aboutsummaryrefslogtreecommitdiff
path: root/src/flash/davinci_nand.c
blob: d1ffea0f4d4e7bc64f78b8cf6bbad46bf07c1886 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
/***************************************************************************
 *   Copyright (C) 2009 by David Brownell                                  *
 *                                                                         *
 *   This program is free software; you can redistribute it and/or modify  *
 *   it under the terms of the GNU General Public License as published by  *
 *   the Free Software Foundation; either version 2 of the License, or     *
 *   (at your option) any later version.                                   *
 *                                                                         *
 *   This program is distributed in the hope that it will be useful,       *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
 *   GNU General Public License for more details.                          *
 *                                                                         *
 *   You should have received a copy of the GNU General Public License     *
 *   along with this program; if not, write to the                         *
 *   Free Software Foundation, Inc.,                                       *
 *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
 ***************************************************************************/

/*
 * DaVinci family NAND controller support for OpenOCD.
 *
 * This driver uses hardware ECC (1-bit or 4-bit) unless
 * the chip is accessed in "raw" mode.
 */

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include "nand.h"


enum ecc {
	HWECC1,		/* all controllers support 1-bit ECC */
	HWECC4,		/* newer chips also have 4-bit ECC hardware */
	HWECC4_INFIX,	/* avoid this layout, except maybe for boot code */
};

struct davinci_nand {
	target_t	*target;

	uint8_t		chipsel;	/* chipselect 0..3 == CS2..CS5 */
	uint8_t		eccmode;

	/* Async EMIF controller base */
	u32		aemif;

	/* NAND chip addresses */
	u32		data;		/* without CLE or ALE */
	u32		cmd;		/* with CLE */
	u32		addr;		/* with ALE */

	/* page i/o for the relevant flavor of hardware ECC */
	int (*read_page)(struct nand_device_s *nand, u32 page,
			uint8_t *data, u32 data_size, uint8_t *oob, u32 oob_size);
	int (*write_page)(struct nand_device_s *nand, u32 page,
			uint8_t *data, u32 data_size, uint8_t *oob, u32 oob_size);
};

#define NANDFCR		0x60		/* flash control register */
#define NANDFSR		0x64		/* flash status register */
#define NANDFECC	0x70		/* 1-bit ECC data, CS0, 1st of 4 */
#define NAND4BITECCLOAD	0xbc		/* 4-bit ECC, load saved values */
#define NAND4BITECC	0xc0		/* 4-bit ECC data, 1st of 4 */
#define NANDERRADDR	0xd0		/* 4-bit ECC err addr, 1st of 2 */
#define NANDERRVAL	0xd8		/* 4-bit ECC err value, 1st of 2 */

static int halted(target_t *target, const char *label)
{
	if (target->state == TARGET_HALTED)
		return true;

	LOG_ERROR("Target must be halted to use NAND controller (%s)", label);
	return false;
}

static int davinci_register_commands(struct command_context_s *cmd_ctx)
{
	return ERROR_OK;
}

static int davinci_init(struct nand_device_s *nand)
{
	struct davinci_nand *info = nand->controller_priv;
	target_t *target = info->target;
	u32 nandfcr;

	if (!halted(target, "init"))
		return ERROR_NAND_OPERATION_FAILED;

	/* We require something else to have configured AEMIF to talk
	 * to NAND chip in this range (including timings and width).
	 */
	target_read_u32(target, info->aemif + NANDFCR, &nandfcr);
	if (!(nandfcr & (1 << info->chipsel))) {
		LOG_ERROR("chip address %08x not NAND-enabled?", info->data);
		return ERROR_NAND_OPERATION_FAILED;
	}

	/* REVISIT verify:  AxCR must be in 8-bit mode, since that's all we
	 * tested.  16 bit support should work too; but not with 4-bit ECC.
	 */

	return ERROR_OK;
}

static int davinci_reset(struct nand_device_s *nand)
{
	return ERROR_OK;
}

static int davinci_nand_ready(struct nand_device_s *nand, int timeout)
{
	struct davinci_nand *info = nand->controller_priv;
	target_t *target = info->target;
	u32 nandfsr;

	/* NOTE: return code is zero/error, else success; not ERROR_* */

	if (!halted(target, "ready"))
		return 0;

	do {
		target_read_u32(target, info->aemif + NANDFSR, &nandfsr);

		if (nandfsr & 0x01)
			return 1;

		alive_sleep(1);
	} while (timeout-- > 0);

	return 0;
}

static int davinci_command(struct nand_device_s *nand, uint8_t command)
{
	struct davinci_nand *info = nand->controller_priv;
	target_t *target = info->target;

	if (!halted(target, "command"))
		return ERROR_NAND_OPERATION_FAILED;

	target_write_u8(target, info->cmd, command);
	return ERROR_OK;
}

static int davinci_address(struct nand_device_s *nand, uint8_t address)
{
	struct davinci_nand *info = nand->controller_priv;
	target_t *target = info->target;

	if (!halted(target, "address"))
		return ERROR_NAND_OPERATION_FAILED;

	target_write_u8(target, info->addr, address);
	return ERROR_OK;
}

static int davinci_write_data(struct nand_device_s *nand, u16 data)
{
	struct davinci_nand *info = nand->controller_priv;
	target_t *target = info->target;

	if (!halted(target, "write_data"))
		return ERROR_NAND_OPERATION_FAILED;

	target_write_u8(target, info->data, data);
	return ERROR_OK;
}

static int davinci_read_data(struct nand_device_s *nand, void *data)
{
	struct davinci_nand *info = nand->controller_priv;
	target_t *target = info->target;

	if (!halted(target, "read_data"))
		return ERROR_NAND_OPERATION_FAILED;

	target_read_u8(target, info->data, data);
	return ERROR_OK;
}

/* REVISIT a bit of native code should let block I/O be MUCH faster */

static int davinci_read_block_data(struct nand_device_s *nand,
		uint8_t *data, int data_size)
{
	struct davinci_nand *info = nand->controller_priv;
	target_t *target = info->target;
	u32 nfdata = info->data;
	u32 tmp;

	if (!halted(target, "read_block"))
		return ERROR_NAND_OPERATION_FAILED;

	while (data_size >= 4) {
		target_read_u32(target, nfdata, &tmp);

		data[0] = tmp;
		data[1] = tmp >> 8;
		data[2] = tmp >> 16;
		data[3] = tmp >> 24;

		data_size -= 4;
		data += 4;
	}

	while (data_size > 0) {
		target_read_u8(target, nfdata, data);

		data_size -= 1;
		data += 1;
	}

	return ERROR_OK;
}

static int davinci_write_block_data(struct nand_device_s *nand,
		uint8_t *data, int data_size)
{
	struct davinci_nand *info = nand->controller_priv;
	target_t *target = info->target;
	u32 nfdata = info->data;
	u32 tmp;

	if (!halted(target, "write_block"))
		return ERROR_NAND_OPERATION_FAILED;

	while (data_size >= 4) {
		tmp = le_to_h_u32(data);
		target_write_u32(target, nfdata, tmp);

		data_size -= 4;
		data += 4;
	}

	while (data_size > 0) {
		target_write_u8(target, nfdata, *data);

		data_size -= 1;
		data += 1;
	}

	return ERROR_OK;
}

static int davinci_write_page(struct nand_device_s *nand, u32 page,
		uint8_t *data, u32 data_size, uint8_t *oob, u32 oob_size)
{
	struct davinci_nand *info = nand->controller_priv;
	uint8_t *ooballoc = NULL;
	int status;

	if (!nand->device)
		return ERROR_NAND_DEVICE_NOT_PROBED;
	if (!halted(info->target, "write_page"))
		return ERROR_NAND_OPERATION_FAILED;

	/* Always write both data and OOB ... we are not "raw" I/O! */
	if (!data) {
		LOG_ERROR("Missing NAND data; try 'nand raw_access enable'\n");
		return ERROR_NAND_OPERATION_FAILED;
	}

	/* If we're not given OOB, write 0xff where we don't write ECC codes. */
	switch (nand->page_size) {
	case 512:
		oob_size = 16;
		break;
	case 2048:
		oob_size = 64;
		break;
	case 4096:
		oob_size = 128;
		break;
	default:
		return ERROR_NAND_OPERATION_FAILED;
	}
	if (!oob) {
		ooballoc = malloc(oob_size);
		if (!ooballoc)
			return ERROR_NAND_OPERATION_FAILED;
		oob = ooballoc;
		memset(oob, 0x0ff, oob_size);
	}

	status = info->write_page(nand, page, data, data_size, oob, oob_size);
	free(ooballoc);
	return status;
}

static int davinci_read_page(struct nand_device_s *nand, u32 page,
		uint8_t *data, u32 data_size, uint8_t *oob, u32 oob_size)
{
	struct davinci_nand *info = nand->controller_priv;

	if (!nand->device)
		return ERROR_NAND_DEVICE_NOT_PROBED;
	if (!halted(info->target, "read_page"))
		return ERROR_NAND_OPERATION_FAILED;

	return info->read_page(nand, page, data, data_size, oob, oob_size);
}

static void davinci_write_pagecmd(struct nand_device_s *nand, uint8_t cmd, u32 page)
{
	struct davinci_nand *info = nand->controller_priv;
	target_t *target = info->target;
	int page3 = nand->address_cycles - (nand->page_size == 512);

	/* write command ({page,otp}x{read,program} */
	target_write_u8(target, info->cmd, cmd);

	/* column address (beginning-of-page) */
	target_write_u8(target, info->addr, 0);
	if (nand->page_size > 512)
		target_write_u8(target, info->addr, 0);

	/* page address */
	target_write_u8(target, info->addr, page);
	target_write_u8(target, info->addr, page >> 8);
	if (page3)
		target_write_u8(target, info->addr, page >> 16);
	if (page3 == 2)
		target_write_u8(target, info->addr, page >> 24);
}

static int davinci_writepage_tail(struct nand_device_s *nand,
		uint8_t *oob, u32 oob_size)
{
	struct davinci_nand *info = nand->controller_priv;
	target_t *target = info->target;
	uint8_t status;

	if (oob_size)
		davinci_write_block_data(nand, oob, oob_size);

	/* non-cachemode page program */
	target_write_u8(target, info->cmd, NAND_CMD_PAGEPROG);

	if (!davinci_nand_ready(nand, 100))
		return ERROR_NAND_OPERATION_TIMEOUT;

	if (nand_read_status(nand, &status) != ERROR_OK) {
		LOG_ERROR("couldn't read status");
		return ERROR_NAND_OPERATION_FAILED;
	}

	if (status & NAND_STATUS_FAIL) {
		LOG_ERROR("write operation failed, status: 0x%02x", status);
		return ERROR_NAND_OPERATION_FAILED;
	}

	return ERROR_OK;
}

/*
 * All DaVinci family chips support 1-bit ECC on a per-chipselect basis.
 */
static int davinci_write_page_ecc1(struct nand_device_s *nand, u32 page,
		uint8_t *data, u32 data_size, uint8_t *oob, u32 oob_size)
{
	unsigned oob_offset;
	struct davinci_nand *info = nand->controller_priv;
	target_t *target = info->target;
	const u32 fcr_addr = info->aemif + NANDFCR;
	const u32 ecc1_addr = info->aemif + NANDFECC + info->chipsel;
	u32 fcr, ecc1;

	/* Write contiguous ECC bytes starting at specified offset.
	 * NOTE: Linux reserves twice as many bytes as we need; and
	 * for 16-bit OOB, those extra bytes are discontiguous.
	 */
	switch (nand->page_size) {
	case 512:
		oob_offset = 0;
		break;
	case 2048:
		oob_offset = 40;
		break;
	default:
		oob_offset = 80;
		break;
	}

	davinci_write_pagecmd(nand, NAND_CMD_SEQIN, page);

	/* scrub any old ECC state */
	target_read_u32(target, ecc1_addr, &ecc1);

	target_read_u32(target, fcr_addr, &fcr);
	fcr |= 1 << (8 + info->chipsel);

	do {
		/* set "start csX 1bit ecc" bit */
		target_write_u32(target, fcr_addr, fcr);

		/* write 512 bytes */
		davinci_write_block_data(nand, data, 512);
		data += 512;
		data_size -= 512;

		/* read the ecc, pack to 3 bytes, and invert so the ecc
		 * in an erased block is correct
		 */
		target_read_u32(target, ecc1_addr, &ecc1);
		ecc1 = (ecc1 & 0x0fff) | ((ecc1 & 0x0fff0000) >> 4);
		ecc1 = ~ecc1;

		/* save correct ECC code into oob data */
		oob[oob_offset++] = (uint8_t)(ecc1);
		oob[oob_offset++] = (uint8_t)(ecc1 >> 8);
		oob[oob_offset++] = (uint8_t)(ecc1 >> 16);

	} while (data_size);

	/* write OOB into spare area */
	return davinci_writepage_tail(nand, oob, oob_size);
}

/*
 * Preferred "new style" ECC layout for use with 4-bit ECC.  This somewhat
 * slows down large page reads done with error correction (since the OOB
 * is read first, so its ECC data can be used incrementally), but the
 * manufacturer bad block markers are safe.  Contrast:  old "infix" style.
 */
static int davinci_write_page_ecc4(struct nand_device_s *nand, u32 page,
		uint8_t *data, u32 data_size, uint8_t *oob, u32 oob_size)
{
	static const uint8_t ecc512[] = {
		0, 1, 2, 3, 4, /* 5== mfr badblock */
		6, 7, /* 8..12 for BBT or JFFS2 */ 13, 14, 15,
	};
	static const uint8_t ecc2048[] = {
		24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
		34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
		44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
		54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
	};
	static const uint8_t ecc4096[] = {
		 48,  49,  50,  51,  52,  53,  54,  55,  56,  57,
		 58,  59,  60,  61,  62,  63,  64,  65,  66,  67,
		 68,  69,  70,  71,  72,  73,  74,  75,  76,  77,
		 78,  79,  80,  81,  82,  83,  84,  85,  86,  87,
		 88,  89,  90,  91,  92,  93,  94,  95,  96,  97,
		 98,  99, 100, 101, 102, 103, 104, 105, 106, 107,
		108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
		118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
	};

	struct davinci_nand *info = nand->controller_priv;
	const uint8_t *l;
	target_t *target = info->target;
	const u32 fcr_addr = info->aemif + NANDFCR;
	const u32 ecc4_addr = info->aemif + NAND4BITECC;
	u32 fcr, ecc4;

	/* Use the same ECC layout Linux uses.  For small page chips
	 * it's a bit cramped.
	 *
	 * NOTE:  at this writing, 4KB pages have issues in Linux
	 * because they need more than 64 bytes of ECC data, which
	 * the standard ECC logic can't handle.
	 */
	switch (nand->page_size) {
	case 512:
		l = ecc512;
		break;
	case 2048:
		l = ecc2048;
		break;
	default:
		l = ecc4096;
		break;
	}

	davinci_write_pagecmd(nand, NAND_CMD_SEQIN, page);

	/* scrub any old ECC state */
	target_read_u32(target, info->aemif + NANDERRVAL, &ecc4);

	target_read_u32(target, fcr_addr, &fcr);
	fcr &= ~(0x03 << 4);
	fcr |= (1 << 12) | (info->chipsel << 4);

	do {
		u32 raw_ecc[4], *p;
		int i;

		/* start 4bit ecc on csX */
		target_write_u32(target, fcr_addr, fcr);

		/* write 512 bytes */
		davinci_write_block_data(nand, data, 512);
		data += 512;
		data_size -= 512;

		/* read the ecc, then save it into 10 bytes in the oob */
		for (i = 0; i < 4; i++) {
			target_read_u32(target, ecc4_addr + 4 * i, &raw_ecc[i]);
			raw_ecc[i] &= 0x03ff03ff;
		}
		for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
			oob[*l++] =   p[0]        & 0xff;
			oob[*l++] = ((p[0] >>  8) & 0x03) | ((p[0] >> 14) & 0xfc);
			oob[*l++] = ((p[0] >> 22) & 0x0f) | ((p[1] <<  4) & 0xf0);
			oob[*l++] = ((p[1] >>  4) & 0x3f) | ((p[1] >> 10) & 0xc0);
			oob[*l++] =  (p[1] >> 18) & 0xff;
		}

	} while (data_size);

	/* write OOB into spare area */
	return davinci_writepage_tail(nand, oob, oob_size);
}

/*
 * "Infix" OOB ... like Linux ECC_HW_SYNDROME.  Avoided because it trashes
 * manufacturer bad block markers, except on small page chips.  Once you
 * write to a page using this scheme, you need specialized code to update
 * it (code which ignores now-invalid bad block markers).
 *
 * This is needed *only* to support older firmware.  Older ROM Boot Loaders
 * need it to read their second stage loader (UBL) into SRAM, but from then
 * on the whole system can use the cleaner non-infix layouts.  Systems with
 * older second stage loaders (ABL/U-Boot, etc) or other system software
 * (MVL 4.x/5.x kernels, filesystems, etc) may need it more generally.
 */
static int davinci_write_page_ecc4infix(struct nand_device_s *nand, u32 page,
		uint8_t *data, u32 data_size, uint8_t *oob, u32 oob_size)
{
	struct davinci_nand *info = nand->controller_priv;
	target_t *target = info->target;
	const u32 fcr_addr = info->aemif + NANDFCR;
	const u32 ecc4_addr = info->aemif + NAND4BITECC;
	u32 fcr, ecc4;

	davinci_write_pagecmd(nand, NAND_CMD_SEQIN, page);

	/* scrub any old ECC state */
	target_read_u32(target, info->aemif + NANDERRVAL, &ecc4);

	target_read_u32(target, fcr_addr, &fcr);
	fcr &= ~(0x03 << 4);
	fcr |= (1 << 12) | (info->chipsel << 4);

	do {
		u32 raw_ecc[4], *p;
		uint8_t *l;
		int i;

		/* start 4bit ecc on csX */
		target_write_u32(target, fcr_addr, fcr);

		/* write 512 bytes */
		davinci_write_block_data(nand, data, 512);
		data += 512;
		data_size -= 512;

		/* read the ecc */
		for (i = 0; i < 4; i++) {
			target_read_u32(target, ecc4_addr + 4 * i, &raw_ecc[i]);
			raw_ecc[i] &= 0x03ff03ff;
		}

		/* skip 6 bytes of prepad, then pack 10 packed ecc bytes */
		for (i = 0, l = oob + 6, p = raw_ecc; i < 2; i++, p += 2) {
			*l++ =   p[0]        & 0xff;
			*l++ = ((p[0] >>  8) & 0x03) | ((p[0] >> 14) & 0xfc);
			*l++ = ((p[0] >> 22) & 0x0f) | ((p[1] <<  4) & 0xf0);
			*l++ = ((p[1] >>  4) & 0x3f) | ((p[1] >> 10) & 0xc0);
			*l++ =  (p[1] >> 18) & 0xff;
		}

		/* write this "out-of-band" data -- infix */
		davinci_write_block_data(nand, oob, 16);
		oob += 16;
		oob_size -= 16;

	} while (data_size);

	/* the last data and OOB writes included the spare area */
	return davinci_writepage_tail(nand, NULL, 0);
}

static int davinci_read_page_ecc4infix(struct nand_device_s *nand, u32 page,
		uint8_t *data, u32 data_size, uint8_t *oob, u32 oob_size)
{
	davinci_write_pagecmd(nand, NAND_CMD_READ0, page);

	/* large page devices need a start command */
	if (nand->page_size > 512)
		davinci_command(nand, NAND_CMD_READSTART);

	if (!davinci_nand_ready(nand, 100))
		return ERROR_NAND_OPERATION_TIMEOUT;

	/* NOTE:  not bothering to compute and use ECC data for now */

	do {
		/* write 512 bytes */
		davinci_read_block_data(nand, data, 512);
		data += 512;
		data_size -= 512;

		/* read this "out-of-band" data -- infix */
		davinci_read_block_data(nand, oob, 16);
		oob += 16;
		oob_size -= 16;
	} while (data_size);

	return ERROR_OK;
}

static int davinci_nand_device_command(struct command_context_s *cmd_ctx,
		char *cmd, char **argv, int argc,
		struct nand_device_s *nand)
{
	struct davinci_nand *info;
	target_t *target;
	unsigned long chip, aemif;
	enum ecc eccmode;
	int chipsel;
	char *ep;

	/* arguments:
	 *  - "davinci"
	 *  - target
	 *  - nand chip address
	 *  - ecc mode
	 *  - aemif address
	 * Plus someday, optionally, ALE and CLE masks.
	 */
	if (argc < 5) {
		LOG_ERROR("parameters: %s target "
				"chip_addr hwecc_mode aemif_addr",
				argv[0]);
		goto fail;
	}

	target = get_target(argv[1]);
	if (!target) {
		LOG_ERROR("invalid target %s", argv[1]);
		goto fail;
	}

	chip = strtoul(argv[2], &ep, 0);
	if (*ep || chip == 0 || chip == ULONG_MAX) {
		LOG_ERROR("Invalid NAND chip address %s", argv[2]);
		goto fail;
	}

	if (strcmp(argv[3], "hwecc1") == 0)
		eccmode = HWECC1;
	else if (strcmp(argv[3], "hwecc4") == 0)
		eccmode = HWECC4;
	else if (strcmp(argv[3], "hwecc4_infix") == 0)
		eccmode = HWECC4_INFIX;
	else {
		LOG_ERROR("Invalid ecc mode %s", argv[3]);
		goto fail;
	}

	aemif = strtoul(argv[4], &ep, 0);
	if (*ep || chip == 0 || chip == ULONG_MAX) {
		LOG_ERROR("Invalid AEMIF controller address %s", argv[4]);
		goto fail;
	}

	/* REVISIT what we'd *like* to do is look up valid ranges using
	 * target-specific declarations, and not even need to pass the
	 * AEMIF controller address.
	 */
	if (aemif == 0x01e00000			/* dm6446, dm357 */
			|| aemif == 0x01e10000	/* dm335, dm355 */
			|| aemif == 0x01d10000	/* dm365 */
			) {
		if (chip < 0x0200000 || chip >= 0x0a000000) {
			LOG_ERROR("NAND address %08lx out of range?", chip);
			goto fail;
		}
		chipsel = (chip - 0x02000000) >> 21;
	} else {
		LOG_ERROR("unrecognized AEMIF controller address %08lx", aemif);
		goto fail;
	}

	info = calloc(1, sizeof *info);
	if (info == NULL)
		goto fail;

	info->target = target;
	info->eccmode = eccmode;
	info->chipsel = chipsel;
	info->aemif = aemif;
	info->data = chip;
	info->cmd = chip | 0x10;
	info->addr = chip | 0x08;

	nand->controller_priv = info;

	/* NOTE:  for now we don't do any error correction on read.
	 * Nothing else in OpenOCD currently corrects read errors,
	 * and in any case it's *writing* that we care most about.
	 */
	info->read_page = nand_read_page_raw;

	switch (eccmode) {
	case HWECC1:
		/* ECC_HW, 1-bit corrections, 3 bytes ECC per 512 data bytes */
		info->write_page = davinci_write_page_ecc1;
		break;
	case HWECC4:
		/* ECC_HW, 4-bit corrections, 10 bytes ECC per 512 data bytes */
		info->write_page = davinci_write_page_ecc4;
		break;
	case HWECC4_INFIX:
		/* Same 4-bit ECC HW, with problematic page/ecc layout */
		info->read_page = davinci_read_page_ecc4infix;
		info->write_page = davinci_write_page_ecc4infix;
		break;
	}

	return ERROR_OK;

fail:
	return ERROR_NAND_OPERATION_FAILED;
}

nand_flash_controller_t davinci_nand_controller = {
	.name			= "davinci",
	.nand_device_command	= davinci_nand_device_command,
	.register_commands	= davinci_register_commands,
	.init			= davinci_init,
	.reset			= davinci_reset,
	.command		= davinci_command,
	.address		= davinci_address,
	.write_data		= davinci_write_data,
	.read_data		= davinci_read_data,
	.write_page		= davinci_write_page,
	.read_page		= davinci_read_page,
	.write_block_data	= davinci_write_block_data,
	.read_block_data	= davinci_read_block_data,
	.nand_ready		= davinci_nand_ready,
};