aboutsummaryrefslogtreecommitdiff
path: root/contrib/loaders/flash/msp432/driverlib.c
blob: e9058793c6e408e5d535206ad28807a59aa96d32 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
/* SPDX-License-Identifier: BSD-3-Clause */

/******************************************************************************
*
* Copyright (C) 2017-2018 Texas Instruments Incorporated - http://www.ti.com/
*
******************************************************************************/

#include <stdint.h>
#include <stdbool.h>
#include "driverlib.h"

/*
 * Wrapper function for the CPSID instruction.
 * Returns the state of PRIMASK on entry.
 */
uint32_t __attribute__((naked)) cpu_cpsid(void)
{
	uint32_t ret;

	/* Read PRIMASK and disable interrupts. */
	__asm("    mrs     r0, PRIMASK\n"
		  "    cpsid   i\n"
		  "    bx      lr\n"
			: "=r" (ret));

	/*
	 * The return is handled in the inline assembly, but the compiler will
	 * still complain if there is not an explicit return here (despite the fact
	 * that this does not result in any code being produced because of the
	 * naked attribute).
	 */
	return ret;
}

/* Wrapper function for the CPUWFI instruction. */
void __attribute__((naked)) cpu_wfi(void)
{
	/* Wait for the next interrupt. */
	__asm("    wfi\n"
		  "    bx      lr\n");
}

/* Power Control Module APIs */
#if defined(PCM)

static bool __pcm_set_core_voltage_level_advanced(uint_fast8_t voltage_level,
	uint32_t time_out, bool blocking)
{
	uint8_t power_mode;
	uint8_t current_voltage_level;
	uint32_t reg_value;
	bool bool_timeout;

	/* Getting current power mode and level */
	power_mode = pcm_get_power_mode();
	current_voltage_level = pcm_get_core_voltage_level();

	bool_timeout = time_out > 0 ? true : false;

	/* If we are already at the power mode they requested, return */
	if (current_voltage_level == voltage_level)
		return true;

	while (current_voltage_level != voltage_level) {

		reg_value = PCM->CTL0;

		switch (pcm_get_power_state()) {
			case PCM_AM_LF_VCORE1:
			case PCM_AM_DCDC_VCORE1:
			case PCM_AM_LDO_VCORE0:
				PCM->CTL0 = (PCM_KEY | (PCM_AM_LDO_VCORE1)
					| (reg_value & ~(PCM_CTL0_KEY_MASK | PCM_CTL0_AMR_MASK)));
				break;
			case PCM_AM_LF_VCORE0:
			case PCM_AM_DCDC_VCORE0:
			case PCM_AM_LDO_VCORE1:
				PCM->CTL0 = (PCM_KEY | (PCM_AM_LDO_VCORE0)
					| (reg_value & ~(PCM_CTL0_KEY_MASK | PCM_CTL0_AMR_MASK)));
				break;
			default:
				break;
		}

		if (blocking) {
			while (BITBAND_PERI(PCM->CTL1, PCM_CTL1_PMR_BUSY_OFS)) {
				if (bool_timeout && !(--time_out))
					return false;
			}
		} else
			return true;

		current_voltage_level = pcm_get_core_voltage_level();
	}

	/* Changing the power mode if we are stuck in LDO mode */
	if (power_mode != pcm_get_power_mode()) {
		if (power_mode == PCM_DCDC_MODE)
			return pcm_set_power_mode(PCM_DCDC_MODE);
		else
			return pcm_set_power_mode(PCM_LF_MODE);
	}

	return true;
}

bool pcm_set_core_voltage_level(uint_fast8_t voltage_level)
{
	return __pcm_set_core_voltage_level_advanced(voltage_level, 0, true);
}

uint8_t pcm_get_power_mode(void)
{
	uint8_t current_power_state;

	current_power_state = pcm_get_power_state();

	switch (current_power_state) {
		case PCM_AM_LDO_VCORE0:
		case PCM_AM_LDO_VCORE1:
		case PCM_LPM0_LDO_VCORE0:
		case PCM_LPM0_LDO_VCORE1:
		default:
			return PCM_LDO_MODE;
		case PCM_AM_DCDC_VCORE0:
		case PCM_AM_DCDC_VCORE1:
		case PCM_LPM0_DCDC_VCORE0:
		case PCM_LPM0_DCDC_VCORE1:
			return PCM_DCDC_MODE;
		case PCM_LPM0_LF_VCORE0:
		case PCM_LPM0_LF_VCORE1:
		case PCM_AM_LF_VCORE1:
		case PCM_AM_LF_VCORE0:
			return PCM_LF_MODE;
	}
}

uint8_t pcm_get_core_voltage_level(void)
{
	uint8_t current_power_state = pcm_get_power_state();

	switch (current_power_state) {
		case PCM_AM_LDO_VCORE0:
		case PCM_AM_DCDC_VCORE0:
		case PCM_AM_LF_VCORE0:
		case PCM_LPM0_LDO_VCORE0:
		case PCM_LPM0_DCDC_VCORE0:
		case PCM_LPM0_LF_VCORE0:
		default:
			return PCM_VCORE0;
		case PCM_AM_LDO_VCORE1:
		case PCM_AM_DCDC_VCORE1:
		case PCM_AM_LF_VCORE1:
		case PCM_LPM0_LDO_VCORE1:
		case PCM_LPM0_DCDC_VCORE1:
		case PCM_LPM0_LF_VCORE1:
			return PCM_VCORE1;
		case PCM_LPM3:
			return PCM_VCORELPM3;
	}
}

static bool __pcm_set_power_mode_advanced(uint_fast8_t power_mode,
	uint32_t time_out, bool blocking)
{
	uint8_t current_power_mode;
	uint8_t current_power_state;
	uint32_t reg_value;
	bool bool_timeout;

	/* Getting Current Power Mode */
	current_power_mode = pcm_get_power_mode();

	/* If the power mode being set it the same as the current mode, return */
	if (power_mode == current_power_mode)
		return true;

	current_power_state = pcm_get_power_state();

	bool_timeout = time_out > 0 ? true : false;

	/* Go through the while loop while we haven't achieved the power mode */
	while (current_power_mode != power_mode) {

		reg_value = PCM->CTL0;

		switch (current_power_state) {
			case PCM_AM_DCDC_VCORE0:
			case PCM_AM_LF_VCORE0:
				PCM->CTL0 = (PCM_KEY | PCM_AM_LDO_VCORE0
					| (reg_value & ~(PCM_CTL0_KEY_MASK | PCM_CTL0_AMR_MASK)));
				break;
			case PCM_AM_LF_VCORE1:
			case PCM_AM_DCDC_VCORE1:
				PCM->CTL0 = (PCM_KEY | PCM_AM_LDO_VCORE1
					| (reg_value & ~(PCM_CTL0_KEY_MASK | PCM_CTL0_AMR_MASK)));
				break;
			case PCM_AM_LDO_VCORE1: {
				if (power_mode == PCM_DCDC_MODE) {
					PCM->CTL0 = (PCM_KEY | PCM_AM_DCDC_VCORE1
						| (reg_value & ~(PCM_CTL0_KEY_MASK
						| PCM_CTL0_AMR_MASK)));
				} else if (power_mode == PCM_LF_MODE) {
					PCM->CTL0 = (PCM_KEY | PCM_AM_LF_VCORE1
						| (reg_value & ~(PCM_CTL0_KEY_MASK
						| PCM_CTL0_AMR_MASK)));
				} else
					return false;
				break;
			}
			case PCM_AM_LDO_VCORE0: {
				if (power_mode == PCM_DCDC_MODE) {
					PCM->CTL0 = (PCM_KEY | PCM_AM_DCDC_VCORE0
						| (reg_value & ~(PCM_CTL0_KEY_MASK
						| PCM_CTL0_AMR_MASK)));
				} else if (power_mode == PCM_LF_MODE) {
					PCM->CTL0 = (PCM_KEY | PCM_AM_LF_VCORE0
						| (reg_value & ~(PCM_CTL0_KEY_MASK
						| PCM_CTL0_AMR_MASK)));
				} else
					return false;
				break;
			}
			default:
				break;
		}

		if (blocking) {
			while (BITBAND_PERI(PCM->CTL1, PCM_CTL1_PMR_BUSY_OFS)) {
				if (bool_timeout && !(--time_out))
					return false;
			}
		} else
			return true;

		current_power_mode = pcm_get_power_mode();
		current_power_state = pcm_get_power_state();
	}

	return true;
}

bool pcm_set_power_mode(uint_fast8_t power_mode)
{
	return __pcm_set_power_mode_advanced(power_mode, 0, true);
}

static bool __pcm_set_power_state_advanced(uint_fast8_t power_state,
	uint32_t timeout, bool blocking)
{
	uint8_t current_power_state;
	current_power_state = pcm_get_power_state();

	if (current_power_state == power_state)
		return true;

	switch (power_state) {
		case PCM_AM_LDO_VCORE0:
			return __pcm_set_core_voltage_level_advanced(PCM_VCORE0, timeout,
					blocking) && __pcm_set_power_mode_advanced(PCM_LDO_MODE,
					timeout, blocking);
		case PCM_AM_LDO_VCORE1:
			return __pcm_set_core_voltage_level_advanced(PCM_VCORE1, timeout,
					blocking) && __pcm_set_power_mode_advanced(PCM_LDO_MODE,
					timeout, blocking);
		case PCM_AM_DCDC_VCORE0:
			return __pcm_set_core_voltage_level_advanced(PCM_VCORE0, timeout,
					blocking) && __pcm_set_power_mode_advanced(PCM_DCDC_MODE,
					timeout, blocking);
		case PCM_AM_DCDC_VCORE1:
			return __pcm_set_core_voltage_level_advanced(PCM_VCORE1, timeout,
					blocking) && __pcm_set_power_mode_advanced(PCM_DCDC_MODE,
					timeout, blocking);
		case PCM_AM_LF_VCORE0:
			return __pcm_set_core_voltage_level_advanced(PCM_VCORE0, timeout,
					blocking) && __pcm_set_power_mode_advanced(PCM_LF_MODE,
					timeout, blocking);
		case PCM_AM_LF_VCORE1:
			return __pcm_set_core_voltage_level_advanced(PCM_VCORE1, timeout,
					blocking) && __pcm_set_power_mode_advanced(PCM_LF_MODE,
					timeout, blocking);
		case PCM_LPM0_LDO_VCORE0:
			if (!__pcm_set_core_voltage_level_advanced(PCM_VCORE0, timeout,
				blocking) || !__pcm_set_power_mode_advanced(PCM_LDO_MODE,
				timeout, blocking))
				break;
			return pcm_goto_lpm0();
		case PCM_LPM0_LDO_VCORE1:
			if (!__pcm_set_core_voltage_level_advanced(PCM_VCORE1, timeout,
				blocking) || !__pcm_set_power_mode_advanced(PCM_LDO_MODE,
				timeout, blocking))
				break;
			return pcm_goto_lpm0();
		case PCM_LPM0_DCDC_VCORE0:
			if (!__pcm_set_core_voltage_level_advanced(PCM_VCORE0, timeout,
				blocking) || !__pcm_set_power_mode_advanced(PCM_DCDC_MODE,
				timeout, blocking))
				break;
			return pcm_goto_lpm0();
		case PCM_LPM0_DCDC_VCORE1:
			if (!__pcm_set_core_voltage_level_advanced(PCM_VCORE1, timeout,
				blocking) || !__pcm_set_power_mode_advanced(PCM_DCDC_MODE,
				timeout, blocking))
				break;
			return pcm_goto_lpm0();
		case PCM_LPM0_LF_VCORE0:
			if (!__pcm_set_core_voltage_level_advanced(PCM_VCORE0, timeout,
				blocking) || !__pcm_set_power_mode_advanced(PCM_LF_MODE,
				timeout, blocking))
				break;
			return pcm_goto_lpm0();
		case PCM_LPM0_LF_VCORE1:
			if (!__pcm_set_core_voltage_level_advanced(PCM_VCORE1, timeout,
				blocking) || !__pcm_set_power_mode_advanced(PCM_LF_MODE,
				timeout, blocking))
				break;
			return pcm_goto_lpm0();
		case PCM_LPM3:
			return pcm_goto_lpm3();
		case PCM_LPM4:
			return pcm_goto_lpm4();
		case PCM_LPM45:
			return pcm_shutdown_device(PCM_LPM45);
		case PCM_LPM35_VCORE0:
			return pcm_shutdown_device(PCM_LPM35_VCORE0);
		default:
			return false;
	}

	return false;
}

bool pcm_set_power_state(uint_fast8_t power_state)
{
	return __pcm_set_power_state_advanced(power_state, 0, true);
}

bool pcm_shutdown_device(uint32_t shutdown_mode)
{
	uint32_t shutdown_mode_bits = (shutdown_mode == PCM_LPM45) ?
		PCM_CTL0_LPMR_12 : PCM_CTL0_LPMR_10;

	/* If a power transition is occurring, return false */
	if (BITBAND_PERI(PCM->CTL1, PCM_CTL1_PMR_BUSY_OFS))
		return false;

	/* Initiating the shutdown */
	SCB->SCR |= SCB_SCR_SLEEPDEEP_MSK;

	PCM->CTL0 = (PCM_KEY | shutdown_mode_bits
		| (PCM->CTL0 & ~(PCM_CTL0_KEY_MASK | PCM_CTL0_LPMR_MASK)));

	cpu_wfi();

	return true;
}

bool pcm_goto_lpm4(void)
{
	/* Disabling RTC_C and WDT_A */
	wdt_a_hold_timer();
	rtc_c_hold_clock();

	/* LPM4 is just LPM3 with WDT_A/RTC_C disabled... */
	return pcm_goto_lpm3();
}

bool pcm_goto_lpm0(void)
{
	/* If we are in the middle of a state transition, return false */
	if (BITBAND_PERI(PCM->CTL1, PCM_CTL1_PMR_BUSY_OFS))
		return false;

	SCB->SCR &= ~SCB_SCR_SLEEPDEEP_MSK;

	cpu_wfi();

	return true;
}

bool pcm_goto_lpm3(void)
{
	uint_fast8_t current_power_state;
	uint_fast8_t current_power_mode;

	/* If we are in the middle of a state transition, return false */
	if (BITBAND_PERI(PCM->CTL1, PCM_CTL1_PMR_BUSY_OFS))
		return false;

	/* If we are in the middle of a shutdown, return false */
	if ((PCM->CTL0 & PCM_CTL0_LPMR_MASK) == PCM_CTL0_LPMR_10
		|| (PCM->CTL0 & PCM_CTL0_LPMR_MASK) == PCM_CTL0_LPMR_12)
		return false;

	current_power_mode = pcm_get_power_mode();
	current_power_state = pcm_get_power_state();

	if (current_power_mode == PCM_DCDC_MODE)
		pcm_set_power_mode(PCM_LDO_MODE);

	/* Clearing the SDR */
	PCM->CTL0 =
		(PCM->CTL0 & ~(PCM_CTL0_KEY_MASK | PCM_CTL0_LPMR_MASK)) | PCM_KEY;

	/* Setting the sleep deep bit */
	SCB->SCR |= SCB_SCR_SLEEPDEEP_MSK;

	cpu_wfi();

	SCB->SCR &= ~SCB_SCR_SLEEPDEEP_MSK;

	return pcm_set_power_state(current_power_state);
}

uint8_t pcm_get_power_state(void)
{
	return (PCM->CTL0 & PCM_CTL0_CPM_MASK) >> PCM_CTL0_CPM_OFS;
}

#endif

/* Real Time Clock APIs */
#if defined(RTC_C)

void rtc_c_hold_clock(void)
{
	RTC_C->CTL0 = (RTC_C->CTL0 & ~RTC_C_CTL0_KEY_MASK) | RTC_C_KEY;
	BITBAND_PERI(RTC_C->CTL13, RTC_C_CTL13_HOLD_OFS) = 1;
	BITBAND_PERI(RTC_C->CTL0, RTC_C_CTL0_KEY_OFS) = 0;
}

#endif

/* Watch Dog Timer APIs */
#if defined(WDT_A)

void wdt_a_hold_timer(void)
{
	/* Set Hold bit */
	uint8_t new_wdt_status = (WDT_A->CTL | WDT_A_CTL_HOLD);

	WDT_A->CTL = WDT_A_CTL_PW + new_wdt_status;
}

#endif