samc20_parts[] = {
{ 0x00, "SAMC20J18A", 256, 32 },
{ 0x01, "SAMC20J17A", 128, 16 },
{ 0x02, "SAMC20J16A", 64, 8 },
{ 0x03, "SAMC20J15A", 32, 4 },
{ 0x05, "SAMC20G18A", 256, 32 },
{ 0x06, "SAMC20G17A", 128, 16 },
{ 0x07, "SAMC20G16A", 64, 8 },
{ 0x08, "SAMC20G15A", 32, 4 },
{ 0x0A, "SAMC20E18A", 256, 32 },
{ 0x0B, "SAMC20E17A", 128, 16 },
{ 0x0C, "SAMC20E16A", 64, 8 },
{ 0x0D, "SAMC20E15A", 32, 4 },
{ 0x20, "SAMC20N18A", 256, 32 },
{ 0x21, "SAMC20N17A", 128, 16 },
};
/* Known SAMC21 parts. */
static const struct samd_part samc21_parts[] = {
{ 0x00, "SAMC21J18A", 256, 32 },
{ 0x01, "SAMC21J17A", 128, 16 },
{ 0x02, "SAMC21J16A", 64, 8 },
{ 0x03, "SAMC21J15A", 32, 4 },
{ 0x05, "SAMC21G18A", 256, 32 },
{ 0x06, "SAMC21G17A", 128, 16 },
{ 0x07, "SAMC21G16A", 64, 8 },
{ 0x08, "SAMC21G15A", 32, 4 },
{ 0x0A, "SAMC21E18A", 256, 32 },
{ 0x0B, "SAMC21E17A", 128, 16 },
{ 0x0C, "SAMC21E16A", 64, 8 },
{ 0x0D, "SAMC21E15A", 32, 4 },
{ 0x20, "SAMC21N18A", 256, 32 },
{ 0x21, "SAMC21N17A", 128, 16 },
};
/* Each family of parts contains a parts table in the DEVSEL field of DID. The
* processor ID, family ID, and series ID are used to determine which exact
* family this is and then we can use the corresponding table. */
struct samd_family {
uint8_t processor;
uint8_t family;
uint8_t series;
const struct samd_part *parts;
size_t num_parts;
uint64_t nvm_userrow_res_mask; /* protect bits which are reserved, 0 -> protect */
};
/* Known SAMD families */
static const struct samd_family samd_families[] = {
{ SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_20,
samd20_parts, ARRAY_SIZE(samd20_parts),
(uint64_t)0xFFFF01FFFE01FF77 },
{ SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_21,
samd21_parts, ARRAY_SIZE(samd21_parts),
(uint64_t)0xFFFF01FFFE01FF77 },
{ SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_09,
samd09_parts, ARRAY_SIZE(samd09_parts),
(uint64_t)0xFFFF01FFFE01FF77 },
{ SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_10,
samd10_parts, ARRAY_SIZE(samd10_parts),
(uint64_t)0xFFFF01FFFE01FF77 },
{ SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_11,
samd11_parts, ARRAY_SIZE(samd11_parts),
(uint64_t)0xFFFF01FFFE01FF77 },
{ SAMD_PROCESSOR_M0, SAMD_FAMILY_L, SAMD_SERIES_21,
saml21_parts, ARRAY_SIZE(saml21_parts),
(uint64_t)0xFFFF03FFFC01FF77 },
{ SAMD_PROCESSOR_M0, SAMD_FAMILY_L, SAMD_SERIES_22,
saml22_parts, ARRAY_SIZE(saml22_parts),
(uint64_t)0xFFFF03FFFC01FF77 },
{ SAMD_PROCESSOR_M0, SAMD_FAMILY_C, SAMD_SERIES_20,
samc20_parts, ARRAY_SIZE(samc20_parts),
(uint64_t)0xFFFF03FFFC01FF77 },
{ SAMD_PROCESSOR_M0, SAMD_FAMILY_C, SAMD_SERIES_21,
samc21_parts, ARRAY_SIZE(samc21_parts),
(uint64_t)0xFFFF03FFFC01FF77 },
};
struct samd_info {
uint32_t page_size;
int num_pages;
int sector_size;
int prot_block_size;
bool probed;
struct target *target;
};
/**
* Gives the family structure to specific device id.
* @param id The id of the device.
* @return On failure NULL, otherwise a pointer to the structure.
*/
static const struct samd_family *samd_find_family(uint32_t id)
{
uint8_t processor = SAMD_GET_PROCESSOR(id);
uint8_t family = SAMD_GET_FAMILY(id);
uint8_t series = SAMD_GET_SERIES(id);
for (unsigned i = 0; i < ARRAY_SIZE(samd_families); i++) {
if (samd_families[i].processor == processor &&
samd_families[i].series == series &&
samd_families[i].family == family)
return &samd_families[i];
}
return NULL;
}
/**
* Gives the part structure to specific device id.
* @param id The id of the device.
* @return On failure NULL, otherwise a pointer to the structure.
*/
static const struct samd_part *samd_find_part(uint32_t id)
{
uint8_t devsel = SAMD_GET_DEVSEL(id);
const struct samd_family *family = samd_find_family(id);
if (!family)
return NULL;
for (unsigned i = 0; i < family->num_parts; i++) {
if (family->parts[i].id == devsel)
return &family->parts[i];
}
return NULL;
}
static int samd_protect_check(struct flash_bank *bank)
{
int res;
uint16_t lock;
res = target_read_u16(bank->target,
SAMD_NVMCTRL + SAMD_NVMCTRL_LOCK, &lock);
if (res != ERROR_OK)
return res;
/* Lock bits are active-low */
for (unsigned int prot_block = 0; prot_block < bank->num_prot_blocks; prot_block++)
bank->prot_blocks[prot_block].is_protected = !(lock & (1u<<prot_block));
return ERROR_OK;
}
static int samd_get_flash_page_info(struct target *target,
uint32_t *sizep, int *nump)
{
int res;
uint32_t param;
res = target_read_u32(target, SAMD_NVMCTRL + SAMD_NVMCTRL_PARAM, ¶m);
if (res == ERROR_OK) {
/* The PSZ field (bits 18:16) indicate the page size bytes as 2^(3+n)
* so 0 is 8KB and 7 is 1024KB. */
if (sizep)
*sizep = (8 << ((param >> 16) & 0x7));
/* The NVMP field (bits 15:0) indicates the total number of pages */
if (nump)
*nump = param & 0xFFFF;
} else {
LOG_ERROR("Couldn't read NVM Parameters register");
}
return res;
}
static int samd_probe(struct flash_bank *bank)
{
uint32_t id;
int res;
struct samd_info *chip = (struct samd_info *)bank->driver_priv;
const struct samd_part *part;
if (chip->probed)
return ERROR_OK;
res = target_read_u32(bank->target, SAMD_DSU + SAMD_DSU_DID, &id);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read Device ID register");
return res;
}
part = samd_find_part(id);
if (!part) {
LOG_ERROR("Couldn't find part corresponding to DID %08" PRIx32, id);
return ERROR_FAIL;
}
bank->size = part->flash_kb * 1024;
res = samd_get_flash_page_info(bank->target, &chip->page_size,
&chip->num_pages);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't determine Flash page size");
return res;
}
/* Sanity check: the total flash size in the DSU should match the page size
* multiplied by the number of pages. */
if (bank->size != chip->num_pages * chip->page_size) {
LOG_WARNING("SAMD: bank size doesn't match NVM parameters. "
"Identified %" PRIu32 "KB Flash but NVMCTRL reports %u %" PRIu32 "B pages",
part->flash_kb, chip->num_pages, chip->page_size);
}
/* Erase granularity = 1 row = 4 pages */
chip->sector_size = chip->page_size * 4;
/* Allocate the sector table */
bank->num_sectors = chip->num_pages / 4;
bank->sectors = alloc_block_array(0, chip->sector_size, bank->num_sectors);
if (!bank->sectors)
return ERROR_FAIL;
/* 16 protection blocks per device */
chip->prot_block_size = bank->size / SAMD_NUM_PROT_BLOCKS;
/* Allocate the table of protection blocks */
bank->num_prot_blocks = SAMD_NUM_PROT_BLOCKS;
bank->prot_blocks = alloc_block_array(0, chip->prot_block_size, bank->num_prot_blocks);
if (!bank->prot_blocks)
return ERROR_FAIL;
samd_protect_check(bank);
/* Done */
chip->probed = true;
LOG_INFO("SAMD MCU: %s (%" PRIu32 "KB Flash, %" PRIu32 "KB RAM)", part->name,
part->flash_kb, part->ram_kb);
return ERROR_OK;
}
static int samd_check_error(struct target *target)
{
int ret, ret2;
uint16_t status;
ret = target_read_u16(target,
SAMD_NVMCTRL + SAMD_NVMCTRL_STATUS, &status);
if (ret != ERROR_OK) {
LOG_ERROR("Can't read NVM status");
return ret;
}
if ((status & 0x001C) == 0)
return ERROR_OK;
if (status & (1 << 4)) { /* NVME */
LOG_ERROR("SAMD: NVM Error");
ret = ERROR_FLASH_OPERATION_FAILED;
}
if (status & (1 << 3)) { /* LOCKE */
LOG_ERROR("SAMD: NVM lock error");
ret = ERROR_FLASH_PROTECTED;
}
if (status & (1 << 2)) { /* PROGE */
LOG_ERROR("SAMD: NVM programming error");
ret = ERROR_FLASH_OPER_UNSUPPORTED;
}
/* Clear the error conditions by writing a one to them */
ret2 = target_write_u16(target,
SAMD_NVMCTRL + SAMD_NVMCTRL_STATUS, status);
if (ret2 != ERROR_OK)
LOG_ERROR("Can't clear NVM error conditions");
return ret;
}
static int samd_issue_nvmctrl_command(struct target *target, uint16_t cmd)
{
int res;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* Issue the NVM command */
res = target_write_u16(target,
SAMD_NVMCTRL + SAMD_NVMCTRL_CTRLA, SAMD_NVM_CMD(cmd));
if (res != ERROR_OK)
return res;
/* Check to see if the NVM command resulted in an error condition. */
return samd_check_error(target);
}
/**
* Erases a flash-row at the given address.
* @param target Pointer to the target structure.
* @param address The address of the row.
* @return On success ERROR_OK, on failure an errorcode.
*/
static int samd_erase_row(struct target *target, uint32_t address)
{
int res;
/* Set an address contained in the row to be erased */
res = target_write_u32(target,
SAMD_NVMCTRL + SAMD_NVMCTRL_ADDR, address >> 1);
/* Issue the Erase Row command to erase that row. */
if (res == ERROR_OK)
res = samd_issue_nvmctrl_command(target,
address == SAMD_USER_ROW ? SAMD_NVM_CMD_EAR : SAMD_NVM_CMD_ER);
if (res != ERROR_OK) {
LOG_ERROR("Failed to erase row containing %08" PRIx32, address);
return ERROR_FAIL;
}
return ERROR_OK;
}
/**
* Returns the bitmask of reserved bits in register.
* @param target Pointer to the target structure.
* @param mask Bitmask, 0 -> value stays untouched.
* @return On success ERROR_OK, on failure an errorcode.
*/
static int samd_get_reservedmask(struct target *target, uint64_t *mask)
{
int res;
/* Get the devicetype */
uint32_t id;
res = target_read_u32(target, SAMD_DSU + SAMD_DSU_DID, &id);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read Device ID register");
return res;
}
const struct samd_family *family;
family = samd_find_family(id);
if (!family) {
LOG_ERROR("Couldn't determine device family");
return ERROR_FAIL;
}
*mask = family->nvm_userrow_res_mask;
return ERROR_OK;
}
static int read_userrow(struct target *target, uint64_t *userrow)
{
int res;
uint8_t buffer[8];
res = target_read_memory(target, SAMD_USER_ROW, 4, 2, buffer);
if (res != ERROR_OK)
return res;
*userrow = target_buffer_get_u64(target, buffer);
return ERROR_OK;
}
/**
* Modify the contents of the User Row in Flash. The User Row itself
* has a size of one page and contains a combination of "fuses" and
* calibration data. Bits which have a value of zero in the mask will
* not be changed. Up to now devices only use the first 64 bits.
* @param target Pointer to the target structure.
* @param value_input The value to write.
* @param value_mask Bitmask, 0 -> value stays untouched.
* @return On success ERROR_OK, on failure an errorcode.
*/
static int samd_modify_user_row_masked(struct target *target,
uint64_t value_input, uint64_t value_mask)
{
int res;
uint32_t nvm_ctrlb;
bool manual_wp = true;
/* Retrieve the MCU's page size, in bytes. This is also the size of the
* entire User Row. */
uint32_t page_size;
res = samd_get_flash_page_info(target, &page_size, NULL);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't determine Flash page size");
return res;
}
/* Make sure the size is sane. */
assert(page_size <= SAMD_PAGE_SIZE_MAX &&
page_size >= sizeof(value_input));
uint8_t buf[SAMD_PAGE_SIZE_MAX];
/* Read the user row (comprising one page) by words. */
res = target_read_memory(target, SAMD_USER_ROW, 4, page_size / 4, buf);
if (res != ERROR_OK)
return res;
uint64_t value_device;
res = read_userrow(target, &value_device);
if (res != ERROR_OK)
return res;
uint64_t value_new = (value_input & value_mask) | (value_device & ~value_mask);
/* We will need to erase before writing if the new value needs a '1' in any
* position for which the current value had a '0'. Otherwise we can avoid
* erasing. */
if ((~value_device) & value_new) {
res = samd_erase_row(target, SAMD_USER_ROW);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't erase user row");
return res;
}
}
/* Modify */
target_buffer_set_u64(target, buf, value_new);
/* Write the page buffer back out to the target. */
res = target_write_memory(target, SAMD_USER_ROW, 4, page_size / 4, buf);
if (res != ERROR_OK)
return res;
/* Check if we need to do manual page write commands */
res = target_read_u32(target, SAMD_NVMCTRL + SAMD_NVMCTRL_CTRLB, &nvm_ctrlb);
if (res == ERROR_OK)
manual_wp = (nvm_ctrlb & SAMD_NVM_CTRLB_MANW) != 0;
else {
LOG_ERROR("Read of NVM register CTRKB failed.");
return ERROR_FAIL;
}
if (manual_wp) {
/* Trigger flash write */
res = samd_issue_nvmctrl_command(target, SAMD_NVM_CMD_WAP);
} else {
res = samd_check_error(target);
}
return res;
}
/**
* Modifies the user row register to the given value.
* @param target Pointer to the target structure.
* @param value The value to write.
* @param startb The bit-offset by which the given value is shifted.
* @param endb The bit-offset of the last bit in value to write.
* @return On success ERROR_OK, on failure an errorcode.
*/
static int samd_modify_user_row(struct target *target, uint64_t value,
uint8_t startb, uint8_t endb)
{
uint64_t mask = 0;
int i;
for (i = startb ; i <= endb ; i++)
mask |= ((uint64_t)1) << i;
return samd_modify_user_row_masked(target, value << startb, mask);
}
static int samd_protect(struct flash_bank *bank, int set,
unsigned int first, unsigned int last)
{
int res = ERROR_OK;
/* We can issue lock/unlock region commands with the target running but
* the settings won't persist unless we're able to modify the LOCK regions
* and that requires the target to be halted. */
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
for (unsigned int prot_block = first; prot_block <= last; prot_block++) {
if (set != bank->prot_blocks[prot_block].is_protected) {
/* Load an address that is within this protection block (we use offset 0) */
res = target_write_u32(bank->target,
SAMD_NVMCTRL + SAMD_NVMCTRL_ADDR,
bank->prot_blocks[prot_block].offset >> 1);
if (res != ERROR_OK)
goto exit;
/* Tell the controller to lock that block */
res = samd_issue_nvmctrl_command(bank->target,
set ? SAMD_NVM_CMD_LR : SAMD_NVM_CMD_UR);
if (res != ERROR_OK)
goto exit;
}
}
/* We've now applied our changes, however they will be undone by the next
* reset unless we also apply them to the LOCK bits in the User Page. The
* LOCK bits start at bit 48, corresponding to Sector 0 and end with bit 63,
* corresponding to Sector 15. A '1' means unlocked and a '0' means
* locked. See Table 9-3 in the SAMD20 datasheet for more details. */
res = samd_modify_user_row(bank->target,
set ? (uint64_t)0 : (uint64_t)UINT64_MAX,
48 + first, 48 + last);
if (res != ERROR_OK)
LOG_WARNING("SAMD: protect settings were not made persistent!");
res = ERROR_OK;
exit:
samd_protect_check(bank);
return res;
}
static int samd_erase(struct flash_bank *bank, unsigned int first,
unsigned int last)
{
int res;
struct samd_info *chip = (struct samd_info *)bank->driver_priv;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (!chip->probed) {
if (samd_probe(bank) != ERROR_OK)
return ERROR_FLASH_BANK_NOT_PROBED;
}
/* For each sector to be erased */
for (unsigned int s = first; s <= last; s++) {
res = samd_erase_row(bank->target, bank->sectors[s].offset);
if (res != ERROR_OK) {
LOG_ERROR("SAMD: failed to erase sector %d at 0x%08" PRIx32, s, bank->sectors[s].offset);
return res;
}
}
return ERROR_OK;
}
static int samd_write(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
int res;
uint32_t nvm_ctrlb;
uint32_t address;
uint32_t pg_offset;
uint32_t nb;
uint32_t nw;
struct samd_info *chip = (struct samd_info *)bank->driver_priv;
uint8_t *pb = NULL;
bool manual_wp;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (!chip->probed) {
if (samd_probe(bank) != ERROR_OK)
return ERROR_FLASH_BANK_NOT_PROBED;
}
/* Check if we need to do manual page write commands */
res = target_read_u32(bank->target, SAMD_NVMCTRL + SAMD_NVMCTRL_CTRLB, &nvm_ctrlb);
if (res != ERROR_OK)
return res;
if (nvm_ctrlb & SAMD_NVM_CTRLB_MANW)
manual_wp = true;
else
manual_wp = false;
res = samd_issue_nvmctrl_command(bank->target, SAMD_NVM_CMD_PBC);
if (res != ERROR_OK) {
LOG_ERROR("%s: %d", __func__, __LINE__);
return res;
}
while (count) {
nb = chip->page_size - offset % chip->page_size;
if (count < nb)
nb = count;
address = bank->base + offset;
pg_offset = offset % chip->page_size;
if (offset % 4 || (offset + nb) % 4) {
/* Either start or end of write is not word aligned */
if (!pb) {
pb = malloc(chip->page_size);
if (!pb)
return ERROR_FAIL;
}
/* Set temporary page buffer to 0xff and overwrite the relevant part */
memset(pb, 0xff, chip->page_size);
memcpy(pb + pg_offset, buffer, nb);
/* Align start address to a word boundary */
address -= offset % 4;
pg_offset -= offset % 4;
assert(pg_offset % 4 == 0);
/* Extend length to whole words */
nw = (nb + offset % 4 + 3) / 4;
assert(pg_offset + 4 * nw <= chip->page_size);
/* Now we have original data extended by 0xff bytes
* to the nearest word boundary on both start and end */
res = target_write_memory(bank->target, address, 4, nw, pb + pg_offset);
} else {
assert(nb % 4 == 0);
nw = nb / 4;
assert(pg_offset + 4 * nw <= chip->page_size);
/* Word aligned data, use direct write from buffer */
res = target_write_memory(bank->target, address, 4, nw, buffer);
}
if (res != ERROR_OK) {
LOG_ERROR("%s: %d", __func__, __LINE__);
goto free_pb;
}
/* Devices with errata 13134 have automatic page write enabled by default
* For other devices issue a write page CMD to the NVM
* If the page has not been written up to the last word
* then issue CMD_WP always */
if (manual_wp || pg_offset + 4 * nw < chip->page_size) {
res = samd_issue_nvmctrl_command(bank->target, SAMD_NVM_CMD_WP);
} else {
/* Access through AHB is stalled while flash is being programmed */
usleep(200);
res = samd_check_error(bank->target);
}
if (res != ERROR_OK) {
LOG_ERROR("%s: write failed at address 0x%08" PRIx32, __func__, address);
goto free_pb;
}
/* We're done with the page contents */
count -= nb;
offset += nb;
buffer += nb;
}
free_pb:
free(pb);
return res;
}
FLASH_BANK_COMMAND_HANDLER(samd_flash_bank_command)
{
if (bank->base != SAMD_FLASH) {
LOG_ERROR("Address " TARGET_ADDR_FMT
" invalid bank address (try 0x%08" PRIx32
"[at91samd series] )",
bank->base, SAMD_FLASH);
return ERROR_FAIL;
}
struct samd_info *chip;
chip = calloc(1, sizeof(*chip));
if (!chip) {
LOG_ERROR("No memory for flash bank chip info");
return ERROR_FAIL;
}
chip->target = bank->target;
chip->probed = false;
bank->driver_priv = chip;
return ERROR_OK;
}
COMMAND_HANDLER(samd_handle_chip_erase_command)
{
struct target *target = get_current_target(CMD_CTX);
int res = ERROR_FAIL;
if (target) {
/* Enable access to the DSU by disabling the write protect bit */
target_write_u32(target, SAMD_PAC1, (1<<1));
/* intentionally without error checking - not accessible on secured chip */
/* Tell the DSU to perform a full chip erase. It takes about 240ms to
* perform the erase. */
res = target_write_u8(target, SAMD_DSU + SAMD_DSU_CTRL_EXT, (1<<4));
if (res == ERROR_OK)
command_print(CMD, "chip erase started");
else
command_print(CMD, "write to DSU CTRL failed");
}
return res;
}
COMMAND_HANDLER(samd_handle_set_security_command)
{
int res = ERROR_OK;
struct target *target = get_current_target(CMD_CTX);
if (CMD_ARGC < 1 || (CMD_ARGC >= 1 && (strcmp(CMD_ARGV[0], "enable")))) {
command_print(CMD, "supply the \"enable\" argument to proceed.");
return ERROR_COMMAND_SYNTAX_ERROR;
}
if (target) {
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
res = samd_issue_nvmctrl_command(target, SAMD_NVM_CMD_SSB);
/* Check (and clear) error conditions */
if (res == ERROR_OK)
command_print(CMD, "chip secured on next power-cycle");
else
command_print(CMD, "failed to secure chip");
}
return res;
}
COMMAND_HANDLER(samd_handle_eeprom_command)
{
int res = ERROR_OK;
struct target *target = get_current_target(CMD_CTX);
if (target) {
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (CMD_ARGC >= 1) {
int val = atoi(CMD_ARGV[0]);
uint32_t code;
if (val == 0)
code = 7;
else {
/* Try to match size in bytes with corresponding size code */
for (code = 0; code <= 6; code++) {
if (val == (2 << (13 - code)))
break;
}
if (code > 6) {
command_print(CMD, "Invalid EEPROM size. Please see "
"datasheet for a list valid sizes.");
return ERROR_COMMAND_SYNTAX_ERROR;
}
}
res = samd_modify_user_row(target, code, 4, 6);
} else {
uint16_t val;
res = target_read_u16(target, SAMD_USER_ROW, &val);
if (res == ERROR_OK) {
uint32_t size = ((val >> 4) & 0x7); /* grab size code */
if (size == 0x7)
command_print(CMD, "EEPROM is disabled");
else {
/* Otherwise, 6 is 256B, 0 is 16KB */
command_print(CMD, "EEPROM size is %u bytes",
(2 << (13 - size)));
}
}
}
}
return res;
}
COMMAND_HANDLER(samd_handle_nvmuserrow_command)
{
int res = ERROR_OK;
struct target *target = get_current_target(CMD_CTX);
if (target) {
if (CMD_ARGC > 2) {
command_print(CMD, "Too much Arguments given.");
return ERROR_COMMAND_SYNTAX_ERROR;
}
if (CMD_ARGC > 0) {
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted.");
return ERROR_TARGET_NOT_HALTED;
}
uint64_t mask;
res = samd_get_reservedmask(target, &mask);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't determine the mask for reserved bits.");
return ERROR_FAIL;
}
mask &= NVMUSERROW_LOCKBIT_MASK;
uint64_t value;
COMMAND_PARSE_NUMBER(u64, CMD_ARGV[0], value);
if (CMD_ARGC == 2) {
uint64_t mask_temp;
COMMAND_PARSE_NUMBER(u64, CMD_ARGV[1], mask_temp);
mask &= mask_temp;
}
res = samd_modify_user_row_masked(target, value, mask);
if (res != ERROR_OK)
return res;
}
/* read register */
uint64_t value;
res = read_userrow(target, &value);
if (res == ERROR_OK)
command_print(CMD, "NVMUSERROW: 0x%016"PRIX64, value);
else
LOG_ERROR("NVMUSERROW could not be read.");
}
return res;
}
COMMAND_HANDLER(samd_handle_bootloader_command)
{
int res = ERROR_OK;
struct target *target = get_current_target(CMD_CTX);
if (target) {
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* Retrieve the MCU's page size, in bytes. */
uint32_t page_size;
res = samd_get_flash_page_info(target, &page_size, NULL);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't determine Flash page size");
return res;
}
if (CMD_ARGC >= 1) {
int val = atoi(CMD_ARGV[0]);
uint32_t code;
if (val == 0)
code = 7;
else {
/* Try to match size in bytes with corresponding size code */
for (code = 0; code <= 6; code++) {
if ((unsigned int)val == (2UL << (8UL - code)) * page_size)
break;
}
if (code > 6) {
command_print(CMD, "Invalid bootloader size. Please "
"see datasheet for a list valid sizes.");
return ERROR_COMMAND_SYNTAX_ERROR;
}
}
res = samd_modify_user_row(target, code, 0, 2);
} else {
uint16_t val;
res = target_read_u16(target, SAMD_USER_ROW, &val);
if (res == ERROR_OK) {
uint32_t size = (val & 0x7); /* grab size code */
uint32_t nb;
if (size == 0x7)
nb = 0;
else
nb = (2 << (8 - size)) * page_size;
/* There are 4 pages per row */
command_print(CMD, "Bootloader size is %" PRIu32 " bytes (%" PRIu32 " rows)",
nb, (uint32_t)(nb / (page_size * 4)));
}
}
}
return res;
}
COMMAND_HANDLER(samd_handle_reset_deassert)
{
struct target *target = get_current_target(CMD_CTX);
int retval = ERROR_OK;
enum reset_types jtag_reset_config = jtag_get_reset_config();
/* If the target has been unresponsive before, try to re-establish
* communication now - CPU is held in reset by DSU, DAP is working */
if (!target_was_examined(target))
target_examine_one(target);
target_poll(target);
/* In case of sysresetreq, debug retains state set in cortex_m_assert_reset()
* so we just release reset held by DSU
*
* n_RESET (srst) clears the DP, so reenable debug and set vector catch here
*
* After vectreset DSU release is not needed however makes no harm
*/
if (target->reset_halt && (jtag_reset_config & RESET_HAS_SRST)) {
retval = target_write_u32(target, DCB_DHCSR, DBGKEY | C_HALT | C_DEBUGEN);
if (retval == ERROR_OK)
retval = target_write_u32(target, DCB_DEMCR,
TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
/* do not return on error here, releasing DSU reset is more important */
}
/* clear CPU Reset Phase Extension bit */
int retval2 = target_write_u8(target, SAMD_DSU + SAMD_DSU_STATUSA, (1<<1));
if (retval2 != ERROR_OK)
return retval2;
return retval;
}
static const struct command_registration at91samd_exec_command_handlers[] = {
{
.name = "dsu_reset_deassert",
.handler = samd_handle_reset_deassert,
.mode = COMMAND_EXEC,
.help = "Deassert internal reset held by DSU.",
.usage = "",
},
{
.name = "chip-erase",
.handler = samd_handle_chip_erase_command,
.mode = COMMAND_EXEC,
.help = "Erase the entire Flash by using the Chip-"
"Erase feature in the Device Service Unit (DSU).",
.usage = "",
},
{
.name = "set-security",
.handler = samd_handle_set_security_command,
.mode = COMMAND_EXEC,
.help = "Secure the chip's Flash by setting the Security Bit. "
"This makes it impossible to read the Flash contents. "
"The only way to undo this is to issue the chip-erase "
"command.",
.usage = "'enable'",
},
{
.name = "eeprom",
.usage = "[size_in_bytes]",
.handler = samd_handle_eeprom_command,
.mode = COMMAND_EXEC,
.help = "Show or set the EEPROM size setting, stored in the User Row. "
"Please see Table 20-3 of the SAMD20 datasheet for allowed values. "
"Changes are stored immediately but take affect after the MCU is "
"reset.",
},
{
.name = "bootloader",
.usage = "[size_in_bytes]",
.handler = samd_handle_bootloader_command,
.mode = COMMAND_EXEC,
.help = "Show or set the bootloader size, stored in the User Row. "
"Please see Table 20-2 of the SAMD20 datasheet for allowed values. "
"Changes are stored immediately but take affect after the MCU is "
"reset.",
},
{
.name = "nvmuserrow",
.usage = "[value] [mask]",
.handler = samd_handle_nvmuserrow_command,
.mode = COMMAND_EXEC,
.help = "Show or set the nvmuserrow register. It is 64 bit wide "
"and located at address 0x804000. Use the optional mask argument "
"to prevent changes at positions where the bitvalue is zero. "
"For security reasons the lock- and reserved-bits are masked out "
"in background and therefore cannot be changed.",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration at91samd_command_handlers[] = {
{
.name = "at91samd",
.mode = COMMAND_ANY,
.help = "at91samd flash command group",
.usage = "",
.chain = at91samd_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
const struct flash_driver at91samd_flash = {
.name = "at91samd",
.commands = at91samd_command_handlers,
.flash_bank_command = samd_flash_bank_command,
.erase = samd_erase,
.protect = samd_protect,
.write = samd_write,
.read = default_flash_read,
.probe = samd_probe,
.auto_probe = samd_probe,
.erase_check = default_flash_blank_check,
.protect_check = samd_protect_check,
.free_driver_priv = default_flash_free_driver_priv,
};
|