diff options
Diffstat (limited to 'doc')
-rw-r--r-- | doc/INSTALL.txt | 204 | ||||
-rw-r--r-- | doc/Makefile.am | 13 | ||||
-rw-r--r-- | doc/fdl.texi | 452 | ||||
-rw-r--r-- | doc/manual/app.txt | 9 | ||||
-rw-r--r-- | doc/manual/flash.txt | 35 | ||||
-rw-r--r-- | doc/manual/helper.txt | 136 | ||||
-rw-r--r-- | doc/manual/images/jtag-state-machine-large.png | bin | 11416 -> 0 bytes | |||
-rw-r--r-- | doc/manual/jtag.txt | 73 | ||||
-rw-r--r-- | doc/manual/jtag/drivers/remote_bitbang.txt | 53 | ||||
-rw-r--r-- | doc/manual/main.txt | 105 | ||||
-rw-r--r-- | doc/manual/primer/autotools.txt | 147 | ||||
-rw-r--r-- | doc/manual/primer/commands.txt | 138 | ||||
-rw-r--r-- | doc/manual/primer/docs.txt | 124 | ||||
-rw-r--r-- | doc/manual/primer/jtag.txt | 169 | ||||
-rw-r--r-- | doc/manual/primer/tcl.txt | 440 | ||||
-rw-r--r-- | doc/manual/release.txt | 465 | ||||
-rw-r--r-- | doc/manual/scripting.txt | 80 | ||||
-rw-r--r-- | doc/manual/server.txt | 316 | ||||
-rw-r--r-- | doc/manual/style.txt | 422 | ||||
-rw-r--r-- | doc/manual/target.txt | 46 | ||||
-rw-r--r-- | doc/manual/target/mips.txt | 536 | ||||
-rw-r--r-- | doc/manual/target/notarm.txt | 71 | ||||
-rw-r--r-- | doc/openocd.1 | 103 | ||||
-rw-r--r-- | doc/openocd.texi | 9812 |
24 files changed, 0 insertions, 13949 deletions
diff --git a/doc/INSTALL.txt b/doc/INSTALL.txt deleted file mode 100644 index c329be2..0000000 --- a/doc/INSTALL.txt +++ /dev/null @@ -1,204 +0,0 @@ -TODO!!! this should be merged into openocd.texi!!! - - -Prerequisites -============= - -When building with support for FTDI FT2232 based devices, you need at least -one of the following libraries: - -- libftdi (http://www.intra2net.com/opensource/ftdi/) -- libftd2xx (http://www.ftdichip.com/Drivers/D2XX.htm) - -On Windows, you need either Cygwin or MinGW, but compilation for MinGW is also -possible using a Cygwin host. - -Basic Installation -================== - - OpenOCD is distributed without autotools generated files, i.e. without a -configure script. Run ./bootstrap in the openocd directory to have all -necessary files generated. - - You have to explicitly enable desired JTAG interfaces during configure: - -./configure --enable-parport --enable-ft2232-libftdi (OR --enable-ft2232-ftd2xx) \ - --enable-amtjtagaccel - - Under Windows/Cygwin, only the ftd2xx driver is supported for FT2232 based -devices. You have to specify the location of the FTDI driver package with the ---with-ftd2xx=/full/path/name option. - -Under Linux you can choose to build the parport driver with support for -/dev/parportN instead of the default access with direct port I/O using ---enable-parport_ppdev. This has the advantage of running OpenOCD without root -privileges at the expense of a slight performance decrease. This is also -available on FreeBSD using PPI, but the naming of the devices is different. - -Generic installation instructions -================================= - - These are generic installation instructions. - - The `configure' shell script attempts to guess correct values for -various system-dependent variables used during compilation. It uses -those values to create a `Makefile' in each directory of the package. -It may also create one or more `.h' files containing system-dependent -definitions. Finally, it creates a shell script `config.status' that -you can run in the future to recreate the current configuration, a file -`config.cache' that saves the results of its tests to speed up -reconfiguring, and a file `config.log' containing compiler output -(useful mainly for debugging `configure'). - - If you need to do unusual things to compile the package, please try -to figure out how `configure' could check whether to do them, and mail -diffs or instructions to the address given in the `README' so they can -be considered for the next release. If at some point `config.cache' -contains results you don't want to keep, you may remove or edit it. - - The file `configure.in' is used to create `configure' by a program -called `autoconf'. You only need `configure.in' if you want to change -it or regenerate `configure' using a newer version of `autoconf'. - -The simplest way to compile this package is: - - 1. `cd' to the directory containing the package's source code and type - `./configure' to configure the package for your system. If you're - using `csh' on an old version of System V, you might need to type - `sh ./configure' instead to prevent `csh' from trying to execute - `configure' itself. - - Running `configure' takes a while. While running, it prints some - messages telling which features it is checking for. - - 2. Type `make' to compile the package. - - 3. Type `make install' to install the programs and any data files and - documentation. - - 4. You can remove the program binaries and object files from the - source code directory by typing `make clean'. - -Compilers and Options -===================== - - Some systems require unusual options for compilation or linking that -the `configure' script does not know about. You can give `configure' -initial values for variables by setting them in the environment. Using -a Bourne-compatible shell, you can do that on the command line like -this: - CC=c89 CFLAGS=-O2 LIBS=-lposix ./configure - -Or on systems that have the `env' program, you can do it like this: - env CPPFLAGS=-I/usr/local/include LDFLAGS=-s ./configure - -Compiling For Multiple Architectures -==================================== - - You can compile the package for more than one kind of computer at the -same time, by placing the object files for each architecture in their -own directory. To do this, you must use a version of `make' that -supports the `VPATH' variable, such as GNU `make'. `cd' to the -directory where you want the object files and executables to go and run -the `configure' script. `configure' automatically checks for the -source code in the directory that `configure' is in and in `..'. - - If you have to use a `make' that does not supports the `VPATH' -variable, you have to compile the package for one architecture at a time -in the source code directory. After you have installed the package for -one architecture, use `make distclean' before reconfiguring for another -architecture. - -Installation Names -================== - - By default, `make install' will install the package's files in -`/usr/local/bin', `/usr/local/man', etc. You can specify an -installation prefix other than `/usr/local' by giving `configure' the -option `--prefix=PATH'. - - You can specify separate installation prefixes for -architecture-specific files and architecture-independent files. If you -give `configure' the option `--exec-prefix=PATH', the package will use -PATH as the prefix for installing programs and libraries. -Documentation and other data files will still use the regular prefix. - - If the package supports it, you can cause programs to be installed -with an extra prefix or suffix on their names by giving `configure' the -option `--program-prefix=PREFIX' or `--program-suffix=SUFFIX'. - -Optional Features -================= - - Some packages pay attention to `--enable-FEATURE' options to -`configure', where FEATURE indicates an optional part of the package. -They may also pay attention to `--with-PACKAGE' options, where PACKAGE -is something like `gnu-as' or `x' (for the X Window System). The -`README' should mention any `--enable-' and `--with-' options that the -package recognizes. - - For packages that use the X Window System, `configure' can usually -find the X include and library files automatically, but if it doesn't, -you can use the `configure' options `--x-includes=DIR' and -`--x-libraries=DIR' to specify their locations. - -Specifying the System Type -========================== - - There may be some features `configure' can not figure out -automatically, but needs to determine by the type of host the package -will run on. Usually `configure' can figure that out, but if it prints -a message saying it can not guess the host type, give it the -`--host=TYPE' option. TYPE can either be a short name for the system -type, such as `sun4', or a canonical name with three fields: - CPU-COMPANY-SYSTEM - -See the file `config.sub' for the possible values of each field. If -`config.sub' isn't included in this package, then this package doesn't -need to know the host type. - - If you are building compiler tools for cross-compiling, you can also -use the `--target=TYPE' option to select the type of system they will -produce code for and the `--build=TYPE' option to select the type of -system on which you are compiling the package. - -Sharing Defaults -================ - - If you want to set default values for `configure' scripts to share, -you can create a site shell script called `config.site' that gives -default values for variables like `CC', `cache_file', and `prefix'. -`configure' looks for `PREFIX/share/config.site' if it exists, then -`PREFIX/etc/config.site' if it exists. Or, you can set the -`CONFIG_SITE' environment variable to the location of the site script. -A warning: not all `configure' scripts look for a site script. - -Operation Controls -================== - - `configure' recognizes the following options to control how it -operates. - -`--cache-file=FILE' - Use and save the results of the tests in FILE instead of - `./config.cache'. Set FILE to `/dev/null' to disable caching, for - debugging `configure'. - -`--help' - Print a summary of the options to `configure', and exit. - -`--quiet' -`--silent' -`-q' - Do not print messages saying which checks are being made. - -`--srcdir=DIR' - Look for the package's source code in directory DIR. Usually - `configure' can determine that directory automatically. - -`--version' - Print the version of Autoconf used to generate the `configure' - script, and exit. - -`configure' also accepts some other, not widely useful, options. - diff --git a/doc/Makefile.am b/doc/Makefile.am deleted file mode 100644 index 935c8f9..0000000 --- a/doc/Makefile.am +++ /dev/null @@ -1,13 +0,0 @@ -info_TEXINFOS = openocd.texi -openocd_TEXINFOS = fdl.texi -man_MANS = openocd.1 -EXTRA_DIST = openocd.1 \ - manual \ - INSTALL.txt - -MAINTAINERCLEANFILES = \ - $(srcdir)/Makefile.in \ - $(srcdir)/mdate-sh \ - $(srcdir)/stamp-vti \ - $(srcdir)/version.texi \ - $(srcdir)/texinfo.tex diff --git a/doc/fdl.texi b/doc/fdl.texi deleted file mode 100644 index a18c33e..0000000 --- a/doc/fdl.texi +++ /dev/null @@ -1,452 +0,0 @@ -@c -*-texinfo-*- -@node License -@appendix The GNU Free Documentation License. -@center Version 1.2, November 2002 - -@c This file is intended to be included within another document, -@c hence no sectioning command or @node. - -@display -Copyright @copyright{} 2000,2001,2002 Free Software Foundation, Inc. -51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA - -Everyone is permitted to copy and distribute verbatim copies -of this license document, but changing it is not allowed. -@end display - -@enumerate 0 -@item -PREAMBLE - -The purpose of this License is to make a manual, textbook, or other -functional and useful document @dfn{free} in the sense of freedom: to -assure everyone the effective freedom to copy and redistribute it, -with or without modifying it, either commercially or noncommercially. -Secondarily, this License preserves for the author and publisher a way -to get credit for their work, while not being considered responsible -for modifications made by others. - -This License is a kind of ``copyleft'', which means that derivative -works of the document must themselves be free in the same sense. It -complements the GNU General Public License, which is a copyleft -license designed for free software. - -We have designed this License in order to use it for manuals for free -software, because free software needs free documentation: a free -program should come with manuals providing the same freedoms that the -software does. But this License is not limited to software manuals; -it can be used for any textual work, regardless of subject matter or -whether it is published as a printed book. We recommend this License -principally for works whose purpose is instruction or reference. - -@item -APPLICABILITY AND DEFINITIONS - -This License applies to any manual or other work, in any medium, that -contains a notice placed by the copyright holder saying it can be -distributed under the terms of this License. Such a notice grants a -world-wide, royalty-free license, unlimited in duration, to use that -work under the conditions stated herein. The ``Document'', below, -refers to any such manual or work. Any member of the public is a -licensee, and is addressed as ``you''. You accept the license if you -copy, modify or distribute the work in a way requiring permission -under copyright law. - -A ``Modified Version'' of the Document means any work containing the -Document or a portion of it, either copied verbatim, or with -modifications and/or translated into another language. - -A ``Secondary Section'' is a named appendix or a front-matter section -of the Document that deals exclusively with the relationship of the -publishers or authors of the Document to the Document's overall -subject (or to related matters) and contains nothing that could fall -directly within that overall subject. (Thus, if the Document is in -part a textbook of mathematics, a Secondary Section may not explain -any mathematics.) The relationship could be a matter of historical -connection with the subject or with related matters, or of legal, -commercial, philosophical, ethical or political position regarding -them. - -The ``Invariant Sections'' are certain Secondary Sections whose titles -are designated, as being those of Invariant Sections, in the notice -that says that the Document is released under this License. If a -section does not fit the above definition of Secondary then it is not -allowed to be designated as Invariant. The Document may contain zero -Invariant Sections. If the Document does not identify any Invariant -Sections then there are none. - -The ``Cover Texts'' are certain short passages of text that are listed, -as Front-Cover Texts or Back-Cover Texts, in the notice that says that -the Document is released under this License. A Front-Cover Text may -be at most 5 words, and a Back-Cover Text may be at most 25 words. - -A ``Transparent'' copy of the Document means a machine-readable copy, -represented in a format whose specification is available to the -general public, that is suitable for revising the document -straightforwardly with generic text editors or (for images composed of -pixels) generic paint programs or (for drawings) some widely available -drawing editor, and that is suitable for input to text formatters or -for automatic translation to a variety of formats suitable for input -to text formatters. A copy made in an otherwise Transparent file -format whose markup, or absence of markup, has been arranged to thwart -or discourage subsequent modification by readers is not Transparent. -An image format is not Transparent if used for any substantial amount -of text. A copy that is not ``Transparent'' is called ``Opaque''. - -Examples of suitable formats for Transparent copies include plain -@sc{ascii} without markup, Texinfo input format, La@TeX{} input -format, @acronym{SGML} or @acronym{XML} using a publicly available -@acronym{DTD}, and standard-conforming simple @acronym{HTML}, -PostScript or @acronym{PDF} designed for human modification. Examples -of transparent image formats include @acronym{PNG}, @acronym{XCF} and -@acronym{JPG}. Opaque formats include proprietary formats that can be -read and edited only by proprietary word processors, @acronym{SGML} or -@acronym{XML} for which the @acronym{DTD} and/or processing tools are -not generally available, and the machine-generated @acronym{HTML}, -PostScript or @acronym{PDF} produced by some word processors for -output purposes only. - -The ``Title Page'' means, for a printed book, the title page itself, -plus such following pages as are needed to hold, legibly, the material -this License requires to appear in the title page. For works in -formats which do not have any title page as such, ``Title Page'' means -the text near the most prominent appearance of the work's title, -preceding the beginning of the body of the text. - -A section ``Entitled XYZ'' means a named subunit of the Document whose -title either is precisely XYZ or contains XYZ in parentheses following -text that translates XYZ in another language. (Here XYZ stands for a -specific section name mentioned below, such as ``Acknowledgements'', -``Dedications'', ``Endorsements'', or ``History''.) To ``Preserve the Title'' -of such a section when you modify the Document means that it remains a -section ``Entitled XYZ'' according to this definition. - -The Document may include Warranty Disclaimers next to the notice which -states that this License applies to the Document. These Warranty -Disclaimers are considered to be included by reference in this -License, but only as regards disclaiming warranties: any other -implication that these Warranty Disclaimers may have is void and has -no effect on the meaning of this License. - -@item -VERBATIM COPYING - -You may copy and distribute the Document in any medium, either -commercially or noncommercially, provided that this License, the -copyright notices, and the license notice saying this License applies -to the Document are reproduced in all copies, and that you add no other -conditions whatsoever to those of this License. You may not use -technical measures to obstruct or control the reading or further -copying of the copies you make or distribute. However, you may accept -compensation in exchange for copies. If you distribute a large enough -number of copies you must also follow the conditions in section 3. - -You may also lend copies, under the same conditions stated above, and -you may publicly display copies. - -@item -COPYING IN QUANTITY - -If you publish printed copies (or copies in media that commonly have -printed covers) of the Document, numbering more than 100, and the -Document's license notice requires Cover Texts, you must enclose the -copies in covers that carry, clearly and legibly, all these Cover -Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on -the back cover. Both covers must also clearly and legibly identify -you as the publisher of these copies. The front cover must present -the full title with all words of the title equally prominent and -visible. You may add other material on the covers in addition. -Copying with changes limited to the covers, as long as they preserve -the title of the Document and satisfy these conditions, can be treated -as verbatim copying in other respects. - -If the required texts for either cover are too voluminous to fit -legibly, you should put the first ones listed (as many as fit -reasonably) on the actual cover, and continue the rest onto adjacent -pages. - -If you publish or distribute Opaque copies of the Document numbering -more than 100, you must either include a machine-readable Transparent -copy along with each Opaque copy, or state in or with each Opaque copy -a computer-network location from which the general network-using -public has access to download using public-standard network protocols -a complete Transparent copy of the Document, free of added material. -If you use the latter option, you must take reasonably prudent steps, -when you begin distribution of Opaque copies in quantity, to ensure -that this Transparent copy will remain thus accessible at the stated -location until at least one year after the last time you distribute an -Opaque copy (directly or through your agents or retailers) of that -edition to the public. - -It is requested, but not required, that you contact the authors of the -Document well before redistributing any large number of copies, to give -them a chance to provide you with an updated version of the Document. - -@item -MODIFICATIONS - -You may copy and distribute a Modified Version of the Document under -the conditions of sections 2 and 3 above, provided that you release -the Modified Version under precisely this License, with the Modified -Version filling the role of the Document, thus licensing distribution -and modification of the Modified Version to whoever possesses a copy -of it. In addition, you must do these things in the Modified Version: - -@enumerate A -@item -Use in the Title Page (and on the covers, if any) a title distinct -from that of the Document, and from those of previous versions -(which should, if there were any, be listed in the History section -of the Document). You may use the same title as a previous version -if the original publisher of that version gives permission. - -@item -List on the Title Page, as authors, one or more persons or entities -responsible for authorship of the modifications in the Modified -Version, together with at least five of the principal authors of the -Document (all of its principal authors, if it has fewer than five), -unless they release you from this requirement. - -@item -State on the Title page the name of the publisher of the -Modified Version, as the publisher. - -@item -Preserve all the copyright notices of the Document. - -@item -Add an appropriate copyright notice for your modifications -adjacent to the other copyright notices. - -@item -Include, immediately after the copyright notices, a license notice -giving the public permission to use the Modified Version under the -terms of this License, in the form shown in the Addendum below. - -@item -Preserve in that license notice the full lists of Invariant Sections -and required Cover Texts given in the Document's license notice. - -@item -Include an unaltered copy of this License. - -@item -Preserve the section Entitled ``History'', Preserve its Title, and add -to it an item stating at least the title, year, new authors, and -publisher of the Modified Version as given on the Title Page. If -there is no section Entitled ``History'' in the Document, create one -stating the title, year, authors, and publisher of the Document as -given on its Title Page, then add an item describing the Modified -Version as stated in the previous sentence. - -@item -Preserve the network location, if any, given in the Document for -public access to a Transparent copy of the Document, and likewise -the network locations given in the Document for previous versions -it was based on. These may be placed in the ``History'' section. -You may omit a network location for a work that was published at -least four years before the Document itself, or if the original -publisher of the version it refers to gives permission. - -@item -For any section Entitled ``Acknowledgements'' or ``Dedications'', Preserve -the Title of the section, and preserve in the section all the -substance and tone of each of the contributor acknowledgements and/or -dedications given therein. - -@item -Preserve all the Invariant Sections of the Document, -unaltered in their text and in their titles. Section numbers -or the equivalent are not considered part of the section titles. - -@item -Delete any section Entitled ``Endorsements''. Such a section -may not be included in the Modified Version. - -@item -Do not retitle any existing section to be Entitled ``Endorsements'' or -to conflict in title with any Invariant Section. - -@item -Preserve any Warranty Disclaimers. -@end enumerate - -If the Modified Version includes new front-matter sections or -appendices that qualify as Secondary Sections and contain no material -copied from the Document, you may at your option designate some or all -of these sections as invariant. To do this, add their titles to the -list of Invariant Sections in the Modified Version's license notice. -These titles must be distinct from any other section titles. - -You may add a section Entitled ``Endorsements'', provided it contains -nothing but endorsements of your Modified Version by various -parties---for example, statements of peer review or that the text has -been approved by an organization as the authoritative definition of a -standard. - -You may add a passage of up to five words as a Front-Cover Text, and a -passage of up to 25 words as a Back-Cover Text, to the end of the list -of Cover Texts in the Modified Version. Only one passage of -Front-Cover Text and one of Back-Cover Text may be added by (or -through arrangements made by) any one entity. If the Document already -includes a cover text for the same cover, previously added by you or -by arrangement made by the same entity you are acting on behalf of, -you may not add another; but you may replace the old one, on explicit -permission from the previous publisher that added the old one. - -The author(s) and publisher(s) of the Document do not by this License -give permission to use their names for publicity for or to assert or -imply endorsement of any Modified Version. - -@item -COMBINING DOCUMENTS - -You may combine the Document with other documents released under this -License, under the terms defined in section 4 above for modified -versions, provided that you include in the combination all of the -Invariant Sections of all of the original documents, unmodified, and -list them all as Invariant Sections of your combined work in its -license notice, and that you preserve all their Warranty Disclaimers. - -The combined work need only contain one copy of this License, and -multiple identical Invariant Sections may be replaced with a single -copy. If there are multiple Invariant Sections with the same name but -different contents, make the title of each such section unique by -adding at the end of it, in parentheses, the name of the original -author or publisher of that section if known, or else a unique number. -Make the same adjustment to the section titles in the list of -Invariant Sections in the license notice of the combined work. - -In the combination, you must combine any sections Entitled ``History'' -in the various original documents, forming one section Entitled -``History''; likewise combine any sections Entitled ``Acknowledgements'', -and any sections Entitled ``Dedications''. You must delete all -sections Entitled ``Endorsements.'' - -@item -COLLECTIONS OF DOCUMENTS - -You may make a collection consisting of the Document and other documents -released under this License, and replace the individual copies of this -License in the various documents with a single copy that is included in -the collection, provided that you follow the rules of this License for -verbatim copying of each of the documents in all other respects. - -You may extract a single document from such a collection, and distribute -it individually under this License, provided you insert a copy of this -License into the extracted document, and follow this License in all -other respects regarding verbatim copying of that document. - -@item -AGGREGATION WITH INDEPENDENT WORKS - -A compilation of the Document or its derivatives with other separate -and independent documents or works, in or on a volume of a storage or -distribution medium, is called an ``aggregate'' if the copyright -resulting from the compilation is not used to limit the legal rights -of the compilation's users beyond what the individual works permit. -When the Document is included in an aggregate, this License does not -apply to the other works in the aggregate which are not themselves -derivative works of the Document. - -If the Cover Text requirement of section 3 is applicable to these -copies of the Document, then if the Document is less than one half of -the entire aggregate, the Document's Cover Texts may be placed on -covers that bracket the Document within the aggregate, or the -electronic equivalent of covers if the Document is in electronic form. -Otherwise they must appear on printed covers that bracket the whole -aggregate. - -@item -TRANSLATION - -Translation is considered a kind of modification, so you may -distribute translations of the Document under the terms of section 4. -Replacing Invariant Sections with translations requires special -permission from their copyright holders, but you may include -translations of some or all Invariant Sections in addition to the -original versions of these Invariant Sections. You may include a -translation of this License, and all the license notices in the -Document, and any Warranty Disclaimers, provided that you also include -the original English version of this License and the original versions -of those notices and disclaimers. In case of a disagreement between -the translation and the original version of this License or a notice -or disclaimer, the original version will prevail. - -If a section in the Document is Entitled ``Acknowledgements'', -``Dedications'', or ``History'', the requirement (section 4) to Preserve -its Title (section 1) will typically require changing the actual -title. - -@item -TERMINATION - -You may not copy, modify, sublicense, or distribute the Document except -as expressly provided for under this License. Any other attempt to -copy, modify, sublicense or distribute the Document is void, and will -automatically terminate your rights under this License. However, -parties who have received copies, or rights, from you under this -License will not have their licenses terminated so long as such -parties remain in full compliance. - -@item -FUTURE REVISIONS OF THIS LICENSE - -The Free Software Foundation may publish new, revised versions -of the GNU Free Documentation License from time to time. Such new -versions will be similar in spirit to the present version, but may -differ in detail to address new problems or concerns. See -@uref{http://www.gnu.org/copyleft/}. - -Each version of the License is given a distinguishing version number. -If the Document specifies that a particular numbered version of this -License ``or any later version'' applies to it, you have the option of -following the terms and conditions either of that specified version or -of any later version that has been published (not as a draft) by the -Free Software Foundation. If the Document does not specify a version -number of this License, you may choose any version ever published (not -as a draft) by the Free Software Foundation. -@end enumerate - -@unnumberedsec ADDENDUM: How to use this License for your documents - -To use this License in a document you have written, include a copy of -the License in the document and put the following copyright and -license notices just after the title page: - -@smallexample -@group - Copyright (C) @var{year} @var{your name}. - Permission is granted to copy, distribute and/or modify this document - under the terms of the GNU Free Documentation License, Version 1.2 - or any later version published by the Free Software Foundation; - with no Invariant Sections, no Front-Cover Texts, and no Back-Cover - Texts. A copy of the license is included in the section entitled ``GNU - Free Documentation License''. -@end group -@end smallexample - -If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, -replace the ``with@dots{}Texts.'' line with this: - -@smallexample -@group - with the Invariant Sections being @var{list their titles}, with - the Front-Cover Texts being @var{list}, and with the Back-Cover Texts - being @var{list}. -@end group -@end smallexample - -If you have Invariant Sections without Cover Texts, or some other -combination of the three, merge those two alternatives to suit the -situation. - -If your document contains nontrivial examples of program code, we -recommend releasing these examples in parallel under your choice of -free software license, such as the GNU General Public License, -to permit their use in free software. - -@c Local Variables: -@c ispell-local-pdict: "ispell-dict" -@c End: - diff --git a/doc/manual/app.txt b/doc/manual/app.txt deleted file mode 100644 index 989e6e6..0000000 --- a/doc/manual/app.txt +++ /dev/null @@ -1,9 +0,0 @@ -/** @page appdocs OpenOCD Application APIs - -The top-level APIs in the OpenOCD library allow applications to integrate -all of the low-level functionality using a set of simple function calls. - -These function calls do not exist in a re-usable form, but -contributions to create and document them will be welcome. - - */ diff --git a/doc/manual/flash.txt b/doc/manual/flash.txt deleted file mode 100644 index a9f6c2a..0000000 --- a/doc/manual/flash.txt +++ /dev/null @@ -1,35 +0,0 @@ -/** @page flashdocs OpenOCD Flash APIs - -OpenOCD provides its Flash APIs for developers to support different -types of flash devices, some of which are built-in to target devices -while others may be connected via standard memory interface (e.g. CFI, -FMI, etc.). - -The Flash module provides the following APIs: - - - @subpage flashcfi - - @subpage flashnand - - @subpage flashtarget - -This section needs to be expanded. - -*/ - - -/** @page flashcfi OpenOCD CFI Flash API - -This section needs to be expanded to describe OpenOCD's CFI Flash API. - -*/ - -/** @page flashnand OpenOCD NAND Flash API - -This section needs to be expanded to describe OpenOCD's NAND Flash API. - -*/ - -/** @page flashtarget OpenOCD Target Flash API - -This section needs to be expanded to describe OpenOCD's Target Flash API. - -*/ diff --git a/doc/manual/helper.txt b/doc/manual/helper.txt deleted file mode 100644 index 1b01b2e..0000000 --- a/doc/manual/helper.txt +++ /dev/null @@ -1,136 +0,0 @@ -/** @page helperdocs OpenOCD Helper APIs - -OpenOCD uses several low-level APIs as the foundation for high-level APIs: - - - @subpage helperporting - - @subpage helperjim - - @subpage helpercommand - - @subpage helperlogging - - @subpage helperbuffers - -This section needs to be expanded. - - */ - -/** @page helperporting OpenOCD Types/Portability APIs - -This section needs to be expanded to describe OpenOCD's type and -portability API. - - */ - -/** @page helperjim OpenOCD Jim API - -The Jim API provides access to a small-footprint TCL implementation. - -Visit http://jim.tcl.tk/ for more information on Jim. - -This section needs to be expanded to describe OpenOCD's Jim API. - - */ - -/** @page helpercommand OpenOCD Command API - -OpenOCD's command API allows modules to register callbacks that are then -available to the scripting services. It provides the mechanism for -these commands to be dispatched to the module using a standard -interface. It provides macros for defining functions that use and -extend this interface. - -@section helpercmdhandler Command Handlers - -Command handlers are functions with a particular signature, which can -be extended by modules for passing additional parameters to helpers or -another layer of handlers. - -@subsection helpercmdhandlerdef Defining and Calling Command Handlers - -These functions should be defined using the @c COMMAND_HANDLER macro. -These methods must be defined as static, as their principal entry point -should be the run_command dispatch mechanism. - -Command helper functions that require access to the full set of -parameters should be defined using the @c COMMAND_HELPER. These must be -declared static by you, as sometimes you might want to share a helper -among several files (e.g. @c s3c24xx_nand.h). - -Both types of routines must be called using the @c CALL_COMMAND_HANDLER macro. -Calls using this macro to normal handlers require the name of the command -handler (which can be a name or function pointer). Calls to helpers and -derived handlers must pass those extra parameters specified by their -definitions; however, lexical capture is used for the core parameters. -This dirty trick is being used as a stop-gap measure while the API is -migrated to one that passes a pointer to a structure containing the -same ingredients. At that point, this macro will be removed and callers -will be able to use direct invocations. - -Thus, the following macros can be used to define and call command -handlers or helpers: - -- @c COMMAND_HANDLER - declare or define a command handler. -- @c COMMAND_HELPER - declare or define a derived command handler or helper. -- @c CALL_COMMAND_HANDLER - call a command handler/helper. - -@subsection helpercmdhandlermacros Command Handler Macros - -In addition, the following macros may be used in the context of -command handlers and helpers: -- @c CMD_CTX - the current @c command_context -- @c CMD_NAME - invoked command name -- @c CMD_ARGC - the number of command arguments -- @c CMD_ARGV - array of command argument strings - -@section helpercmdregister Command Registration - -In order to use a command handler, it must be registered with the -command subsystem. All commands are registered with command_registration -structures, specifying the name of the command, its handler, its allowed -mode(s) of execution, and strings that provide usage and help text. -A single handler may be registered using multiple names, but any name -may have only one handler associated with it. - -The @c register_commands() and @c register_commands() functions provide -registration, while the @c unregister_command() and -@c unregister_all_commands() functions will remove existing commands. -These may be called at any time, allowing the command set to change in -response to system actions. - -@subsection helpercmdjim Jim Command Registration - -The command_registration structure provides support for registering -native Jim command handlers (@c jim_handler) too. For these handlers, -the module can provide help and usage support; however, this mechanism -allows Jim handlers to be called as sub-commands of other commands. -These commands may be registered with a private data value (@c -jim_handler_data) that will be available when called, as with low-level -Jim command registration. - -A command may have a normal @c handler or a @c jim_handler, but not both. - -@subsection helpercmdregisterchains Command Chaining - -When using register_commands(), the array of commands may reference -other arrays. When the @c chain field is filled in a -command_registration record, the commands on in the chained list will -added in one of two places. If the record defines a new command, then -the chained commands are added under it; otherwise, the commands are -added in the same context as the other commands in the array. - -@section helpercmdprimer Command Development Primer - -This @ref primercommand provides details about the @c hello module, -showing how the pieces described on this page fit together. - - */ - -/** @page helperlogging OpenOCD Logging API - -This section needs to be expanded to describe OpenOCD's Logging API. - - */ - -/** @page helperbuffers OpenOCD Byte Buffer API - -This section needs to be expanded to describe OpenOCD's Byte Buffer API. - - */ diff --git a/doc/manual/images/jtag-state-machine-large.png b/doc/manual/images/jtag-state-machine-large.png Binary files differdeleted file mode 100644 index c91fcf4..0000000 --- a/doc/manual/images/jtag-state-machine-large.png +++ /dev/null diff --git a/doc/manual/jtag.txt b/doc/manual/jtag.txt deleted file mode 100644 index 8f0804c..0000000 --- a/doc/manual/jtag.txt +++ /dev/null @@ -1,73 +0,0 @@ -/** @page jtagdocs JTAG APIs - -For new developers unfamiliar with the technology, @ref primerjtag provides -a brief introduction to the IEEE JTAG interface. - -The OpenOCD JTAG library API covers several functional areas. The jtag -@b core communicates through the @b minidriver API with either its full -@a driver implementation (src/jtag/jtag_driver.c) or a @a minidriver . -Internally, the @b command API is used by the JTAG driver for managing -asynchronous transactions. - -- @subpage jtagcore - - @b public API routines - - declared in @c src/jtag/jtag.h - - used by other modules - -- @subpage jtagtcl - - @b private TCL handling routines - - defined in @c src/jtag/tcl.c - - registers and handles Jim commands that configure and use the JTAG core - -- @subpage jtagcmd - - @b private command queue API - - declared in @c src/jtag/commands.h - - provides routines used internally by the full JTAG drivers. - -- @subpage jtagiface - - @b private interface driver API - - declared in @c src/jtag/interface.h - - used by the core, minidrivers, and the full interface device drivers. - - allows implementing new interface device drivers. - - includes the Cable/TAP API (commands starting with @c tap_) - -- @subpage jtagdriver - - @b private minidriver API - - declared in @c src/jtag/minidriver.h - - used @a only by the core and minidriver implementations: - - @c jtag_driver.c (in-tree OpenOCD drivers) - - @c zy1000/build/include/jtag_minidriver.h (ZY1000 minidriver) - - future implementations (on other embedded hosts) - - interface device drivers do @b not need this API. - - */ - -/** @page jtagcore JTAG Core API - -This section needs to be expanded. - - */ - -/** @page jtagtcl JTAG TCL API - -This section needs to be expanded. - - */ - -/** @page jtagcmd JTAG Command API - -This section needs to be expanded. - - */ - -/** @page jtagiface JTAG Interface API - -This section needs to be expanded. - - */ - -/** @page jtagdriver JTAG Minidriver API - -This section needs to be expanded. - - */ diff --git a/doc/manual/jtag/drivers/remote_bitbang.txt b/doc/manual/jtag/drivers/remote_bitbang.txt deleted file mode 100644 index 5a80047..0000000 --- a/doc/manual/jtag/drivers/remote_bitbang.txt +++ /dev/null @@ -1,53 +0,0 @@ -/** @remote_bitbangpage OpenOCD Developer's Guide - -The remote_bitbang JTAG driver is used to drive JTAG from a remote process. The -remote_bitbang driver communicates via TCP or UNIX sockets with some remote -process using an ASCII encoding of the bitbang interface. The remote process -presumably then drives the JTAG however it pleases. The remote process should -act as a server, listening for connections from the openocd remote_bitbang -driver. - -The remote bitbang driver is useful for debugging software running on -processors which are being simulated. - -The bitbang interface consists of the following functions. - -blink on - Blink a light somewhere. The argument on is either 1 or 0. - -read - Sample the value of tdo. - -write tck tms tdi - Set the value of tck, tms, and tdi. - -reset trst srst - Set the value of trst, srst. - -An additional function, quit, is added to the remote_bitbang interface to -indicate there will be no more requests and the connection with the remote -driver should be closed. - -These five functions are encoded in ascii by assigning a single character to -each possible request. The assignments are: - - B - Blink on - b - Blink off - R - Read request - Q - Quit request - 0 - Write 0 0 0 - 1 - Write 0 0 1 - 2 - Write 0 1 0 - 3 - Write 0 1 1 - 4 - Write 1 0 0 - 5 - Write 1 0 1 - 6 - Write 1 1 0 - 7 - Write 1 1 1 - r - Reset 0 0 - s - Reset 0 1 - t - Reset 1 0 - u - Reset 1 1 - -The read response is encoded in ascii as either digit 0 or 1. - - */ diff --git a/doc/manual/main.txt b/doc/manual/main.txt deleted file mode 100644 index c14096b..0000000 --- a/doc/manual/main.txt +++ /dev/null @@ -1,105 +0,0 @@ -/** @mainpage OpenOCD Developer's Guide - -Welcome to the OpenOCD Developer's Guide -- the developer's resource for -learning about the internal architecture of the OpenOCD project. @par - -In addition, this document contains the tactical and strategic plans -and processes that have been developed by and for the OpenOCD community. - -Developers that want to contribute to OpenOCD should read the following -sections before starting work: - -- The List of @subpage thelist enumerates opportunities for improving or -extending the OpenOCD platform. If your ideas are on The List, you might -check the mailing list archives to find the status of your feature (or bug). -- The @subpage styleguide provides rules that developers should - follow when writing new code for OpenOCD. -- The @subpage patchguide provides policies that developers should - follow when submitting patches to the project. -- The @subpage bugs page contains the content of the BUGS file, which - provides instructions for submitting bug reports to the maintainers. -- The @subpage releases page describes the project's release process. - -@ref primer provide introductory materials for new developers on various -specific topics. - -Finally, the @ref oocd pages explain how the code has been organized -into layers of APIs, providing an overview of how they fit together. -These pages attempt to give developers a high-level perspective of the -various code modules provided by OpenOCD. - - */ - -/** @page primer OpenOCD Technical Primers - -This pages lists Technical Primers available for OpenOCD Developers. -They seek to provide information to pull novices up the learning curves -associated with the fundamental technologies used by OpenOCD. - -- @subpage primerdocs -- @subpage primerautotools -- @subpage primertcl -- @subpage primerjtag - -The above documents should bridge any "ancillary" gaps in contributor -knowledge, without having to learn the complete languages or technology. -They should provide enough information for experienced developers to -learn how to make "correct" changes when creating patches. - -Beyond the fundamentals, the following primers provide introductory -tutorials for OpenOCD's sub-systems. These complement the @ref oocd -pages that provide more high-level perspective on related topics. - -- @subpage primercommand - -In all cases, these Primers should use idiomatic conventions that the -community has agreed are the "right way of doing things". In this -respect, these documents typically assume some familiarity with the -information contained in one or more @ref styleguide, or they will -directly refer to specific style guides as supplemental reading. - -Contributions or suggestions for new Technical Primers are welcome. - - */ - -/** @page oocd OpenOCD Architecture - -The OpenOCD library consists of several APIs that build together to -provide the support functionality. The following list shows how these -modules are stacked in the current implementation (from bottom to top): - -- @subpage helperdocs - - @ref helperporting - - @ref helperjim - - @ref helpercommand - - @ref helperlogging -- @subpage jtagdocs - - @ref jtagcore - - @ref jtagtcl - - @ref jtagcmd - - @ref jtagiface - - @ref jtagdriver -- @subpage targetdocs - - @ref targetarm - - @ref targetnotarm - - @ref targetmips - - @ref targetregister - - @ref targetimage - - @ref targettrace -- @subpage flashdocs - - @ref flashcfi - - @ref flashnand - - @ref flashtarget -- @subpage serverdocs - - @ref servergdb - - @ref servertelnet - - @ref serverhttp -- @subpage appdocs - -Obviously, there are some nuances to the stack that are not shown by -this linear list of layers. - -The List of @ref thelist enumerates opportunities for improving or -extending the OpenOCD platform. - - */ diff --git a/doc/manual/primer/autotools.txt b/doc/manual/primer/autotools.txt deleted file mode 100644 index 9d9aada..0000000 --- a/doc/manual/primer/autotools.txt +++ /dev/null @@ -1,147 +0,0 @@ -/** @page primerautotools OpenOCD Autotools Primer - -This page provides an overview to OpenOCD's use of the GNU autotool suite: -- @ref primerautoconf -- @ref primerautomake -- @ref primerlibtool - -Most developers do not need to concern themselves with these tools, as -the @ref primerbootstrap script runs these tools in the required sequence. - -@section primerbootstrap Autotools Bootstrap - -The @c bootstrap script should be used by developers to run the -autotools in the correct sequence. - -When run after a fresh checkout, this script generates the build files -required to compile the project, producing the project configure script. -After running @c configure, the @ref primermaintainermode settings will -handle most situations that require running these tools again. In some -cases, a fresh bootstrap may be still required. - -@subsection primerbootstrapcures Problems Solved By Bootstrap - -For example, the build system can fail in unexpected ways after running -<code>git pull</code>. Here, the <code>make maintainer-clean</code> -should be used to remove all of the files generated by the @c bootstrap -script and subsequent build processes. - -In this particular case, one may also need to remove stray files by hand -after running this command to ensure everything is rebuilt properly. -This step should be necessary only if the @c maintainer-clean was run -@b after altering the build system files with git. If it is run -@b before any updates, the build system should never leave artifacts -in the tree. - -Without such precautions, changes can be introduced that leave the tree -timestamps in an inconsistent state, producing strange compile errors -that are resolve after such diligence. - -@subsection primermaintainerclean Autotools Cleaning - -Normally, all files generated by the bootstrap script, configure -process, and build system should be removed after running <code>make -maintainer-clean</code>. Automatically generated files that remain -after this should be listed in @c MAINTAINERCLEANFILES, -@c DISTCLEANFILES, or @c CLEANFILES, depending on which stage of the -build process they are produced. - -@section primerautoconf Autoconf Configuration Script - -The @c autoconf program generates the @c configure script from -@c configure.in, using serious Perl voodoo. The resulting script is -included in the project distribution packages and run by users to -configure the build process for their system. - -@section primerautomake Automake Makefiles - -The @c automake program generates @c Makefile.in files (from @c -Makefile.am files). These files are later processed by the configure -script produced by @c autoconf. - -@subsection primerautomakenewfiles Creating Makefile.am Files - -This section shows how to add a @c Makefile.am in a new directory (or -one that lacks one). --# The new directory must be listed in the @c SUBDIRS variable in the -parent directory's Makefile.am: -@code -$ echo 'SUBDIRS += directory' >>../Makefile.am -@endcode --# Create an bare-bones Makefile.am file in directory that needs it: -@code -$ echo "MAINTAINERCLEANFILES = Makefile.in" >Makefile.am -@endcode --# The @c configure.in script must be updated, so it generates the required -Makefile when the @a configure script is run by the user: -@verbatim -AC_OUTPUT([ - ... - path/to/new/Makefile - ]) -@endverbatim - -Note: these instructions are @b not meant to be used literally, rather -they are shown for demonstration purposes. - -The default MAINTAINERCLEANFILES rule ensures that the -automake-generated @c Makefile.in file will be removed when developers -run <code>make maintainer-clean</code>. Additional rules may be added -after this; however, the project should bootstrap and tear down cleanly -after taking these minimal steps, with the new directory being visited -during the @c make sequence. - -@subsection primerautomaketweaks Updating Makefile.am Files - -Adding, removing, and renaming files from the project tree usually -requires updating the autotools inputs. This section will help describe -how to do this as questions arise. - -@section primerlibtool Libtool and Libraries - -The @c libtool program provides the means of generating libraries in a -portable and painless manner (relatively speaking). - -This section will contain an answer to "what does libtool give OpenOCD?" -and "what do developers need to consider in new code?" - -@section primerautotoolsmation Autotools Automation - -This section outlines three ways the autotools provides automation to -assist with testing and distribution: -- @ref primerautocheck -- automatic unit and smoke tests -- @ref primerautodistcheck -- automatic distribution and packaging tests - -@subsection primerautocheck make check - -The <code>make check</code> command will run the OpenOCD test suite, -once it has been integrated as such. This section will contain -information about how to extend the testing build system components to -implement new checks. - -@subsection primerautodistcheck make distcheck - -The <code>make distcheck</code> command produces an archive of the -project deliverables (using <code>make dist</code>) and verifies its -integrity for distribution by attemptng to use the package in the same -manner as a user. - -These checks includes the following steps: --# Unpack the project archive into its expected directory. --# Configure and build the project in a temporary out-of-tree directory. --# Run <code>make check</code> to ensure the distributed code passes all tests. --# Run <code>make install</code> into a temporary installation directory. --# Check that <code>make uninstall</code> removes all files that were installed. --# Check that <code>make distclean</code> removes all files created -during all other steps (except the first). - -If all of these steps complete successfully, the @c make process will -output a friendly message indicating the archive is ready to be -distributed. - - */ -/** @file - -This file contains the @ref primerautotools page. - - */ diff --git a/doc/manual/primer/commands.txt b/doc/manual/primer/commands.txt deleted file mode 100644 index 5f89d50..0000000 --- a/doc/manual/primer/commands.txt +++ /dev/null @@ -1,138 +0,0 @@ -/** @page primercommand Command Development Primer - -This page provides a primer for writing commands by introducing @c hello -module. The full source code used in this example can be found in -hello.c, and the @ref primercmdcode section shows how to use it. - -A summary of this information can be found in @ref helpercommand . - -@section primercmdhandler Command Handlers - -Defining new commands and their helpers is easy. The following code -defines a simple command handler that delegates its argument parsing: -@code -COMMAND_HANDLER(handle_hello_command) -{ - const char *sep, *name; - int retval = CALL_COMMAND_HANDLER(handle_hello_args); - if (ERROR_OK == retval) - command_print(CMD_CTX, "Greetings%s%s!", sep, name); - return retval; -} -@endcode - -Here, the @c COMMAND_HANDLER macro establishes the function signature, -see in command.h by the @c __COMMAND_HANDLER macro. - -The COMMAND_HELPER macro function allows defining functions with an -extended version of the base signature. These helper functions can be -called (with the appropriate parameters), the @c CALL_COMMAND_HANDLER -macro to pass any e as parameters to the following helper function: - -The subsequent blocks of code are a normal C function that can do -anything, so only complex commands deserve should use comamnd helper -functions. In this respect, this example uses one to demonstrate how -- -not when -- they should be used. - -@code -static COMMAND_HELPER(handle_hello_args, const char **sep, const char **name) -{ - if (argc > 1) - { - LOG_ERROR("%s: too many arguments", CMD_NAME); - return ERROR_COMMAND_SYNTAX_ERROR; - } - if (1 == CMD_ARGC) - { - *sep = ", "; - *name = CMD_ARGV[0]; - } - else - *sep = *name = ""; - - return ERROR_OK; -} -@endcode - -Of course, you may also call other macros or functions, but that extends -beyond the scope of this tutorial on writing commands. - -@section primercmdreg Command Registration - -Before this new function can be used, it must be registered somehow. -For a new module, registering should be done in a new function for -the purpose, which must be called from @c openocd.c: -@code - -static const struct command_registration hello_command_handlers[] = { - { - .name = "hello", - .mode = COMMAND_ANY, - .handler = handle_hello_command, - .help = "print a warm greeting", - .usage = "[name]", - }, - { - .chain = foo_command_handlers, - } - COMMAND_REGISTRATION_DONE -}; - -int hello_register_commands(struct command_context_s *cmd_ctx) -{ - return register_commands(cmd_ctx, NULL, handle_command_handlers); -} -@endcode - -Note that the "usage" text should use the same EBNF that's found -in the User's Guide: literals in 'single quotes', sequences of -optional parameters in [square brackets], and alternatives in -(parentheses|with|vertical bars), and so forth. No angle brackets. - -That's it! The command should now be registered and available to scripts. - -@section primercmdchain Command Chaining - -This example also shows how to chain command handler registration, so -your modules can "inherit" commands provided by other (sub)modules. -Here, the hello module includes the foo commands in the same context -that the 'hello' command will be registered. - -If the @c chain field had been put in the 'hello' command, then the -@c foo module commands would be registered under it. Indeed, that -technique is used to define the 'foo bar' and 'foo baz' commands, -as well as for the example drivers that use these modules. - -The code for the 'foo' command handlers can be found in @c hello.c. - -@section primercmdcode Trying These Example Commands - -These commands have been inherited by the dummy interface, faux flash, -and testee target drivers. The easiest way to test these is by using the -dummy interface. - -Once OpenOCD has been built with this example code, the following command -demonstrates the abilities that the @c hello module provides: -@code -openocd -c 'interface dummy' \ - -c 'dummy hello' \ - -c 'dummy hello World' \ - -c 'dummy hello {John Doe}' \ - -c 'dummy hello John Doe' # error: too many arguments -@endcode - -If saved in @c hello.cfg, then running <code>openocd -f hello.cfg</code> -should produce the following output before displaying the help text and -exiting: -@code -Greetings! -Greetings, World! -Greetings, John Doe! -Error: hello: too many arguments -Runtime error, file "openocd.cfg", line 14: - hello: too many arguments -dummy hello [<name>] - prints a warm welcome -@endcode - - */ diff --git a/doc/manual/primer/docs.txt b/doc/manual/primer/docs.txt deleted file mode 100644 index 504da79..0000000 --- a/doc/manual/primer/docs.txt +++ /dev/null @@ -1,124 +0,0 @@ -/** @page primerdocs OpenOCD Documentation Primers - -This page provides an introduction to OpenOCD's documentation processes. - -OpenOCD presently produces several kinds of documentation: -- The User's Guide: - - Focuses on using the OpenOCD software. - - Details the installation, usage, and customization. - - Provides descriptions of public Jim/TCL script commands. - - Written using GNU texinfo. - - Created with 'make pdf' or 'make html'. - - See @subpage primertexinfo and @ref styletexinfo. -- The References: (as proposed) - - Focuses on using specific hardware with OpenOCD. - - Details the supported interfaces, chips, boards, and targets. - - Provides overview, usage, reference, and FAQ for each device. - - Written using LaTeX language with custom macros. - - Created with 'make references'. - - See @subpage primerlatex and @ref stylelatex. -- The Manual: - - Focuses on developing the OpenOCD software. - - Details the architecutre, driver interfaces, and processes. - - Provides "full" coverage of C source code (work-in-progress). - - Written using Doxygen C language conventions (i.e. in comments). - - Created with 'make doxygen'. - - See @subpage primerdoxygen and @ref styledoxygen. - -The following sections provide more information for anyone that wants to -contribute new or updated documentation to the OpenOCD project. - - */ -/** @page primertexinfo Texinfo Primer - -The OpenOCD User's Guide presently exists entirely within the -doc/openocd.texi document. That file contains documentation with -mark-up suitable for being parsed by the GNU Texinfo utilities -(http://www.gnu.org/software/texinfo/). - -When you add a new command, driver, or driver option, it needs to be -documented in the User's Guide. Use the existing documentation for -models, but feel free to make better use of Texinfo mechanisms. See -the Texinfo web site for the Texinfo manual and more information. - -OpenOCD style guidelines for Texinfo documentation can be found on the -@ref styletexinfo page. - - */ -/** @page primerlatex LaTeX Primer - -The OpenOCD project provides a number of reference guides using the -LaTeX typesetting language. - -- OpenOCD Quick Reference Sheets -- OpenOCD Hardware Reference Guides - -These documents have not yet been produced, so this Primer serves as -a placeholder to describe how they are created and can be extended. -The same holds true for the @ref stylelatex page. - - */ -/** @page primerdoxygen Doxygen Primer - -Doxygen-style comments are used to provide documentation in-line with -the OpenOCD source code. These comments are used to document functions, -variables, structs, enums, fields, and everything else that might need -to be documented for developers. Additional files containing comments -that supplement the code comments in order to provide complete developer -documentation. - -Even if you already know Doxygen, please read this Primer to learn -how OpenOCD developers already use Doxygen features in the project tree. -For more information about OpenOCD's required style for using Doxygen, -see the @ref styledoxygen page and look at existing documentation in the -@c doc/manual tree. - -@section primerdoxytext Doxygen Input Files - -Doxygen has been configured parse all of the C source code files (*.c -and *.h) in @c src/ in order to produce a complete reference of all -OpenOCD project symbols. In addition to the source code files, other -files will also be scanned for comment blocks; some are referenced -explicitly by the @c INPUT variable in the Doxygen configuration file. - -By default, the Doxygen configuration enables a "full" set of features, -including generation of dependency graphs (using the GraphViz package). -These features may be disabled by editing the @c Doxyfile.in file at the -top of the project tree; the configuration file includes comments that -provide detailed documentation for each option. - -To support out-of-tree building of the documentation, the @c Doxyfile.in -@c INPUT values will have all instances of the string @c "@srcdir@" -replaced with the current value of the make variable -<code>$(srcdir)</code>. The Makefile uses a rule to convert -@c Doxyfile.in into the @c Doxyfile used by <code>make doxygen</code>. - -@section primerdoxyoocd OpenOCD Input Files - -OpenOCD uses the @c INPUT mechanism to include additional documentation to -provide The Manual for OpenOCD Developers. These extra files contain -high-level information intended to supplement the relatively low-level -documentation that gets extracted from the source code comments. - -OpenOCD's Doxygen configuration file will search for all @c .txt files -that can be found under the @c doc/manual directory in the project tree. -New files containing valid Doxygen markup that are placed in or under -that directory will be detected and included in The Manual automatically. - -@section primerdoxyman Doxygen Reference Manual - -The full documentation for Doxygen can be referenced on-line at the project -home page: http://www.doxygen.org/index.html. In HTML versions of this -document, an image with a link to this site appears in the page footer. - -*/ -/** @file - -This file contains the Doxygen source code for the @ref primerdocs. -The @ref primerdocs page also contains the following sections: - -- @ref primertexinfo -- @ref primerlatex -- @ref primerdoxygen - - */ diff --git a/doc/manual/primer/jtag.txt b/doc/manual/primer/jtag.txt deleted file mode 100644 index 41eef72..0000000 --- a/doc/manual/primer/jtag.txt +++ /dev/null @@ -1,169 +0,0 @@ -/** @page primerjtag OpenOCD JTAG Primer - -JTAG is unnecessarily confusing, because JTAG is often confused with -boundary scan, which is just one of its possible functions. - -JTAG is simply a communication interface designed to allow communication -to functions contained on devices, for the designed purposes of -initialisation, programming, testing, debugging, and anything else you -want to use it for (as a chip designer). - -Think of JTAG as I2C for testing. It doesn't define what it can do, -just a logical interface that allows a uniform channel for communication. - -See @par - http://en.wikipedia.org/wiki/Joint_Test_Action_Group - -@image html jtag-state-machine-large.png - -The first page (among other things) shows a logical representation -describing how multiple devices are wired up using JTAG. JTAG does not -specify, data rates or interface levels (3.3V/1.8V, etc) each device can -support different data rates/interface logic levels. How to wire them -in a compatible way is an exercise for an engineer. - -Basically TMS controls which shift register is placed on the device, -between TDI and TDO. The second diagram shows the state transitions on -TMS which will select different shift registers. - -The first thing you need to do is reset the state machine, because when -you connect to a chip you do not know what state the controller is in,you need -to clock TMS as 1, at least 5 times. This will put you into "Test Logic -Reset" State. Knowing this, you can, once reset, then track what each -transition on TMS will do, and hence know what state the JTAG state -machine is in. - -There are 2 "types" of shift registers. The Instruction shift register -and the data shift register. The sizes of these are undefined, and can -change from chip to chip. The Instruction register is used to select -which Data register/data register function is used, and the data -register is used to read data from that function or write data to it. - -Each of the states control what happens to either the data register or -instruction register. - -For example, one of the data registers will be known as "bypass" this is -(usually) a single bit which has no function and is used to bypass the -chip. Assume we have 3 identical chips, wired up like the picture(wikipedia) -and each has a 3 bits instruction register, and there are 2 known -instructions (110 = bypass, 010 = "some other function") if we want to use -"some other function", on the second chip in the line, and not change -the other chips we would do the following transitions. - -From Test Logic Reset, TMS goes: - - 0 1 1 0 0 - -which puts every chip in the chain into the "Shift IR state" -Then (while holding TMS as 0) TDI goes: - - 0 1 1 0 1 0 0 1 1 - -which puts the following values in the instruction shift register for -each chip [110] [010] [110] - -The order is reversed, because we shift out the least significant bit -first. Then we transition TMS: - - 1 1 1 0 0 - -which puts us in the "Shift DR state". - -Now when we clock data onto TDI (again while holding TMS to 0) , the -data shifts through the data registers, and because of the instruction -registers we selected ("some other function" has 8 bits in its data -register), our total data register in the chain looks like this: - - 0 00000000 0 - -The first and last bit are in the "bypassed" chips, so values read from -them are irrelevant and data written to them is ignored. But we need to -write bits for those registers, because they are in the chain. - -If we wanted to write 0xF5 to the data register we would clock out of -TDI (holding TMS to 0): - - 0 1 0 1 0 1 1 1 1 0 - -Again, we are clocking the least-significant bit first. Then we would -clock TMS: - - 1 1 0 - -which updates the selected data register with the value 0xF5 and returns -us to run test idle. - -If we needed to read the data register before over-writing it with F5, -no sweat, that's already done, because the TDI/TDO are set up as a -circular shift register, so if you write enough bits to fill the shift -register, you will receive the "captured" contents of the data registers -simultaneously on TDO. - -That's JTAG in a nutshell. On top of this, you need to get specs for -target chips and work out what the various instruction registers/data -registers do, so you can actually do something useful. That's where it -gets interesting. But in and of itself, JTAG is actually very simple. - -@section primerjtag More Reading - -A separate primer contains information about @subpage primerjtagbs for -developers that want to extend OpenOCD for such purposes. - - */ -/** @page primerjtagbs JTAG Boundary Scan Primer - -The following page provides an introduction on JTAG that focuses on its -boundary scan capabilities: @par -http://www.engr.udayton.edu/faculty/jloomis/ece446/notes/jtag/jtag1.html - -OpenOCD does not presently have clear means of using JTAG for boundary -scan testing purposes; however, some developers have explored the -possibilities. The page contains information that may be useful to -those wishing to implement boundary scan capabilities in OpenOCD. - -@section primerbsdl The BSDL Language - -For more information on the Boundary Scan Description Language (BSDL), -the following page provides a good introduction: @par -http://www.radio-electronics.com/info/t_and_m/boundaryscan/bsdl.php - -@section primerbsdlvendors Vendor BSDL Files - -NXP LPC: @par -http://www.standardics.nxp.com/support/models/lpc2000/ - -Freescale PowerPC: @par -http://www.freescale.com/webapp/sps/site/overview.jsp?code=DRPPCBSDLFLS - -Freescale i.MX1 (too old): @par -http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=i.MX1&nodeId=0162468rH311432973ZrDR&fpsp=1&tab=Design_Tools_Tab - -Renesas R32C/117: @par -http://sg.renesas.com/fmwk.jsp?cnt=r32c116_7_8_root.jsp&fp=/products/mpumcu/m16c_family/r32c100_series/r32c116_7_8_group/ -- The device page does not come with BSDL file; you have to register to - download them. @par - http://www.corelis.com/support/BSDL.htm - -TI links theirs right off the generic page for each chip; -this may be the case for other vendors as well. For example: - -- DaVinci DM355 -- http://www.ti.com/litv/zip/sprm262b -- DaVinci DM6446 - - 2.1 silicon -- http://www.ti.com/litv/zip/sprm325a - - older silicon -- http://www.ti.com/litv/zip/sprm203 -- OMAP 3530 - - CBB package -- http://www.ti.com/litv/zip/sprm315b - - 515 ball s-PGBA, POP, 0.4mm pitch - - CUS package -- http://www.ti.com/litv/zip/sprm314a - - 515 ball s-PGBA, POP, 0.5mm pitch - - CBC package -- http://www.ti.com/litv/zip/sprm346 - - 423 ball s-PGBA, 0.65mm pitch - -Many other files are available in the "Semiconductor Manufacturer's BSDL -files" section of the following site: @par -http://www.freelabs.com/~whitis/electronics/jtag/ - - */ -/** @file -This file contains the @ref primerjtag and @ref primerjtagbs page. - */ diff --git a/doc/manual/primer/tcl.txt b/doc/manual/primer/tcl.txt deleted file mode 100644 index 9be4a05..0000000 --- a/doc/manual/primer/tcl.txt +++ /dev/null @@ -1,440 +0,0 @@ -/** @page primertcl OpenOCD TCL Primer - -The @subpage scripting page provides additional TCL Primer material. - -@verbatim - -**************************************** -**************************************** - -This is a short introduction to 'un-scare' you about the language -known as TCL. It is structured as a guided tour through the files -written by me [Duane Ellis] - in early July 2008 for OpenOCD. - -Which uses the "JIM" embedded Tcl clone-ish language. - -Thing described here are *totally* TCL generic... not Jim specific. - -The goal of this document is to encourage you to add your own set of -chips to the TCL package - and most importantly you should know where -you should put them - so they end up in an organized way. - ---Duane Ellis. - duane@duaneellis.com - -**************************************** -**************************************** - -Adding "chip" support - Duane Ellis July 5 - 2008. - -The concept is this: - In your "openocd.cfg" file add something like this: - - source [find tcl/chip/VENDOR/FAMILY/NAME.tcl] - - For example... - source [find tcl/chip/atmel/at91/at91sam7x256.tcl] - - You'll notice that it makes use of: - - tcl/cpu/arm/<NAME>.tcl. - - Yes, that is where you should put "core" specific things. - Be careful and learn the difference: - - THE "CORE" - is not the entire chip! - -Definition: - That "file" listed above is called a "CHIP FILE". - - It may be standalone, or may need to "source" other "helper" files. - - The reference [7/5/2008] is the at91sam7x256.tcl file. - -**************************************** -**************************************** -=== TCL TOUR === -Open: at91sam7x256.tcl -=== TCL TOUR === - -A walk through --- For those who are new to TCL. - -Examine the file: at91sam7x256.tcl - -It starts with: - source [find path/filename.tcl] - -In TCL - this is very important. - - Rule #1 Everything is a string. - Rule #2 If you think other wise See #1. -Reminds you of: - Rule #1: The wife is correct. - Rule #2: If you think otherwise, See #1 - -Any text contained inside of [square-brackets] -is just like `back-ticks` in BASH. - -Hence, the [find FILENAME] executes the command find with a single -parameter the filename. - -======================================== - -Next you see a series of: - -set NAME VALUE - -It is mostly "obvious" what is going on. - -Exception: The arrays. - - You would *THINK* Tcl supports arrays. - In fact, multi-dim arrays. That is false. - - For the index for"FLASH(0,CHIPSELECT)" is actually the string - "0,CHIPSELECT". This is problematic. In the normal world, you think - of array indexes as integers. - - For example these are different: - - set foo(0x0c) 123 - set foo(12) 444 - - Why? Because 0x0c {lowercase} is a string. - Don't forget UPPER CASE. - - You must be careful - always... always... use simple decimal - numbers. When in doubt use 'expr' the evaluator. These are all the - same. - - set x 0x0c - set foo([expr $x]) "twelve" - - set x 12 - set foo([expr $x]) "twelve" - - set x "2 * 6" - set foo([expr $x]) "twelve" - -************************************************** -*************************************************** -=== TCL TOUR === -Open the file: "bitsbytes.tcl" - -There is some tricky things going on. -=============== - -First, there is a "for" loop - at level 0 -{level 0 means: out side of a proc/function} - -This means it is evaluated when the file is parsed. - -== SIDEBAR: About The FOR command == -In TCL, "FOR" is a funny thing, it is not what you think it is. - -Syntactically - FOR is a just a command, it is not language -construct like for(;;) in C... - -The "for" command takes 4 parameters. - (1) The "initial command" to execute. - (2) the test "expression" - (3) the "next command" - (4) the "body command" of the FOR loop. - -Notice I used the words "command" and "expression" above. - -The FOR command: -1) executes the "initial command" -2) evaluates the expression if 0 it stops. -3) executes the "body command" -4) executes the "next command" -5) Goto Step 2. - -As show, each of these items are in {curly-braces}. This means they -are passed as they are - KEY-POINT: un evaluated to the FOR -command. Think of it like escaping the backticks in Bash so that the -"under-lying" command can evaluate the contents. In this case, the FOR -COMMAND. - -== END: SIDEBAR: About The FOR command == - -You'll see two lines: - -LINE1: - set vn [format "BIT%d" $x] - -Format is like "sprintf". Because of the [brackets], it becomes what -you think. But here's how: - -First - the line is parsed - for {braces}. In this case, there are -none. The, the parser looks for [brackets] and finds them. The, -parser then evaluates the contents of the [brackets], and replaces -them. It is alot this bash statement. - - EXPORT vn=`date` - -LINE 2 & 3 - set $vn [expr (1024 * $x)] - global $vn - -In line 1, we dynamically created a variable name. Here, we are -assigning it a value. Lastly Line 3 we force the variable to be -global, not "local" the the "for command body" - -=============== -The PROCS - -proc create_mask { MSB LSB } { - ... body .... -} - -Like "for" - PROC is really just a command that takes 3 parameters. -The (1) NAME of the function, a (2) LIST of parameters, and a (3) BODY - -Again, this is at "level 0" so it is a global function. (Yes, TCL -supports local functions, you put them inside of a function} - -You'll see in some cases, I nest [brackets] alot and in others I'm -lazy or wanted it to be more clear... it is a matter of choice. -=============== - - -************************************************** -*************************************************** -=== TCL TOUR === -Open the file: "memory.tcl" -=============== - -Here is where I setup some 'memory definitions' that various targets can use. - -For example - there is an "unknown" memory region. - -All memory regions must have 2 things: - - (1) N_<name> - (2) NAME( array ) - And the array must have some specific names: - ( <idx>, THING ) - Where: THING is one of: - CHIPSELECT - BASE - LEN - HUMAN - TYPE - RWX - the access ability. - WIDTH - the accessible width. - - ie: Some regions of memory are not 'word' - accessible. - -The function "address_info" - given an address should -tell you about the address. - - [as of this writing: 7/5/2008 I have done - only a little bit with this -Duane] - -=== -MAJOR FUNCTION: -== - -proc memread32 { ADDR } -proc memread16 { ADDR } -proc memread8 { ADDR } - -All read memory - and return the contents. - -[ FIXME: 7/5/2008 - I need to create "memwrite" functions] - -************************************************** -*************************************************** -=== TCL TOUR === -Open the file: "mmr_helpers.tcl" -=============== - -This file is used to display and work with "memory mapped registers" - -For example - 'show_mmr32_reg' is given the NAME of the register to -display. The assumption is - the NAME is a global variable holding the -address of that MMR. - -The code does some tricks. The [set [set NAME]] is the TCL way -of doing double variable interpolation - like makefiles... - -In a makefile or shell script you may have seen this: - - FOO_linux = "Penguins rule" - FOO_winXP = "Broken Glass" - FOO_mac = "I like cat names" - - # Pick one - BUILD = linux - #BUILD = winXP - #BUILD = mac - FOO = ${FOO_${BUILD}} - -The "double [set] square bracket" thing is the TCL way, nothing more. - ----- - -The IF statement - and "CATCH" . - -Notice this IF COMMAND - (not statement) is like this: -[7/5/2008 it is this way] - - if ![catch { command } msg ] { - ...something... - } else { - error [format string...] - } - -The "IF" command expects either 2 params, or 4 params. - - === Sidebar: About "commands" === - - Take a look at the internals of "jim.c" - Look for the function: Jim_IfCoreCommand() - And all those other "CoreCommands" - - You'll notice - they all have "argc" and "argv" - - Yea, the entire thing is done that way. - - IF is a command. SO is "FOR" and "WHILE" and "DO" and the - others. That is why I keep using the phase it is a "command" - - === END: Sidebar: About "commands" === - -Parameter 1 to the IF command is expected to be an expression. - -As such, I do not need to wrap it in {braces}. - -In this case, the "expression" is the result of the "CATCH" command. - -CATCH - is an error catcher. - -You give CATCH 1 or 2 parameters. - The first 1st parameter is the "code to execute" - The 2nd (optional) is where to put the error message. - - CATCH returns 0 on success, 1 for failure. - The "![catch command]" is self explaintory. - - -The 3rd parameter to IF must be exactly "else" or "elseif" [I lied -above, the IF command can take many parameters they just have to -be joined by exactly the words "else" or "elseif". - -The 4th parameter contains: - - "error [format STRING....]" - -This lets me modify the previous lower level error by tacking more -text onto the end of it. In this case, i want to add the MMR register -name to make my error message look better. - ---------- -Back to something inside show_mmr32_reg{}. - -You'll see something 'set fn show_${NAME}_helper' Here I am -constructing a 'function name' Then - I look it up to see if it -exists. {the function: "proc_exists" does this} - -And - if it does - I call the function. - -In "C" it is alot like using: 'sprintf()' to construct a function name -string, then using "dlopen()" and "dlsym()" to look it up - and get a -function pointer - and calling the function pointer. - -In this case - I execute a dynamic command. You can do some cool -tricks with interpretors. - ----------- - -Function: show_mmr32_bits() - -In this case, we use the special TCL command "upvar" which tcl's way -of passing things by reference. In this case, we want to reach up into -the callers lexical scope and find the array named "NAMES" - -The rest of the function is pretty straight forward. - -First - we figure out the longest name. -Then print 4 rows of 8bits - with names. - - -************************************************** -*************************************************** -=== TCL TOUR === -Open the file: "chips/atmel/at91/usarts.tcl" -=============== - -First - about the AT91SAM series - all of the usarts -are basically identical... - -Second - there can be many of them. - -In this case - I do some more TCL tricks to dynamically -create functions out of thin air. - -Some assumptions: - -The "CHIP" file has defined some variables in a proper form. - -ie: AT91C_BASE_US0 - for usart0, - AT91C_BASE_US1 - for usart1 - ... And so on ... - -Near the end of the file - look for a large "foreach" loop that -looks like this: - - foreach WHO { US0 US1 US2 US3 US4 .... } { - - } - -In this case, I'm trying to figure out what USARTs exist. - -Step 1 - is to determine if the NAME has been defined. -ie: Does AT91C_BASE_USx - where X is some number exist? - -The "info exists VARNAME" tells you if the variable exists. Then - -inside the IF statement... There is another loop. This loop is the -name of various "sub-registers" within the USART. - -Some more trick are played with the [set VAR] backtick evaluation stuff. -And we create two variables - -We calculate and create the global variable name for every subregister in the USART. -And - declare that variable as GLOBAL so the world can find it. - -Then - we dynamically create a function - based on the register name. - -Look carefully at how that is done. You'll notice the FUNCTION BODY is -a string - not something in {braces}. Why? This is because we need TCL -to evaluate the contents of that string "*NOW*" - when $vn exists not -later, when the function "show_FOO" is invoked. - -Lastly - we build a "str" of commands - and create a single function - -with the generated list of commands for the entire USART. - -With that little bit of code - I now have a bunch of functions like: - - show_US0, show_US1, show_US2, .... etc ... - - And show_US0_MR, show_US0_IMR ... etc... - -And - I have this for every USART... without having to create tons of -boiler plate yucky code. - -**************************************** -**************************************** -END of the Tcl Intro and Walk Through -**************************************** -**************************************** - -FUTURE PLANS - - Some "GPIO" functions... - -@endverbatim - - */ diff --git a/doc/manual/release.txt b/doc/manual/release.txt deleted file mode 100644 index d144756..0000000 --- a/doc/manual/release.txt +++ /dev/null @@ -1,465 +0,0 @@ -/** @page releases Release Processes - -This page provides an introduction to the OpenOCD Release Processes: - -- @ref releasewhy - Explain the motivations for producing - releases on a regular basis. -- @ref releasewho - Describes the responsibilities and - authority required to produce official OpenOCD releases. -- @ref releasewhen - Provides guidelines for scheduling - activities for each release cycle. -- @ref releasehow - Outlines all of the steps for the - processes used to produce and release the package source archives. -- @ref releasescriptcmds - Introduces the automated @c release.sh script. - -@section releasewhy Why Produce Releases? - -The OpenOCD maintainers produce <i>releases</i> periodically for many -reasons. This section provides the key reasons for making releases on a -regular basis and why a set of <i>release processes</i> should be used -to produce them. - -At any time, <i>source archives</i> can be produced by running -<code>make dist</code> in the OpenOCD project tree. With the 0.2.0 -release, this command will package the tree into several popular archive -formats: <code>openocd-\<version\>.{tar.gz,tar.bz2,zip}</code>. If -produced properly, these files are suitable for release to the public. - -When properly versioned and released for users, these archives present -several important advantages compared to using the source repository -(including snapshots downloaded from that repository using gitweb): - --# They allow others to package and distribute the code using - consistent version labels. Users won't normally need to care - whose package they use, just the version of OpenOCD. --# They contain a working configure script and makefiles, which - were produced as part of creating the archive. --# Because they have been formally released by the project, users - don't need to try a random work-in-process revision. Releasing - involves spending some time specifically on quality improvments, - including bugfixing source code and documentation. --# They provide developers with the flexibility needed to address - larger issues, which sometimes involves temporary breakage. - -Hopefully, this shows several good reasons to produce regular releases, -but the release processes were developed with some additional design -goals in mind. Specifically, the releases processes should have the -following properties: - --# Produce successive sets of archives cleanly and consistently. --# Implementable as a script that automates the critical steps. --# Prevent human operators from producing broken packages, when possible. --# Allow scheduling and automation of building and publishing milestones. - -The current release processes are documented in the following sections. -They attempt to meet these design goals, but improvements may still -need to be made. - -@subsection version_labels Version Labels - -Users can display the OpenOCD version string in at least two -ways. The command line <code>openocd -v</code> invocation -displays it; as does the Tcl <code>version</code> command. - -Labels for released versions look like <em>0.3.0</em>, or -<em>0.3.0-rc1</em> for a preliminary release. -Non-released (developer) versions look like <em>0.3.0-dev</em>, -or <em>0.3.0-rc1-dev</em>. -In all cases, additional tags may be appended to those base -release version labels. - -The <code>tools/release/version.sh</code> script is used to -manipulate version IDs found in the source tree. - -@subsubsection releaseversions Release Versions and Tags - -The OpenOCD version string is composed of three numeric components -separated by two decimal points: @c x.y.z, where @c x is the @a major -version number, @c y is the @a minor number, and @c z is the @a micro. -For any <em>bug-fix</em> release, the micro version number will be non-zero -(<code>z > 0</code>). For a <i>minor release</i>, the micro version -number will be zero (<code>z = 0</code>). For a <i>major releases</i>, -the minor version will @a also be zero (<code>y = 0, z = 0</code>). - -After these required numeric components, release version strings -may contain tags such as as <em>-rc1</em> or <em>-rc2</em>. -These 'rc' tags indicate "release candidate" versions of the package. -Like major/minor/micro numbers, these are updated -as part of the release process. - -The release process includes version number manipulations to the tree -being released, ensuring that all numbers are incremented (or rolled -over) at the right time and in the proper locations of the repository. -One of those manipulations creates a repository tag matching that -release's version label. - -@subsubsection releaseversionsdist Packager Versions - -Distributors of patched versions of OpenOCD are encouraged to extend the -version string with a unique version tag when producing external -releases, as this helps to identify your particular distribution series. -Knowing that a release has such patches can be essential to tracking -down and fixing bugs. - -Packager version tags should always be suffixes to the version -code from the OpenOCD project, signifying modifications to the -original code base. Each packager release should have a unique -version. - -For example, the following command will add a 'foo' tag to the -configure.ac script of a local copy of the source tree, giving -a version label like <em>0.3.0-foo</em>: - -@code -tools/release/version.sh tag add foo -@endcode - -This command will modify the configure.ac script in your working copy -only. After running the @c bootstrap sequence, the tree can be patched -and used to produce your own derived versions. You might check that -change into a private branch of your git tree, along with the other -patches you are providing. - -You can also "bump" those tags (so "foo1" becomes "foo2" etc) -each time a derived package is released, incrementing the tag's -version to facilitate tracking the changes you have distributed. - -@code -tools/release/version.sh bump tag foo -@endcode - -Of course, any patches in your branches must be provided to -your customers, and be in conformance with the GPL. In most -cases you should also work to merge your improvements to the -mainline tree. - -@subsubsection version_tags Development Versions and Tags - -Everything except formal releases should have the tag <em>-dev</em> -in their version number. This helps developers identify reports -created from non-release versions, and it can be detected and -manipulated by the release script. Specifically, this tag will be -removed and re-added during the release process; it should never be -manipulated by developers in submitted patches. - -Versions built from developer trees may have additional tags. -Trees built from git snapshots have <em>snapshot</em> tags. -When built from a "live" git tree, tags specify -specific git revisions: - -0.3.0-rc1-dev-00015-gf37c9b8-dirty - -indicates a development tree based on git revison f37c9b8 -(a truncated version of a SHA1 hash) with some non-git -patches applied (the <em>dirty</em> tag). This information -can be useful when tracking down bugs. -(Note that at this writing, the tags do not directly -correspond to <code>git describe</code> output. The -hash ID can be used with <code>git show</code>, but -the relevant repository tag isn't <em>0.3.0-rc1-dev</em>; -this might change in the future.) - -@section releasewho Release Manager - -OpenOCD archive releases will be produced by an individual filling the -role of <i>Release Manager</i>, hereafter abbreviated as <i>RM</i>. This -individual determines the schedule and executes the release processes -for the community. - -@subsection releasewhohow RM Authority - -Each release requires one individual to fulfill the RM role; however, -graceful transitions of this authority may take place at any time. The -current RM may transfer their authority to another contributor in a post -to the OpenOCD development mailing list. Such delegation of authority -must be approved by the individual that will receive it and the -community of maintainers. Initial arrangements with the new RM should -be made off-list, as not every contributor wants these responsibilities. - -@subsection releasewhowhat RM Responsibilities - -In addition to the actual process of producing the releases, the RM is -responsible for keeping the community informed of all progress through -the release cycle(s) being managed. The RM is responsible for managing -the changes to the package version, though the release tools should -manage the tasks of adding or removing any required development branch -tags and incrementing the version. - -These responsibilities matter most towards the end of the release -cycle, when the RM creates the first RC and all contributors enter -a quality-improvement mode. The RM works with other contributors -to make sure everyone knows what kinds of fixes should merge, the -status of major issues, and the release timetable. - -In particular, the RM has the final decision on whether a given -bug should block the release. - -@section releasewhen Release Schedule - -The OpenOCD release process must be carried out on a periodic basis, so -the project can realize the benefits presented in answer to the question, -@ref releasewhy. - -Starting with the 0.2.0 release, the OpenOCD project expects to produce -new releases every few months. -Bug fix releases could be provided more frequently. These release -schedule goals may be adjusted in the future, after the project -maintainers and distributors receive feedback and experience. - -More importantly, the statements made in this section do not create an -obligation by any member of the OpenOCD community to produce new -releases on regular schedule, now or in the future. - -@subsection releasewhenexample Sample Schedule - -The RM must pro-actively communicate with the community from the -beginning of the development cycle through the delivery of the new -release. This section presents guidelines for scheduling key points -where the community must be informed of changing conditions. - -If Tn is the time of release n, then the following schedule -might describe some key T0-to-T1 release cycle milestones. - -- T0 ... End of T0 release cycle. T1 cycle starts, with merge - window opening. Developers begin to merge queued work. -- <em>... several weeks of merge window ...</em> -- RC1 ... Close mainline to new work. Produce RC1 - release, begin testing phase; developers are in "bugfix mode", - all other work is queued; send out planned endgame schedule. -- RC2 ... Produce RC2 and send schedule update to - mailing list, listing priorities for remaining fixes -- <em>... more RC milestones, until ready ...</em> -- T1: End of T1 release cycle. T2 cycle starts, with merge - window opening. Developers begin to merge queued work. - -Note that until it happens, any date for T1 is just a goal. -Critical bugs prevent releases from happening. We are just -beginning to use this window-plus-RCs process, so the lengths -of the merge windows versus the RC phase is subject to change. -Most projects have RC phases of a month or more. - -Some additional supplemental communication will be desirable. The above -list omits the step-by-step instructions to daily release management. -Individuals performing release management need to have the ability to -interact proactively with the community as a whole, anticipating when -such interaction will be required and giving ample notification. - -The next section explains why the OpenOCD project allows significant -flexibility in the part of the development that precedes the release -process. - -@subsection releasewhenflex Schedule Flexibility - -The Release Manager should attempt to follow the guidelines in this -document, but the process of scheduling each release milestone should be -community driven at the start. Features that don't complete before -the merge window closes can be held (perhaps in some branch) until -the next merge window opens, rather than delaying the release cycle. - -The Release -Manager cannot schedule the work that will be done on the project, -when it will be submitted, reviewed, and deemed suitable to be committed. -That is, the RM cannot act as a priest in a cathedral; OpenOCD uses -the bazaar development model. The release schedule must adapt -continuously in response to changes in the rate of work. -Fewer releases may be -required if developers contribute less patches, and more releases may be -desirable if the project continues to grow and experience high rates of -community contribution. During each cycle, the RM should be tracking -the situation and gathering feedback from the community. - -@section releasehow Release Process: Step-by-Step - -The release process is not final; it may need more iterations -to work out bugs. -While there are release scripts, key steps require community -support; the Release Manager isn't the only participant. - -The following steps should be followed to produce each release: - --# Produce final patches using a local clone of mainline. Nobody - except the RM should be committing anything. <em>Everyone with commit - privileges needs to know and agree to this in advance!</em> Even the RM - only commits a handful of updates as part of the release process - itself ... to files which are part of the version identification scheme - or release process; and to create the version tag; and then to open the - merge window for the next release cycle. - -# Finalize @c the NEWS file to describe the changes in the release - - This file is used to automatically post "blurbs" about the project. - - This material should have been produced during the development cycle, - by adding items for each @c NEWS-worthy contribution, when committed - during the merge window. (One part of closing the merge window, by - opening the RC phase of the release, is the commitment to hold all - further such contributions until the next merge window opens.) - - The RM should make sure nothing important was omitted, as part of - the RC1 cycle. From then on, no more updates to NEWS content should - be needed (except to seed the process for the next release, or maybe - if a significant and longstanding bug is fixed late in the RC phase). - -# Bump library version if our API changed (not yet required) - -# Update and commit the final package version in @c configure.ac: - (The <code>tools/release/version.sh</code> script might help ensure - the versions are named properly.): - -# Remove @c -dev tag. - -# Update any @c -rc tag: - - If producing the final release from an -rc series, remove it - - If producing the first RC in a series, add rc1 - - If producing the next RC in a series, bump the rc number - -# Commit that version change, with a good descriptive comment. - -# Create a git tag for the final commit, with a tag name matching - the version string in <code>configure.ac</code> (including <em>-rcN</em> - where relevant): -@verbatim -PACKAGE_VERSION="x.y.z" -PACKAGE_TAG="v${PACKAGE_VERSION}" -git tag -m "The openocd-${PACKAGE_VERSION} release." "${PACKAGE_TAG}" -@endverbatim - -# Do not push those changes to mainline yet; only builds using the - source archives you will be creating should ever be labeled as - official releases (with no "-dev" suffix). Since mainline is a - development tree, these will be pushed later, as part of opening - the merge window for the next release cycle (restoring the "-dev" - suffix for that next release.) Those version and tag updates are - the last ones to be included in the release being made. --# Produce the release files, using the local clone of the source - tree which holds the release's tag and updated version in - @c configure.ac ... this is used only to produce the release, and - all files should already be properly checked out. - -# Run <code>tools/release.sh package</code> to produce the - source archives. This automatically bootstraps and - configures the process. - -# Run <code>tools/release.sh stage</code> to create an @c archives - directory with the release data, including MD5 and SHA1 - checksum files. - -# Sanity check at least one of those archives, by extracting and - configuring its contents, using them to build a copy of OpenOCD, - and verifying that the result prints the correct release version - in its startup banner. (For example, - "configure --enable-ft2232_libftdi --enable-parport" - then "make" and run "src/openocd -v" as a sanity check.) - -# Run <code>make docs</code> to create the - documentation which will be published. --# Upload packages and post announcements of their availability: - -# Release packages into files section of project sites: - - SF.net: - -# Under "Project Admin", use the "File Manager" - -# Create a new folder under "openocd" named "${PACKAGE_VERSION}" - -# Upload the @c NEWS file and mark it as the release notes. - -# Upload the three source archive files, using the Web interface, - into that folder. Verify the upload worked OK by checking the - MD5 and SHA1 checksums computed by SourceForge against the - versions created as part of staging the release. - -# Also upload doc/openocd.pdf (the User's Guide) so the version - matching each release will be easily available. - -# Select each file in the release, and use the property panel - to set its type and select the right release notes. - - .tar.bz2: Linux, Mac - - .tar.gz: BSD, Solaris, Others - - .zip: Windows - - For openocd.pdf just associate it with the right release notes. - -# Create an SF.net project news update. - -# Depending on how paranoid you're feeling today, verify the images by - downloading them from the websites and making sure there are no - differences between the downloaded copies and your originals. - -# Publish User's and Developer's Guides to the project web sites: - -# Use SCP to update the SF.net web site with PDF and HTML for the - User's Guide, and HTML for the developer's guide ... you can - instantiate a shell.sourceforge.net instance and set up symlinks - from your home directory, to simplify this process. - -# Post announcement e-mail to the openocd-development list. - -# optionally: - -# Post an update on the OpenOCD blog. - -# Announce updates on freshmeat.net and other trackers. - -# Submit updates to news feeds (e.g. Digg, Reddit, etc.). --# Resume normal development on mainline, by opening the merge window for - the next major or minor release cycle. (You might want to do this - before all the release bits are fully published.) - - Update the version label in the @c configure.ac file: - - Restore @c -dev version tag. - - For a new minor release cycle, increment the release's minor number - - For a new major release cycle, increment the release's major number - and zero its minor number - - Archive @c NEWS file as "<code>doc/news/NEWS-${PACKAGE_VERSION}</code>". - - Create a new @c NEWS file for the next release - - Commit those changes. - - Push all the updates to mainline. - - Last updates for the release, including the release tag (you - will need to "git push --tags"). - - Updates opening the merge window - - At this point, it's OK for commiters to start pushing changes - which have been held off until the next release. (Any bugfixes to - this release will be against a bug-fix release branch starting from - the commit you tagged as this release, not mainline.) - - Announce to the openocd-development list. Ideally, you will also - be able to say who is managing the next release cycle. - -To start a bug-fix release branch: --# Create a new branch, starting from a major or - minor release tag --# Restore @c -dev version tag. --# Bump micro version number in configure.ac --# Backport bugfix patches from mainline into that branch. - (Always be sure mainline has the fix first, so it's hard - to just lose a bugfix.) --# Commit and push those patches. --# When desired, release as above ... except note that the next - release of a bugfix branch is never a new major or minor release - -@subsection releasescriptcmds Release Script Commands - -The @c release.sh script automates some of the steps involved -in making releases, simplifying the Release Manager's work. - -The release script can be used for two tasks: -- Creating releases and starting a new release cycle: -@code -git checkout master -tools/release.sh --type=minor --final --start-rc release -@endcode -- Creating a development branch from a tagged release: -@code -git checkout 'v0.2.0' -tools/release.sh --type=micro branch -@endcode - -Both of these variations make automatic commits and tags in your -repository, so you should be sure to run it on a cloned copy before -proceding with a live release. - -@subsection releasescriptopts Release Script Options - -The @c release.sh script recognizes some command-line options that -affect its behavior: - -- The @c --start-rc indicates that the new development release cycle - should start with @c -rc0. Without this, the @c -rc tag will be omitted, - leading to non-monotonic versioning of the in-tree version numbers. -- The @c --final indicates that the release should drop the @c -rc tag, - to going from @c x.y.z-rcN-dev to x.y.z. - -@subsection releasescriptenv Release Script Environment - -The @c release.sh script recognizes some environment variables which -affect its behavior: - -- @c CONFIG_OPTS : Passed as options to the configure script. -- @c MAKE_OPTS : Passed as options to the 'make' processes. - -@section releasetutorial Release Tutorials - -This section should contain a brief tutorial for using the Release -Script to perform release tasks, but the new script needs to be -used for 0.3.0. - -@section releasetodo Release Script Shortcomings - -Improved automated packaging and distribution of OpenOCD requires more -patching of the configure script. The final release script should be -able to manage most steps of the processes. The steps requiring user -input could be guided by an "assistant" that walks the Release Manager -through the process from beginning to end, performing basic sanity -checks on their various inputs (e.g. the @c NEWS blurb). - - */ -/** @file -This file contains the @ref releases page. - */ diff --git a/doc/manual/scripting.txt b/doc/manual/scripting.txt deleted file mode 100644 index 783541c..0000000 --- a/doc/manual/scripting.txt +++ /dev/null @@ -1,80 +0,0 @@ -/** @page scripting Scripting Overview - -@section scriptingisnt What scripting will not do - -The scripting support is intended for developers of OpenOCD. -It is not the intention that normal OpenOCD users will -use tcl scripting extensively, write lots of clever scripts, -or contribute back to OpenOCD. - -Target scripts can contain new procedures that end users may -tinker to their needs without really understanding tcl. - -Since end users are not expected to mess with the scripting -language, the choice of language is not terribly important -to those same end users. - -Jim Tcl was chosen as it was easy to integrate, works -great in an embedded environment and Øyvind Harboe -had experience with it. - -@section scriptinguses Uses of scripting - -Default implementation of procedures in tcl/procedures.tcl. - -- Polymorphic commands for target scripts. - - there will be added some commands in Tcl that the target - scripts can replace. - - produce \<productionfile\> \<serialnumber\>. Default implementation - is to ignore serial number and write a raw binary file - to beginning of first flash. Target script can dictate - file format and structure of serialnumber. Tcl allows - an argument to consist of e.g. a list so the structure of - the serial number is not limited to a single string. - - reset handling. Precise control of how srst, trst & - tms is handled. -- replace some parts of the current command line handler. - This is only to simplify the implementation of OpenOCD - and will have no externally visible consequences. - Tcl has an advantage in that it's syntax is backwards - compatible with the current OpenOCD syntax. -- external scripting. Low level tcl functions will be defined - that return machine readable output. These low level tcl - functions constitute the tcl api. flash_banks is such - a low level tcl proc. "flash banks" is an example of - a command that has human readable output. The human - readable output is expected to change inbetween versions - of OpenOCD. The output from flash_banks may not be - in the preferred form for the client. The client then - has two choices a) parse the output from flash_banks - or b) write a small piece of tcl to output the - flash_banks output to a more suitable form. The latter may - be simpler. - - -@section scriptingexternal External scripting - -The embedded Jim Tcl interpreter in OpenOCD is very limited -compared to any full scale PC hosted scripting language. - -The goal is to keep the internal Jim Tcl interpreter as -small as possible and allow any advanced scripting, -especially scripting that interacts with the host, -run on the host and talk to OpenOCD via the TCP/IP -scripting connection. - -Another problem with Jim Tcl is that there is no debugger -for it. - -With a bit of trickery it should be possible to run Jim -Tcl scripts under a Tcl interpreter on a PC. The advantage -would be that the Jim Tcl scripts could be debugged using -a standard PC Tcl debugger. - -The rough idea is to write an unknown proc that sends -unknown commands to OpenOCD. - -Basically a PC version of startup.tcl. Patches most -gratefully accepted! :-) - - */ diff --git a/doc/manual/server.txt b/doc/manual/server.txt deleted file mode 100644 index 3c2fbd0..0000000 --- a/doc/manual/server.txt +++ /dev/null @@ -1,316 +0,0 @@ -/** @page serverdocs OpenOCD Server APIs - -OpenOCD provides support for implementing different types of servers. -Presently, the following servers have APIs that can be used. - - - @subpage servergdb - - @subpage servertelnet - - @subpage serverhttp - -@section serverdocsoverview Overview - -What follows is a development history, and describes some of the intent -of why certain features exist within OpenOCD along with the reasoning -behind them. - -This roadmap section was written May 2009 - about 9 to 12 months -after some of this work had started, it attempts to document some of -the reasons why certain features exist within OpenOCD at that time. - -@section serverdocsbg Background - -In early 2008, Oyvind Harboe and Duane Ellis had talked about how to -create a reasonable GUI for OpenOCD - something that is non-invasive, -simple to use and maintain, and does not tie OpenOCD to many other -packages. It would be wrong to "spider web" requirements into other -external external packages. That makes it difficult for developers to -write new code and creates a support nightmare. - -In many ways, people had talked about the need for some type of -high-level interface to OpenOCD, because they only had two choices: -- the ability to script: via an external program the actions of OpenOCD. -- the ablity to write a complex internal commands: native 'commands' - inside of OpenOCD was complicated. - -Fundamentally, the basic problem with both of those would be solved -with a script language: - --# <b>Internal</b>: simple, small, and self-contained. --# <b>Cross Language</b>: script friendly front-end --# <b>Cross Host</b>: GUI Host interface --# <b>Cross Debugger</b>: GUI-like interface - -What follows hopefully shows how the plans to solve these problems -materialized and help to explain the grand roadmap plan. - -@subsection serverdocsjim Why JimTCL? The Internal Script Language - -At the time, the existing "command context schema" was proving itself -insufficient. However, the problem was also considered from another -direction: should OpenOCD be first class and the script second class? -Which one rules? - -In the end, OpenOCD won, the conclusion was that simpler will be better. -Let the script language be "good enough"; it would not need numerous -features. Imagine debugging an embedded Perl module while debugging -OpenOCD. Yuck. OpenOCD already has a complex enough build system, why -make it worse? - -The goal was to add a simple language that would be moderately easy to -work with and be self-contained. JimTCL is a single C and single H -file, allowing OpenOCD to avoid the spider web of dependent packages. - -@section serverdocstcl TCL Server Port - -The TCL Server port was added in mid-2008. With embedded TCL, we can -write scripts internally to help things, or we can write "C" code that -interfaces well with TCL. - -From there, the developers wanted to create an external front-end that -would be @a very usable and that that @a any language could utilize, -allowing simple front-ends to be (a) cross-platform (b) languag -agnostic, and (c) easy to develop and use. - -Simple ASCII protocols are easy. For example, HTTP, FTP (control), and -SMTP are all text-based. All of these examples are widely and -well-known, and they do not require high-speed or high-volume. They -also support a high degree of interoperability with multiple systems. -They are not human-centric protocols; more correctly, they are rigid, -terse, simple ASCII protocols that are emensely parsable by a script. - -Thus, the TCL server -- a 'machine' type socket interface -- was added -with the hope was it would output simple "name-value" pair type -data. At the time, simple name/value pairs seemed reasonably easier to -do at the time, though Maybe it should output JSON; - -See here: - - http://www.mail-archive.com/openocd-development%40lists.berlios.de/msg00248.html - -The hope was that one could write a script in what ever language you want -and do things with it! - -@section serverdocsgui GUI Like Interfaces - -A lot has been said about various "widigit-foo-gui-library is so -wonderful". Please refer back to the domino and spider web problem of -dependencies. Sure, you may well know the WhatEver-GUI library, but -most others will not (including the next contributer to OpenOCD). -How do we solve that problem? - -For example, Cygwin can be painful, Cygwin GUI packages want X11 -to be present, crossing the barrier between MinGW and Cygwin is -painful, let alone getting the GUI front end to work on MacOS, and -Linux, yuck yuck yuck. Painful. very very painful. - -What works easier and is less work is what is already present in every -platform? The answer: A web browser. In other words, OpenOCD could -serve out embedded web pages via "localhost" to your browser. - -Long before OpenOCD had a TCL command line, Zylin AS built their ZY1000 -devince with a built-in HTTP server. Later, they were willing to both -contribute and integrate most of that work into the main tree. - -@subsection serverdocsother Other Options Considered - -What if a web browser is not acceptable ie: You want to write your own -front gadget in Eclipse, or KDevelop, or PerlTK, Ruby, or what ever -the latest and greatest Script De Jour is. - -- Option 1: Can we transport this extra data through the GDB server -protocol? In other words, can we extend the GDB server protocol? -No, Eclipse wants to talk to GDB directly and control the GDB port. - -- Option 2: SWIG front end (libopenocd): Would that work? - -That's painful - unless you design your api to be very simplistic - -every language has it's own set of wack-ness, parameter marshaling is -painful. - -What about "callbacks" and structures, and other mess. Imagine -debugging that system. When JimTCL was introduced Spencer Oliver had -quite a few well-put concerns (Summer 2008) about the idea of "TCL" -taking over OpenOCD. His concern is and was: how do you debug -something written in 2 different languages? A "SWIG" front-end is -unlikely to help that situation. - -@subsection serverdoccombined Combined: Socket & WebServer Benifits - -Seriously think about this question: What script language (or compiled -language) today cannot talk directly to a socket? Every thing in the -OpenOCD world can work a socket interface. Any host side tool can talk -to Localhost or remote host, however one might want to make it work. - -A socket interface is very simple. One could write a Java application -and serve it out via the embedded web server, could it - or something -like it talk to the built in TCL server? Yes, absolutely! We are on to -something here. - -@subsection serverdocplatforms Platform Permuntations - -Look at some permutations where OpenOCD can run; these "just work" if -the Socket Approach is used. - - -- Linux/Cygwin/MinGw/MacOSx/FreeBSD development Host Locally -- OpenOCD with some dongle on that host - - -- Linux/Cygwin/MingW/MacOS/FreeBSD development host -- DONGLE: tcpip based ARM-Linux perhaps at91rm9200 or ep93xx.c, running openocd. - - -- Windows cygwin/X desktop environment. -- Linux development host (via remote X11) -- Dongle: "eb93xx.c" based linux board - - -@subsection serverdocfuture Development Scale Out - -During 2008, Duane Ellis created some TCL scripts to display peripheral -register contents. For example, look at the sam7 TCL scripts, and the -stm32 TCL scripts. The hope was others would create more. - - -A good example of this is display/view the peripheral registers on -your embedded target. Lots of commercial embedded debug tools have -this, some can show the TIMER registers, the interrupt controller. - -What if the chip companies behind STM32, or PIC32, AT91SAM chips - -wanted to write something that makes working with their chip better, -easier, faster, etc. - -@a Question: How can we (the OpenOCD group) make that really fancy -stuff across multiple different host platforms? - -Remember: OpenOCD runs on: --# Linux via USB, --# ARM Linux - bit-banging GPIO pins --# MacOSX --# FreeBSD --# Cygwin --# MinGW32 --# Ecos - -How can we get that to work? - -@subsection serverdocdebug What about Debugger Plugins? - -Really GDB is nice, it works, but it is not a good embedded debug tool. -OpenOCD cannot work in a GUI when one cannot get to its command line. -Some GDB front-end developers have pedantic designs that refuse any and -all access to the GDB command line (e.g. http://www.kdbg.org/todo.php). - -The TELNET interface to OpenOCD works, but the intent of that interface -is <b>human interaction</b>. It must remain available, developers depend -upon it, sometimes that is the only scheme available. - -As a small group of developers, supporting all the platforms and -targets in the debugger will be difficult, as there are enough problem -with the plethora of Adapters, Chips, and different target boards. -Yes, the TCL interface might be suitable, but it has not received much -love or attention. Perhaps it will after you read and understand this. - -One reason might be, this adds one more host side requirement to make -use of the feature. In other words, one could write a Python/TK -front-end, but it is only useable if you have Python/TK installed. -Maybe this can be done via Ecllipse, but not all developers use Ecplise. -Many devlopers use Emacs (possibly with GUD mode) or vim and will not -accept such an interface. The next developer reading this might be -using Insight (GDB-TK) - and somebody else - DDD.. - -There is no common host-side GDB front-end method. - -@section serverdocschallenge Front-End Scaling - -Maybe we are wrong - ie: OpenOCD + some TK tool - -Remember: OpenOCD is often (maybe 99.9%) of the time used with -GDB-REMOTE. There is always some front-end package - be it command-line -GDB under DDD, Eclipse, KDevelop, Emacs, or some other package -(e.g. IAR tools can talk to GDB servers). How can the OpenOCD -developers make that fancy target display GUI visible under 5 to 10 -different host-side GDB.. - -Sure - a <em>man on a mission</em> can make that work. The GUI might be -libopenocd + Perl/TK, or maybe an Eclipse Plug-in. -That is a development support nightmare for reasons described -above. We have enough support problems as it is with targets, adapters, -etc. - -@section serverdocshttpbg HTTP Server Background - -OpenOCD includes an HTTP server because most development environments -are likely contain a web browser. The web browser can talk to OpenOCD's -HTTP server and provide a high-level interfaces to the program. -Altogether, it provides a universally accessible GUI for OpenOCD. - -@section serverdocshtml Simple HTML Pages - -There is (or could be) a simple "Jim TCL" function to read a memory -location. If that can be tied into a TCL script that can modify the -HTTP text, then we have a simple script-based web server with a JTAG -engine under the hood. - -Imagine a web page - served from a small board with two buttons: -"LED_ON" and "LED_OFF", each click - turns the LED on or OFF, a very -simplistic idea. Little boards with web servers are great examples of -this: Ethernut is a good example and Contiki (not a board, an embedded -OS) is another example. - -One could create a simple: <b>Click here to display memory</b> or maybe -<b>click here to display the UART REGISTER BLOCK</b>; click again and see -each register explained in exquisit detail. - -For an STM32, one could create a simple HTML page, with simple -substitution text that the simple web server use to substitute the -HTML text JIMTCL_PEEK32( 0x12345678 ) with the value read from -memory. We end up with an HTML page that could list the contents of -every peripheral register on the target platform. - -That also is transportable, regardless of the OpenOCD host -platform: Linux/X86, Linux/ARM, FreeBSD, Cygwin, MingW, or MacOSX. -You could even port OpenOCD to an Android system and use it as a -bit-banging JTAG Adapter serving web pages. - -@subsection serverdocshtmladv Advanced HTML Pages - -Java or JavaScript could be used to talk back to the TCL port. One -could write a Java, AJAX, FLASH, or some other developer friendly -toolbox and get a real cross-platform GUI interface. Sure, the interface -is not native - but it is 100% cross-platform! - -OpenOCD current uses simple HTML pages; others might be an Adobe FLASH -expert, or a Java Expert. These possibilities could allow the pages -remain cross-platform but still provide a rich user-interface -experience. - -Don't forget it can also be very simple, exactly what one developer -can contribute, a set of very simple web pages. - -@subsection serverdocshtmlstatus HTTP/HTML Status - -As of May 2009, much of the HTML pages were contributed by Zylin AS, -hence they continue to retain some resemblance to the ZY1000 interface. - -Patches would be welcome to move these parts of the system forward. - - */ - -/** @page servergdb OpenOCD GDB Server API - -This section needs to be expanded. - - */ - -/** @page servertelnet OpenOCD Telnet Server API - -This section needs to be expanded. - - */ - -/** @page serverhttp OpenOCD http Server API - -This section needs to be expanded. - - */ diff --git a/doc/manual/style.txt b/doc/manual/style.txt deleted file mode 100644 index 2ff2a29..0000000 --- a/doc/manual/style.txt +++ /dev/null @@ -1,422 +0,0 @@ -/** @page styleguide Style Guides - -The goals for each of these guides are: -- to produce correct code that appears clean, consistent, and readable, -- to allow developers to create patches that conform to a standard, and -- to eliminate these issues as points of future contention. - -Some of these rules may be ignored in the spirit of these stated goals; -however, such exceptions should be fairly rare. - -The following style guides describe a formatting, naming, and other -conventions that should be followed when writing or changing the OpenOCD -code: - -- @subpage styletcl -- @subpage stylec -- @subpage styleperl -- @subpage styleautotools - -In addition, the following style guides provide information for -providing documentation, either as part of the C code or stand-alone. - -- @subpage styledoxygen -- @subpage styletexinfo -- @subpage stylelatex - -Feedback would be welcome to improve the OpenOCD guidelines. - - */ -/** @page styletcl TCL Style Guide - -OpenOCD needs to expand its Jim/TCL Style Guide. - -Many of the guidelines listed on the @ref stylec page should apply to -OpenOCD's Jim/TCL code as well. - - */ -/** @page stylec C Style Guide - -This page contains guidelines for writing new C source code for the -OpenOCD project. - -@section styleformat Formatting Guide - -- remove any trailing white space at the end of lines. -- use TAB characters for indentation; do NOT use spaces. -- displayed TAB width is 4 characters. -- use Unix line endings ('\\n'); do NOT use DOS endings ('\\r\\n') -- limit adjacent empty lines to at most two (2). -- remove any trailing empty lines at the end of source files -- do not "comment out" code from the tree; instead, one should either: - -# remove it entirely (git can retrieve the old version), or - -# use an @c \#if/\#endif block. - -Finally, try to avoid lines of code that are longer than than 72-80 columns: - -- long lines frequently indicate other style problems: - - insufficient use of static functions, macros, or temporary variables - - poor flow-control structure; "inverted" logical tests -- a few lines may be wider than this limit (typically format strings), but: - - all C compilers will concatenate series of string constants. - - all long string constants should be split across multiple lines. - -@section stylenames Naming Rules - -- most identifiers must use lower-case letters (and digits) only. - - macros must use upper-case letters (and digits) only. - - OpenOCD identifiers should NEVER use @c MixedCaps. -- @c typedef names must end with the '_t' suffix. - - This should be reserved for types that should be passed by value. - - Do @b not mix the typedef keyword with @c struct. -- use underline characters between consecutive words in identifiers - (e.g. @c more_than_one_word). - -@section style_include_guards Include Guards - -Every header file should have a unique include guard to prevent multiple -inclusion. -To guarantee uniqueness, an include guard should be based on the filename and -the full path in the project source tree. - -For the header file src/helper/jim-nvp.h, the include guard would look like -this: - -@code -#ifndef OPENOCD_HELPER_JIM_NVP_H -#define OPENOCD_HELPER_JIM_NVP_H - -/* Your code here. */ - -#endif /* OPENOCD_HELPER_JIM_NVP_H */ -@endcode - -@section stylec99 C99 Rules - -- inline functions -- @c // comments -- in new code, prefer these for single-line comments -- trailing comma allowed in enum declarations -- designated initializers ( .field = value ) -- variables declarations should occur at the point of first use -- new block scopes for selection and iteration statements -- use malloc() to create dynamic arrays. Do @b not use @c alloca -or variable length arrays on the stack. non-MMU hosts(uClinux) and -pthreads require modest and predictable stack usage. - -@section styletypes Type Guidelines -- use native types (@c int or @c unsigned) if the type is not important - - if size matters, use the types from \<stdint.h\> or \<inttypes.h\>: - - @c int8_t, @c int16_t, @c int32_t, or @c int64_t: signed types of specified size - - @c uint8_t, @c uint16_t, @c uint32_t, or @c uint64_t: unsigned types of specified size - - do @b NOT redefine @c uN types from "types.h" - -@section stylefunc Functions - -- static inline functions should be prefered over macros: -@code -/** do NOT define macro-like functions like this... */ -#define CUBE(x) ((x) * (x) * (x)) -/** instead, define the same expression using a C99 inline function */ -static inline int cube(int x) { return x * x * x; } -@endcode -- Functions should be declared static unless required by other modules - - define static functions before first usage to avoid forward declarations. -- Functions should have no space between its name and its parameter list: -@code -int f(int x1, int x2) -{ - ... - int y = f(x1, x2 - x1); - ... -} -@endcode -- Separate assignment and logical test statements. In other words, you -should write statements like the following: -@code -// separate statements should be preferred -result = foo(); -if (ERROR_OK != result) - ... -@endcode -More directly, do @b not combine these kinds of statements: -@code -// Combined statements should be avoided -if (ERROR_OK != (result = foo())) - return result; -@endcode - - */ -/** @page styledoxygen Doxygen Style Guide - -The following sections provide guidelines for OpenOCD developers -who wish to write Doxygen comments in the code or this manual. -For an introduction to Doxygen documentation, -see the @ref primerdoxygen. - -@section styledoxyblocks Doxygen Block Selection - -Several different types of Doxygen comments can be used; often, -one style will be the most appropriate for a specific context. -The following guidelines provide developers with heuristics for -selecting an appropriate form and writing consistent documentation -comments. - --# use @c /// to for one-line documentation of instances. --# for documentation requiring multiple lines, use a "block" style: -@verbatim -/** - * @brief First sentence is short description. Remaining text becomes - * the full description block, where "empty" lines start new paragraphs. - * - * One can make text appear in @a italics, @b bold, @c monospace, or - * in blocks such as the one in which this example appears in the Style - * Guide. See the Doxygen Manual for the full list of commands. - * - * @param foo For a function, describe the parameters (e.g. @a foo). - * @returns The value(s) returned, or possible error conditions. - */ -@endverbatim - -# The block should start on the line following the opening @c /**. - -# The end of the block, \f$*/\f$, should also be on its own line. - -# Every line in the block should have a @c '*' in-line with its start: - - A leading space is required to align the @c '*' with the @c /** line. - - A single "empty" line should separate the function documentation - from the block of parameter and return value descriptions. - - Except to separate paragraphs of documentation, other extra - "empty" lines should be removed from the block. - -# Only single spaces should be used; do @b not add mid-line indentation. --# If the total line length will be less than 72-80 columns, then - - The @c /**< form can be used on the same line. - - This style should be used sparingly; the best use is for fields: - @code int field; /**< field description */ @endcode - -@section styledoxyall Doxygen Style Guide - -The following guidelines apply to all Doxygen comment blocks: - --# Use the @c '\@cmd' form for all doxygen commands (do @b not use @c '\\cmd'). --# Use symbol names such that Doxygen automatically creates links: - -# @c function_name() can be used to reference functions - (e.g. flash_set_dirty()). - -# @c struct_name::member_name should be used to reference structure - fields in the documentation (e.g. @c flash_driver::name). - -# URLS get converted to markup automatically, without any extra effort. - -# new pages can be linked into the heirarchy by using the @c \@subpage - command somewhere the page(s) under which they should be linked: - -# use @c \@ref in other contexts to create links to pages and sections. --# Use good Doxygen mark-up: - -# '\@a' (italics) should be used to reference parameters (e.g. <i>foo</i>). - -# '\@b' (bold) should be used to emphasizing <b>single</b> words. - -# '\@c' (monospace) should be used with <code>file names</code> and - <code>code symbols</code>, so they appear visually distinct from - surrounding text. - -# To mark-up multiple words, the HTML alternatives must be used. --# Two spaces should be used when nesting lists; do @b not use '\\t' in lists. --# Code examples provided in documentation must conform to the Style Guide. - -@section styledoxytext Doxygen Text Inputs - -In addition to the guidelines in the preceding sections, the following -additional style guidelines should be considered when writing -documentation as part of standalone text files: - --# Text files must contain Doxygen at least one comment block: - -# Documentation should begin in the first column (except for nested lists). - -# Do NOT use the @c '*' convention that must be used in the source code. --# Each file should contain at least one @c \@page block. - -# Each new page should be listed as a \@subpage in the \@page block - of the page that should serve as its parent. - -# Large pages should be structure in parts using meaningful \@section - and \@subsection commands. --# Include a @c \@file block at the end of each Doxygen @c .txt file to - document its contents: - - Doxygen creates such pages for files automatically, but no content - will appear on them for those that only contain manual pages. - - The \@file block should provide useful meta-documentation to assist - techincal writers; typically, a list of the pages that it contains. - - For example, the @ref styleguide exists in @c doc/manual/style.txt, - which contains a reference back to itself. --# The \@file and \@page commands should begin on the same line as - the start of the Doxygen comment: -@verbatim -/** @page pagename Page Title - -Documentation for the page. - - */ -/** @file - -This file contains the @ref pagename page. - - */ -@endverbatim - -For an example, the Doxygen source for this Style Guide can be found in -@c doc/manual/style.txt, alongside other parts of The Manual. - - */ -/** @page styletexinfo Texinfo Style Guide - -The User's Guide is there to provide two basic kinds of information. It -is a guide for how and why to use each feature or mechanism of OpenOCD. -It is also the reference manual for all commands and options involved -in using them, including interface, flash, target, and other drivers. -At this time, it is the only user-targetted documentation; everything -else is addressing OpenOCD developers. - -There are two key audiences for the User's Guide, both developer based. -The primary audience is developers using OpenOCD as a tool in their -work, or who may be starting to use it that way. A secondary audience -includes developers who are supporting those users by packaging or -customizing it for their hardware, installing it as part of some software -distribution, or by evolving OpenOCD itself. There is some crossover -between those audiences. We encourage contributions from users as the -fundamental way to evolve and improve OpenOCD. In particular, creating -a board or target specific configuration file is something that many -users will end up doing at some point, and we like to see such files -become part of the mainline release. - -General documentation rules to remember include: - -- Be concise and clear. It's work to remove those extra words and - sentences, but such "noise" doesn't help readers. -- Make it easy to skim and browse. "Tell what you're going to say, - then say it". Help readers decide whether to dig in now, or - leave it for later. -- Make sure the chapters flow well. Presentations should not jump - around, and should move easily from overview down to details. -- Avoid using the passive voice. -- Address the reader to clarify roles ("your config file", "the board you - are debugging", etc.); "the user" (etc) is artificial. -- Use good English grammar and spelling. Remember also that English - will not be the first language for many readers. Avoid complex or - idiomatic usage that could create needless barriers. -- Use examples to highlight fundamental ideas and common idioms. -- Don't overuse list constructs. This is not a slide presentation; - prefer paragraphs. - -When presenting features and mechanisms of OpenOCD: - -- Explain key concepts before presenting commands using them. -- Tie examples to common developer tasks. -- When giving instructions, you can \@enumerate each step both - to clearly delineate the steps, and to highlight that this is - not explanatory text. -- When you provide "how to use it" advice or tutorials, keep it - in separate sections from the reference material. -- Good indexing is something of a black art. Use \@cindex for important - concepts, but don't overuse it. In particular, rely on the \@deffn - indexing, and use \@cindex primarily with significant blocks of text - such as \@subsection. The \@dfn of a key term may merit indexing. -- Use \@xref (and \@anchor) with care. Hardcopy versions, from the PDF, - must make sense without clickable links (which don't work all that well - with Texinfo in any case). If you find you're using many links, - read that as a symptom that the presentation may be disjointed and - confusing. -- Avoid font tricks like \@b, but use \@option, \@file, \@dfn, \@emph - and related mechanisms where appropriate. - -For technical reference material: - -- It's OK to start sections with explanations and end them with - detailed lists of the relevant commands. -- Use the \@deffn style declarations to define all commands and drivers. - These will automatically appear in the relevant index, and those - declarations help promote consistent presentation and style. - - It's a "Command" if it can be used interactively. - - Else it's a "Config Command" if it must be used before the - configuration stage completes. - - For a "Driver", list its name. - - Use EBNF style regular expressions to define parameters: - brackets around zero-or-one choices, parentheses around - exactly-one choices. - - Use \@option, \@file, \@var and other mechanisms where appropriate. - - Say what output it displays, and what value it returns to callers. - - Explain clearly what the command does. Sometimes you will find - that it can't be explained clearly. That usually means the command - is poorly designed; replace it with something better, if you can. - - Be complete: document all commands, except as part of a strategy - to phase something in or out. - - Be correct: review the documentation against the code, and - vice versa. -- Alphabetize the \@defn declarations for all commands in each - section. -- Keep the per-command documentation focussed on exactly what that - command does, not motivation, advice, suggestions, or big examples. - When commands deserve such expanded text, it belongs elsewhere. - Solutions might be using a \@section explaining a cluster of related - commands, or acting as a mini-tutorial. -- Details for any given driver should be grouped together. - -The User's Guide is the first place most users will start reading, -after they begin using OpenOCD. Make that investment of their time -be as productive as possible. Needing to look at OpenOCD source code, -to figure out how to use it is a bad sign, though it's OK to need to -look at the User's guide to figure out what a config script is doing. - - */ -/** @page stylelatex LaTeX Style Guide - -This page needs to provide style guidelines for using LaTeX, the -typesetting language used by The References for OpenOCD Hardware. -Likewise, the @ref primerlatex for using this guide needs to be completed. - - */ -/** @page styleperl Perl Style Guide - -This page provides some style guidelines for using Perl, a scripting -language used by several small tools in the tree: - --# Ensure all Perl scripts use the proper suffix (@c .pl for scripts, and - @c .pm for modules) --# Pass files as script parameters or piped as input: - - Do NOT code paths to files in the tree, as this breaks out-of-tree builds. - - If you must, then you must also use an automake rule to create the script. --# use @c '#!/usr/bin/perl' as the first line of Perl scripts. --# always <code>use strict</code> and <code>use warnings</code> --# invoke scripts indirectly in Makefiles or other scripts: -@code -perl script.pl -@endcode - -Maintainers must also be sure to follow additional guidelines: --# Ensure that Perl scripts are committed as executables: - Use "<code>chmod +x script.pl</code>" - @a before using "<code>git add script.pl</code>" - - */ -/** @page styleautotools Autotools Style Guide - -This page contains style guidelines for the OpenOCD autotools scripts. - -The following guidelines apply to the @c configure.ac file: -- Better guidelines need to be developed, but until then... -- Use good judgement. - -The following guidelines apply to @c Makefile.am files: --# When assigning variables with long lists of items: - -# Separate the values on each line to make the files "patch friendly": -@code -VAR = \ - value1 \ - value2 \ - ... - value9 \ - value10 -@endcode - */ -/** @file - -This file contains the @ref styleguide pages. The @ref styleguide pages -include the following Style Guides for their respective code and -documentation languages: - -- @ref styletcl -- @ref stylec -- @ref styledoxygen -- @ref styletexinfo -- @ref stylelatex -- @ref styleperl -- @ref styleautotools - - */ diff --git a/doc/manual/target.txt b/doc/manual/target.txt deleted file mode 100644 index 7e9767f..0000000 --- a/doc/manual/target.txt +++ /dev/null @@ -1,46 +0,0 @@ -/** @page targetdocs OpenOCD Target APIs - -OpenOCD provides its Target APIs to allow developers to provide trace and -debugging support for specific device targets. These primarily consist of -ARM cores, but other types have been supported. New targets should be -developed by following or using these APIs. - -The Target Support module contains APIs that cover several functional areas: - - - @subpage targetarm - - @subpage targetnotarm - - @subpage targetmips - - @subpage targetregister - - @subpage targetimage - - @subpage targettrace - -This section needs to be expanded. - -*/ - -/** @page targetarm OpenOCD ARM Targets - -This section needs to describe OpenOCD's ARM target support. - - */ - -/** @page targetregister OpenOCD Target Register API - -This section needs to describe OpenOCD's Target Register API, as -provided by 'src/target/register.h'. - - */ - -/** @page targetimage OpenOCD Target Image API - -This section needs to describe OpenOCD's Target Image API, as provided -by 'src/target/image.h'. - - */ - -/** @page targettrace OpenOCD Target Trace API - -This section needs to describe OpenOCD's Target Trace API, as provided -by 'src/target/trace.h'. - - */ diff --git a/doc/manual/target/mips.txt b/doc/manual/target/mips.txt deleted file mode 100644 index 32c40b9..0000000 --- a/doc/manual/target/mips.txt +++ /dev/null @@ -1,536 +0,0 @@ -/** @page targetmips OpenOCD MIPS Targets - -@section ejatgmem EJTAG Memory Addresses - -An optional uncached and unmapped debug segment dseg (EJTAG area) appears in the address range -0xFFFF FFFF FF20 0000 to 0xFFFF FFFF FF3F FFFF. The dseg segment thereby appears in the kseg part of the -compatibility segment, and access to kseg is possible with the dseg segment. - -The dseg segment is subdivided into dmseg (EJTAG memory) segment and the drseg (EJTAG registers) segment. The -dmseg segment is used when the probe services the memory segment. The drseg segment is used when the -memory-mapped debug registers are accessed. Table 5-2 shows the subdivision and attributes for the segments. - -dseg is divided in : - - - dmseg (0xFFFF FFFF FF20 0000 to 0xFFFF FFFF FF2F FFFF) - - drseg (0xFFFF FFFF FF30 0000 to 0xFFFF FFFF FF3F FFFF) - -Because the dseg segment is serviced exclusively by the EJTAG features, there -are no physical address per se. Instead the lower 21 bits of the virtual address select -the appropriate reference in either EJTAG memory or registers. References are not mapped through the -TLB, nor do the accesses appear on the external system memory interface. - -Both of this memory segments are Uncached. - -On debug exception (break) CPU jumps to the beginning of dmseg. This some kind of memory shared -between CPU and EJTAG dongle. - -There CPU stops (correct terminology is : stalls, because it stops it's pipeline), and is waiting for some action of dongle. - -If the dongle gives it instruction, CPU executes it, augments it's PC to 0xFFFF FFFF FF20 0001 - but it again points to dmseg area, -so it stops waiting for next instruction. - -This will all become clear later, after reading following prerequisite chapters. - -@section impflags Important flags - -@subsection pnnw PNnW - -Indicates read or write of a pending processor access: - - - 0 : Read processor access, for a fetch/load access - - 1 : Write processor access, for a store access - -This value is defined only when a processor access is pending. - -Processor will do the action for us : it can for example read internal state (register values), -and send us back the information via EJTAG memory (dmseg), or it can take some data from dmseg and write it into the registers or RAM. - -Every time when it sees address (i.e. when this address is the part of the opcode it is executing, wether it is instruction or data fetch) -that falls into dmseg, processor stalls. That acutally meand that CPU stops it's pipeline and it is waitning for dongle to take some action. - -CPU is now either waiting for dongle to take some data from dmseg (if we requested for CPU do give us internal state, for example), -or it will wait for some data from dongle (if it needs following instruction because it did previous, or if the operand address of the currently executed opcode -falls somewhere (anywhere) in dmseg (0xff..ff20000 - 0xff..ff2fffff)). - -Bit PNnW describes character of CPU access to EJTAG memory (the memry where dongle puts/takes data) - CPU can either READ for it (PNnW == 0) or -WRITE to it (PNnW == 1). - -By reading PNnW bit OpenOCD will know if it has to send (PNnW == 0) or to take (PNnW == 1) data (from dmseg, via dongle). - -@subsection pracc PrAcc - -Indicates a pending processor access and controls finishing of a pending processor access. - -When read: - - - 0 : No pending processor access - - 1 : Pending processor access - -A write of 0 finishes a processor access if pending; -otherwise operation of the processor is UNDEFINED -if the bit is written to 0 when no processor access is -pending. A write of 1 is ignored. - -A successful FASTDATA access will clear this bit. - -As noted above, on any access to dmseg, processor will stall. It waits for dongle to do some action - either to take or put some data. -OpenOCD can figure out which action has to be taken by reading PrAcc bit. - -Once action from dongle has been done, i.e. after the data is taken/put, OpenOCD can signal to CPU to proceed with executing the instruction. -This can be the next instruction (if previous was finished before pending), or the same instruction - if for example CPU was waiting on dongle -to give it an operand, because it saw in the instruction opcode that operand address is somewhere in dmseg. That prowoked the CPU to stall (it tried operand fetch to dmseg and stopped), -and PNnW bit is 0 (CPU does read from dmseg), and PrAcc is 1 (CPU is pending on dmseg access). - -@subsection spracc SPrAcc - -Shifting in a zero value requests completion of the Fastdata access. - -The PrAcc bit in the EJTAG Control register is overwritten with zero when the access -succeeds. (The access succeeds if PrAcc is one and the operation address is in the legal dmseg segment -Fastdata area.) - -When successful, a one is shifted out. Shifting out a zero indicates a Fastdata access failure. -Shifting in a one does not complete the Fastdata access and the PrAcc bit is unchanged. Shifting out a -one indicates that the access would have been successful if allowed to complete and a zero indicates -the access would not have successfully completed. - -@section fdreg Fastdata Register (TAP Instruction FASTDATA) - -The width of the Fastdata register is 1 bit. - -During a Fastdata access, the Fastdata register is written and read, i.e., a bit is -shifted in and a bit is shifted out. - -Also during a Fastdata access, the Fastdata register value shifted in specifies whether the Fastdata -access should be completed or not. The value shifted out is a flag that indicates whether the Fastdata access was -successful or not (if completion was requested). - -@section ejtagacc EJTAG Access Implementation - -OpenOCD reads/writes data to JTAG via mips_m4k_read_memory() and mips_m4k_write_memory() functions defined in src/target/mips_m4k.c. -Internally, these functions call mips32_pracc_read_mem() and mips32_pracc_write_mem() defined in src/target/mips32_pracc.c - -Let's take for example function mips32_pracc_read_mem32() which describes CPU reads (fetches) from dmseg (EJTAG memory) : - -@code -static const uint32_t code[] = { - /* start: */ - MIPS32_MTC0(15,31,0), /* move $15 to COP0 DeSave */ - MIPS32_LUI(15,UPPER16(MIPS32_PRACC_STACK)), /* $15 = MIPS32_PRACC_STACK */ - MIPS32_ORI(15,15,LOWER16(MIPS32_PRACC_STACK)), - MIPS32_SW(8,0,15), /* sw $8,($15) */ - MIPS32_SW(9,0,15), /* sw $9,($15) */ - MIPS32_SW(10,0,15), /* sw $10,($15) */ - MIPS32_SW(11,0,15), /* sw $11,($15) */ - - MIPS32_LUI(8,UPPER16(MIPS32_PRACC_PARAM_IN)), /* $8 = MIPS32_PRACC_PARAM_IN */ - MIPS32_ORI(8,8,LOWER16(MIPS32_PRACC_PARAM_IN)), - MIPS32_LW(9,0,8), /* $9 = mem[$8]; read addr */ - MIPS32_LW(10,4,8), /* $10 = mem[$8 + 4]; read count */ - MIPS32_LUI(11,UPPER16(MIPS32_PRACC_PARAM_OUT)), /* $11 = MIPS32_PRACC_PARAM_OUT */ - MIPS32_ORI(11,11,LOWER16(MIPS32_PRACC_PARAM_OUT)), - /* loop: */ - MIPS32_BEQ(0,10,8), /* beq 0, $10, end */ - MIPS32_NOP, - - MIPS32_LW(8,0,9), /* lw $8,0($9), Load $8 with the word @mem[$9] */ - MIPS32_SW(8,0,11), /* sw $8,0($11) */ - - MIPS32_ADDI(10,10,NEG16(1)), /* $10-- */ - MIPS32_ADDI(9,9,4), /* $1 += 4 */ - MIPS32_ADDI(11,11,4), /* $11 += 4 */ - - MIPS32_B(NEG16(8)), /* b loop */ - MIPS32_NOP, - /* end: */ - MIPS32_LW(11,0,15), /* lw $11,($15) */ - MIPS32_LW(10,0,15), /* lw $10,($15) */ - MIPS32_LW(9,0,15), /* lw $9,($15) */ - MIPS32_LW(8,0,15), /* lw $8,($15) */ - MIPS32_B(NEG16(27)), /* b start */ - MIPS32_MFC0(15,31,0), /* move COP0 DeSave to $15 */ -}; -@endcode - -We have to pass this code to CPU via dongle via dmseg. - -After debug exception CPU will find itself stalling at the begining of the dmseg. It waits for the first instruction from dongle. -This is MIPS32_MTC0(15,31,0), so CPU saves C0 and continues to addr 0xFF20 0001, which falls also to dmseg, so it stalls. -Dongle proceeds giving to CPU one by one instruction in this manner. - -However, things are not so simple. If you take a look at the program, you will see that some instructions take operands. If it has to take -operand from the address in dmseg, CPU will stall witing for the dongle to do the action of passing the operand and signal this by putting PrAcc to 0. -If this operand is somewhere in RAM, CPU will not stall (it stalls only on dmseg), but it will just take it and proceed to nex instruction. But since PC for next instruction -points to dmseg, it will stall, so that dongle can pass next instruction. - -Some instuctions are jumps (if these are jumps in dmseg addr, CPU will jump and then stall. If this is jump to some address in RAM, CPU will jump and just proceed - -will not stall on addresses in RAM). - -To have information about CPU is currently (does it stalls wanting on operand or it jumped somewhere waiting for next instruction), -OpenOCD has to call TAP ADDRESS instruction, which will ask CPU to give us his address within EJTAG memory : - -@code -address = data = 0; -mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS); -mips_ejtag_drscan_32(ejtag_info, &address); -@endcode - -And then, upon the results, we can conclude where it is in our code so far, so we can give it what it wants next : - -@code -if ((address >= MIPS32_PRACC_PARAM_IN) - && (address <= MIPS32_PRACC_PARAM_IN + ctx->num_iparam * 4)) -{ - offset = (address - MIPS32_PRACC_PARAM_IN) / 4; - data = ctx->local_iparam[offset]; -} -else if ((address >= MIPS32_PRACC_PARAM_OUT) - && (address <= MIPS32_PRACC_PARAM_OUT + ctx->num_oparam * 4)) -{ - offset = (address - MIPS32_PRACC_PARAM_OUT) / 4; - data = ctx->local_oparam[offset]; -} -else if ((address >= MIPS32_PRACC_TEXT) - && (address <= MIPS32_PRACC_TEXT + ctx->code_len * 4)) -{ - offset = (address - MIPS32_PRACC_TEXT) / 4; - data = ctx->code[offset]; -} -else if (address == MIPS32_PRACC_STACK) -{ - /* save to our debug stack */ - data = ctx->stack[--ctx->stack_offset]; -} -else -{ - /* TODO: send JMP 0xFF200000 instruction. - Hopefully processor jump back to start of debug vector */ - data = 0; - LOG_ERROR("Error reading unexpected address 0x%8.8" PRIx32 "", address); - return ERROR_JTAG_DEVICE_ERROR; -} -@endcode - -i.e. if CPU is stalling on addresses in dmseg that are reserved for input parameters, we can conclude that it actually tried to take (read) -parametar from there, and saw that address of param falls in dmseg, so it stopped. Obviously, now dongle have to give to it operand. - -Similarly, mips32_pracc_exec_write() describes CPU writes into EJTAG memory (dmseg). -Obvioulsy, code is RO, and CPU can change only parameters : - -@code -mips_ejtag_set_instr(ctx->ejtag_info, EJTAG_INST_DATA); -mips_ejtag_drscan_32(ctx->ejtag_info, &data); - -/* Clear access pending bit */ -ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC; -mips_ejtag_set_instr(ctx->ejtag_info, EJTAG_INST_CONTROL); -mips_ejtag_drscan_32(ctx->ejtag_info, &ejtag_ctrl); - -//jtag_add_clocks(5); -jtag_execute_queue(); - -if ((address >= MIPS32_PRACC_PARAM_IN) - && (address <= MIPS32_PRACC_PARAM_IN + ctx->num_iparam * 4)) -{ - offset = (address - MIPS32_PRACC_PARAM_IN) / 4; - ctx->local_iparam[offset] = data; -} -else if ((address >= MIPS32_PRACC_PARAM_OUT) - && (address <= MIPS32_PRACC_PARAM_OUT + ctx->num_oparam * 4)) -{ - offset = (address - MIPS32_PRACC_PARAM_OUT) / 4; - ctx->local_oparam[offset] = data; -} -else if (address == MIPS32_PRACC_STACK) -{ - /* save data onto our stack */ - ctx->stack[ctx->stack_offset++] = data; -} -else -{ - LOG_ERROR("Error writing unexpected address 0x%8.8" PRIx32 "", address); - return ERROR_JTAG_DEVICE_ERROR; -} -@endcode - -CPU loops here : - -@code -while (1) -{ - if ((retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl)) != ERROR_OK) - return retval; - - address = data = 0; - mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS); - mips_ejtag_drscan_32(ejtag_info, &address); - - /* Check for read or write */ - if (ejtag_ctrl & EJTAG_CTRL_PRNW) - { - if ((retval = mips32_pracc_exec_write(&ctx, address)) != ERROR_OK) - return retval; - } - else - { - /* Check to see if its reading at the debug vector. The first pass through - * the module is always read at the vector, so the first one we allow. When - * the second read from the vector occurs we are done and just exit. */ - if ((address == MIPS32_PRACC_TEXT) && (pass++)) - { - break; - } - - if ((retval = mips32_pracc_exec_read(&ctx, address)) != ERROR_OK) - return retval; - } - - if (cycle == 0) - break; -} -@endcode - -and using presented R (mips32_pracc_exec_read()) and W (mips32_pracc_exec_write()) functions it reads in the code (RO) and reads and writes operands (RW). - -@section fdimpl OpenOCD FASTDATA Implementation - -OpenOCD FASTDATA write function, mips32_pracc_fastdata_xfer() is called from bulk_write_memory callback, which writes a count items of 4 bytes -to the memory of a target at the an address given. Because it operates only on whole words, this should be faster than target_write_memory(). - -In order to implement FASTDATA write, mips32_pracc_fastdata_xfer() uses the following handler : - -@code -uint32_t handler_code[] = { - /* caution when editing, table is modified below */ - /* r15 points to the start of this code */ - MIPS32_SW(8,MIPS32_FASTDATA_HANDLER_SIZE - 4,15), - MIPS32_SW(9,MIPS32_FASTDATA_HANDLER_SIZE - 8,15), - MIPS32_SW(10,MIPS32_FASTDATA_HANDLER_SIZE - 12,15), - MIPS32_SW(11,MIPS32_FASTDATA_HANDLER_SIZE - 16,15), - /* start of fastdata area in t0 */ - MIPS32_LUI(8,UPPER16(MIPS32_PRACC_FASTDATA_AREA)), - MIPS32_ORI(8,8,LOWER16(MIPS32_PRACC_FASTDATA_AREA)), - MIPS32_LW(9,0,8), /* start addr in t1 */ - MIPS32_LW(10,0,8), /* end addr to t2 */ - /* loop: */ - /* 8 */ MIPS32_LW(11,0,0), /* lw t3,[t8 | r9] */ - /* 9 */ MIPS32_SW(11,0,0), /* sw t3,[r9 | r8] */ - MIPS32_BNE(10,9,NEG16(3)), /* bne $t2,t1,loop */ - MIPS32_ADDI(9,9,4), /* addi t1,t1,4 */ - - MIPS32_LW(8,MIPS32_FASTDATA_HANDLER_SIZE - 4,15), - MIPS32_LW(9,MIPS32_FASTDATA_HANDLER_SIZE - 8,15), - MIPS32_LW(10,MIPS32_FASTDATA_HANDLER_SIZE - 12,15), - MIPS32_LW(11,MIPS32_FASTDATA_HANDLER_SIZE - 16,15), - - MIPS32_LUI(15,UPPER16(MIPS32_PRACC_TEXT)), - MIPS32_ORI(15,15,LOWER16(MIPS32_PRACC_TEXT)), - MIPS32_JR(15), /* jr start */ - MIPS32_MFC0(15,31,0), /* move COP0 DeSave to $15 */ -}; -@endcode - -In the begining and the end of the handler we have fuction prologue (save the regs that will be clobbered) and epilogue (restore regs), -and in the very end, after all the xfer have been done, we do jump to the MIPS32_PRACC_TEXT address, i.e. Debug Exception Vector location. -We will use this fact (that we came back to MIPS32_PRACC_TEXT) to verify later if all the handler is executed (because when in RAM, -processor do not stall - it executes all instructions untill one of them do not demand access to dmseg (if one of it's opernads is there)). - -This handler is put into the RAM and executed from there, and not instruction by instruction, like in previous simple write -(mips_m4k_write_memory()) and read (mips_m4k_read_memory()) functions. - -N.B. When it is executing this code in RAM, CPU will not stall on instructions, but execute all until it comes to the : - -@code -MIPS32_LW(9,0,8) /* start addr in t1 */ -@endcode - -and there it will stall - because it will see that one of the operands have to be fetched from dmseg (EJTAG memory, in this case FASTDATA memory segment). - -This handler is loaded in the RAM, ath the reserved location "work_area". This work_area is configured in OpenOCD configuration script and should be selected -in that way that it is not clobbered (overwritten) by data we want to write-in using FASTDATA. - -What is executed instruction by instruction which is passed by dongle (via EJATG memory) is small jump code, which jumps at the handler in RAM. -CPU stalls on dmseg when receiving these jmp_code instructions, but once it jumps in RAM, CPU do not stall anymore and executes bunch of handler instructions. -Untill it comes to the first instruction which has an operand in FASTDATA area. There it stalls and waits on action from probe. -It happens actually when CPU comes to this loop : - -@code -MIPS32_LW(9,0,8), /* start addr in t1 */ -MIPS32_LW(10,0,8), /* end addr to t2 */ - /* loop: */ -/* 8 */ MIPS32_LW(11,0,0), /* lw t3,[t8 | r9] */ -/* 9 */ MIPS32_SW(11,0,0), /* sw t3,[r9 | r8] */ -MIPS32_BNE(10,9,NEG16(3)), /* bne $t2,t1,loop */ -@endcode - -and then it stalls because operand in r8 points to FASTDATA area. - -OpenOCD first verifies that CPU came to this place by : - -@code -/* next fetch to dmseg should be in FASTDATA_AREA, check */ -address = 0; -mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS); -mips_ejtag_drscan_32(ejtag_info, &address); - -if (address != MIPS32_PRACC_FASTDATA_AREA) - return ERROR_FAIL; -@endcode - -and then passes to CPU start and end address of the loop region for handler in RAM. - -In the loop in handler, CPU sees that it has to take and operand from FSTDATA area (to write it to the dst in RAM after), and so it stalls, putting PrAcc to "1". -OpenOCD fills the data via this loop : - -@code -for (i = 0; i < count; i++) -{ - /* Send the data out using fastdata (clears the access pending bit) */ - mips_ejtag_set_instr(ejtag_info, EJTAG_INST_FASTDATA); - if ((retval = mips_ejtag_fastdata_scan(ejtag_info, write_t, buf++)) != ERROR_OK) - return retval; -} -@endcode - -Each time when OpenOCD fills data to CPU (via dongle, via dmseg), CPU takes it and proceeds in executing the endler. However, since handler is in a assembly loop, -CPU comes to next instruction which also fetches data from FASTDATA area. So it stalls. -Then OpenOCD fills the data again, from it's (OpenOCD's) loop. And this game continues untill all the data has been filled. - -After the last data has beend given to CPU it sees that it reached the end address, so it proceeds with next instruction. However, rhis instruction do not point into dmseg, so -CPU executes bunch of handler instructions (all prologue) and in the end jumps to MIPS32_PRACC_TEXT address. - -On it's side, OpenOCD checks in CPU has jumped back to MIPS32_PRACC_TEXT, which is the confirmation that it correclty executed all the rest of the handler in RAM, -and that is not stuck somewhere in the RAM, or stalling on some acces in dmseg - that would be an error : - -@code -address = 0; -mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS); -mips_ejtag_drscan_32(ejtag_info, &address); - -if (address != MIPS32_PRACC_TEXT) - LOG_ERROR("mini program did not return to start"); -@endcode - -@section fdejtagspec EJTAG spec on FASTDATA access - -The width of the Fastdata register is 1 bit. During a Fastdata access, the Fastdata register is written and read, i.e., a bit -is shifted in and a bit is shifted out. During a Fastdata access, the Fastdata register value shifted in specifies whether -the Fastdata access should be completed or not. The value shifted out is a flag that indicates whether the Fastdata -access was successful or not (if completion was requested). - -The FASTDATA access is used for efficient block transfers between dmseg (on the probe) and target memory (on the -processor). An "upload" is defined as a sequence of processor loads from target memory and stores to dmseg. A -"download" is a sequence of processor loads from dmseg and stores to target memory. The "Fastdata area" specifies -the legal range of dmseg addresses (0xFF20.0000 - 0xFF20.000F) that can be used for uploads and downloads. The -Data + Fastdata registers (selected with the FASTDATA instruction) allow efficient completion of pending Fastdata -area accesses. -During Fastdata uploads and downloads, the processor will stall on accesses to the Fastdata area. The PrAcc (processor -access pending bit) will be 1 indicating the probe is required to complete the access. Both upload and download -accesses are attempted by shifting in a zero SPrAcc value (to request access completion) and shifting out SPrAcc to -see if the attempt will be successful (i.e., there was an access pending and a legal Fastdata area address was used). -Downloads will also shift in the data to be used to satisfy the load from dmseg’s Fastdata area, while uploads will -shift out the data being stored to dmseg’s Fastdata area. -As noted above, two conditions must be true for the Fastdata access to succeed. These are: - - - PrAcc must be 1, i.e., there must be a pending processor access. - - The Fastdata operation must use a valid Fastdata area address in dmseg (0xFF20.0000 to 0xFF20.000F). - -Basically, because FASTDATA area in dmseg is 16 bytes, we transfer (0xFF20.0000 - 0xFF20.000F) -FASTDATA scan TAP instruction selects the Data and the Fastdata registers at once. - -They come in order : -TDI -> | Data register| -> | Fastdata register | -> TDO - -FASTDATA register is 1-bit width register. It takes in SPrAcc bit which should be shifted first, -followed by 32 bit of data. - -Scan width of FASTDTA is 33 bits in total : 33 bits are shifted in and 33 bits are shifted out. - -First bit that is shifted out is SPrAcc that comes out of Fastdata register and should give us status on FATSDATA write we want to do. - -@section fdcheck OpenOCD misses FASTDATA check - -Download flow (probe -> target block transfer) : - -1) Probe transfer target execution to a loop in target memory doing a fixed number of "loads" to fastdata area of dmseg (and stores to the target download destination.) - -2) Probe loops attempting to satisfy the loads "expected" from the target. - On FASTDATA access "successful" move on to next "load". - On FASTDATA access "failure" repeat until "successful" or timeout. - (A "failure" is an attempt to satisfy an access when none are pending.) - -Note: A failure may have a recoverable (and even expected) cause like slow target execution of the load loop. Other failures may be due to unexpected more troublesome causes like an exception while in debug mode or a target hang on a bad target memory access. - -Shifted out SPrAcc bit inform us that there was CPU access pendingand that it can be complete. - -Basically, we should do following procedure : - - - Download (dongle -> CPU) : -You shift "download" DATA and FASTDATA[SPrAcc] = 0 (33 bit scan) into the target. If the value of FASTDATA[SPrAcc] shifted out is "1" then an access was pending when you started the scan and it is now complete. - -If SPrAcc is 0 then no access was pending to the fastdata area. (Repeat attempt to complete the access you expect for this data word. Timeout if you think the access is "long overdue" as something unexpected has happened.) - - - Upload (CPU -> dongle) : -You shift "dummy" DATA and FASTDATA[SPrAcc] = 0 (33 bit scan) into the target. If the value of FASTDATA[SPrAcc] shifted out is "1" then an access was pending when you started the scan and it is now complete. The "upload" is the DATA shifted out of the target. - -If SPrAcc is 0 then no access was pending to the fastdata area. (Repeat attempt to complete the access you expect for this data word. Timeout if you think the access is "long overdue" as something unexpected has happened.) - -Basically, if checking first (before scan) if CPU is pending on FASTDATA access (PrAcc is "1"), like this - -@code -wait(ready); -do_scan(); -@endcode - -which is inefficient, we should do it like this : - -@code -BEGIN : - do_scan(); - if (!was_ready) - goto BEGIN; -@endcode - -by checking SPrAcc that we shifted out. - -If some FASTDATA write fails, OpenOCD will continue with it's loop (on the host side), but CPU will rest pending (on the target side) -waiting for correct FASTDATA write. - -Since OpenOCD goes ahead, it will eventually finish it's loop, and proceede to check if CPU took all the data. But since CPU did not took all the data, -it is still turns in handler's loop in RAM, stalling on Fastdata area so this check : - -@code -address = 0; -mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS); -retval = mips_ejtag_drscan_32(ejtag_info, &address); -if (retval != ERROR_OK) - return retval; - -if (address != MIPS32_PRACC_TEXT) - LOG_ERROR("mini program did not return to start"); -@endcode - -fails, and that gives us enough information of the failure. - -In this case, we can lower the JTAG frquency and try again, bacuse most probable reason of this failure is that we tried FASTDATA upload before CPU arrived to rise PrAcc (i.e. before it was pending on access). -However, the reasons for failure might be numerous : reset, exceptions which can occur in debug mode, bus hangs, etc. - -If lowering the JTAG freq does not work either, we can fall back to more robust solution with patch posted below. - -To summarize, FASTDATA communication goes as following : - --# CPU jumps to Debug Exception Vector Location 0xFF200200 in dmseg and it stalls, pending and waiting for EJTAG to give it first debug instruction and signall it by putting PrAcc to "0" --# When PrAcc goes to "0" CPU execute one opcode sent by EJTAG via DATA reg. Then it pends on next access, waiting for PrAcc to be put to "0" again --# Following this game, OpenOCD first loads handler code in RAM, and then sends the jmp_code - instruction by instruction via DATA reg, which redirects CPU to handler previously set up in RAM --# Once in RAM CPU does not pend on any instruction, but it executes all handler instructions untill first "fetch" to Fastdata area - then it stops and pends. --# So - when it comes to any instruction (opcode) in this handler in RAM which reads (or writes) to Fastdata area (0xF..F20.0000 to 0xF..F20.000F), CPU stops (i.e. stalls access). - I.e. it stops on this lw opcode and waits to FASTDATA TAP command from the probe. --# CPU continues only if OpenOCD shifted in SPrAcc "0" (and if the PrAcc was "1"). It shifts-out "1" to tell us that it was OK (processor was stalled, so it can complete the access), - and that it continued execution of the handler in RAM. --# If PrAcc was not "1" CPU will not continue (go to next instruction), but will shift-out "0" and keep stalling on the same instruction of my handler in RAM. --# When Fastdata loop is finished, CPU executes all following hadler instructions in RAM (prologue). --# In the end of my handler in RAM, I jumps back to begining of Debug Exception Vector Location 0xFF200200 in dmseg. --# When it jumps back to 0xFF200200 in dmseg processor stops and pends, waiting for OpenOCD to send it instruction via DATA reg and signal it by putting PrAcc to "0". - -*/ diff --git a/doc/manual/target/notarm.txt b/doc/manual/target/notarm.txt deleted file mode 100644 index 5d5be78..0000000 --- a/doc/manual/target/notarm.txt +++ /dev/null @@ -1,71 +0,0 @@ -/** @page targetnotarm OpenOCD Non-ARM Targets - -This page describes outstanding issues w.r.t. non-ARM targets. - -@section targetnotarmflash Flash drivers - -The flash drivers contain ARM32 code that is used -to execute code on the target. - -This needs to be handled in some CPU independent -manner. - -The ocl and ecos flash drivers compile the flash -driver code to run on the target on the developer -machine. - -The ocl and ecos flash drivers should be unified -and instructions should be written on how to -compile the target flash drivers. Perhaps -using automake? - - -eCos has CFI driver that could probably be compiled -for all targets. The trick is to figure out a -way to make the compiled flash drivers work -on all target memory maps + sort out all the -little details - -@section targetnotarm32v64 32 vs. 64 bit - -Currently OpenOCD only supports 32 bit targets. - -Adding 64 bit support would be nice but there -hasn't been any call for it in the openocd development -mailing list - -@section targetnotarmsupport Target Support - -target.h is relatively CPU agnostic and -the intention is to move in the direction of less -instruction set specific. - -Non-CPU targets are also supported, but there isn't -a lot of activity on it in the mailing list currently. -An example is FPGA programming support via JTAG, -but also flash chips can be programmed directly -using JTAG. - -@section targetnotarmphy non-JTAG physical layer - -JTAG is not the only physical protocol used to talk to -CPUs. - -OpenOCD does not today have targets that use non-JTAG. - -The actual physical layer is a relatively modest part -of the total OpenOCD system. - - -@section targetnotarmppc PowerPC - -there exists open source implementations of powerpc -target manipulation, but there hasn't been a lot -of activity in the mailing list. - -@section targetnotarmmips MIPS - -Currently OpenOCD has a MIPS target defined. This is the -first non-ARM example of a CPU target - - */ diff --git a/doc/openocd.1 b/doc/openocd.1 deleted file mode 100644 index 4278486..0000000 --- a/doc/openocd.1 +++ /dev/null @@ -1,103 +0,0 @@ -.TH "OPENOCD" "1" "November 24, 2009" -.SH "NAME" -openocd \- A free and open on\-chip debugging, in\-system programming and -boundary\-scan testing tool for ARM and MIPS systems -.SH "SYNOPSIS" -.B openocd \fR[\fB\-fsdlcphv\fR] [\fB\-\-file\fR <filename>] [\fB\-\-search\fR <dirname>] [\fB\-\-debug\fR <debuglevel>] [\fB\-\-log_output\fR <filename>] [\fB\-\-command\fR <cmd>] [\fB\-\-pipe\fR] [\fB\-\-help\fR] [\fB\-\-version\fR] -.SH "DESCRIPTION" -.B OpenOCD -is an on\-chip debugging, in\-system programming and boundary\-scan -testing tool for various ARM and MIPS systems. -.PP -The debugger uses an IEEE 1149\-1 compliant JTAG TAP bus master to access -on\-chip debug functionality available on ARM based microcontrollers or -system-on-chip solutions. For MIPS systems the EJTAG interface is supported. -.PP -User interaction is realized through a telnet command line interface, -a gdb (the GNU debugger) remote protocol server, and a simplified RPC -connection that can be used to interface with OpenOCD's Jim Tcl engine. -.PP -OpenOCD supports various different types of JTAG interfaces/programmers, -please check the \fIopenocd\fR info page for the complete list. -.SH "OPTIONS" -.TP -.B "\-f, \-\-file <filename>" -This is a shortcut for a \fB\-c "[script \fI<filename>\fB]"\fR -command, using a search path to load the configuration file -.IR <filename> . -In order to specify multiple config files, you can use multiple -.B \-\-file -arguments. If no such \fB\-c\fR -options are included, the first config file -.B openocd.cfg -in the search path will be used. -.TP -.B "\-s, \-\-search <dirname>" -Add -.I <dirname> -to the search path used for config files and scripts. -The search path begins with the current directory, -then includes these additional directories before other -components such as the standard OpenOCD script libraries. -.TP -.B "\-d, \-\-debug <debuglevel>" -Set debug level. Possible values are: -.br -.RB " * " 0 " (errors)" -.br -.RB " * " 1 " (warnings)" -.br -.RB " * " 2 " (informational messages)" -.br -.RB " * " 3 " (debug messages)" -.br -The default level is -.BR 2 . -.TP -.B "\-l, \-\-log_output <filename>" -Redirect log output to the file -.IR <filename> . -Per default the log output is printed on -.BR stderr . -.TP -.B "\-c, \-\-command <cmd>" -Add the command -.I <cmd> -to a list of commands executed on server startup. -Note that you will need to explicitly invoke -.I init -if the command requires access to a target or flash. -.TP -.B "\-p, \-\-pipe" -Use pipes when talking to gdb. -.TP -.B "\-h, \-\-help" -Show a help text and exit. -.TP -.B "\-v, \-\-version" -Show version information and exit. -.SH "BUGS" -Please report any bugs on the mailing list at -.BR openocd\-devel@lists.sourceforge.net . -.SH "LICENCE" -.B OpenOCD -is covered by the GNU General Public License (GPL), version 2 or later. -.SH "SEE ALSO" -.BR jtag (1) -.PP -The full documentation for -.B openocd -is maintained as a Texinfo manual. If the -.BR info -(or -.BR pinfo ) -and -.BR openocd -programs are properly installed at your site, the command -.B info openocd -should give you access to the complete manual. -.SH "AUTHORS" -Please see the file AUTHORS. -.PP -This manual page was written by Uwe Hermann <uwe@hermann\-uwe.de>. -It is licensed under the terms of the GNU GPL (version 2 or later). diff --git a/doc/openocd.texi b/doc/openocd.texi deleted file mode 100644 index 8146654..0000000 --- a/doc/openocd.texi +++ /dev/null @@ -1,9812 +0,0 @@ -\input texinfo @c -*-texinfo-*- -@c %**start of header -@setfilename openocd.info -@settitle OpenOCD User's Guide -@dircategory Development -@direntry -* OpenOCD: (openocd). OpenOCD User's Guide -@end direntry -@paragraphindent 0 -@c %**end of header - -@include version.texi - -@copying - -This User's Guide documents -release @value{VERSION}, -dated @value{UPDATED}, -of the Open On-Chip Debugger (OpenOCD). - -@itemize @bullet -@item Copyright @copyright{} 2008 The OpenOCD Project -@item Copyright @copyright{} 2007-2008 Spencer Oliver @email{spen@@spen-soft.co.uk} -@item Copyright @copyright{} 2008-2010 Oyvind Harboe @email{oyvind.harboe@@zylin.com} -@item Copyright @copyright{} 2008 Duane Ellis @email{openocd@@duaneellis.com} -@item Copyright @copyright{} 2009-2010 David Brownell -@end itemize - -@quotation -Permission is granted to copy, distribute and/or modify this document -under the terms of the GNU Free Documentation License, Version 1.2 or -any later version published by the Free Software Foundation; with no -Invariant Sections, with no Front-Cover Texts, and with no Back-Cover -Texts. A copy of the license is included in the section entitled ``GNU -Free Documentation License''. -@end quotation -@end copying - -@titlepage -@titlefont{@emph{Open On-Chip Debugger:}} -@sp 1 -@title OpenOCD User's Guide -@subtitle for release @value{VERSION} -@subtitle @value{UPDATED} - -@page -@vskip 0pt plus 1filll -@insertcopying -@end titlepage - -@summarycontents -@contents - -@ifnottex -@node Top -@top OpenOCD User's Guide - -@insertcopying -@end ifnottex - -@menu -* About:: About OpenOCD -* Developers:: OpenOCD Developer Resources -* Debug Adapter Hardware:: Debug Adapter Hardware -* About Jim-Tcl:: About Jim-Tcl -* Running:: Running OpenOCD -* OpenOCD Project Setup:: OpenOCD Project Setup -* Config File Guidelines:: Config File Guidelines -* Daemon Configuration:: Daemon Configuration -* Debug Adapter Configuration:: Debug Adapter Configuration -* Reset Configuration:: Reset Configuration -* TAP Declaration:: TAP Declaration -* CPU Configuration:: CPU Configuration -* Flash Commands:: Flash Commands -* Flash Programming:: Flash Programming -* PLD/FPGA Commands:: PLD/FPGA Commands -* General Commands:: General Commands -* Architecture and Core Commands:: Architecture and Core Commands -* JTAG Commands:: JTAG Commands -* Boundary Scan Commands:: Boundary Scan Commands -* Utility Commands:: Utility Commands -* TFTP:: TFTP -* GDB and OpenOCD:: Using GDB and OpenOCD -* Tcl Scripting API:: Tcl Scripting API -* FAQ:: Frequently Asked Questions -* Tcl Crash Course:: Tcl Crash Course -* License:: GNU Free Documentation License - -@comment DO NOT use the plain word ``Index'', reason: CYGWIN filename -@comment case issue with ``Index.html'' and ``index.html'' -@comment Occurs when creating ``--html --no-split'' output -@comment This fix is based on: http://sourceware.org/ml/binutils/2006-05/msg00215.html -* OpenOCD Concept Index:: Concept Index -* Command and Driver Index:: Command and Driver Index -@end menu - -@node About -@unnumbered About -@cindex about - -OpenOCD was created by Dominic Rath as part of a 2005 diploma thesis written -at the University of Applied Sciences Augsburg (@uref{http://www.hs-augsburg.de}). -Since that time, the project has grown into an active open-source project, -supported by a diverse community of software and hardware developers from -around the world. - -@section What is OpenOCD? -@cindex TAP -@cindex JTAG - -The Open On-Chip Debugger (OpenOCD) aims to provide debugging, -in-system programming and boundary-scan testing for embedded target -devices. - -It does so with the assistance of a @dfn{debug adapter}, which is -a small hardware module which helps provide the right kind of -electrical signaling to the target being debugged. These are -required since the debug host (on which OpenOCD runs) won't -usually have native support for such signaling, or the connector -needed to hook up to the target. - -Such debug adapters support one or more @dfn{transport} protocols, -each of which involves different electrical signaling (and uses -different messaging protocols on top of that signaling). There -are many types of debug adapter, and little uniformity in what -they are called. (There are also product naming differences.) - -These adapters are sometimes packaged as discrete dongles, which -may generically be called @dfn{hardware interface dongles}. -Some development boards also integrate them directly, which may -let the development board connect directly to the debug -host over USB (and sometimes also to power it over USB). - -For example, a @dfn{JTAG Adapter} supports JTAG -signaling, and is used to communicate -with JTAG (IEEE 1149.1) compliant TAPs on your target board. -A @dfn{TAP} is a ``Test Access Port'', a module which processes -special instructions and data. TAPs are daisy-chained within and -between chips and boards. JTAG supports debugging and boundary -scan operations. - -There are also @dfn{SWD Adapters} that support Serial Wire Debug (SWD) -signaling to communicate with some newer ARM cores, as well as debug -adapters which support both JTAG and SWD transports. SWD supports only -debugging, whereas JTAG also supports boundary scan operations. - -For some chips, there are also @dfn{Programming Adapters} supporting -special transports used only to write code to flash memory, without -support for on-chip debugging or boundary scan. -(At this writing, OpenOCD does not support such non-debug adapters.) - - -@b{Dongles:} OpenOCD currently supports many types of hardware dongles: -USB-based, parallel port-based, and other standalone boxes that run -OpenOCD internally. @xref{Debug Adapter Hardware}. - -@b{GDB Debug:} It allows ARM7 (ARM7TDMI and ARM720t), ARM9 (ARM920T, -ARM922T, ARM926EJ--S, ARM966E--S), XScale (PXA25x, IXP42x), Cortex-M3 -(Stellaris LM3, ST STM32 and Energy Micro EFM32) and Intel Quark (x10xx) -based cores to be debugged via the GDB protocol. - -@b{Flash Programming:} Flash writing is supported for external -CFI-compatible NOR flashes (Intel and AMD/Spansion command set) and several -internal flashes (LPC1700, LPC1800, LPC2000, LPC4300, AT91SAM7, AT91SAM3U, -STR7x, STR9x, LM3, STM32x and EFM32). Preliminary support for various NAND flash -controllers (LPC3180, Orion, S3C24xx, more) is included. - -@section OpenOCD Web Site - -The OpenOCD web site provides the latest public news from the community: - -@uref{http://openocd.org/} - -@section Latest User's Guide: - -The user's guide you are now reading may not be the latest one -available. A version for more recent code may be available. -Its HTML form is published regularly at: - -@uref{http://openocd.org/doc/html/index.html} - -PDF form is likewise published at: - -@uref{http://openocd.org/doc/pdf/openocd.pdf} - -@section OpenOCD User's Forum - -There is an OpenOCD forum (phpBB) hosted by SparkFun, -which might be helpful to you. Note that if you want -anything to come to the attention of developers, you -should post it to the OpenOCD Developer Mailing List -instead of this forum. - -@uref{http://forum.sparkfun.com/viewforum.php?f=18} - -@section OpenOCD User's Mailing List - -The OpenOCD User Mailing List provides the primary means of -communication between users: - -@uref{https://lists.sourceforge.net/mailman/listinfo/openocd-user} - -@section OpenOCD IRC - -Support can also be found on irc: -@uref{irc://irc.freenode.net/openocd} - -@node Developers -@chapter OpenOCD Developer Resources -@cindex developers - -If you are interested in improving the state of OpenOCD's debugging and -testing support, new contributions will be welcome. Motivated developers -can produce new target, flash or interface drivers, improve the -documentation, as well as more conventional bug fixes and enhancements. - -The resources in this chapter are available for developers wishing to explore -or expand the OpenOCD source code. - -@section OpenOCD Git Repository - -During the 0.3.x release cycle, OpenOCD switched from Subversion to -a Git repository hosted at SourceForge. The repository URL is: - -@uref{git://git.code.sf.net/p/openocd/code} - -or via http - -@uref{http://git.code.sf.net/p/openocd/code} - -You may prefer to use a mirror and the HTTP protocol: - -@uref{http://repo.or.cz/r/openocd.git} - -With standard Git tools, use @command{git clone} to initialize -a local repository, and @command{git pull} to update it. -There are also gitweb pages letting you browse the repository -with a web browser, or download arbitrary snapshots without -needing a Git client: - -@uref{http://repo.or.cz/w/openocd.git} - -The @file{README} file contains the instructions for building the project -from the repository or a snapshot. - -Developers that want to contribute patches to the OpenOCD system are -@b{strongly} encouraged to work against mainline. -Patches created against older versions may require additional -work from their submitter in order to be updated for newer releases. - -@section Doxygen Developer Manual - -During the 0.2.x release cycle, the OpenOCD project began -providing a Doxygen reference manual. This document contains more -technical information about the software internals, development -processes, and similar documentation: - -@uref{http://openocd.org/doc/doxygen/html/index.html} - -This document is a work-in-progress, but contributions would be welcome -to fill in the gaps. All of the source files are provided in-tree, -listed in the Doxyfile configuration at the top of the source tree. - -@section Gerrit Review System - -All changes in the OpenOCD Git repository go through the web-based Gerrit -Code Review System: - -@uref{http://openocd.zylin.com/} - -After a one-time registration and repository setup, anyone can push commits -from their local Git repository directly into Gerrit. -All users and developers are encouraged to review, test, discuss and vote -for changes in Gerrit. The feedback provides the basis for a maintainer to -eventually submit the change to the main Git repository. - -The @file{HACKING} file, also available as the Patch Guide in the Doxygen -Developer Manual, contains basic information about how to connect a -repository to Gerrit, prepare and push patches. Patch authors are expected to -maintain their changes while they're in Gerrit, respond to feedback and if -necessary rework and push improved versions of the change. - -@section OpenOCD Developer Mailing List - -The OpenOCD Developer Mailing List provides the primary means of -communication between developers: - -@uref{https://lists.sourceforge.net/mailman/listinfo/openocd-devel} - -@section OpenOCD Bug Tracker - -The OpenOCD Bug Tracker is hosted on SourceForge: - -@uref{http://bugs.openocd.org/} - - -@node Debug Adapter Hardware -@chapter Debug Adapter Hardware -@cindex dongles -@cindex FTDI -@cindex wiggler -@cindex zy1000 -@cindex printer port -@cindex USB Adapter -@cindex RTCK - -Defined: @b{dongle}: A small device that plugs into a computer and serves as -an adapter .... [snip] - -In the OpenOCD case, this generally refers to @b{a small adapter} that -attaches to your computer via USB or the parallel port. One -exception is the Ultimate Solutions ZY1000, packaged as a small box you -attach via an ethernet cable. The ZY1000 has the advantage that it does not -require any drivers to be installed on the developer PC. It also has -a built in web interface. It supports RTCK/RCLK or adaptive clocking -and has a built-in relay to power cycle targets remotely. - - -@section Choosing a Dongle - -There are several things you should keep in mind when choosing a dongle. - -@enumerate -@item @b{Transport} Does it support the kind of communication that you need? -OpenOCD focusses mostly on JTAG. Your version may also support -other ways to communicate with target devices. -@item @b{Voltage} What voltage is your target - 1.8, 2.8, 3.3, or 5V? -Does your dongle support it? You might need a level converter. -@item @b{Pinout} What pinout does your target board use? -Does your dongle support it? You may be able to use jumper -wires, or an "octopus" connector, to convert pinouts. -@item @b{Connection} Does your computer have the USB, parallel, or -Ethernet port needed? -@item @b{RTCK} Do you expect to use it with ARM chips and boards with -RTCK support (also known as ``adaptive clocking'')? -@end enumerate - -@section Stand-alone JTAG Probe - -The ZY1000 from Ultimate Solutions is technically not a dongle but a -stand-alone JTAG probe that, unlike most dongles, doesn't require any drivers -running on the developer's host computer. -Once installed on a network using DHCP or a static IP assignment, users can -access the ZY1000 probe locally or remotely from any host with access to the -IP address assigned to the probe. -The ZY1000 provides an intuitive web interface with direct access to the -OpenOCD debugger. -Users may also run a GDBSERVER directly on the ZY1000 to take full advantage -of GCC & GDB to debug any distribution of embedded Linux or NetBSD running on -the target. -The ZY1000 supports RTCK & RCLK or adaptive clocking and has a built-in relay -to power cycle the target remotely. - -For more information, visit: - -@b{ZY1000} See: @url{http://www.ultsol.com/index.php/component/content/article/8/210-zylin-zy1000-main} - -@section USB FT2232 Based - -There are many USB JTAG dongles on the market, many of them based -on a chip from ``Future Technology Devices International'' (FTDI) -known as the FTDI FT2232; this is a USB full speed (12 Mbps) chip. -See: @url{http://www.ftdichip.com} for more information. -In summer 2009, USB high speed (480 Mbps) versions of these FTDI -chips started to become available in JTAG adapters. Around 2012, a new -variant appeared - FT232H - this is a single-channel version of FT2232H. -(Adapters using those high speed FT2232H or FT232H chips may support adaptive -clocking.) - -The FT2232 chips are flexible enough to support some other -transport options, such as SWD or the SPI variants used to -program some chips. They have two communications channels, -and one can be used for a UART adapter at the same time the -other one is used to provide a debug adapter. - -Also, some development boards integrate an FT2232 chip to serve as -a built-in low-cost debug adapter and USB-to-serial solution. - -@itemize @bullet -@item @b{usbjtag} -@* Link @url{http://elk.informatik.fh-augsburg.de/hhweb/doc/openocd/usbjtag/usbjtag.html} -@item @b{jtagkey} -@* See: @url{http://www.amontec.com/jtagkey.shtml} -@item @b{jtagkey2} -@* See: @url{http://www.amontec.com/jtagkey2.shtml} -@item @b{oocdlink} -@* See: @url{http://www.oocdlink.com} By Joern Kaipf -@item @b{signalyzer} -@* See: @url{http://www.signalyzer.com} -@item @b{Stellaris Eval Boards} -@* See: @url{http://www.ti.com} - The Stellaris eval boards -bundle FT2232-based JTAG and SWD support, which can be used to debug -the Stellaris chips. Using separate JTAG adapters is optional. -These boards can also be used in a "pass through" mode as JTAG adapters -to other target boards, disabling the Stellaris chip. -@item @b{TI/Luminary ICDI} -@* See: @url{http://www.ti.com} - TI/Luminary In-Circuit Debug -Interface (ICDI) Boards are included in Stellaris LM3S9B9x -Evaluation Kits. Like the non-detachable FT2232 support on the other -Stellaris eval boards, they can be used to debug other target boards. -@item @b{olimex-jtag} -@* See: @url{http://www.olimex.com} -@item @b{Flyswatter/Flyswatter2} -@* See: @url{http://www.tincantools.com} -@item @b{turtelizer2} -@* See: -@uref{http://www.ethernut.de/en/hardware/turtelizer/index.html, Turtelizer 2}, or -@url{http://www.ethernut.de} -@item @b{comstick} -@* Link: @url{http://www.hitex.com/index.php?id=383} -@item @b{stm32stick} -@* Link @url{http://www.hitex.com/stm32-stick} -@item @b{axm0432_jtag} -@* Axiom AXM-0432 Link @url{http://www.axman.com} - NOTE: This JTAG does not appear -to be available anymore as of April 2012. -@item @b{cortino} -@* Link @url{http://www.hitex.com/index.php?id=cortino} -@item @b{dlp-usb1232h} -@* Link @url{http://www.dlpdesign.com/usb/usb1232h.shtml} -@item @b{digilent-hs1} -@* Link @url{http://www.digilentinc.com/Products/Detail.cfm?Prod=JTAG-HS1} -@item @b{opendous} -@* Link @url{http://code.google.com/p/opendous/wiki/JTAG} FT2232H-based -(OpenHardware). -@item @b{JTAG-lock-pick Tiny 2} -@* Link @url{http://www.distortec.com/jtag-lock-pick-tiny-2} FT232H-based - -@item @b{GW16042} -@* Link: @url{http://shop.gateworks.com/index.php?route=product/product&path=70_80&product_id=64} -FT2232H-based - -@end itemize -@section USB-JTAG / Altera USB-Blaster compatibles - -These devices also show up as FTDI devices, but are not -protocol-compatible with the FT2232 devices. They are, however, -protocol-compatible among themselves. USB-JTAG devices typically consist -of a FT245 followed by a CPLD that understands a particular protocol, -or emulates this protocol using some other hardware. - -They may appear under different USB VID/PID depending on the particular -product. The driver can be configured to search for any VID/PID pair -(see the section on driver commands). - -@itemize -@item @b{USB-JTAG} Kolja Waschk's USB Blaster-compatible adapter -@* Link: @url{http://ixo-jtag.sourceforge.net/} -@item @b{Altera USB-Blaster} -@* Link: @url{http://www.altera.com/literature/ug/ug_usb_blstr.pdf} -@end itemize - -@section USB J-Link based -There are several OEM versions of the SEGGER @b{J-Link} adapter. It is -an example of a microcontroller based JTAG adapter, it uses an -AT91SAM764 internally. - -@itemize @bullet -@item @b{SEGGER J-Link} -@* Link: @url{http://www.segger.com/jlink.html} -@item @b{Atmel SAM-ICE} (Only works with Atmel chips!) -@* Link: @url{http://www.atmel.com/tools/atmelsam-ice.aspx} -@item @b{IAR J-Link} -@end itemize - -@section USB RLINK based -Raisonance has an adapter called @b{RLink}. It exists in a stripped-down form on the STM32 Primer, -permanently attached to the JTAG lines. It also exists on the STM32 Primer2, but that is wired for -SWD and not JTAG, thus not supported. - -@itemize @bullet -@item @b{Raisonance RLink} -@* Link: @url{http://www.mcu-raisonance.com/~rlink-debugger-programmer__@/microcontrollers__tool~tool__T018:4cn9ziz4bnx6.html} -@item @b{STM32 Primer} -@* Link: @url{http://www.stm32circle.com/resources/stm32primer.php} -@item @b{STM32 Primer2} -@* Link: @url{http://www.stm32circle.com/resources/stm32primer2.php} -@end itemize - -@section USB ST-LINK based -ST Micro has an adapter called @b{ST-LINK}. -They only work with ST Micro chips, notably STM32 and STM8. - -@itemize @bullet -@item @b{ST-LINK} -@* This is available standalone and as part of some kits, eg. STM32VLDISCOVERY. -@* Link: @url{http://www.st.com/internet/evalboard/product/219866.jsp} -@item @b{ST-LINK/V2} -@* This is available standalone and as part of some kits, eg. STM32F4DISCOVERY. -@* Link: @url{http://www.st.com/internet/evalboard/product/251168.jsp} -@end itemize - -For info the original ST-LINK enumerates using the mass storage usb class; however, -its implementation is completely broken. The result is this causes issues under Linux. -The simplest solution is to get Linux to ignore the ST-LINK using one of the following methods: -@itemize @bullet -@item modprobe -r usb-storage && modprobe usb-storage quirks=483:3744:i -@item add "options usb-storage quirks=483:3744:i" to /etc/modprobe.conf -@end itemize - -@section USB TI/Stellaris ICDI based -Texas Instruments has an adapter called @b{ICDI}. -It is not to be confused with the FTDI based adapters that were originally fitted to their -evaluation boards. This is the adapter fitted to the Stellaris LaunchPad. - -@section USB CMSIS-DAP based -ARM has released a interface standard called CMSIS-DAP that simplifies connecting -debuggers to ARM Cortex based targets @url{http://www.keil.com/support/man/docs/dapdebug/dapdebug_introduction.htm}. - -@section USB Other -@itemize @bullet -@item @b{USBprog} -@* Link: @url{http://shop.embedded-projects.net/} - which uses an Atmel MEGA32 and a UBN9604 - -@item @b{USB - Presto} -@* Link: @url{http://tools.asix.net/prg_presto.htm} - -@item @b{Versaloon-Link} -@* Link: @url{http://www.versaloon.com} - -@item @b{ARM-JTAG-EW} -@* Link: @url{http://www.olimex.com/dev/arm-jtag-ew.html} - -@item @b{Buspirate} -@* Link: @url{http://dangerousprototypes.com/bus-pirate-manual/} - -@item @b{opendous} -@* Link: @url{http://code.google.com/p/opendous-jtag/} - which uses an AT90USB162 - -@item @b{estick} -@* Link: @url{http://code.google.com/p/estick-jtag/} - -@item @b{Keil ULINK v1} -@* Link: @url{http://www.keil.com/ulink1/} -@end itemize - -@section IBM PC Parallel Printer Port Based - -The two well-known ``JTAG Parallel Ports'' cables are the Xilinx DLC5 -and the Macraigor Wiggler. There are many clones and variations of -these on the market. - -Note that parallel ports are becoming much less common, so if you -have the choice you should probably avoid these adapters in favor -of USB-based ones. - -@itemize @bullet - -@item @b{Wiggler} - There are many clones of this. -@* Link: @url{http://www.macraigor.com/wiggler.htm} - -@item @b{DLC5} - From XILINX - There are many clones of this -@* Link: Search the web for: ``XILINX DLC5'' - it is no longer -produced, PDF schematics are easily found and it is easy to make. - -@item @b{Amontec - JTAG Accelerator} -@* Link: @url{http://www.amontec.com/jtag_accelerator.shtml} - -@item @b{Wiggler2} -@* Link: @url{http://www.ccac.rwth-aachen.de/~michaels/index.php/hardware/armjtag} - -@item @b{Wiggler_ntrst_inverted} -@* Yet another variation - See the source code, src/jtag/parport.c - -@item @b{old_amt_wiggler} -@* Unknown - probably not on the market today - -@item @b{arm-jtag} -@* Link: Most likely @url{http://www.olimex.com/dev/arm-jtag.html} [another wiggler clone] - -@item @b{chameleon} -@* Link: @url{http://www.amontec.com/chameleon.shtml} - -@item @b{Triton} -@* Unknown. - -@item @b{Lattice} -@* ispDownload from Lattice Semiconductor -@url{http://www.latticesemi.com/lit/docs/@/devtools/dlcable.pdf} - -@item @b{flashlink} -@* From ST Microsystems; -@* Link: @url{http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/DATA_BRIEF/DM00039500.pdf} - -@end itemize - -@section Other... -@itemize @bullet - -@item @b{ep93xx} -@* An EP93xx based Linux machine using the GPIO pins directly. - -@item @b{at91rm9200} -@* Like the EP93xx - but an ATMEL AT91RM9200 based solution using the GPIO pins on the chip. - -@item @b{bcm2835gpio} -@* A BCM2835-based board (e.g. Raspberry Pi) using the GPIO pins of the expansion header. - -@item @b{jtag_vpi} -@* A JTAG driver acting as a client for the JTAG VPI server interface. -@* Link: @url{http://github.com/fjullien/jtag_vpi} - -@end itemize - -@node About Jim-Tcl -@chapter About Jim-Tcl -@cindex Jim-Tcl -@cindex tcl - -OpenOCD uses a small ``Tcl Interpreter'' known as Jim-Tcl. -This programming language provides a simple and extensible -command interpreter. - -All commands presented in this Guide are extensions to Jim-Tcl. -You can use them as simple commands, without needing to learn -much of anything about Tcl. -Alternatively, you can write Tcl programs with them. - -You can learn more about Jim at its website, @url{http://jim.tcl.tk}. -There is an active and responsive community, get on the mailing list -if you have any questions. Jim-Tcl maintainers also lurk on the -OpenOCD mailing list. - -@itemize @bullet -@item @b{Jim vs. Tcl} -@* Jim-Tcl is a stripped down version of the well known Tcl language, -which can be found here: @url{http://www.tcl.tk}. Jim-Tcl has far -fewer features. Jim-Tcl is several dozens of .C files and .H files and -implements the basic Tcl command set. In contrast: Tcl 8.6 is a -4.2 MB .zip file containing 1540 files. - -@item @b{Missing Features} -@* Our practice has been: Add/clone the real Tcl feature if/when -needed. We welcome Jim-Tcl improvements, not bloat. Also there -are a large number of optional Jim-Tcl features that are not -enabled in OpenOCD. - -@item @b{Scripts} -@* OpenOCD configuration scripts are Jim-Tcl Scripts. OpenOCD's -command interpreter today is a mixture of (newer) -Jim-Tcl commands, and the (older) original command interpreter. - -@item @b{Commands} -@* At the OpenOCD telnet command line (or via the GDB monitor command) one -can type a Tcl for() loop, set variables, etc. -Some of the commands documented in this guide are implemented -as Tcl scripts, from a @file{startup.tcl} file internal to the server. - -@item @b{Historical Note} -@* Jim-Tcl was introduced to OpenOCD in spring 2008. Fall 2010, -before OpenOCD 0.5 release, OpenOCD switched to using Jim-Tcl -as a Git submodule, which greatly simplified upgrading Jim-Tcl -to benefit from new features and bugfixes in Jim-Tcl. - -@item @b{Need a crash course in Tcl?} -@*@xref{Tcl Crash Course}. -@end itemize - -@node Running -@chapter Running -@cindex command line options -@cindex logfile -@cindex directory search - -Properly installing OpenOCD sets up your operating system to grant it access -to the debug adapters. On Linux, this usually involves installing a file -in @file{/etc/udev/rules.d,} so OpenOCD has permissions. An example rules file -that works for many common adapters is shipped with OpenOCD in the -@file{contrib} directory. MS-Windows needs -complex and confusing driver configuration for every peripheral. Such issues -are unique to each operating system, and are not detailed in this User's Guide. - -Then later you will invoke the OpenOCD server, with various options to -tell it how each debug session should work. -The @option{--help} option shows: -@verbatim -bash$ openocd --help - ---help | -h display this help ---version | -v display OpenOCD version ---file | -f use configuration file <name> ---search | -s dir to search for config files and scripts ---debug | -d set debug level <0-3> ---log_output | -l redirect log output to file <name> ---command | -c run <command> -@end verbatim - -If you don't give any @option{-f} or @option{-c} options, -OpenOCD tries to read the configuration file @file{openocd.cfg}. -To specify one or more different -configuration files, use @option{-f} options. For example: - -@example -openocd -f config1.cfg -f config2.cfg -f config3.cfg -@end example - -Configuration files and scripts are searched for in -@enumerate -@item the current directory, -@item any search dir specified on the command line using the @option{-s} option, -@item any search dir specified using the @command{add_script_search_dir} command, -@item @file{$HOME/.openocd} (not on Windows), -@item a directory in the @env{OPENOCD_SCRIPTS} environment variable (if set), -@item the site wide script library @file{$pkgdatadir/site} and -@item the OpenOCD-supplied script library @file{$pkgdatadir/scripts}. -@end enumerate -The first found file with a matching file name will be used. - -@quotation Note -Don't try to use configuration script names or paths which -include the "#" character. That character begins Tcl comments. -@end quotation - -@section Simple setup, no customization - -In the best case, you can use two scripts from one of the script -libraries, hook up your JTAG adapter, and start the server ... and -your JTAG setup will just work "out of the box". Always try to -start by reusing those scripts, but assume you'll need more -customization even if this works. @xref{OpenOCD Project Setup}. - -If you find a script for your JTAG adapter, and for your board or -target, you may be able to hook up your JTAG adapter then start -the server with some variation of one of the following: - -@example -openocd -f interface/ADAPTER.cfg -f board/MYBOARD.cfg -openocd -f interface/ftdi/ADAPTER.cfg -f board/MYBOARD.cfg -@end example - -You might also need to configure which reset signals are present, -using @option{-c 'reset_config trst_and_srst'} or something similar. -If all goes well you'll see output something like - -@example -Open On-Chip Debugger 0.4.0 (2010-01-14-15:06) -For bug reports, read - http://openocd.org/doc/doxygen/bugs.html -Info : JTAG tap: lm3s.cpu tap/device found: 0x3ba00477 - (mfg: 0x23b, part: 0xba00, ver: 0x3) -@end example - -Seeing that "tap/device found" message, and no warnings, means -the JTAG communication is working. That's a key milestone, but -you'll probably need more project-specific setup. - -@section What OpenOCD does as it starts - -OpenOCD starts by processing the configuration commands provided -on the command line or, if there were no @option{-c command} or -@option{-f file.cfg} options given, in @file{openocd.cfg}. -@xref{configurationstage,,Configuration Stage}. -At the end of the configuration stage it verifies the JTAG scan -chain defined using those commands; your configuration should -ensure that this always succeeds. -Normally, OpenOCD then starts running as a daemon. -Alternatively, commands may be used to terminate the configuration -stage early, perform work (such as updating some flash memory), -and then shut down without acting as a daemon. - -Once OpenOCD starts running as a daemon, it waits for connections from -clients (Telnet, GDB, Other) and processes the commands issued through -those channels. - -If you are having problems, you can enable internal debug messages via -the @option{-d} option. - -Also it is possible to interleave Jim-Tcl commands w/config scripts using the -@option{-c} command line switch. - -To enable debug output (when reporting problems or working on OpenOCD -itself), use the @option{-d} command line switch. This sets the -@option{debug_level} to "3", outputting the most information, -including debug messages. The default setting is "2", outputting only -informational messages, warnings and errors. You can also change this -setting from within a telnet or gdb session using @command{debug_level<n>} -(@pxref{debuglevel,,debug_level}). - -You can redirect all output from the daemon to a file using the -@option{-l <logfile>} switch. - -Note! OpenOCD will launch the GDB & telnet server even if it can not -establish a connection with the target. In general, it is possible for -the JTAG controller to be unresponsive until the target is set up -correctly via e.g. GDB monitor commands in a GDB init script. - -@node OpenOCD Project Setup -@chapter OpenOCD Project Setup - -To use OpenOCD with your development projects, you need to do more than -just connect the JTAG adapter hardware (dongle) to your development board -and start the OpenOCD server. -You also need to configure your OpenOCD server so that it knows -about your adapter and board, and helps your work. -You may also want to connect OpenOCD to GDB, possibly -using Eclipse or some other GUI. - -@section Hooking up the JTAG Adapter - -Today's most common case is a dongle with a JTAG cable on one side -(such as a ribbon cable with a 10-pin or 20-pin IDC connector) -and a USB cable on the other. -Instead of USB, some cables use Ethernet; -older ones may use a PC parallel port, or even a serial port. - -@enumerate -@item @emph{Start with power to your target board turned off}, -and nothing connected to your JTAG adapter. -If you're particularly paranoid, unplug power to the board. -It's important to have the ground signal properly set up, -unless you are using a JTAG adapter which provides -galvanic isolation between the target board and the -debugging host. - -@item @emph{Be sure it's the right kind of JTAG connector.} -If your dongle has a 20-pin ARM connector, you need some kind -of adapter (or octopus, see below) to hook it up to -boards using 14-pin or 10-pin connectors ... or to 20-pin -connectors which don't use ARM's pinout. - -In the same vein, make sure the voltage levels are compatible. -Not all JTAG adapters have the level shifters needed to work -with 1.2 Volt boards. - -@item @emph{Be certain the cable is properly oriented} or you might -damage your board. In most cases there are only two possible -ways to connect the cable. -Connect the JTAG cable from your adapter to the board. -Be sure it's firmly connected. - -In the best case, the connector is keyed to physically -prevent you from inserting it wrong. -This is most often done using a slot on the board's male connector -housing, which must match a key on the JTAG cable's female connector. -If there's no housing, then you must look carefully and -make sure pin 1 on the cable hooks up to pin 1 on the board. -Ribbon cables are frequently all grey except for a wire on one -edge, which is red. The red wire is pin 1. - -Sometimes dongles provide cables where one end is an ``octopus'' of -color coded single-wire connectors, instead of a connector block. -These are great when converting from one JTAG pinout to another, -but are tedious to set up. -Use these with connector pinout diagrams to help you match up the -adapter signals to the right board pins. - -@item @emph{Connect the adapter's other end} once the JTAG cable is connected. -A USB, parallel, or serial port connector will go to the host which -you are using to run OpenOCD. -For Ethernet, consult the documentation and your network administrator. - -For USB-based JTAG adapters you have an easy sanity check at this point: -does the host operating system see the JTAG adapter? If you're running -Linux, try the @command{lsusb} command. If that host is an -MS-Windows host, you'll need to install a driver before OpenOCD works. - -@item @emph{Connect the adapter's power supply, if needed.} -This step is primarily for non-USB adapters, -but sometimes USB adapters need extra power. - -@item @emph{Power up the target board.} -Unless you just let the magic smoke escape, -you're now ready to set up the OpenOCD server -so you can use JTAG to work with that board. - -@end enumerate - -Talk with the OpenOCD server using -telnet (@code{telnet localhost 4444} on many systems) or GDB. -@xref{GDB and OpenOCD}. - -@section Project Directory - -There are many ways you can configure OpenOCD and start it up. - -A simple way to organize them all involves keeping a -single directory for your work with a given board. -When you start OpenOCD from that directory, -it searches there first for configuration files, scripts, -files accessed through semihosting, -and for code you upload to the target board. -It is also the natural place to write files, -such as log files and data you download from the board. - -@section Configuration Basics - -There are two basic ways of configuring OpenOCD, and -a variety of ways you can mix them. -Think of the difference as just being how you start the server: - -@itemize -@item Many @option{-f file} or @option{-c command} options on the command line -@item No options, but a @dfn{user config file} -in the current directory named @file{openocd.cfg} -@end itemize - -Here is an example @file{openocd.cfg} file for a setup -using a Signalyzer FT2232-based JTAG adapter to talk to -a board with an Atmel AT91SAM7X256 microcontroller: - -@example -source [find interface/signalyzer.cfg] - -# GDB can also flash my flash! -gdb_memory_map enable -gdb_flash_program enable - -source [find target/sam7x256.cfg] -@end example - -Here is the command line equivalent of that configuration: - -@example -openocd -f interface/signalyzer.cfg \ - -c "gdb_memory_map enable" \ - -c "gdb_flash_program enable" \ - -f target/sam7x256.cfg -@end example - -You could wrap such long command lines in shell scripts, -each supporting a different development task. -One might re-flash the board with a specific firmware version. -Another might set up a particular debugging or run-time environment. - -@quotation Important -At this writing (October 2009) the command line method has -problems with how it treats variables. -For example, after @option{-c "set VAR value"}, or doing the -same in a script, the variable @var{VAR} will have no value -that can be tested in a later script. -@end quotation - -Here we will focus on the simpler solution: one user config -file, including basic configuration plus any TCL procedures -to simplify your work. - -@section User Config Files -@cindex config file, user -@cindex user config file -@cindex config file, overview - -A user configuration file ties together all the parts of a project -in one place. -One of the following will match your situation best: - -@itemize -@item Ideally almost everything comes from configuration files -provided by someone else. -For example, OpenOCD distributes a @file{scripts} directory -(probably in @file{/usr/share/openocd/scripts} on Linux). -Board and tool vendors can provide these too, as can individual -user sites; the @option{-s} command line option lets you say -where to find these files. (@xref{Running}.) -The AT91SAM7X256 example above works this way. - -Three main types of non-user configuration file each have their -own subdirectory in the @file{scripts} directory: - -@enumerate -@item @b{interface} -- one for each different debug adapter; -@item @b{board} -- one for each different board -@item @b{target} -- the chips which integrate CPUs and other JTAG TAPs -@end enumerate - -Best case: include just two files, and they handle everything else. -The first is an interface config file. -The second is board-specific, and it sets up the JTAG TAPs and -their GDB targets (by deferring to some @file{target.cfg} file), -declares all flash memory, and leaves you nothing to do except -meet your deadline: - -@example -source [find interface/olimex-jtag-tiny.cfg] -source [find board/csb337.cfg] -@end example - -Boards with a single microcontroller often won't need more -than the target config file, as in the AT91SAM7X256 example. -That's because there is no external memory (flash, DDR RAM), and -the board differences are encapsulated by application code. - -@item Maybe you don't know yet what your board looks like to JTAG. -Once you know the @file{interface.cfg} file to use, you may -need help from OpenOCD to discover what's on the board. -Once you find the JTAG TAPs, you can just search for appropriate -target and board -configuration files ... or write your own, from the bottom up. -@xref{autoprobing,,Autoprobing}. - -@item You can often reuse some standard config files but -need to write a few new ones, probably a @file{board.cfg} file. -You will be using commands described later in this User's Guide, -and working with the guidelines in the next chapter. - -For example, there may be configuration files for your JTAG adapter -and target chip, but you need a new board-specific config file -giving access to your particular flash chips. -Or you might need to write another target chip configuration file -for a new chip built around the Cortex-M3 core. - -@quotation Note -When you write new configuration files, please submit -them for inclusion in the next OpenOCD release. -For example, a @file{board/newboard.cfg} file will help the -next users of that board, and a @file{target/newcpu.cfg} -will help support users of any board using that chip. -@end quotation - -@item -You may may need to write some C code. -It may be as simple as supporting a new FT2232 or parport -based adapter; a bit more involved, like a NAND or NOR flash -controller driver; or a big piece of work like supporting -a new chip architecture. -@end itemize - -Reuse the existing config files when you can. -Look first in the @file{scripts/boards} area, then @file{scripts/targets}. -You may find a board configuration that's a good example to follow. - -When you write config files, separate the reusable parts -(things every user of that interface, chip, or board needs) -from ones specific to your environment and debugging approach. -@itemize - -@item -For example, a @code{gdb-attach} event handler that invokes -the @command{reset init} command will interfere with debugging -early boot code, which performs some of the same actions -that the @code{reset-init} event handler does. - -@item -Likewise, the @command{arm9 vector_catch} command (or -@cindex vector_catch -its siblings @command{xscale vector_catch} -and @command{cortex_m vector_catch}) can be a timesaver -during some debug sessions, but don't make everyone use that either. -Keep those kinds of debugging aids in your user config file, -along with messaging and tracing setup. -(@xref{softwaredebugmessagesandtracing,,Software Debug Messages and Tracing}.) - -@item -You might need to override some defaults. -For example, you might need to move, shrink, or back up the target's -work area if your application needs much SRAM. - -@item -TCP/IP port configuration is another example of something which -is environment-specific, and should only appear in -a user config file. @xref{tcpipports,,TCP/IP Ports}. -@end itemize - -@section Project-Specific Utilities - -A few project-specific utility -routines may well speed up your work. -Write them, and keep them in your project's user config file. - -For example, if you are making a boot loader work on a -board, it's nice to be able to debug the ``after it's -loaded to RAM'' parts separately from the finicky early -code which sets up the DDR RAM controller and clocks. -A script like this one, or a more GDB-aware sibling, -may help: - -@example -proc ramboot @{ @} @{ - # Reset, running the target's "reset-init" scripts - # to initialize clocks and the DDR RAM controller. - # Leave the CPU halted. - reset init - - # Load CONFIG_SKIP_LOWLEVEL_INIT version into DDR RAM. - load_image u-boot.bin 0x20000000 - - # Start running. - resume 0x20000000 -@} -@end example - -Then once that code is working you will need to make it -boot from NOR flash; a different utility would help. -Alternatively, some developers write to flash using GDB. -(You might use a similar script if you're working with a flash -based microcontroller application instead of a boot loader.) - -@example -proc newboot @{ @} @{ - # Reset, leaving the CPU halted. The "reset-init" event - # proc gives faster access to the CPU and to NOR flash; - # "reset halt" would be slower. - reset init - - # Write standard version of U-Boot into the first two - # sectors of NOR flash ... the standard version should - # do the same lowlevel init as "reset-init". - flash protect 0 0 1 off - flash erase_sector 0 0 1 - flash write_bank 0 u-boot.bin 0x0 - flash protect 0 0 1 on - - # Reboot from scratch using that new boot loader. - reset run -@} -@end example - -You may need more complicated utility procedures when booting -from NAND. -That often involves an extra bootloader stage, -running from on-chip SRAM to perform DDR RAM setup so it can load -the main bootloader code (which won't fit into that SRAM). - -Other helper scripts might be used to write production system images, -involving considerably more than just a three stage bootloader. - -@section Target Software Changes - -Sometimes you may want to make some small changes to the software -you're developing, to help make JTAG debugging work better. -For example, in C or assembly language code you might -use @code{#ifdef JTAG_DEBUG} (or its converse) around code -handling issues like: - -@itemize @bullet - -@item @b{Watchdog Timers}... -Watchog timers are typically used to automatically reset systems if -some application task doesn't periodically reset the timer. (The -assumption is that the system has locked up if the task can't run.) -When a JTAG debugger halts the system, that task won't be able to run -and reset the timer ... potentially causing resets in the middle of -your debug sessions. - -It's rarely a good idea to disable such watchdogs, since their usage -needs to be debugged just like all other parts of your firmware. -That might however be your only option. - -Look instead for chip-specific ways to stop the watchdog from counting -while the system is in a debug halt state. It may be simplest to set -that non-counting mode in your debugger startup scripts. You may however -need a different approach when, for example, a motor could be physically -damaged by firmware remaining inactive in a debug halt state. That might -involve a type of firmware mode where that "non-counting" mode is disabled -at the beginning then re-enabled at the end; a watchdog reset might fire -and complicate the debug session, but hardware (or people) would be -protected.@footnote{Note that many systems support a "monitor mode" debug -that is a somewhat cleaner way to address such issues. You can think of -it as only halting part of the system, maybe just one task, -instead of the whole thing. -At this writing, January 2010, OpenOCD based debugging does not support -monitor mode debug, only "halt mode" debug.} - -@item @b{ARM Semihosting}... -@cindex ARM semihosting -When linked with a special runtime library provided with many -toolchains@footnote{See chapter 8 "Semihosting" in -@uref{http://infocenter.arm.com/help/topic/com.arm.doc.dui0203i/DUI0203I_rvct_developer_guide.pdf, -ARM DUI 0203I}, the "RealView Compilation Tools Developer Guide". -The CodeSourcery EABI toolchain also includes a semihosting library.}, -your target code can use I/O facilities on the debug host. That library -provides a small set of system calls which are handled by OpenOCD. -It can let the debugger provide your system console and a file system, -helping with early debugging or providing a more capable environment -for sometimes-complex tasks like installing system firmware onto -NAND or SPI flash. - -@item @b{ARM Wait-For-Interrupt}... -Many ARM chips synchronize the JTAG clock using the core clock. -Low power states which stop that core clock thus prevent JTAG access. -Idle loops in tasking environments often enter those low power states -via the @code{WFI} instruction (or its coprocessor equivalent, before ARMv7). - -You may want to @emph{disable that instruction} in source code, -or otherwise prevent using that state, -to ensure you can get JTAG access at any time.@footnote{As a more -polite alternative, some processors have special debug-oriented -registers which can be used to change various features including -how the low power states are clocked while debugging. -The STM32 DBGMCU_CR register is an example; at the cost of extra -power consumption, JTAG can be used during low power states.} -For example, the OpenOCD @command{halt} command may not -work for an idle processor otherwise. - -@item @b{Delay after reset}... -Not all chips have good support for debugger access -right after reset; many LPC2xxx chips have issues here. -Similarly, applications that reconfigure pins used for -JTAG access as they start will also block debugger access. - -To work with boards like this, @emph{enable a short delay loop} -the first thing after reset, before "real" startup activities. -For example, one second's delay is usually more than enough -time for a JTAG debugger to attach, so that -early code execution can be debugged -or firmware can be replaced. - -@item @b{Debug Communications Channel (DCC)}... -Some processors include mechanisms to send messages over JTAG. -Many ARM cores support these, as do some cores from other vendors. -(OpenOCD may be able to use this DCC internally, speeding up some -operations like writing to memory.) - -Your application may want to deliver various debugging messages -over JTAG, by @emph{linking with a small library of code} -provided with OpenOCD and using the utilities there to send -various kinds of message. -@xref{softwaredebugmessagesandtracing,,Software Debug Messages and Tracing}. - -@end itemize - -@section Target Hardware Setup - -Chip vendors often provide software development boards which -are highly configurable, so that they can support all options -that product boards may require. @emph{Make sure that any -jumpers or switches match the system configuration you are -working with.} - -Common issues include: - -@itemize @bullet - -@item @b{JTAG setup} ... -Boards may support more than one JTAG configuration. -Examples include jumpers controlling pullups versus pulldowns -on the nTRST and/or nSRST signals, and choice of connectors -(e.g. which of two headers on the base board, -or one from a daughtercard). -For some Texas Instruments boards, you may need to jumper the -EMU0 and EMU1 signals (which OpenOCD won't currently control). - -@item @b{Boot Modes} ... -Complex chips often support multiple boot modes, controlled -by external jumpers. Make sure this is set up correctly. -For example many i.MX boards from NXP need to be jumpered -to "ATX mode" to start booting using the on-chip ROM, when -using second stage bootloader code stored in a NAND flash chip. - -Such explicit configuration is common, and not limited to -booting from NAND. You might also need to set jumpers to -start booting using code loaded from an MMC/SD card; external -SPI flash; Ethernet, UART, or USB links; NOR flash; OneNAND -flash; some external host; or various other sources. - - -@item @b{Memory Addressing} ... -Boards which support multiple boot modes may also have jumpers -to configure memory addressing. One board, for example, jumpers -external chipselect 0 (used for booting) to address either -a large SRAM (which must be pre-loaded via JTAG), NOR flash, -or NAND flash. When it's jumpered to address NAND flash, that -board must also be told to start booting from on-chip ROM. - -Your @file{board.cfg} file may also need to be told this jumper -configuration, so that it can know whether to declare NOR flash -using @command{flash bank} or instead declare NAND flash with -@command{nand device}; and likewise which probe to perform in -its @code{reset-init} handler. - -A closely related issue is bus width. Jumpers might need to -distinguish between 8 bit or 16 bit bus access for the flash -used to start booting. - -@item @b{Peripheral Access} ... -Development boards generally provide access to every peripheral -on the chip, sometimes in multiple modes (such as by providing -multiple audio codec chips). -This interacts with software -configuration of pin multiplexing, where for example a -given pin may be routed either to the MMC/SD controller -or the GPIO controller. It also often interacts with -configuration jumpers. One jumper may be used to route -signals to an MMC/SD card slot or an expansion bus (which -might in turn affect booting); others might control which -audio or video codecs are used. - -@end itemize - -Plus you should of course have @code{reset-init} event handlers -which set up the hardware to match that jumper configuration. -That includes in particular any oscillator or PLL used to clock -the CPU, and any memory controllers needed to access external -memory and peripherals. Without such handlers, you won't be -able to access those resources without working target firmware -which can do that setup ... this can be awkward when you're -trying to debug that target firmware. Even if there's a ROM -bootloader which handles a few issues, it rarely provides full -access to all board-specific capabilities. - - -@node Config File Guidelines -@chapter Config File Guidelines - -This chapter is aimed at any user who needs to write a config file, -including developers and integrators of OpenOCD and any user who -needs to get a new board working smoothly. -It provides guidelines for creating those files. - -You should find the following directories under -@t{$(INSTALLDIR)/scripts}, with config files maintained upstream. Use -them as-is where you can; or as models for new files. -@itemize @bullet -@item @file{interface} ... -These are for debug adapters. Files that specify configuration to use -specific JTAG, SWD and other adapters go here. -@item @file{board} ... -Think Circuit Board, PWA, PCB, they go by many names. Board files -contain initialization items that are specific to a board. - -They reuse target configuration files, since the same -microprocessor chips are used on many boards, -but support for external parts varies widely. For -example, the SDRAM initialization sequence for the board, or the type -of external flash and what address it uses. Any initialization -sequence to enable that external flash or SDRAM should be found in the -board file. Boards may also contain multiple targets: two CPUs; or -a CPU and an FPGA. -@item @file{target} ... -Think chip. The ``target'' directory represents the JTAG TAPs -on a chip -which OpenOCD should control, not a board. Two common types of targets -are ARM chips and FPGA or CPLD chips. -When a chip has multiple TAPs (maybe it has both ARM and DSP cores), -the target config file defines all of them. -@item @emph{more} ... browse for other library files which may be useful. -For example, there are various generic and CPU-specific utilities. -@end itemize - -The @file{openocd.cfg} user config -file may override features in any of the above files by -setting variables before sourcing the target file, or by adding -commands specific to their situation. - -@section Interface Config Files - -The user config file -should be able to source one of these files with a command like this: - -@example -source [find interface/FOOBAR.cfg] -@end example - -A preconfigured interface file should exist for every debug adapter -in use today with OpenOCD. -That said, perhaps some of these config files -have only been used by the developer who created it. - -A separate chapter gives information about how to set these up. -@xref{Debug Adapter Configuration}. -Read the OpenOCD source code (and Developer's Guide) -if you have a new kind of hardware interface -and need to provide a driver for it. - -@section Board Config Files -@cindex config file, board -@cindex board config file - -The user config file -should be able to source one of these files with a command like this: - -@example -source [find board/FOOBAR.cfg] -@end example - -The point of a board config file is to package everything -about a given board that user config files need to know. -In summary the board files should contain (if present) - -@enumerate -@item One or more @command{source [find target/...cfg]} statements -@item NOR flash configuration (@pxref{norconfiguration,,NOR Configuration}) -@item NAND flash configuration (@pxref{nandconfiguration,,NAND Configuration}) -@item Target @code{reset} handlers for SDRAM and I/O configuration -@item JTAG adapter reset configuration (@pxref{Reset Configuration}) -@item All things that are not ``inside a chip'' -@end enumerate - -Generic things inside target chips belong in target config files, -not board config files. So for example a @code{reset-init} event -handler should know board-specific oscillator and PLL parameters, -which it passes to target-specific utility code. - -The most complex task of a board config file is creating such a -@code{reset-init} event handler. -Define those handlers last, after you verify the rest of the board -configuration works. - -@subsection Communication Between Config files - -In addition to target-specific utility code, another way that -board and target config files communicate is by following a -convention on how to use certain variables. - -The full Tcl/Tk language supports ``namespaces'', but Jim-Tcl does not. -Thus the rule we follow in OpenOCD is this: Variables that begin with -a leading underscore are temporary in nature, and can be modified and -used at will within a target configuration file. - -Complex board config files can do the things like this, -for a board with three chips: - -@example -# Chip #1: PXA270 for network side, big endian -set CHIPNAME network -set ENDIAN big -source [find target/pxa270.cfg] -# on return: _TARGETNAME = network.cpu -# other commands can refer to the "network.cpu" target. -$_TARGETNAME configure .... events for this CPU.. - -# Chip #2: PXA270 for video side, little endian -set CHIPNAME video -set ENDIAN little -source [find target/pxa270.cfg] -# on return: _TARGETNAME = video.cpu -# other commands can refer to the "video.cpu" target. -$_TARGETNAME configure .... events for this CPU.. - -# Chip #3: Xilinx FPGA for glue logic -set CHIPNAME xilinx -unset ENDIAN -source [find target/spartan3.cfg] -@end example - -That example is oversimplified because it doesn't show any flash memory, -or the @code{reset-init} event handlers to initialize external DRAM -or (assuming it needs it) load a configuration into the FPGA. -Such features are usually needed for low-level work with many boards, -where ``low level'' implies that the board initialization software may -not be working. (That's a common reason to need JTAG tools. Another -is to enable working with microcontroller-based systems, which often -have no debugging support except a JTAG connector.) - -Target config files may also export utility functions to board and user -config files. Such functions should use name prefixes, to help avoid -naming collisions. - -Board files could also accept input variables from user config files. -For example, there might be a @code{J4_JUMPER} setting used to identify -what kind of flash memory a development board is using, or how to set -up other clocks and peripherals. - -@subsection Variable Naming Convention -@cindex variable names - -Most boards have only one instance of a chip. -However, it should be easy to create a board with more than -one such chip (as shown above). -Accordingly, we encourage these conventions for naming -variables associated with different @file{target.cfg} files, -to promote consistency and -so that board files can override target defaults. - -Inputs to target config files include: - -@itemize @bullet -@item @code{CHIPNAME} ... -This gives a name to the overall chip, and is used as part of -tap identifier dotted names. -While the default is normally provided by the chip manufacturer, -board files may need to distinguish between instances of a chip. -@item @code{ENDIAN} ... -By default @option{little} - although chips may hard-wire @option{big}. -Chips that can't change endianness don't need to use this variable. -@item @code{CPUTAPID} ... -When OpenOCD examines the JTAG chain, it can be told verify the -chips against the JTAG IDCODE register. -The target file will hold one or more defaults, but sometimes the -chip in a board will use a different ID (perhaps a newer revision). -@end itemize - -Outputs from target config files include: - -@itemize @bullet -@item @code{_TARGETNAME} ... -By convention, this variable is created by the target configuration -script. The board configuration file may make use of this variable to -configure things like a ``reset init'' script, or other things -specific to that board and that target. -If the chip has 2 targets, the names are @code{_TARGETNAME0}, -@code{_TARGETNAME1}, ... etc. -@end itemize - -@subsection The reset-init Event Handler -@cindex event, reset-init -@cindex reset-init handler - -Board config files run in the OpenOCD configuration stage; -they can't use TAPs or targets, since they haven't been -fully set up yet. -This means you can't write memory or access chip registers; -you can't even verify that a flash chip is present. -That's done later in event handlers, of which the target @code{reset-init} -handler is one of the most important. - -Except on microcontrollers, the basic job of @code{reset-init} event -handlers is setting up flash and DRAM, as normally handled by boot loaders. -Microcontrollers rarely use boot loaders; they run right out of their -on-chip flash and SRAM memory. But they may want to use one of these -handlers too, if just for developer convenience. - -@quotation Note -Because this is so very board-specific, and chip-specific, no examples -are included here. -Instead, look at the board config files distributed with OpenOCD. -If you have a boot loader, its source code will help; so will -configuration files for other JTAG tools -(@pxref{translatingconfigurationfiles,,Translating Configuration Files}). -@end quotation - -Some of this code could probably be shared between different boards. -For example, setting up a DRAM controller often doesn't differ by -much except the bus width (16 bits or 32?) and memory timings, so a -reusable TCL procedure loaded by the @file{target.cfg} file might take -those as parameters. -Similarly with oscillator, PLL, and clock setup; -and disabling the watchdog. -Structure the code cleanly, and provide comments to help -the next developer doing such work. -(@emph{You might be that next person} trying to reuse init code!) - -The last thing normally done in a @code{reset-init} handler is probing -whatever flash memory was configured. For most chips that needs to be -done while the associated target is halted, either because JTAG memory -access uses the CPU or to prevent conflicting CPU access. - -@subsection JTAG Clock Rate - -Before your @code{reset-init} handler has set up -the PLLs and clocking, you may need to run with -a low JTAG clock rate. -@xref{jtagspeed,,JTAG Speed}. -Then you'd increase that rate after your handler has -made it possible to use the faster JTAG clock. -When the initial low speed is board-specific, for example -because it depends on a board-specific oscillator speed, then -you should probably set it up in the board config file; -if it's target-specific, it belongs in the target config file. - -For most ARM-based processors the fastest JTAG clock@footnote{A FAQ -@uref{http://www.arm.com/support/faqdev/4170.html} gives details.} -is one sixth of the CPU clock; or one eighth for ARM11 cores. -Consult chip documentation to determine the peak JTAG clock rate, -which might be less than that. - -@quotation Warning -On most ARMs, JTAG clock detection is coupled to the core clock, so -software using a @option{wait for interrupt} operation blocks JTAG access. -Adaptive clocking provides a partial workaround, but a more complete -solution just avoids using that instruction with JTAG debuggers. -@end quotation - -If both the chip and the board support adaptive clocking, -use the @command{jtag_rclk} -command, in case your board is used with JTAG adapter which -also supports it. Otherwise use @command{adapter_khz}. -Set the slow rate at the beginning of the reset sequence, -and the faster rate as soon as the clocks are at full speed. - -@anchor{theinitboardprocedure} -@subsection The init_board procedure -@cindex init_board procedure - -The concept of @code{init_board} procedure is very similar to @code{init_targets} -(@xref{theinittargetsprocedure,,The init_targets procedure}.) - it's a replacement of ``linear'' -configuration scripts. This procedure is meant to be executed when OpenOCD enters run stage -(@xref{enteringtherunstage,,Entering the Run Stage},) after @code{init_targets}. The idea to have -separate @code{init_targets} and @code{init_board} procedures is to allow the first one to configure -everything target specific (internal flash, internal RAM, etc.) and the second one to configure -everything board specific (reset signals, chip frequency, reset-init event handler, external memory, etc.). -Additionally ``linear'' board config file will most likely fail when target config file uses -@code{init_targets} scheme (``linear'' script is executed before @code{init} and @code{init_targets} - after), -so separating these two configuration stages is very convenient, as the easiest way to overcome this -problem is to convert board config file to use @code{init_board} procedure. Board config scripts don't -need to override @code{init_targets} defined in target config files when they only need to add some specifics. - -Just as @code{init_targets}, the @code{init_board} procedure can be overridden by ``next level'' script (which sources -the original), allowing greater code reuse. - -@example -### board_file.cfg ### - -# source target file that does most of the config in init_targets -source [find target/target.cfg] - -proc enable_fast_clock @{@} @{ - # enables fast on-board clock source - # configures the chip to use it -@} - -# initialize only board specifics - reset, clock, adapter frequency -proc init_board @{@} @{ - reset_config trst_and_srst trst_pulls_srst - - $_TARGETNAME configure -event reset-init @{ - adapter_khz 1 - enable_fast_clock - adapter_khz 10000 - @} -@} -@end example - -@section Target Config Files -@cindex config file, target -@cindex target config file - -Board config files communicate with target config files using -naming conventions as described above, and may source one or -more target config files like this: - -@example -source [find target/FOOBAR.cfg] -@end example - -The point of a target config file is to package everything -about a given chip that board config files need to know. -In summary the target files should contain - -@enumerate -@item Set defaults -@item Add TAPs to the scan chain -@item Add CPU targets (includes GDB support) -@item CPU/Chip/CPU-Core specific features -@item On-Chip flash -@end enumerate - -As a rule of thumb, a target file sets up only one chip. -For a microcontroller, that will often include a single TAP, -which is a CPU needing a GDB target, and its on-chip flash. - -More complex chips may include multiple TAPs, and the target -config file may need to define them all before OpenOCD -can talk to the chip. -For example, some phone chips have JTAG scan chains that include -an ARM core for operating system use, a DSP, -another ARM core embedded in an image processing engine, -and other processing engines. - -@subsection Default Value Boiler Plate Code - -All target configuration files should start with code like this, -letting board config files express environment-specific -differences in how things should be set up. - -@example -# Boards may override chip names, perhaps based on role, -# but the default should match what the vendor uses -if @{ [info exists CHIPNAME] @} @{ - set _CHIPNAME $CHIPNAME -@} else @{ - set _CHIPNAME sam7x256 -@} - -# ONLY use ENDIAN with targets that can change it. -if @{ [info exists ENDIAN] @} @{ - set _ENDIAN $ENDIAN -@} else @{ - set _ENDIAN little -@} - -# TAP identifiers may change as chips mature, for example with -# new revision fields (the "3" here). Pick a good default; you -# can pass several such identifiers to the "jtag newtap" command. -if @{ [info exists CPUTAPID ] @} @{ - set _CPUTAPID $CPUTAPID -@} else @{ - set _CPUTAPID 0x3f0f0f0f -@} -@end example -@c but 0x3f0f0f0f is for an str73x part ... - -@emph{Remember:} Board config files may include multiple target -config files, or the same target file multiple times -(changing at least @code{CHIPNAME}). - -Likewise, the target configuration file should define -@code{_TARGETNAME} (or @code{_TARGETNAME0} etc) and -use it later on when defining debug targets: - -@example -set _TARGETNAME $_CHIPNAME.cpu -target create $_TARGETNAME arm7tdmi -chain-position $_TARGETNAME -@end example - -@subsection Adding TAPs to the Scan Chain -After the ``defaults'' are set up, -add the TAPs on each chip to the JTAG scan chain. -@xref{TAP Declaration}, and the naming convention -for taps. - -In the simplest case the chip has only one TAP, -probably for a CPU or FPGA. -The config file for the Atmel AT91SAM7X256 -looks (in part) like this: - -@example -jtag newtap $_CHIPNAME cpu -irlen 4 -expected-id $_CPUTAPID -@end example - -A board with two such at91sam7 chips would be able -to source such a config file twice, with different -values for @code{CHIPNAME}, so -it adds a different TAP each time. - -If there are nonzero @option{-expected-id} values, -OpenOCD attempts to verify the actual tap id against those values. -It will issue error messages if there is mismatch, which -can help to pinpoint problems in OpenOCD configurations. - -@example -JTAG tap: sam7x256.cpu tap/device found: 0x3f0f0f0f - (Manufacturer: 0x787, Part: 0xf0f0, Version: 0x3) -ERROR: Tap: sam7x256.cpu - Expected id: 0x12345678, Got: 0x3f0f0f0f -ERROR: expected: mfg: 0x33c, part: 0x2345, ver: 0x1 -ERROR: got: mfg: 0x787, part: 0xf0f0, ver: 0x3 -@end example - -There are more complex examples too, with chips that have -multiple TAPs. Ones worth looking at include: - -@itemize -@item @file{target/omap3530.cfg} -- with disabled ARM and DSP, -plus a JRC to enable them -@item @file{target/str912.cfg} -- with flash, CPU, and boundary scan -@item @file{target/ti_dm355.cfg} -- with ETM, ARM, and JRC (this JRC -is not currently used) -@end itemize - -@subsection Add CPU targets - -After adding a TAP for a CPU, you should set it up so that -GDB and other commands can use it. -@xref{CPU Configuration}. -For the at91sam7 example above, the command can look like this; -note that @code{$_ENDIAN} is not needed, since OpenOCD defaults -to little endian, and this chip doesn't support changing that. - -@example -set _TARGETNAME $_CHIPNAME.cpu -target create $_TARGETNAME arm7tdmi -chain-position $_TARGETNAME -@end example - -Work areas are small RAM areas associated with CPU targets. -They are used by OpenOCD to speed up downloads, -and to download small snippets of code to program flash chips. -If the chip includes a form of ``on-chip-ram'' - and many do - define -a work area if you can. -Again using the at91sam7 as an example, this can look like: - -@example -$_TARGETNAME configure -work-area-phys 0x00200000 \ - -work-area-size 0x4000 -work-area-backup 0 -@end example - -@anchor{definecputargetsworkinginsmp} -@subsection Define CPU targets working in SMP -@cindex SMP -After setting targets, you can define a list of targets working in SMP. - -@example -set _TARGETNAME_1 $_CHIPNAME.cpu1 -set _TARGETNAME_2 $_CHIPNAME.cpu2 -target create $_TARGETNAME_1 cortex_a -chain-position $_CHIPNAME.dap \ --coreid 0 -dbgbase $_DAP_DBG1 -target create $_TARGETNAME_2 cortex_a -chain-position $_CHIPNAME.dap \ --coreid 1 -dbgbase $_DAP_DBG2 -#define 2 targets working in smp. -target smp $_CHIPNAME.cpu2 $_CHIPNAME.cpu1 -@end example -In the above example on cortex_a, 2 cpus are working in SMP. -In SMP only one GDB instance is created and : -@itemize @bullet -@item a set of hardware breakpoint sets the same breakpoint on all targets in the list. -@item halt command triggers the halt of all targets in the list. -@item resume command triggers the write context and the restart of all targets in the list. -@item following a breakpoint: the target stopped by the breakpoint is displayed to the GDB session. -@item dedicated GDB serial protocol packets are implemented for switching/retrieving the target -displayed by the GDB session @pxref{usingopenocdsmpwithgdb,,Using OpenOCD SMP with GDB}. -@end itemize - -The SMP behaviour can be disabled/enabled dynamically. On cortex_a following -command have been implemented. -@itemize @bullet -@item cortex_a smp_on : enable SMP mode, behaviour is as described above. -@item cortex_a smp_off : disable SMP mode, the current target is the one -displayed in the GDB session, only this target is now controlled by GDB -session. This behaviour is useful during system boot up. -@item cortex_a smp_gdb : display/fix the core id displayed in GDB session see -following example. -@end itemize - -@example ->cortex_a smp_gdb -gdb coreid 0 -> -1 -#0 : coreid 0 is displayed to GDB , -#-> -1 : next resume triggers a real resume -> cortex_a smp_gdb 1 -gdb coreid 0 -> 1 -#0 :coreid 0 is displayed to GDB , -#->1 : next resume displays coreid 1 to GDB -> resume -> cortex_a smp_gdb -gdb coreid 1 -> 1 -#1 :coreid 1 is displayed to GDB , -#->1 : next resume displays coreid 1 to GDB -> cortex_a smp_gdb -1 -gdb coreid 1 -> -1 -#1 :coreid 1 is displayed to GDB, -#->-1 : next resume triggers a real resume -@end example - - -@subsection Chip Reset Setup - -As a rule, you should put the @command{reset_config} command -into the board file. Most things you think you know about a -chip can be tweaked by the board. - -Some chips have specific ways the TRST and SRST signals are -managed. In the unusual case that these are @emph{chip specific} -and can never be changed by board wiring, they could go here. -For example, some chips can't support JTAG debugging without -both signals. - -Provide a @code{reset-assert} event handler if you can. -Such a handler uses JTAG operations to reset the target, -letting this target config be used in systems which don't -provide the optional SRST signal, or on systems where you -don't want to reset all targets at once. -Such a handler might write to chip registers to force a reset, -use a JRC to do that (preferable -- the target may be wedged!), -or force a watchdog timer to trigger. -(For Cortex-M targets, this is not necessary. The target -driver knows how to use trigger an NVIC reset when SRST is -not available.) - -Some chips need special attention during reset handling if -they're going to be used with JTAG. -An example might be needing to send some commands right -after the target's TAP has been reset, providing a -@code{reset-deassert-post} event handler that writes a chip -register to report that JTAG debugging is being done. -Another would be reconfiguring the watchdog so that it stops -counting while the core is halted in the debugger. - -JTAG clocking constraints often change during reset, and in -some cases target config files (rather than board config files) -are the right places to handle some of those issues. -For example, immediately after reset most chips run using a -slower clock than they will use later. -That means that after reset (and potentially, as OpenOCD -first starts up) they must use a slower JTAG clock rate -than they will use later. -@xref{jtagspeed,,JTAG Speed}. - -@quotation Important -When you are debugging code that runs right after chip -reset, getting these issues right is critical. -In particular, if you see intermittent failures when -OpenOCD verifies the scan chain after reset, -look at how you are setting up JTAG clocking. -@end quotation - -@anchor{theinittargetsprocedure} -@subsection The init_targets procedure -@cindex init_targets procedure - -Target config files can either be ``linear'' (script executed line-by-line when parsed in -configuration stage, @xref{configurationstage,,Configuration Stage},) or they can contain a special -procedure called @code{init_targets}, which will be executed when entering run stage -(after parsing all config files or after @code{init} command, @xref{enteringtherunstage,,Entering the Run Stage}.) -Such procedure can be overriden by ``next level'' script (which sources the original). -This concept faciliates code reuse when basic target config files provide generic configuration -procedures and @code{init_targets} procedure, which can then be sourced and enchanced or changed in -a ``more specific'' target config file. This is not possible with ``linear'' config scripts, -because sourcing them executes every initialization commands they provide. - -@example -### generic_file.cfg ### - -proc setup_my_chip @{chip_name flash_size ram_size@} @{ - # basic initialization procedure ... -@} - -proc init_targets @{@} @{ - # initializes generic chip with 4kB of flash and 1kB of RAM - setup_my_chip MY_GENERIC_CHIP 4096 1024 -@} - -### specific_file.cfg ### - -source [find target/generic_file.cfg] - -proc init_targets @{@} @{ - # initializes specific chip with 128kB of flash and 64kB of RAM - setup_my_chip MY_CHIP_WITH_128K_FLASH_64KB_RAM 131072 65536 -@} -@end example - -The easiest way to convert ``linear'' config files to @code{init_targets} version is to -enclose every line of ``code'' (i.e. not @code{source} commands, procedures, etc.) in this procedure. - -For an example of this scheme see LPC2000 target config files. - -The @code{init_boards} procedure is a similar concept concerning board config files -(@xref{theinitboardprocedure,,The init_board procedure}.) - -@anchor{theinittargeteventsprocedure} -@subsection The init_target_events procedure -@cindex init_target_events procedure - -A special procedure called @code{init_target_events} is run just after -@code{init_targets} (@xref{theinittargetsprocedure,,The init_targets -procedure}.) and before @code{init_board} -(@xref{theinitboardprocedure,,The init_board procedure}.) It is used -to set up default target events for the targets that do not have those -events already assigned. - -@subsection ARM Core Specific Hacks - -If the chip has a DCC, enable it. If the chip is an ARM9 with some -special high speed download features - enable it. - -If present, the MMU, the MPU and the CACHE should be disabled. - -Some ARM cores are equipped with trace support, which permits -examination of the instruction and data bus activity. Trace -activity is controlled through an ``Embedded Trace Module'' (ETM) -on one of the core's scan chains. The ETM emits voluminous data -through a ``trace port''. (@xref{armhardwaretracing,,ARM Hardware Tracing}.) -If you are using an external trace port, -configure it in your board config file. -If you are using an on-chip ``Embedded Trace Buffer'' (ETB), -configure it in your target config file. - -@example -etm config $_TARGETNAME 16 normal full etb -etb config $_TARGETNAME $_CHIPNAME.etb -@end example - -@subsection Internal Flash Configuration - -This applies @b{ONLY TO MICROCONTROLLERS} that have flash built in. - -@b{Never ever} in the ``target configuration file'' define any type of -flash that is external to the chip. (For example a BOOT flash on -Chip Select 0.) Such flash information goes in a board file - not -the TARGET (chip) file. - -Examples: -@itemize @bullet -@item at91sam7x256 - has 256K flash YES enable it. -@item str912 - has flash internal YES enable it. -@item imx27 - uses boot flash on CS0 - it goes in the board file. -@item pxa270 - again - CS0 flash - it goes in the board file. -@end itemize - -@anchor{translatingconfigurationfiles} -@section Translating Configuration Files -@cindex translation -If you have a configuration file for another hardware debugger -or toolset (Abatron, BDI2000, BDI3000, CCS, -Lauterbach, SEGGER, Macraigor, etc.), translating -it into OpenOCD syntax is often quite straightforward. The most tricky -part of creating a configuration script is oftentimes the reset init -sequence where e.g. PLLs, DRAM and the like is set up. - -One trick that you can use when translating is to write small -Tcl procedures to translate the syntax into OpenOCD syntax. This -can avoid manual translation errors and make it easier to -convert other scripts later on. - -Example of transforming quirky arguments to a simple search and -replace job: - -@example -# Lauterbach syntax(?) -# -# Data.Set c15:0x042f %long 0x40000015 -# -# OpenOCD syntax when using procedure below. -# -# setc15 0x01 0x00050078 - -proc setc15 @{regs value@} @{ - global TARGETNAME - - echo [format "set p15 0x%04x, 0x%08x" $regs $value] - - arm mcr 15 [expr ($regs>>12)&0x7] \ - [expr ($regs>>0)&0xf] [expr ($regs>>4)&0xf] \ - [expr ($regs>>8)&0x7] $value -@} -@end example - - - -@node Daemon Configuration -@chapter Daemon Configuration -@cindex initialization -The commands here are commonly found in the openocd.cfg file and are -used to specify what TCP/IP ports are used, and how GDB should be -supported. - -@anchor{configurationstage} -@section Configuration Stage -@cindex configuration stage -@cindex config command - -When the OpenOCD server process starts up, it enters a -@emph{configuration stage} which is the only time that -certain commands, @emph{configuration commands}, may be issued. -Normally, configuration commands are only available -inside startup scripts. - -In this manual, the definition of a configuration command is -presented as a @emph{Config Command}, not as a @emph{Command} -which may be issued interactively. -The runtime @command{help} command also highlights configuration -commands, and those which may be issued at any time. - -Those configuration commands include declaration of TAPs, -flash banks, -the interface used for JTAG communication, -and other basic setup. -The server must leave the configuration stage before it -may access or activate TAPs. -After it leaves this stage, configuration commands may no -longer be issued. - -@anchor{enteringtherunstage} -@section Entering the Run Stage - -The first thing OpenOCD does after leaving the configuration -stage is to verify that it can talk to the scan chain -(list of TAPs) which has been configured. -It will warn if it doesn't find TAPs it expects to find, -or finds TAPs that aren't supposed to be there. -You should see no errors at this point. -If you see errors, resolve them by correcting the -commands you used to configure the server. -Common errors include using an initial JTAG speed that's too -fast, and not providing the right IDCODE values for the TAPs -on the scan chain. - -Once OpenOCD has entered the run stage, a number of commands -become available. -A number of these relate to the debug targets you may have declared. -For example, the @command{mww} command will not be available until -a target has been successfuly instantiated. -If you want to use those commands, you may need to force -entry to the run stage. - -@deffn {Config Command} init -This command terminates the configuration stage and -enters the run stage. This helps when you need to have -the startup scripts manage tasks such as resetting the target, -programming flash, etc. To reset the CPU upon startup, add "init" and -"reset" at the end of the config script or at the end of the OpenOCD -command line using the @option{-c} command line switch. - -If this command does not appear in any startup/configuration file -OpenOCD executes the command for you after processing all -configuration files and/or command line options. - -@b{NOTE:} This command normally occurs at or near the end of your -openocd.cfg file to force OpenOCD to ``initialize'' and make the -targets ready. For example: If your openocd.cfg file needs to -read/write memory on your target, @command{init} must occur before -the memory read/write commands. This includes @command{nand probe}. -@end deffn - -@deffn {Overridable Procedure} jtag_init -This is invoked at server startup to verify that it can talk -to the scan chain (list of TAPs) which has been configured. - -The default implementation first tries @command{jtag arp_init}, -which uses only a lightweight JTAG reset before examining the -scan chain. -If that fails, it tries again, using a harder reset -from the overridable procedure @command{init_reset}. - -Implementations must have verified the JTAG scan chain before -they return. -This is done by calling @command{jtag arp_init} -(or @command{jtag arp_init-reset}). -@end deffn - -@anchor{tcpipports} -@section TCP/IP Ports -@cindex TCP port -@cindex server -@cindex port -@cindex security -The OpenOCD server accepts remote commands in several syntaxes. -Each syntax uses a different TCP/IP port, which you may specify -only during configuration (before those ports are opened). - -For reasons including security, you may wish to prevent remote -access using one or more of these ports. -In such cases, just specify the relevant port number as "disabled". -If you disable all access through TCP/IP, you will need to -use the command line @option{-pipe} option. - -@deffn {Command} gdb_port [number] -@cindex GDB server -Normally gdb listens to a TCP/IP port, but GDB can also -communicate via pipes(stdin/out or named pipes). The name -"gdb_port" stuck because it covers probably more than 90% of -the normal use cases. - -No arguments reports GDB port. "pipe" means listen to stdin -output to stdout, an integer is base port number, "disable" -disables the gdb server. - -When using "pipe", also use log_output to redirect the log -output to a file so as not to flood the stdin/out pipes. - -The -p/--pipe option is deprecated and a warning is printed -as it is equivalent to passing in -c "gdb_port pipe; log_output openocd.log". - -Any other string is interpreted as named pipe to listen to. -Output pipe is the same name as input pipe, but with 'o' appended, -e.g. /var/gdb, /var/gdbo. - -The GDB port for the first target will be the base port, the -second target will listen on gdb_port + 1, and so on. -When not specified during the configuration stage, -the port @var{number} defaults to 3333. - -Note: when using "gdb_port pipe", increasing the default remote timeout in -gdb (with 'set remotetimeout') is recommended. An insufficient timeout may -cause initialization to fail with "Unknown remote qXfer reply: OK". - -@end deffn - -@deffn {Command} tcl_port [number] -Specify or query the port used for a simplified RPC -connection that can be used by clients to issue TCL commands and get the -output from the Tcl engine. -Intended as a machine interface. -When not specified during the configuration stage, -the port @var{number} defaults to 6666. -When specified as "disabled", this service is not activated. -@end deffn - -@deffn {Command} telnet_port [number] -Specify or query the -port on which to listen for incoming telnet connections. -This port is intended for interaction with one human through TCL commands. -When not specified during the configuration stage, -the port @var{number} defaults to 4444. -When specified as "disabled", this service is not activated. -@end deffn - -@anchor{gdbconfiguration} -@section GDB Configuration -@cindex GDB -@cindex GDB configuration -You can reconfigure some GDB behaviors if needed. -The ones listed here are static and global. -@xref{targetconfiguration,,Target Configuration}, about configuring individual targets. -@xref{targetevents,,Target Events}, about configuring target-specific event handling. - -@anchor{gdbbreakpointoverride} -@deffn {Command} gdb_breakpoint_override [@option{hard}|@option{soft}|@option{disable}] -Force breakpoint type for gdb @command{break} commands. -This option supports GDB GUIs which don't -distinguish hard versus soft breakpoints, if the default OpenOCD and -GDB behaviour is not sufficient. GDB normally uses hardware -breakpoints if the memory map has been set up for flash regions. -@end deffn - -@anchor{gdbflashprogram} -@deffn {Config Command} gdb_flash_program (@option{enable}|@option{disable}) -Set to @option{enable} to cause OpenOCD to program the flash memory when a -vFlash packet is received. -The default behaviour is @option{enable}. -@end deffn - -@deffn {Config Command} gdb_memory_map (@option{enable}|@option{disable}) -Set to @option{enable} to cause OpenOCD to send the memory configuration to GDB when -requested. GDB will then know when to set hardware breakpoints, and program flash -using the GDB load command. @command{gdb_flash_program enable} must also be enabled -for flash programming to work. -Default behaviour is @option{enable}. -@xref{gdbflashprogram,,gdb_flash_program}. -@end deffn - -@deffn {Config Command} gdb_report_data_abort (@option{enable}|@option{disable}) -Specifies whether data aborts cause an error to be reported -by GDB memory read packets. -The default behaviour is @option{disable}; -use @option{enable} see these errors reported. -@end deffn - -@deffn {Config Command} gdb_target_description (@option{enable}|@option{disable}) -Set to @option{enable} to cause OpenOCD to send the target descriptions to gdb via qXfer:features:read packet. -The default behaviour is @option{enable}. -@end deffn - -@deffn {Command} gdb_save_tdesc -Saves the target descripton file to the local file system. - -The file name is @i{target_name}.xml. -@end deffn - -@anchor{eventpolling} -@section Event Polling - -Hardware debuggers are parts of asynchronous systems, -where significant events can happen at any time. -The OpenOCD server needs to detect some of these events, -so it can report them to through TCL command line -or to GDB. - -Examples of such events include: - -@itemize -@item One of the targets can stop running ... maybe it triggers -a code breakpoint or data watchpoint, or halts itself. -@item Messages may be sent over ``debug message'' channels ... many -targets support such messages sent over JTAG, -for receipt by the person debugging or tools. -@item Loss of power ... some adapters can detect these events. -@item Resets not issued through JTAG ... such reset sources -can include button presses or other system hardware, sometimes -including the target itself (perhaps through a watchdog). -@item Debug instrumentation sometimes supports event triggering -such as ``trace buffer full'' (so it can quickly be emptied) -or other signals (to correlate with code behavior). -@end itemize - -None of those events are signaled through standard JTAG signals. -However, most conventions for JTAG connectors include voltage -level and system reset (SRST) signal detection. -Some connectors also include instrumentation signals, which -can imply events when those signals are inputs. - -In general, OpenOCD needs to periodically check for those events, -either by looking at the status of signals on the JTAG connector -or by sending synchronous ``tell me your status'' JTAG requests -to the various active targets. -There is a command to manage and monitor that polling, -which is normally done in the background. - -@deffn Command poll [@option{on}|@option{off}] -Poll the current target for its current state. -(Also, @pxref{targetcurstate,,target curstate}.) -If that target is in debug mode, architecture -specific information about the current state is printed. -An optional parameter -allows background polling to be enabled and disabled. - -You could use this from the TCL command shell, or -from GDB using @command{monitor poll} command. -Leave background polling enabled while you're using GDB. -@example -> poll -background polling: on -target state: halted -target halted in ARM state due to debug-request, \ - current mode: Supervisor -cpsr: 0x800000d3 pc: 0x11081bfc -MMU: disabled, D-Cache: disabled, I-Cache: enabled -> -@end example -@end deffn - -@node Debug Adapter Configuration -@chapter Debug Adapter Configuration -@cindex config file, interface -@cindex interface config file - -Correctly installing OpenOCD includes making your operating system give -OpenOCD access to debug adapters. Once that has been done, Tcl commands -are used to select which one is used, and to configure how it is used. - -@quotation Note -Because OpenOCD started out with a focus purely on JTAG, you may find -places where it wrongly presumes JTAG is the only transport protocol -in use. Be aware that recent versions of OpenOCD are removing that -limitation. JTAG remains more functional than most other transports. -Other transports do not support boundary scan operations, or may be -specific to a given chip vendor. Some might be usable only for -programming flash memory, instead of also for debugging. -@end quotation - -Debug Adapters/Interfaces/Dongles are normally configured -through commands in an interface configuration -file which is sourced by your @file{openocd.cfg} file, or -through a command line @option{-f interface/....cfg} option. - -@example -source [find interface/olimex-jtag-tiny.cfg] -@end example - -These commands tell -OpenOCD what type of JTAG adapter you have, and how to talk to it. -A few cases are so simple that you only need to say what driver to use: - -@example -# jlink interface -interface jlink -@end example - -Most adapters need a bit more configuration than that. - - -@section Interface Configuration - -The interface command tells OpenOCD what type of debug adapter you are -using. Depending on the type of adapter, you may need to use one or -more additional commands to further identify or configure the adapter. - -@deffn {Config Command} {interface} name -Use the interface driver @var{name} to connect to the -target. -@end deffn - -@deffn Command {interface_list} -List the debug adapter drivers that have been built into -the running copy of OpenOCD. -@end deffn -@deffn Command {interface transports} transport_name+ -Specifies the transports supported by this debug adapter. -The adapter driver builds-in similar knowledge; use this only -when external configuration (such as jumpering) changes what -the hardware can support. -@end deffn - - - -@deffn Command {adapter_name} -Returns the name of the debug adapter driver being used. -@end deffn - -@section Interface Drivers - -Each of the interface drivers listed here must be explicitly -enabled when OpenOCD is configured, in order to be made -available at run time. - -@deffn {Interface Driver} {amt_jtagaccel} -Amontec Chameleon in its JTAG Accelerator configuration, -connected to a PC's EPP mode parallel port. -This defines some driver-specific commands: - -@deffn {Config Command} {parport_port} number -Specifies either the address of the I/O port (default: 0x378 for LPT1) or -the number of the @file{/dev/parport} device. -@end deffn - -@deffn {Config Command} rtck [@option{enable}|@option{disable}] -Displays status of RTCK option. -Optionally sets that option first. -@end deffn -@end deffn - -@deffn {Interface Driver} {arm-jtag-ew} -Olimex ARM-JTAG-EW USB adapter -This has one driver-specific command: - -@deffn Command {armjtagew_info} -Logs some status -@end deffn -@end deffn - -@deffn {Interface Driver} {at91rm9200} -Supports bitbanged JTAG from the local system, -presuming that system is an Atmel AT91rm9200 -and a specific set of GPIOs is used. -@c command: at91rm9200_device NAME -@c chooses among list of bit configs ... only one option -@end deffn - -@deffn {Interface Driver} {cmsis-dap} -ARM CMSIS-DAP compliant based adapter. - -@deffn {Config Command} {cmsis_dap_vid_pid} [vid pid]+ -The vendor ID and product ID of the CMSIS-DAP device. If not specified -the driver will attempt to auto detect the CMSIS-DAP device. -Currently, up to eight [@var{vid}, @var{pid}] pairs may be given, e.g. -@example -cmsis_dap_vid_pid 0xc251 0xf001 0x0d28 0x0204 -@end example -@end deffn - -@deffn {Config Command} {cmsis_dap_serial} [serial] -Specifies the @var{serial} of the CMSIS-DAP device to use. -If not specified, serial numbers are not considered. -@end deffn - -@deffn {Command} {cmsis-dap info} -Display various device information, like hardware version, firmware version, current bus status. -@end deffn -@end deffn - -@deffn {Interface Driver} {dummy} -A dummy software-only driver for debugging. -@end deffn - -@deffn {Interface Driver} {ep93xx} -Cirrus Logic EP93xx based single-board computer bit-banging (in development) -@end deffn - -@deffn {Interface Driver} {ft2232} -FTDI FT2232 (USB) based devices over one of the userspace libraries. - -Note that this driver has several flaws and the @command{ftdi} driver is -recommended as its replacement. - -These interfaces have several commands, used to configure the driver -before initializing the JTAG scan chain: - -@deffn {Config Command} {ft2232_device_desc} description -Provides the USB device description (the @emph{iProduct string}) -of the FTDI FT2232 device. If not -specified, the FTDI default value is used. This setting is only valid -if compiled with FTD2XX support. -@end deffn - -@deffn {Config Command} {ft2232_serial} serial-number -Specifies the @var{serial-number} of the FTDI FT2232 device to use, -in case the vendor provides unique IDs and more than one FT2232 device -is connected to the host. -If not specified, serial numbers are not considered. -(Note that USB serial numbers can be arbitrary Unicode strings, -and are not restricted to containing only decimal digits.) -@end deffn - -@deffn {Config Command} {ft2232_layout} name -Each vendor's FT2232 device can use different GPIO signals -to control output-enables, reset signals, and LEDs. -Currently valid layout @var{name} values include: -@itemize @minus -@item @b{axm0432_jtag} Axiom AXM-0432 -@item @b{comstick} Hitex STR9 comstick -@item @b{cortino} Hitex Cortino JTAG interface -@item @b{evb_lm3s811} TI/Luminary Micro EVB_LM3S811 as a JTAG interface, -either for the local Cortex-M3 (SRST only) -or in a passthrough mode (neither SRST nor TRST) -This layout can not support the SWO trace mechanism, and should be -used only for older boards (before rev C). -@item @b{luminary_icdi} This layout should be used with most TI/Luminary -eval boards, including Rev C LM3S811 eval boards and the eponymous -ICDI boards, to debug either the local Cortex-M3 or in passthrough mode -to debug some other target. It can support the SWO trace mechanism. -@item @b{flyswatter} Tin Can Tools Flyswatter -@item @b{icebear} ICEbear JTAG adapter from Section 5 -@item @b{jtagkey} Amontec JTAGkey and JTAGkey-Tiny (and compatibles) -@item @b{jtagkey2} Amontec JTAGkey2 (and compatibles) -@item @b{m5960} American Microsystems M5960 -@item @b{olimex-jtag} Olimex ARM-USB-OCD and ARM-USB-Tiny -@item @b{oocdlink} OOCDLink -@c oocdlink ~= jtagkey_prototype_v1 -@item @b{redbee-econotag} Integrated with a Redbee development board. -@item @b{redbee-usb} Integrated with a Redbee USB-stick development board. -@item @b{sheevaplug} Marvell Sheevaplug development kit -@item @b{signalyzer} Xverve Signalyzer -@item @b{stm32stick} Hitex STM32 Performance Stick -@item @b{turtelizer2} egnite Software turtelizer2 -@item @b{usbjtag} "USBJTAG-1" layout described in the OpenOCD diploma thesis -@end itemize -@end deffn - -@deffn {Config Command} {ft2232_vid_pid} [vid pid]+ -The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI -default values are used. -Currently, up to eight [@var{vid}, @var{pid}] pairs may be given, e.g. -@example -ft2232_vid_pid 0x0403 0xcff8 0x15ba 0x0003 -@end example -@end deffn - -@deffn {Config Command} {ft2232_latency} ms -On some systems using FT2232 based JTAG interfaces the FT_Read function call in -ft2232_read() fails to return the expected number of bytes. This can be caused by -USB communication delays and has proved hard to reproduce and debug. Setting the -FT2232 latency timer to a larger value increases delays for short USB packets but it -also reduces the risk of timeouts before receiving the expected number of bytes. -The OpenOCD default value is 2 and for some systems a value of 10 has proved useful. -@end deffn - -@deffn {Config Command} {ft2232_channel} channel -Used to select the channel of the ft2232 chip to use (between 1 and 4). -The default value is 1. -@end deffn - -For example, the interface config file for a -Turtelizer JTAG Adapter looks something like this: - -@example -interface ft2232 -ft2232_device_desc "Turtelizer JTAG/RS232 Adapter" -ft2232_layout turtelizer2 -ft2232_vid_pid 0x0403 0xbdc8 -@end example -@end deffn - -@deffn {Interface Driver} {ftdi} -This driver is for adapters using the MPSSE (Multi-Protocol Synchronous Serial -Engine) mode built into many FTDI chips, such as the FT2232, FT4232 and FT232H. -It is a complete rewrite to address a large number of problems with the ft2232 -interface driver. - -The driver is using libusb-1.0 in asynchronous mode to talk to the FTDI device, -bypassing intermediate libraries like libftdi of D2XX. Performance-wise it is -consistently faster than the ft2232 driver, sometimes several times faster. - -A major improvement of this driver is that support for new FTDI based adapters -can be added competely through configuration files, without the need to patch -and rebuild OpenOCD. - -The driver uses a signal abstraction to enable Tcl configuration files to -define outputs for one or several FTDI GPIO. These outputs can then be -controlled using the @command{ftdi_set_signal} command. Special signal names -are reserved for nTRST, nSRST and LED (for blink) so that they, if defined, -will be used for their customary purpose. Inputs can be read using the -@command{ftdi_get_signal} command. - -Depending on the type of buffer attached to the FTDI GPIO, the outputs have to -be controlled differently. In order to support tristateable signals such as -nSRST, both a data GPIO and an output-enable GPIO can be specified for each -signal. The following output buffer configurations are supported: - -@itemize @minus -@item Push-pull with one FTDI output as (non-)inverted data line -@item Open drain with one FTDI output as (non-)inverted output-enable -@item Tristate with one FTDI output as (non-)inverted data line and another - FTDI output as (non-)inverted output-enable -@item Unbuffered, using the FTDI GPIO as a tristate output directly by - switching data and direction as necessary -@end itemize - -These interfaces have several commands, used to configure the driver -before initializing the JTAG scan chain: - -@deffn {Config Command} {ftdi_vid_pid} [vid pid]+ -The vendor ID and product ID of the adapter. If not specified, the FTDI -default values are used. -Currently, up to eight [@var{vid}, @var{pid}] pairs may be given, e.g. -@example -ftdi_vid_pid 0x0403 0xcff8 0x15ba 0x0003 -@end example -@end deffn - -@deffn {Config Command} {ftdi_device_desc} description -Provides the USB device description (the @emph{iProduct string}) -of the adapter. If not specified, the device description is ignored -during device selection. -@end deffn - -@deffn {Config Command} {ftdi_serial} serial-number -Specifies the @var{serial-number} of the adapter to use, -in case the vendor provides unique IDs and more than one adapter -is connected to the host. -If not specified, serial numbers are not considered. -(Note that USB serial numbers can be arbitrary Unicode strings, -and are not restricted to containing only decimal digits.) -@end deffn - -@deffn {Config Command} {ftdi_location} <bus>:<port>[,<port>]... -Specifies the physical USB port of the adapter to use. The path -roots at @var{bus} and walks down the physical ports, with each -@var{port} option specifying a deeper level in the bus topology, the last -@var{port} denoting where the target adapter is actually plugged. -The USB bus topology can be queried with the command @emph{lsusb -t}. - -This command is only available if your libusb1 is at least version 1.0.16. -@end deffn - -@deffn {Config Command} {ftdi_channel} channel -Selects the channel of the FTDI device to use for MPSSE operations. Most -adapters use the default, channel 0, but there are exceptions. -@end deffn - -@deffn {Config Command} {ftdi_layout_init} data direction -Specifies the initial values of the FTDI GPIO data and direction registers. -Each value is a 16-bit number corresponding to the concatenation of the high -and low FTDI GPIO registers. The values should be selected based on the -schematics of the adapter, such that all signals are set to safe levels with -minimal impact on the target system. Avoid floating inputs, conflicting outputs -and initially asserted reset signals. -@end deffn - -@deffn {Config Command} {ftdi_layout_signal} name [@option{-data}|@option{-ndata} data_mask] [@option{-input}|@option{-ninput} input_mask] [@option{-oe}|@option{-noe} oe_mask] [@option{-alias}|@option{-nalias} name] -Creates a signal with the specified @var{name}, controlled by one or more FTDI -GPIO pins via a range of possible buffer connections. The masks are FTDI GPIO -register bitmasks to tell the driver the connection and type of the output -buffer driving the respective signal. @var{data_mask} is the bitmask for the -pin(s) connected to the data input of the output buffer. @option{-ndata} is -used with inverting data inputs and @option{-data} with non-inverting inputs. -The @option{-oe} (or @option{-noe}) option tells where the output-enable (or -not-output-enable) input to the output buffer is connected. The options -@option{-input} and @option{-ninput} specify the bitmask for pins to be read -with the method @command{ftdi_get_signal}. - -Both @var{data_mask} and @var{oe_mask} need not be specified. For example, a -simple open-collector transistor driver would be specified with @option{-oe} -only. In that case the signal can only be set to drive low or to Hi-Z and the -driver will complain if the signal is set to drive high. Which means that if -it's a reset signal, @command{reset_config} must be specified as -@option{srst_open_drain}, not @option{srst_push_pull}. - -A special case is provided when @option{-data} and @option{-oe} is set to the -same bitmask. Then the FTDI pin is considered being connected straight to the -target without any buffer. The FTDI pin is then switched between output and -input as necessary to provide the full set of low, high and Hi-Z -characteristics. In all other cases, the pins specified in a signal definition -are always driven by the FTDI. - -If @option{-alias} or @option{-nalias} is used, the signal is created -identical (or with data inverted) to an already specified signal -@var{name}. -@end deffn - -@deffn {Command} {ftdi_set_signal} name @option{0}|@option{1}|@option{z} -Set a previously defined signal to the specified level. -@itemize @minus -@item @option{0}, drive low -@item @option{1}, drive high -@item @option{z}, set to high-impedance -@end itemize -@end deffn - -@deffn {Command} {ftdi_get_signal} name -Get the value of a previously defined signal. -@end deffn - -@deffn {Command} {ftdi_tdo_sample_edge} @option{rising}|@option{falling} -Configure TCK edge at which the adapter samples the value of the TDO signal - -Due to signal propagation delays, sampling TDO on rising TCK can become quite -peculiar at high JTAG clock speeds. However, FTDI chips offer a possiblity to sample -TDO on falling edge of TCK. With some board/adapter configurations, this may increase -stability at higher JTAG clocks. -@itemize @minus -@item @option{rising}, sample TDO on rising edge of TCK - this is the default -@item @option{falling}, sample TDO on falling edge of TCK -@end itemize -@end deffn - -For example adapter definitions, see the configuration files shipped in the -@file{interface/ftdi} directory. - -@end deffn - -@deffn {Interface Driver} {remote_bitbang} -Drive JTAG from a remote process. This sets up a UNIX or TCP socket connection -with a remote process and sends ASCII encoded bitbang requests to that process -instead of directly driving JTAG. - -The remote_bitbang driver is useful for debugging software running on -processors which are being simulated. - -@deffn {Config Command} {remote_bitbang_port} number -Specifies the TCP port of the remote process to connect to or 0 to use UNIX -sockets instead of TCP. -@end deffn - -@deffn {Config Command} {remote_bitbang_host} hostname -Specifies the hostname of the remote process to connect to using TCP, or the -name of the UNIX socket to use if remote_bitbang_port is 0. -@end deffn - -For example, to connect remotely via TCP to the host foobar you might have -something like: - -@example -interface remote_bitbang -remote_bitbang_port 3335 -remote_bitbang_host foobar -@end example - -To connect to another process running locally via UNIX sockets with socket -named mysocket: - -@example -interface remote_bitbang -remote_bitbang_port 0 -remote_bitbang_host mysocket -@end example -@end deffn - -@deffn {Interface Driver} {usb_blaster} -USB JTAG/USB-Blaster compatibles over one of the userspace libraries -for FTDI chips. These interfaces have several commands, used to -configure the driver before initializing the JTAG scan chain: - -@deffn {Config Command} {usb_blaster_device_desc} description -Provides the USB device description (the @emph{iProduct string}) -of the FTDI FT245 device. If not -specified, the FTDI default value is used. This setting is only valid -if compiled with FTD2XX support. -@end deffn - -@deffn {Config Command} {usb_blaster_vid_pid} vid pid -The vendor ID and product ID of the FTDI FT245 device. If not specified, -default values are used. -Currently, only one @var{vid}, @var{pid} pair may be given, e.g. for -Altera USB-Blaster (default): -@example -usb_blaster_vid_pid 0x09FB 0x6001 -@end example -The following VID/PID is for Kolja Waschk's USB JTAG: -@example -usb_blaster_vid_pid 0x16C0 0x06AD -@end example -@end deffn - -@deffn {Command} {usb_blaster_pin} (@option{pin6}|@option{pin8}) (@option{0}|@option{1}|@option{s}|@option{t}) -Sets the state or function of the unused GPIO pins on USB-Blasters -(pins 6 and 8 on the female JTAG header). These pins can be used as -SRST and/or TRST provided the appropriate connections are made on the -target board. - -For example, to use pin 6 as SRST: -@example -usb_blaster_pin pin6 s -reset_config srst_only -@end example -@end deffn - -@deffn {Command} {usb_blaster_lowlevel_driver} (@option{ftdi}|@option{ftd2xx}|@option{ublast2}) -Chooses the low level access method for the adapter. If not specified, -@option{ftdi} is selected unless it wasn't enabled during the -configure stage. USB-Blaster II needs @option{ublast2}. -@end deffn - -@deffn {Command} {usb_blaster_firmware} @var{path} -This command specifies @var{path} to access USB-Blaster II firmware -image. To be used with USB-Blaster II only. -@end deffn - -@end deffn - -@deffn {Interface Driver} {gw16012} -Gateworks GW16012 JTAG programmer. -This has one driver-specific command: - -@deffn {Config Command} {parport_port} [port_number] -Display either the address of the I/O port -(default: 0x378 for LPT1) or the number of the @file{/dev/parport} device. -If a parameter is provided, first switch to use that port. -This is a write-once setting. -@end deffn -@end deffn - -@deffn {Interface Driver} {jlink} -SEGGER J-Link family of USB adapters. It currently supports JTAG and SWD -transports. - -@quotation Compatibility Note -SEGGER released many firmware versions for the many harware versions they -produced. OpenOCD was extensively tested and intended to run on all of them, -but some combinations were reported as incompatible. As a general -recommendation, it is advisable to use the latest firmware version -available for each hardware version. However the current V8 is a moving -target, and SEGGER firmware versions released after the OpenOCD was -released may not be compatible. In such cases it is recommended to -revert to the last known functional version. For 0.5.0, this is from -"Feb 8 2012 14:30:39", packed with 4.42c. For 0.6.0, the last known -version is from "May 3 2012 18:36:22", packed with 4.46f. -@end quotation - -@deffn {Command} {jlink hwstatus} -Display various hardware related information, for example target voltage and pin -states. -@end deffn -@deffn {Command} {jlink freemem} -Display free device internal memory. -@end deffn -@deffn {Command} {jlink jtag} [@option{2}|@option{3}] -Set the JTAG command version to be used. Without argument, show the actual JTAG -command version. -@end deffn -@deffn {Command} {jlink config} -Display the device configuration. -@end deffn -@deffn {Command} {jlink config targetpower} [@option{on}|@option{off}] -Set the target power state on JTAG-pin 19. Without argument, show the target -power state. -@end deffn -@deffn {Command} {jlink config mac} [@option{ff:ff:ff:ff:ff:ff}] -Set the MAC address of the device. Without argument, show the MAC address. -@end deffn -@deffn {Command} {jlink config ip} [@option{A.B.C.D}(@option{/E}|@option{F.G.H.I})] -Set the IP configuration of the device, where A.B.C.D is the IP address, E the -bit of the subnet mask and F.G.H.I the subnet mask. Without arguments, show the -IP configuration. -@end deffn -@deffn {Command} {jlink config usb} [@option{0} to @option{3}] -Set the USB address of the device. This will also change the USB Product ID -(PID) of the device. Without argument, show the USB address. -@end deffn -@deffn {Command} {jlink config reset} -Reset the current configuration. -@end deffn -@deffn {Command} {jlink config write} -Write the current configuration to the internal persistent storage. -@end deffn -@deffn {Config} {jlink usb} <@option{0} to @option{3}> -Set the USB address of the interface, in case more than one adapter is connected -to the host. If not specified, USB addresses are not considered. Device -selection via USB address is deprecated and the serial number should be used -instead. - -As a configuration command, it can be used only before 'init'. -@end deffn -@deffn {Config} {jlink serial} <serial number> -Set the serial number of the interface, in case more than one adapter is -connected to the host. If not specified, serial numbers are not considered. - -As a configuration command, it can be used only before 'init'. -@end deffn -@end deffn - -@deffn {Interface Driver} {parport} -Supports PC parallel port bit-banging cables: -Wigglers, PLD download cable, and more. -These interfaces have several commands, used to configure the driver -before initializing the JTAG scan chain: - -@deffn {Config Command} {parport_cable} name -Set the layout of the parallel port cable used to connect to the target. -This is a write-once setting. -Currently valid cable @var{name} values include: - -@itemize @minus -@item @b{altium} Altium Universal JTAG cable. -@item @b{arm-jtag} Same as original wiggler except SRST and -TRST connections reversed and TRST is also inverted. -@item @b{chameleon} The Amontec Chameleon's CPLD when operated -in configuration mode. This is only used to -program the Chameleon itself, not a connected target. -@item @b{dlc5} The Xilinx Parallel cable III. -@item @b{flashlink} The ST Parallel cable. -@item @b{lattice} Lattice ispDOWNLOAD Cable -@item @b{old_amt_wiggler} The Wiggler configuration that comes with -some versions of -Amontec's Chameleon Programmer. The new version available from -the website uses the original Wiggler layout ('@var{wiggler}') -@item @b{triton} The parallel port adapter found on the -``Karo Triton 1 Development Board''. -This is also the layout used by the HollyGates design -(see @uref{http://www.lartmaker.nl/projects/jtag/}). -@item @b{wiggler} The original Wiggler layout, also supported by -several clones, such as the Olimex ARM-JTAG -@item @b{wiggler2} Same as original wiggler except an led is fitted on D5. -@item @b{wiggler_ntrst_inverted} Same as original wiggler except TRST is inverted. -@end itemize -@end deffn - -@deffn {Config Command} {parport_port} [port_number] -Display either the address of the I/O port -(default: 0x378 for LPT1) or the number of the @file{/dev/parport} device. -If a parameter is provided, first switch to use that port. -This is a write-once setting. - -When using PPDEV to access the parallel port, use the number of the parallel port: -@option{parport_port 0} (the default). If @option{parport_port 0x378} is specified -you may encounter a problem. -@end deffn - -@deffn Command {parport_toggling_time} [nanoseconds] -Displays how many nanoseconds the hardware needs to toggle TCK; -the parport driver uses this value to obey the -@command{adapter_khz} configuration. -When the optional @var{nanoseconds} parameter is given, -that setting is changed before displaying the current value. - -The default setting should work reasonably well on commodity PC hardware. -However, you may want to calibrate for your specific hardware. -@quotation Tip -To measure the toggling time with a logic analyzer or a digital storage -oscilloscope, follow the procedure below: -@example -> parport_toggling_time 1000 -> adapter_khz 500 -@end example -This sets the maximum JTAG clock speed of the hardware, but -the actual speed probably deviates from the requested 500 kHz. -Now, measure the time between the two closest spaced TCK transitions. -You can use @command{runtest 1000} or something similar to generate a -large set of samples. -Update the setting to match your measurement: -@example -> parport_toggling_time <measured nanoseconds> -@end example -Now the clock speed will be a better match for @command{adapter_khz rate} -commands given in OpenOCD scripts and event handlers. - -You can do something similar with many digital multimeters, but note -that you'll probably need to run the clock continuously for several -seconds before it decides what clock rate to show. Adjust the -toggling time up or down until the measured clock rate is a good -match for the adapter_khz rate you specified; be conservative. -@end quotation -@end deffn - -@deffn {Config Command} {parport_write_on_exit} (@option{on}|@option{off}) -This will configure the parallel driver to write a known -cable-specific value to the parallel interface on exiting OpenOCD. -@end deffn - -For example, the interface configuration file for a -classic ``Wiggler'' cable on LPT2 might look something like this: - -@example -interface parport -parport_port 0x278 -parport_cable wiggler -@end example -@end deffn - -@deffn {Interface Driver} {presto} -ASIX PRESTO USB JTAG programmer. -@deffn {Config Command} {presto_serial} serial_string -Configures the USB serial number of the Presto device to use. -@end deffn -@end deffn - -@deffn {Interface Driver} {rlink} -Raisonance RLink USB adapter -@end deffn - -@deffn {Interface Driver} {usbprog} -usbprog is a freely programmable USB adapter. -@end deffn - -@deffn {Interface Driver} {vsllink} -vsllink is part of Versaloon which is a versatile USB programmer. - -@quotation Note -This defines quite a few driver-specific commands, -which are not currently documented here. -@end quotation -@end deffn - -@anchor{hla_interface} -@deffn {Interface Driver} {hla} -This is a driver that supports multiple High Level Adapters. -This type of adapter does not expose some of the lower level api's -that OpenOCD would normally use to access the target. - -Currently supported adapters include the ST STLINK and TI ICDI. -STLINK firmware version >= V2.J21.S4 recommended due to issues with earlier -versions of firmware where serial number is reset after first use. Suggest -using ST firmware update utility to upgrade STLINK firmware even if current -version reported is V2.J21.S4. - -@deffn {Config Command} {hla_device_desc} description -Currently Not Supported. -@end deffn - -@deffn {Config Command} {hla_serial} serial -Specifies the serial number of the adapter. -@end deffn - -@deffn {Config Command} {hla_layout} (@option{stlink}|@option{icdi}) -Specifies the adapter layout to use. -@end deffn - -@deffn {Config Command} {hla_vid_pid} vid pid -The vendor ID and product ID of the device. -@end deffn - -@deffn {Command} {hla_command} command -Execute a custom adapter-specific command. The @var{command} string is -passed as is to the underlying adapter layout handler. -@end deffn -@end deffn - -@deffn {Interface Driver} {opendous} -opendous-jtag is a freely programmable USB adapter. -@end deffn - -@deffn {Interface Driver} {ulink} -This is the Keil ULINK v1 JTAG debugger. -@end deffn - -@deffn {Interface Driver} {ZY1000} -This is the Zylin ZY1000 JTAG debugger. -@end deffn - -@quotation Note -This defines some driver-specific commands, -which are not currently documented here. -@end quotation - -@deffn Command power [@option{on}|@option{off}] -Turn power switch to target on/off. -No arguments: print status. -@end deffn - -@deffn {Interface Driver} {bcm2835gpio} -This SoC is present in Raspberry Pi which is a cheap single-board computer -exposing some GPIOs on its expansion header. - -The driver accesses memory-mapped GPIO peripheral registers directly -for maximum performance, but the only possible race condition is for -the pins' modes/muxing (which is highly unlikely), so it should be -able to coexist nicely with both sysfs bitbanging and various -peripherals' kernel drivers. The driver restores the previous -configuration on exit. - -See @file{interface/raspberrypi-native.cfg} for a sample config and -pinout. - -@end deffn - -@section Transport Configuration -@cindex Transport -As noted earlier, depending on the version of OpenOCD you use, -and the debug adapter you are using, -several transports may be available to -communicate with debug targets (or perhaps to program flash memory). -@deffn Command {transport list} -displays the names of the transports supported by this -version of OpenOCD. -@end deffn - -@deffn Command {transport select} @option{transport_name} -Select which of the supported transports to use in this OpenOCD session. - -When invoked with @option{transport_name}, attempts to select the named -transport. The transport must be supported by the debug adapter -hardware and by the version of OpenOCD you are using (including the -adapter's driver). - -If no transport has been selected and no @option{transport_name} is -provided, @command{transport select} auto-selects the first transport -supported by the debug adapter. - -@command{transport select} always returns the name of the session's selected -transport, if any. -@end deffn - -@subsection JTAG Transport -@cindex JTAG -JTAG is the original transport supported by OpenOCD, and most -of the OpenOCD commands support it. -JTAG transports expose a chain of one or more Test Access Points (TAPs), -each of which must be explicitly declared. -JTAG supports both debugging and boundary scan testing. -Flash programming support is built on top of debug support. - -JTAG transport is selected with the command @command{transport select -jtag}. Unless your adapter uses @ref{hla_interface,the hla interface -driver}, in which case the command is @command{transport select -hla_jtag}. - -@subsection SWD Transport -@cindex SWD -@cindex Serial Wire Debug -SWD (Serial Wire Debug) is an ARM-specific transport which exposes one -Debug Access Point (DAP, which must be explicitly declared. -(SWD uses fewer signal wires than JTAG.) -SWD is debug-oriented, and does not support boundary scan testing. -Flash programming support is built on top of debug support. -(Some processors support both JTAG and SWD.) - -SWD transport is selected with the command @command{transport select -swd}. Unless your adapter uses @ref{hla_interface,the hla interface -driver}, in which case the command is @command{transport select -hla_swd}. - -@deffn Command {swd newdap} ... -Declares a single DAP which uses SWD transport. -Parameters are currently the same as "jtag newtap" but this is -expected to change. -@end deffn -@deffn Command {swd wcr trn prescale} -Updates TRN (turnaraound delay) and prescaling.fields of the -Wire Control Register (WCR). -No parameters: displays current settings. -@end deffn - -@subsection SPI Transport -@cindex SPI -@cindex Serial Peripheral Interface -The Serial Peripheral Interface (SPI) is a general purpose transport -which uses four wire signaling. Some processors use it as part of a -solution for flash programming. - -@anchor{jtagspeed} -@section JTAG Speed -JTAG clock setup is part of system setup. -It @emph{does not belong with interface setup} since any interface -only knows a few of the constraints for the JTAG clock speed. -Sometimes the JTAG speed is -changed during the target initialization process: (1) slow at -reset, (2) program the CPU clocks, (3) run fast. -Both the "slow" and "fast" clock rates are functions of the -oscillators used, the chip, the board design, and sometimes -power management software that may be active. - -The speed used during reset, and the scan chain verification which -follows reset, can be adjusted using a @code{reset-start} -target event handler. -It can then be reconfigured to a faster speed by a -@code{reset-init} target event handler after it reprograms those -CPU clocks, or manually (if something else, such as a boot loader, -sets up those clocks). -@xref{targetevents,,Target Events}. -When the initial low JTAG speed is a chip characteristic, perhaps -because of a required oscillator speed, provide such a handler -in the target config file. -When that speed is a function of a board-specific characteristic -such as which speed oscillator is used, it belongs in the board -config file instead. -In both cases it's safest to also set the initial JTAG clock rate -to that same slow speed, so that OpenOCD never starts up using a -clock speed that's faster than the scan chain can support. - -@example -jtag_rclk 3000 -$_TARGET.cpu configure -event reset-start @{ jtag_rclk 3000 @} -@end example - -If your system supports adaptive clocking (RTCK), configuring -JTAG to use that is probably the most robust approach. -However, it introduces delays to synchronize clocks; so it -may not be the fastest solution. - -@b{NOTE:} Script writers should consider using @command{jtag_rclk} -instead of @command{adapter_khz}, but only for (ARM) cores and boards -which support adaptive clocking. - -@deffn {Command} adapter_khz max_speed_kHz -A non-zero speed is in KHZ. Hence: 3000 is 3mhz. -JTAG interfaces usually support a limited number of -speeds. The speed actually used won't be faster -than the speed specified. - -Chip data sheets generally include a top JTAG clock rate. -The actual rate is often a function of a CPU core clock, -and is normally less than that peak rate. -For example, most ARM cores accept at most one sixth of the CPU clock. - -Speed 0 (khz) selects RTCK method. -@xref{faqrtck,,FAQ RTCK}. -If your system uses RTCK, you won't need to change the -JTAG clocking after setup. -Not all interfaces, boards, or targets support ``rtck''. -If the interface device can not -support it, an error is returned when you try to use RTCK. -@end deffn - -@defun jtag_rclk fallback_speed_kHz -@cindex adaptive clocking -@cindex RTCK -This Tcl proc (defined in @file{startup.tcl}) attempts to enable RTCK/RCLK. -If that fails (maybe the interface, board, or target doesn't -support it), falls back to the specified frequency. -@example -# Fall back to 3mhz if RTCK is not supported -jtag_rclk 3000 -@end example -@end defun - -@node Reset Configuration -@chapter Reset Configuration -@cindex Reset Configuration - -Every system configuration may require a different reset -configuration. This can also be quite confusing. -Resets also interact with @var{reset-init} event handlers, -which do things like setting up clocks and DRAM, and -JTAG clock rates. (@xref{jtagspeed,,JTAG Speed}.) -They can also interact with JTAG routers. -Please see the various board files for examples. - -@quotation Note -To maintainers and integrators: -Reset configuration touches several things at once. -Normally the board configuration file -should define it and assume that the JTAG adapter supports -everything that's wired up to the board's JTAG connector. - -However, the target configuration file could also make note -of something the silicon vendor has done inside the chip, -which will be true for most (or all) boards using that chip. -And when the JTAG adapter doesn't support everything, the -user configuration file will need to override parts of -the reset configuration provided by other files. -@end quotation - -@section Types of Reset - -There are many kinds of reset possible through JTAG, but -they may not all work with a given board and adapter. -That's part of why reset configuration can be error prone. - -@itemize @bullet -@item -@emph{System Reset} ... the @emph{SRST} hardware signal -resets all chips connected to the JTAG adapter, such as processors, -power management chips, and I/O controllers. Normally resets triggered -with this signal behave exactly like pressing a RESET button. -@item -@emph{JTAG TAP Reset} ... the @emph{TRST} hardware signal resets -just the TAP controllers connected to the JTAG adapter. -Such resets should not be visible to the rest of the system; resetting a -device's TAP controller just puts that controller into a known state. -@item -@emph{Emulation Reset} ... many devices can be reset through JTAG -commands. These resets are often distinguishable from system -resets, either explicitly (a "reset reason" register says so) -or implicitly (not all parts of the chip get reset). -@item -@emph{Other Resets} ... system-on-chip devices often support -several other types of reset. -You may need to arrange that a watchdog timer stops -while debugging, preventing a watchdog reset. -There may be individual module resets. -@end itemize - -In the best case, OpenOCD can hold SRST, then reset -the TAPs via TRST and send commands through JTAG to halt the -CPU at the reset vector before the 1st instruction is executed. -Then when it finally releases the SRST signal, the system is -halted under debugger control before any code has executed. -This is the behavior required to support the @command{reset halt} -and @command{reset init} commands; after @command{reset init} a -board-specific script might do things like setting up DRAM. -(@xref{resetcommand,,Reset Command}.) - -@anchor{srstandtrstissues} -@section SRST and TRST Issues - -Because SRST and TRST are hardware signals, they can have a -variety of system-specific constraints. Some of the most -common issues are: - -@itemize @bullet - -@item @emph{Signal not available} ... Some boards don't wire -SRST or TRST to the JTAG connector. Some JTAG adapters don't -support such signals even if they are wired up. -Use the @command{reset_config} @var{signals} options to say -when either of those signals is not connected. -When SRST is not available, your code might not be able to rely -on controllers having been fully reset during code startup. -Missing TRST is not a problem, since JTAG-level resets can -be triggered using with TMS signaling. - -@item @emph{Signals shorted} ... Sometimes a chip, board, or -adapter will connect SRST to TRST, instead of keeping them separate. -Use the @command{reset_config} @var{combination} options to say -when those signals aren't properly independent. - -@item @emph{Timing} ... Reset circuitry like a resistor/capacitor -delay circuit, reset supervisor, or on-chip features can extend -the effect of a JTAG adapter's reset for some time after the adapter -stops issuing the reset. For example, there may be chip or board -requirements that all reset pulses last for at least a -certain amount of time; and reset buttons commonly have -hardware debouncing. -Use the @command{adapter_nsrst_delay} and @command{jtag_ntrst_delay} -commands to say when extra delays are needed. - -@item @emph{Drive type} ... Reset lines often have a pullup -resistor, letting the JTAG interface treat them as open-drain -signals. But that's not a requirement, so the adapter may need -to use push/pull output drivers. -Also, with weak pullups it may be advisable to drive -signals to both levels (push/pull) to minimize rise times. -Use the @command{reset_config} @var{trst_type} and -@var{srst_type} parameters to say how to drive reset signals. - -@item @emph{Special initialization} ... Targets sometimes need -special JTAG initialization sequences to handle chip-specific -issues (not limited to errata). -For example, certain JTAG commands might need to be issued while -the system as a whole is in a reset state (SRST active) -but the JTAG scan chain is usable (TRST inactive). -Many systems treat combined assertion of SRST and TRST as a -trigger for a harder reset than SRST alone. -Such custom reset handling is discussed later in this chapter. -@end itemize - -There can also be other issues. -Some devices don't fully conform to the JTAG specifications. -Trivial system-specific differences are common, such as -SRST and TRST using slightly different names. -There are also vendors who distribute key JTAG documentation for -their chips only to developers who have signed a Non-Disclosure -Agreement (NDA). - -Sometimes there are chip-specific extensions like a requirement to use -the normally-optional TRST signal (precluding use of JTAG adapters which -don't pass TRST through), or needing extra steps to complete a TAP reset. - -In short, SRST and especially TRST handling may be very finicky, -needing to cope with both architecture and board specific constraints. - -@section Commands for Handling Resets - -@deffn {Command} adapter_nsrst_assert_width milliseconds -Minimum amount of time (in milliseconds) OpenOCD should wait -after asserting nSRST (active-low system reset) before -allowing it to be deasserted. -@end deffn - -@deffn {Command} adapter_nsrst_delay milliseconds -How long (in milliseconds) OpenOCD should wait after deasserting -nSRST (active-low system reset) before starting new JTAG operations. -When a board has a reset button connected to SRST line it will -probably have hardware debouncing, implying you should use this. -@end deffn - -@deffn {Command} jtag_ntrst_assert_width milliseconds -Minimum amount of time (in milliseconds) OpenOCD should wait -after asserting nTRST (active-low JTAG TAP reset) before -allowing it to be deasserted. -@end deffn - -@deffn {Command} jtag_ntrst_delay milliseconds -How long (in milliseconds) OpenOCD should wait after deasserting -nTRST (active-low JTAG TAP reset) before starting new JTAG operations. -@end deffn - -@deffn {Command} reset_config mode_flag ... -This command displays or modifies the reset configuration -of your combination of JTAG board and target in target -configuration scripts. - -Information earlier in this section describes the kind of problems -the command is intended to address (@pxref{srstandtrstissues,,SRST and TRST Issues}). -As a rule this command belongs only in board config files, -describing issues like @emph{board doesn't connect TRST}; -or in user config files, addressing limitations derived -from a particular combination of interface and board. -(An unlikely example would be using a TRST-only adapter -with a board that only wires up SRST.) - -The @var{mode_flag} options can be specified in any order, but only one -of each type -- @var{signals}, @var{combination}, @var{gates}, -@var{trst_type}, @var{srst_type} and @var{connect_type} --- may be specified at a time. -If you don't provide a new value for a given type, its previous -value (perhaps the default) is unchanged. -For example, this means that you don't need to say anything at all about -TRST just to declare that if the JTAG adapter should want to drive SRST, -it must explicitly be driven high (@option{srst_push_pull}). - -@itemize -@item -@var{signals} can specify which of the reset signals are connected. -For example, If the JTAG interface provides SRST, but the board doesn't -connect that signal properly, then OpenOCD can't use it. -Possible values are @option{none} (the default), @option{trst_only}, -@option{srst_only} and @option{trst_and_srst}. - -@quotation Tip -If your board provides SRST and/or TRST through the JTAG connector, -you must declare that so those signals can be used. -@end quotation - -@item -The @var{combination} is an optional value specifying broken reset -signal implementations. -The default behaviour if no option given is @option{separate}, -indicating everything behaves normally. -@option{srst_pulls_trst} states that the -test logic is reset together with the reset of the system (e.g. NXP -LPC2000, "broken" board layout), @option{trst_pulls_srst} says that -the system is reset together with the test logic (only hypothetical, I -haven't seen hardware with such a bug, and can be worked around). -@option{combined} implies both @option{srst_pulls_trst} and -@option{trst_pulls_srst}. - -@item -The @var{gates} tokens control flags that describe some cases where -JTAG may be unvailable during reset. -@option{srst_gates_jtag} (default) -indicates that asserting SRST gates the -JTAG clock. This means that no communication can happen on JTAG -while SRST is asserted. -Its converse is @option{srst_nogate}, indicating that JTAG commands -can safely be issued while SRST is active. - -@item -The @var{connect_type} tokens control flags that describe some cases where -SRST is asserted while connecting to the target. @option{srst_nogate} -is required to use this option. -@option{connect_deassert_srst} (default) -indicates that SRST will not be asserted while connecting to the target. -Its converse is @option{connect_assert_srst}, indicating that SRST will -be asserted before any target connection. -Only some targets support this feature, STM32 and STR9 are examples. -This feature is useful if you are unable to connect to your target due -to incorrect options byte config or illegal program execution. -@end itemize - -The optional @var{trst_type} and @var{srst_type} parameters allow the -driver mode of each reset line to be specified. These values only affect -JTAG interfaces with support for different driver modes, like the Amontec -JTAGkey and JTAG Accelerator. Also, they are necessarily ignored if the -relevant signal (TRST or SRST) is not connected. - -@itemize -@item -Possible @var{trst_type} driver modes for the test reset signal (TRST) -are the default @option{trst_push_pull}, and @option{trst_open_drain}. -Most boards connect this signal to a pulldown, so the JTAG TAPs -never leave reset unless they are hooked up to a JTAG adapter. - -@item -Possible @var{srst_type} driver modes for the system reset signal (SRST) -are the default @option{srst_open_drain}, and @option{srst_push_pull}. -Most boards connect this signal to a pullup, and allow the -signal to be pulled low by various events including system -powerup and pressing a reset button. -@end itemize -@end deffn - -@section Custom Reset Handling -@cindex events - -OpenOCD has several ways to help support the various reset -mechanisms provided by chip and board vendors. -The commands shown in the previous section give standard parameters. -There are also @emph{event handlers} associated with TAPs or Targets. -Those handlers are Tcl procedures you can provide, which are invoked -at particular points in the reset sequence. - -@emph{When SRST is not an option} you must set -up a @code{reset-assert} event handler for your target. -For example, some JTAG adapters don't include the SRST signal; -and some boards have multiple targets, and you won't always -want to reset everything at once. - -After configuring those mechanisms, you might still -find your board doesn't start up or reset correctly. -For example, maybe it needs a slightly different sequence -of SRST and/or TRST manipulations, because of quirks that -the @command{reset_config} mechanism doesn't address; -or asserting both might trigger a stronger reset, which -needs special attention. - -Experiment with lower level operations, such as @command{jtag_reset} -and the @command{jtag arp_*} operations shown here, -to find a sequence of operations that works. -@xref{JTAG Commands}. -When you find a working sequence, it can be used to override -@command{jtag_init}, which fires during OpenOCD startup -(@pxref{configurationstage,,Configuration Stage}); -or @command{init_reset}, which fires during reset processing. - -You might also want to provide some project-specific reset -schemes. For example, on a multi-target board the standard -@command{reset} command would reset all targets, but you -may need the ability to reset only one target at time and -thus want to avoid using the board-wide SRST signal. - -@deffn {Overridable Procedure} init_reset mode -This is invoked near the beginning of the @command{reset} command, -usually to provide as much of a cold (power-up) reset as practical. -By default it is also invoked from @command{jtag_init} if -the scan chain does not respond to pure JTAG operations. -The @var{mode} parameter is the parameter given to the -low level reset command (@option{halt}, -@option{init}, or @option{run}), @option{setup}, -or potentially some other value. - -The default implementation just invokes @command{jtag arp_init-reset}. -Replacements will normally build on low level JTAG -operations such as @command{jtag_reset}. -Operations here must not address individual TAPs -(or their associated targets) -until the JTAG scan chain has first been verified to work. - -Implementations must have verified the JTAG scan chain before -they return. -This is done by calling @command{jtag arp_init} -(or @command{jtag arp_init-reset}). -@end deffn - -@deffn Command {jtag arp_init} -This validates the scan chain using just the four -standard JTAG signals (TMS, TCK, TDI, TDO). -It starts by issuing a JTAG-only reset. -Then it performs checks to verify that the scan chain configuration -matches the TAPs it can observe. -Those checks include checking IDCODE values for each active TAP, -and verifying the length of their instruction registers using -TAP @code{-ircapture} and @code{-irmask} values. -If these tests all pass, TAP @code{setup} events are -issued to all TAPs with handlers for that event. -@end deffn - -@deffn Command {jtag arp_init-reset} -This uses TRST and SRST to try resetting -everything on the JTAG scan chain -(and anything else connected to SRST). -It then invokes the logic of @command{jtag arp_init}. -@end deffn - - -@node TAP Declaration -@chapter TAP Declaration -@cindex TAP declaration -@cindex TAP configuration - -@emph{Test Access Ports} (TAPs) are the core of JTAG. -TAPs serve many roles, including: - -@itemize @bullet -@item @b{Debug Target} A CPU TAP can be used as a GDB debug target. -@item @b{Flash Programming} Some chips program the flash directly via JTAG. -Others do it indirectly, making a CPU do it. -@item @b{Program Download} Using the same CPU support GDB uses, -you can initialize a DRAM controller, download code to DRAM, and then -start running that code. -@item @b{Boundary Scan} Most chips support boundary scan, which -helps test for board assembly problems like solder bridges -and missing connections. -@end itemize - -OpenOCD must know about the active TAPs on your board(s). -Setting up the TAPs is the core task of your configuration files. -Once those TAPs are set up, you can pass their names to code -which sets up CPUs and exports them as GDB targets, -probes flash memory, performs low-level JTAG operations, and more. - -@section Scan Chains -@cindex scan chain - -TAPs are part of a hardware @dfn{scan chain}, -which is a daisy chain of TAPs. -They also need to be added to -OpenOCD's software mirror of that hardware list, -giving each member a name and associating other data with it. -Simple scan chains, with a single TAP, are common in -systems with a single microcontroller or microprocessor. -More complex chips may have several TAPs internally. -Very complex scan chains might have a dozen or more TAPs: -several in one chip, more in the next, and connecting -to other boards with their own chips and TAPs. - -You can display the list with the @command{scan_chain} command. -(Don't confuse this with the list displayed by the @command{targets} -command, presented in the next chapter. -That only displays TAPs for CPUs which are configured as -debugging targets.) -Here's what the scan chain might look like for a chip more than one TAP: - -@verbatim - TapName Enabled IdCode Expected IrLen IrCap IrMask --- ------------------ ------- ---------- ---------- ----- ----- ------ - 0 omap5912.dsp Y 0x03df1d81 0x03df1d81 38 0x01 0x03 - 1 omap5912.arm Y 0x0692602f 0x0692602f 4 0x01 0x0f - 2 omap5912.unknown Y 0x00000000 0x00000000 8 0x01 0x03 -@end verbatim - -OpenOCD can detect some of that information, but not all -of it. @xref{autoprobing,,Autoprobing}. -Unfortunately, those TAPs can't always be autoconfigured, -because not all devices provide good support for that. -JTAG doesn't require supporting IDCODE instructions, and -chips with JTAG routers may not link TAPs into the chain -until they are told to do so. - -The configuration mechanism currently supported by OpenOCD -requires explicit configuration of all TAP devices using -@command{jtag newtap} commands, as detailed later in this chapter. -A command like this would declare one tap and name it @code{chip1.cpu}: - -@example -jtag newtap chip1 cpu -irlen 4 -expected-id 0x3ba00477 -@end example - -Each target configuration file lists the TAPs provided -by a given chip. -Board configuration files combine all the targets on a board, -and so forth. -Note that @emph{the order in which TAPs are declared is very important.} -That declaration order must match the order in the JTAG scan chain, -both inside a single chip and between them. -@xref{faqtaporder,,FAQ TAP Order}. - -For example, the ST Microsystems STR912 chip has -three separate TAPs@footnote{See the ST -document titled: @emph{STR91xFAxxx, Section 3.15 Jtag Interface, Page: -28/102, Figure 3: JTAG chaining inside the STR91xFA}. -@url{http://eu.st.com/stonline/products/literature/ds/13495.pdf}}. -To configure those taps, @file{target/str912.cfg} -includes commands something like this: - -@example -jtag newtap str912 flash ... params ... -jtag newtap str912 cpu ... params ... -jtag newtap str912 bs ... params ... -@end example - -Actual config files typically use a variable such as @code{$_CHIPNAME} -instead of literals like @option{str912}, to support more than one chip -of each type. @xref{Config File Guidelines}. - -@deffn Command {jtag names} -Returns the names of all current TAPs in the scan chain. -Use @command{jtag cget} or @command{jtag tapisenabled} -to examine attributes and state of each TAP. -@example -foreach t [jtag names] @{ - puts [format "TAP: %s\n" $t] -@} -@end example -@end deffn - -@deffn Command {scan_chain} -Displays the TAPs in the scan chain configuration, -and their status. -The set of TAPs listed by this command is fixed by -exiting the OpenOCD configuration stage, -but systems with a JTAG router can -enable or disable TAPs dynamically. -@end deffn - -@c FIXME! "jtag cget" should be able to return all TAP -@c attributes, like "$target_name cget" does for targets. - -@c Probably want "jtag eventlist", and a "tap-reset" event -@c (on entry to RESET state). - -@section TAP Names -@cindex dotted name - -When TAP objects are declared with @command{jtag newtap}, -a @dfn{dotted.name} is created for the TAP, combining the -name of a module (usually a chip) and a label for the TAP. -For example: @code{xilinx.tap}, @code{str912.flash}, -@code{omap3530.jrc}, @code{dm6446.dsp}, or @code{stm32.cpu}. -Many other commands use that dotted.name to manipulate or -refer to the TAP. For example, CPU configuration uses the -name, as does declaration of NAND or NOR flash banks. - -The components of a dotted name should follow ``C'' symbol -name rules: start with an alphabetic character, then numbers -and underscores are OK; while others (including dots!) are not. - -@section TAP Declaration Commands - -@c shouldn't this be(come) a {Config Command}? -@deffn Command {jtag newtap} chipname tapname configparams... -Declares a new TAP with the dotted name @var{chipname}.@var{tapname}, -and configured according to the various @var{configparams}. - -The @var{chipname} is a symbolic name for the chip. -Conventionally target config files use @code{$_CHIPNAME}, -defaulting to the model name given by the chip vendor but -overridable. - -@cindex TAP naming convention -The @var{tapname} reflects the role of that TAP, -and should follow this convention: - -@itemize @bullet -@item @code{bs} -- For boundary scan if this is a separate TAP; -@item @code{cpu} -- The main CPU of the chip, alternatively -@code{arm} and @code{dsp} on chips with both ARM and DSP CPUs, -@code{arm1} and @code{arm2} on chips with two ARMs, and so forth; -@item @code{etb} -- For an embedded trace buffer (example: an ARM ETB11); -@item @code{flash} -- If the chip has a flash TAP, like the str912; -@item @code{jrc} -- For JTAG route controller (example: the ICEPick modules -on many Texas Instruments chips, like the OMAP3530 on Beagleboards); -@item @code{tap} -- Should be used only for FPGA- or CPLD-like devices -with a single TAP; -@item @code{unknownN} -- If you have no idea what the TAP is for (N is a number); -@item @emph{when in doubt} -- Use the chip maker's name in their data sheet. -For example, the Freescale i.MX31 has a SDMA (Smart DMA) with -a JTAG TAP; that TAP should be named @code{sdma}. -@end itemize - -Every TAP requires at least the following @var{configparams}: - -@itemize @bullet -@item @code{-irlen} @var{NUMBER} -@*The length in bits of the -instruction register, such as 4 or 5 bits. -@end itemize - -A TAP may also provide optional @var{configparams}: - -@itemize @bullet -@item @code{-disable} (or @code{-enable}) -@*Use the @code{-disable} parameter to flag a TAP which is not -linked into the scan chain after a reset using either TRST -or the JTAG state machine's @sc{reset} state. -You may use @code{-enable} to highlight the default state -(the TAP is linked in). -@xref{enablinganddisablingtaps,,Enabling and Disabling TAPs}. -@item @code{-expected-id} @var{NUMBER} -@*A non-zero @var{number} represents a 32-bit IDCODE -which you expect to find when the scan chain is examined. -These codes are not required by all JTAG devices. -@emph{Repeat the option} as many times as required if more than one -ID code could appear (for example, multiple versions). -Specify @var{number} as zero to suppress warnings about IDCODE -values that were found but not included in the list. - -Provide this value if at all possible, since it lets OpenOCD -tell when the scan chain it sees isn't right. These values -are provided in vendors' chip documentation, usually a technical -reference manual. Sometimes you may need to probe the JTAG -hardware to find these values. -@xref{autoprobing,,Autoprobing}. -@item @code{-ignore-version} -@*Specify this to ignore the JTAG version field in the @code{-expected-id} -option. When vendors put out multiple versions of a chip, or use the same -JTAG-level ID for several largely-compatible chips, it may be more practical -to ignore the version field than to update config files to handle all of -the various chip IDs. The version field is defined as bit 28-31 of the IDCODE. -@item @code{-ircapture} @var{NUMBER} -@*The bit pattern loaded by the TAP into the JTAG shift register -on entry to the @sc{ircapture} state, such as 0x01. -JTAG requires the two LSBs of this value to be 01. -By default, @code{-ircapture} and @code{-irmask} are set -up to verify that two-bit value. You may provide -additional bits if you know them, or indicate that -a TAP doesn't conform to the JTAG specification. -@item @code{-irmask} @var{NUMBER} -@*A mask used with @code{-ircapture} -to verify that instruction scans work correctly. -Such scans are not used by OpenOCD except to verify that -there seems to be no problems with JTAG scan chain operations. -@end itemize -@end deffn - -@section Other TAP commands - -@deffn Command {jtag cget} dotted.name @option{-event} event_name -@deffnx Command {jtag configure} dotted.name @option{-event} event_name handler -At this writing this TAP attribute -mechanism is used only for event handling. -(It is not a direct analogue of the @code{cget}/@code{configure} -mechanism for debugger targets.) -See the next section for information about the available events. - -The @code{configure} subcommand assigns an event handler, -a TCL string which is evaluated when the event is triggered. -The @code{cget} subcommand returns that handler. -@end deffn - -@section TAP Events -@cindex events -@cindex TAP events - -OpenOCD includes two event mechanisms. -The one presented here applies to all JTAG TAPs. -The other applies to debugger targets, -which are associated with certain TAPs. - -The TAP events currently defined are: - -@itemize @bullet -@item @b{post-reset} -@* The TAP has just completed a JTAG reset. -The tap may still be in the JTAG @sc{reset} state. -Handlers for these events might perform initialization sequences -such as issuing TCK cycles, TMS sequences to ensure -exit from the ARM SWD mode, and more. - -Because the scan chain has not yet been verified, handlers for these events -@emph{should not issue commands which scan the JTAG IR or DR registers} -of any particular target. -@b{NOTE:} As this is written (September 2009), nothing prevents such access. -@item @b{setup} -@* The scan chain has been reset and verified. -This handler may enable TAPs as needed. -@item @b{tap-disable} -@* The TAP needs to be disabled. This handler should -implement @command{jtag tapdisable} -by issuing the relevant JTAG commands. -@item @b{tap-enable} -@* The TAP needs to be enabled. This handler should -implement @command{jtag tapenable} -by issuing the relevant JTAG commands. -@end itemize - -If you need some action after each JTAG reset which isn't actually -specific to any TAP (since you can't yet trust the scan chain's -contents to be accurate), you might: - -@example -jtag configure CHIP.jrc -event post-reset @{ - echo "JTAG Reset done" - ... non-scan jtag operations to be done after reset -@} -@end example - - -@anchor{enablinganddisablingtaps} -@section Enabling and Disabling TAPs -@cindex JTAG Route Controller -@cindex jrc - -In some systems, a @dfn{JTAG Route Controller} (JRC) -is used to enable and/or disable specific JTAG TAPs. -Many ARM-based chips from Texas Instruments include -an ``ICEPick'' module, which is a JRC. -Such chips include DaVinci and OMAP3 processors. - -A given TAP may not be visible until the JRC has been -told to link it into the scan chain; and if the JRC -has been told to unlink that TAP, it will no longer -be visible. -Such routers address problems that JTAG ``bypass mode'' -ignores, such as: - -@itemize -@item The scan chain can only go as fast as its slowest TAP. -@item Having many TAPs slows instruction scans, since all -TAPs receive new instructions. -@item TAPs in the scan chain must be powered up, which wastes -power and prevents debugging some power management mechanisms. -@end itemize - -The IEEE 1149.1 JTAG standard has no concept of a ``disabled'' tap, -as implied by the existence of JTAG routers. -However, the upcoming IEEE 1149.7 framework (layered on top of JTAG) -does include a kind of JTAG router functionality. - -@c (a) currently the event handlers don't seem to be able to -@c fail in a way that could lead to no-change-of-state. - -In OpenOCD, tap enabling/disabling is invoked by the Tcl commands -shown below, and is implemented using TAP event handlers. -So for example, when defining a TAP for a CPU connected to -a JTAG router, your @file{target.cfg} file -should define TAP event handlers using -code that looks something like this: - -@example -jtag configure CHIP.cpu -event tap-enable @{ - ... jtag operations using CHIP.jrc -@} -jtag configure CHIP.cpu -event tap-disable @{ - ... jtag operations using CHIP.jrc -@} -@end example - -Then you might want that CPU's TAP enabled almost all the time: - -@example -jtag configure $CHIP.jrc -event setup "jtag tapenable $CHIP.cpu" -@end example - -Note how that particular setup event handler declaration -uses quotes to evaluate @code{$CHIP} when the event is configured. -Using brackets @{ @} would cause it to be evaluated later, -at runtime, when it might have a different value. - -@deffn Command {jtag tapdisable} dotted.name -If necessary, disables the tap -by sending it a @option{tap-disable} event. -Returns the string "1" if the tap -specified by @var{dotted.name} is enabled, -and "0" if it is disabled. -@end deffn - -@deffn Command {jtag tapenable} dotted.name -If necessary, enables the tap -by sending it a @option{tap-enable} event. -Returns the string "1" if the tap -specified by @var{dotted.name} is enabled, -and "0" if it is disabled. -@end deffn - -@deffn Command {jtag tapisenabled} dotted.name -Returns the string "1" if the tap -specified by @var{dotted.name} is enabled, -and "0" if it is disabled. - -@quotation Note -Humans will find the @command{scan_chain} command more helpful -for querying the state of the JTAG taps. -@end quotation -@end deffn - -@anchor{autoprobing} -@section Autoprobing -@cindex autoprobe -@cindex JTAG autoprobe - -TAP configuration is the first thing that needs to be done -after interface and reset configuration. Sometimes it's -hard finding out what TAPs exist, or how they are identified. -Vendor documentation is not always easy to find and use. - -To help you get past such problems, OpenOCD has a limited -@emph{autoprobing} ability to look at the scan chain, doing -a @dfn{blind interrogation} and then reporting the TAPs it finds. -To use this mechanism, start the OpenOCD server with only data -that configures your JTAG interface, and arranges to come up -with a slow clock (many devices don't support fast JTAG clocks -right when they come out of reset). - -For example, your @file{openocd.cfg} file might have: - -@example -source [find interface/olimex-arm-usb-tiny-h.cfg] -reset_config trst_and_srst -jtag_rclk 8 -@end example - -When you start the server without any TAPs configured, it will -attempt to autoconfigure the TAPs. There are two parts to this: - -@enumerate -@item @emph{TAP discovery} ... -After a JTAG reset (sometimes a system reset may be needed too), -each TAP's data registers will hold the contents of either the -IDCODE or BYPASS register. -If JTAG communication is working, OpenOCD will see each TAP, -and report what @option{-expected-id} to use with it. -@item @emph{IR Length discovery} ... -Unfortunately JTAG does not provide a reliable way to find out -the value of the @option{-irlen} parameter to use with a TAP -that is discovered. -If OpenOCD can discover the length of a TAP's instruction -register, it will report it. -Otherwise you may need to consult vendor documentation, such -as chip data sheets or BSDL files. -@end enumerate - -In many cases your board will have a simple scan chain with just -a single device. Here's what OpenOCD reported with one board -that's a bit more complex: - -@example -clock speed 8 kHz -There are no enabled taps. AUTO PROBING MIGHT NOT WORK!! -AUTO auto0.tap - use "jtag newtap auto0 tap -expected-id 0x2b900f0f ..." -AUTO auto1.tap - use "jtag newtap auto1 tap -expected-id 0x07926001 ..." -AUTO auto2.tap - use "jtag newtap auto2 tap -expected-id 0x0b73b02f ..." -AUTO auto0.tap - use "... -irlen 4" -AUTO auto1.tap - use "... -irlen 4" -AUTO auto2.tap - use "... -irlen 6" -no gdb ports allocated as no target has been specified -@end example - -Given that information, you should be able to either find some existing -config files to use, or create your own. If you create your own, you -would configure from the bottom up: first a @file{target.cfg} file -with these TAPs, any targets associated with them, and any on-chip -resources; then a @file{board.cfg} with off-chip resources, clocking, -and so forth. - -@node CPU Configuration -@chapter CPU Configuration -@cindex GDB target - -This chapter discusses how to set up GDB debug targets for CPUs. -You can also access these targets without GDB -(@pxref{Architecture and Core Commands}, -and @ref{targetstatehandling,,Target State handling}) and -through various kinds of NAND and NOR flash commands. -If you have multiple CPUs you can have multiple such targets. - -We'll start by looking at how to examine the targets you have, -then look at how to add one more target and how to configure it. - -@section Target List -@cindex target, current -@cindex target, list - -All targets that have been set up are part of a list, -where each member has a name. -That name should normally be the same as the TAP name. -You can display the list with the @command{targets} -(plural!) command. -This display often has only one CPU; here's what it might -look like with more than one: -@verbatim - TargetName Type Endian TapName State --- ------------------ ---------- ------ ------------------ ------------ - 0* at91rm9200.cpu arm920t little at91rm9200.cpu running - 1 MyTarget cortex_m little mychip.foo tap-disabled -@end verbatim - -One member of that list is the @dfn{current target}, which -is implicitly referenced by many commands. -It's the one marked with a @code{*} near the target name. -In particular, memory addresses often refer to the address -space seen by that current target. -Commands like @command{mdw} (memory display words) -and @command{flash erase_address} (erase NOR flash blocks) -are examples; and there are many more. - -Several commands let you examine the list of targets: - -@deffn Command {target current} -Returns the name of the current target. -@end deffn - -@deffn Command {target names} -Lists the names of all current targets in the list. -@example -foreach t [target names] @{ - puts [format "Target: %s\n" $t] -@} -@end example -@end deffn - -@c yep, "target list" would have been better. -@c plus maybe "target setdefault". - -@deffn Command targets [name] -@emph{Note: the name of this command is plural. Other target -command names are singular.} - -With no parameter, this command displays a table of all known -targets in a user friendly form. - -With a parameter, this command sets the current target to -the given target with the given @var{name}; this is -only relevant on boards which have more than one target. -@end deffn - -@section Target CPU Types -@cindex target type -@cindex CPU type - -Each target has a @dfn{CPU type}, as shown in the output of -the @command{targets} command. You need to specify that type -when calling @command{target create}. -The CPU type indicates more than just the instruction set. -It also indicates how that instruction set is implemented, -what kind of debug support it integrates, -whether it has an MMU (and if so, what kind), -what core-specific commands may be available -(@pxref{Architecture and Core Commands}), -and more. - -It's easy to see what target types are supported, -since there's a command to list them. - -@anchor{targettypes} -@deffn Command {target types} -Lists all supported target types. -At this writing, the supported CPU types are: - -@itemize @bullet -@item @code{arm11} -- this is a generation of ARMv6 cores -@item @code{arm720t} -- this is an ARMv4 core with an MMU -@item @code{arm7tdmi} -- this is an ARMv4 core -@item @code{arm920t} -- this is an ARMv4 core with an MMU -@item @code{arm926ejs} -- this is an ARMv5 core with an MMU -@item @code{arm966e} -- this is an ARMv5 core -@item @code{arm9tdmi} -- this is an ARMv4 core -@item @code{avr} -- implements Atmel's 8-bit AVR instruction set. -(Support for this is preliminary and incomplete.) -@item @code{cortex_a} -- this is an ARMv7 core with an MMU -@item @code{cortex_m} -- this is an ARMv7 core, supporting only the -compact Thumb2 instruction set. -@item @code{dragonite} -- resembles arm966e -@item @code{dsp563xx} -- implements Freescale's 24-bit DSP. -(Support for this is still incomplete.) -@item @code{fa526} -- resembles arm920 (w/o Thumb) -@item @code{feroceon} -- resembles arm926 -@item @code{mips_m4k} -- a MIPS core -@item @code{xscale} -- this is actually an architecture, -not a CPU type. It is based on the ARMv5 architecture. -@item @code{openrisc} -- this is an OpenRISC 1000 core. -The current implementation supports three JTAG TAP cores: -@item @code{ls1_sap} -- this is the SAP on NXP LS102x CPUs, -allowing access to physical memory addresses independently of CPU cores. -@itemize @minus -@item @code{OpenCores TAP} (See: @url{http://opencores.org/project,jtag}) -@item @code{Altera Virtual JTAG TAP} (See: @url{http://www.altera.com/literature/ug/ug_virtualjtag.pdf}) -@item @code{Xilinx BSCAN_* virtual JTAG interface} (See: @url{http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_2/spartan6_hdl.pdf}) -@end itemize -And two debug interfaces cores: -@itemize @minus -@item @code{Advanced debug interface} (See: @url{http://opencores.org/project,adv_debug_sys}) -@item @code{SoC Debug Interface} (See: @url{http://opencores.org/project,dbg_interface}) -@end itemize -@end itemize -@end deffn - -To avoid being confused by the variety of ARM based cores, remember -this key point: @emph{ARM is a technology licencing company}. -(See: @url{http://www.arm.com}.) -The CPU name used by OpenOCD will reflect the CPU design that was -licenced, not a vendor brand which incorporates that design. -Name prefixes like arm7, arm9, arm11, and cortex -reflect design generations; -while names like ARMv4, ARMv5, ARMv6, and ARMv7 -reflect an architecture version implemented by a CPU design. - -@anchor{targetconfiguration} -@section Target Configuration - -Before creating a ``target'', you must have added its TAP to the scan chain. -When you've added that TAP, you will have a @code{dotted.name} -which is used to set up the CPU support. -The chip-specific configuration file will normally configure its CPU(s) -right after it adds all of the chip's TAPs to the scan chain. - -Although you can set up a target in one step, it's often clearer if you -use shorter commands and do it in two steps: create it, then configure -optional parts. -All operations on the target after it's created will use a new -command, created as part of target creation. - -The two main things to configure after target creation are -a work area, which usually has target-specific defaults even -if the board setup code overrides them later; -and event handlers (@pxref{targetevents,,Target Events}), which tend -to be much more board-specific. -The key steps you use might look something like this - -@example -target create MyTarget cortex_m -chain-position mychip.cpu -$MyTarget configure -work-area-phys 0x08000 -work-area-size 8096 -$MyTarget configure -event reset-deassert-pre @{ jtag_rclk 5 @} -$MyTarget configure -event reset-init @{ myboard_reinit @} -@end example - -You should specify a working area if you can; typically it uses some -on-chip SRAM. -Such a working area can speed up many things, including bulk -writes to target memory; -flash operations like checking to see if memory needs to be erased; -GDB memory checksumming; -and more. - -@quotation Warning -On more complex chips, the work area can become -inaccessible when application code -(such as an operating system) -enables or disables the MMU. -For example, the particular MMU context used to acess the virtual -address will probably matter ... and that context might not have -easy access to other addresses needed. -At this writing, OpenOCD doesn't have much MMU intelligence. -@end quotation - -It's often very useful to define a @code{reset-init} event handler. -For systems that are normally used with a boot loader, -common tasks include updating clocks and initializing memory -controllers. -That may be needed to let you write the boot loader into flash, -in order to ``de-brick'' your board; or to load programs into -external DDR memory without having run the boot loader. - -@deffn Command {target create} target_name type configparams... -This command creates a GDB debug target that refers to a specific JTAG tap. -It enters that target into a list, and creates a new -command (@command{@var{target_name}}) which is used for various -purposes including additional configuration. - -@itemize @bullet -@item @var{target_name} ... is the name of the debug target. -By convention this should be the same as the @emph{dotted.name} -of the TAP associated with this target, which must be specified here -using the @code{-chain-position @var{dotted.name}} configparam. - -This name is also used to create the target object command, -referred to here as @command{$target_name}, -and in other places the target needs to be identified. -@item @var{type} ... specifies the target type. @xref{targettypes,,target types}. -@item @var{configparams} ... all parameters accepted by -@command{$target_name configure} are permitted. -If the target is big-endian, set it here with @code{-endian big}. - -You @emph{must} set the @code{-chain-position @var{dotted.name}} here. -@end itemize -@end deffn - -@deffn Command {$target_name configure} configparams... -The options accepted by this command may also be -specified as parameters to @command{target create}. -Their values can later be queried one at a time by -using the @command{$target_name cget} command. - -@emph{Warning:} changing some of these after setup is dangerous. -For example, moving a target from one TAP to another; -and changing its endianness. - -@itemize @bullet - -@item @code{-chain-position} @var{dotted.name} -- names the TAP -used to access this target. - -@item @code{-endian} (@option{big}|@option{little}) -- specifies -whether the CPU uses big or little endian conventions - -@item @code{-event} @var{event_name} @var{event_body} -- -@xref{targetevents,,Target Events}. -Note that this updates a list of named event handlers. -Calling this twice with two different event names assigns -two different handlers, but calling it twice with the -same event name assigns only one handler. - -@item @code{-work-area-backup} (@option{0}|@option{1}) -- says -whether the work area gets backed up; by default, -@emph{it is not backed up.} -When possible, use a working_area that doesn't need to be backed up, -since performing a backup slows down operations. -For example, the beginning of an SRAM block is likely to -be used by most build systems, but the end is often unused. - -@item @code{-work-area-size} @var{size} -- specify work are size, -in bytes. The same size applies regardless of whether its physical -or virtual address is being used. - -@item @code{-work-area-phys} @var{address} -- set the work area -base @var{address} to be used when no MMU is active. - -@item @code{-work-area-virt} @var{address} -- set the work area -base @var{address} to be used when an MMU is active. -@emph{Do not specify a value for this except on targets with an MMU.} -The value should normally correspond to a static mapping for the -@code{-work-area-phys} address, set up by the current operating system. - -@anchor{rtostype} -@item @code{-rtos} @var{rtos_type} -- enable rtos support for target, -@var{rtos_type} can be one of @option{auto}|@option{eCos}|@option{ThreadX}| -@option{FreeRTOS}|@option{linux}|@option{ChibiOS}|@option{embKernel}|@option{mqx} -@xref{gdbrtossupport,,RTOS Support}. - -@end itemize -@end deffn - -@section Other $target_name Commands -@cindex object command - -The Tcl/Tk language has the concept of object commands, -and OpenOCD adopts that same model for targets. - -A good Tk example is a on screen button. -Once a button is created a button -has a name (a path in Tk terms) and that name is useable as a first -class command. For example in Tk, one can create a button and later -configure it like this: - -@example -# Create -button .foobar -background red -command @{ foo @} -# Modify -.foobar configure -foreground blue -# Query -set x [.foobar cget -background] -# Report -puts [format "The button is %s" $x] -@end example - -In OpenOCD's terms, the ``target'' is an object just like a Tcl/Tk -button, and its object commands are invoked the same way. - -@example -str912.cpu mww 0x1234 0x42 -omap3530.cpu mww 0x5555 123 -@end example - -The commands supported by OpenOCD target objects are: - -@deffn Command {$target_name arp_examine} -@deffnx Command {$target_name arp_halt} -@deffnx Command {$target_name arp_poll} -@deffnx Command {$target_name arp_reset} -@deffnx Command {$target_name arp_waitstate} -Internal OpenOCD scripts (most notably @file{startup.tcl}) -use these to deal with specific reset cases. -They are not otherwise documented here. -@end deffn - -@deffn Command {$target_name array2mem} arrayname width address count -@deffnx Command {$target_name mem2array} arrayname width address count -These provide an efficient script-oriented interface to memory. -The @code{array2mem} primitive writes bytes, halfwords, or words; -while @code{mem2array} reads them. -In both cases, the TCL side uses an array, and -the target side uses raw memory. - -The efficiency comes from enabling the use of -bulk JTAG data transfer operations. -The script orientation comes from working with data -values that are packaged for use by TCL scripts; -@command{mdw} type primitives only print data they retrieve, -and neither store nor return those values. - -@itemize -@item @var{arrayname} ... is the name of an array variable -@item @var{width} ... is 8/16/32 - indicating the memory access size -@item @var{address} ... is the target memory address -@item @var{count} ... is the number of elements to process -@end itemize -@end deffn - -@deffn Command {$target_name cget} queryparm -Each configuration parameter accepted by -@command{$target_name configure} -can be individually queried, to return its current value. -The @var{queryparm} is a parameter name -accepted by that command, such as @code{-work-area-phys}. -There are a few special cases: - -@itemize @bullet -@item @code{-event} @var{event_name} -- returns the handler for the -event named @var{event_name}. -This is a special case because setting a handler requires -two parameters. -@item @code{-type} -- returns the target type. -This is a special case because this is set using -@command{target create} and can't be changed -using @command{$target_name configure}. -@end itemize - -For example, if you wanted to summarize information about -all the targets you might use something like this: - -@example -foreach name [target names] @{ - set y [$name cget -endian] - set z [$name cget -type] - puts [format "Chip %d is %s, Endian: %s, type: %s" \ - $x $name $y $z] -@} -@end example -@end deffn - -@anchor{targetcurstate} -@deffn Command {$target_name curstate} -Displays the current target state: -@code{debug-running}, -@code{halted}, -@code{reset}, -@code{running}, or @code{unknown}. -(Also, @pxref{eventpolling,,Event Polling}.) -@end deffn - -@deffn Command {$target_name eventlist} -Displays a table listing all event handlers -currently associated with this target. -@xref{targetevents,,Target Events}. -@end deffn - -@deffn Command {$target_name invoke-event} event_name -Invokes the handler for the event named @var{event_name}. -(This is primarily intended for use by OpenOCD framework -code, for example by the reset code in @file{startup.tcl}.) -@end deffn - -@deffn Command {$target_name mdw} addr [count] -@deffnx Command {$target_name mdh} addr [count] -@deffnx Command {$target_name mdb} addr [count] -Display contents of address @var{addr}, as -32-bit words (@command{mdw}), 16-bit halfwords (@command{mdh}), -or 8-bit bytes (@command{mdb}). -If @var{count} is specified, displays that many units. -(If you want to manipulate the data instead of displaying it, -see the @code{mem2array} primitives.) -@end deffn - -@deffn Command {$target_name mww} addr word -@deffnx Command {$target_name mwh} addr halfword -@deffnx Command {$target_name mwb} addr byte -Writes the specified @var{word} (32 bits), -@var{halfword} (16 bits), or @var{byte} (8-bit) pattern, -at the specified address @var{addr}. -@end deffn - -@anchor{targetevents} -@section Target Events -@cindex target events -@cindex events -At various times, certain things can happen, or you want them to happen. -For example: -@itemize @bullet -@item What should happen when GDB connects? Should your target reset? -@item When GDB tries to flash the target, do you need to enable the flash via a special command? -@item Is using SRST appropriate (and possible) on your system? -Or instead of that, do you need to issue JTAG commands to trigger reset? -SRST usually resets everything on the scan chain, which can be inappropriate. -@item During reset, do you need to write to certain memory locations -to set up system clocks or -to reconfigure the SDRAM? -How about configuring the watchdog timer, or other peripherals, -to stop running while you hold the core stopped for debugging? -@end itemize - -All of the above items can be addressed by target event handlers. -These are set up by @command{$target_name configure -event} or -@command{target create ... -event}. - -The programmer's model matches the @code{-command} option used in Tcl/Tk -buttons and events. The two examples below act the same, but one creates -and invokes a small procedure while the other inlines it. - -@example -proc my_attach_proc @{ @} @{ - echo "Reset..." - reset halt -@} -mychip.cpu configure -event gdb-attach my_attach_proc -mychip.cpu configure -event gdb-attach @{ - echo "Reset..." - # To make flash probe and gdb load to flash work - # we need a reset init. - reset init -@} -@end example - -The following target events are defined: - -@itemize @bullet -@item @b{debug-halted} -@* The target has halted for debug reasons (i.e.: breakpoint) -@item @b{debug-resumed} -@* The target has resumed (i.e.: gdb said run) -@item @b{early-halted} -@* Occurs early in the halt process -@item @b{examine-start} -@* Before target examine is called. -@item @b{examine-end} -@* After target examine is called with no errors. -@item @b{gdb-attach} -@* When GDB connects. This is before any communication with the target, so this -can be used to set up the target so it is possible to probe flash. Probing flash -is necessary during gdb connect if gdb load is to write the image to flash. Another -use of the flash memory map is for GDB to automatically hardware/software breakpoints -depending on whether the breakpoint is in RAM or read only memory. -@item @b{gdb-detach} -@* When GDB disconnects -@item @b{gdb-end} -@* When the target has halted and GDB is not doing anything (see early halt) -@item @b{gdb-flash-erase-start} -@* Before the GDB flash process tries to erase the flash (default is -@code{reset init}) -@item @b{gdb-flash-erase-end} -@* After the GDB flash process has finished erasing the flash -@item @b{gdb-flash-write-start} -@* Before GDB writes to the flash -@item @b{gdb-flash-write-end} -@* After GDB writes to the flash (default is @code{reset halt}) -@item @b{gdb-start} -@* Before the target steps, gdb is trying to start/resume the target -@item @b{halted} -@* The target has halted -@item @b{reset-assert-pre} -@* Issued as part of @command{reset} processing -after @command{reset_init} was triggered -but before either SRST alone is re-asserted on the scan chain, -or @code{reset-assert} is triggered. -@item @b{reset-assert} -@* Issued as part of @command{reset} processing -after @command{reset-assert-pre} was triggered. -When such a handler is present, cores which support this event will use -it instead of asserting SRST. -This support is essential for debugging with JTAG interfaces which -don't include an SRST line (JTAG doesn't require SRST), and for -selective reset on scan chains that have multiple targets. -@item @b{reset-assert-post} -@* Issued as part of @command{reset} processing -after @code{reset-assert} has been triggered. -or the target asserted SRST on the entire scan chain. -@item @b{reset-deassert-pre} -@* Issued as part of @command{reset} processing -after @code{reset-assert-post} has been triggered. -@item @b{reset-deassert-post} -@* Issued as part of @command{reset} processing -after @code{reset-deassert-pre} has been triggered -and (if the target is using it) after SRST has been -released on the scan chain. -@item @b{reset-end} -@* Issued as the final step in @command{reset} processing. -@ignore -@item @b{reset-halt-post} -@* Currently not used -@item @b{reset-halt-pre} -@* Currently not used -@end ignore -@item @b{reset-init} -@* Used by @b{reset init} command for board-specific initialization. -This event fires after @emph{reset-deassert-post}. - -This is where you would configure PLLs and clocking, set up DRAM so -you can download programs that don't fit in on-chip SRAM, set up pin -multiplexing, and so on. -(You may be able to switch to a fast JTAG clock rate here, after -the target clocks are fully set up.) -@item @b{reset-start} -@* Issued as part of @command{reset} processing -before @command{reset_init} is called. - -This is the most robust place to use @command{jtag_rclk} -or @command{adapter_khz} to switch to a low JTAG clock rate, -when reset disables PLLs needed to use a fast clock. -@ignore -@item @b{reset-wait-pos} -@* Currently not used -@item @b{reset-wait-pre} -@* Currently not used -@end ignore -@item @b{resume-start} -@* Before any target is resumed -@item @b{resume-end} -@* After all targets have resumed -@item @b{resumed} -@* Target has resumed -@item @b{trace-config} -@* After target hardware trace configuration was changed -@end itemize - -@node Flash Commands -@chapter Flash Commands - -OpenOCD has different commands for NOR and NAND flash; -the ``flash'' command works with NOR flash, while -the ``nand'' command works with NAND flash. -This partially reflects different hardware technologies: -NOR flash usually supports direct CPU instruction and data bus access, -while data from a NAND flash must be copied to memory before it can be -used. (SPI flash must also be copied to memory before use.) -However, the documentation also uses ``flash'' as a generic term; -for example, ``Put flash configuration in board-specific files''. - -Flash Steps: -@enumerate -@item Configure via the command @command{flash bank} -@* Do this in a board-specific configuration file, -passing parameters as needed by the driver. -@item Operate on the flash via @command{flash subcommand} -@* Often commands to manipulate the flash are typed by a human, or run -via a script in some automated way. Common tasks include writing a -boot loader, operating system, or other data. -@item GDB Flashing -@* Flashing via GDB requires the flash be configured via ``flash -bank'', and the GDB flash features be enabled. -@xref{gdbconfiguration,,GDB Configuration}. -@end enumerate - -Many CPUs have the ablity to ``boot'' from the first flash bank. -This means that misprogramming that bank can ``brick'' a system, -so that it can't boot. -JTAG tools, like OpenOCD, are often then used to ``de-brick'' the -board by (re)installing working boot firmware. - -@anchor{norconfiguration} -@section Flash Configuration Commands -@cindex flash configuration - -@deffn {Config Command} {flash bank} name driver base size chip_width bus_width target [driver_options] -Configures a flash bank which provides persistent storage -for addresses from @math{base} to @math{base + size - 1}. -These banks will often be visible to GDB through the target's memory map. -In some cases, configuring a flash bank will activate extra commands; -see the driver-specific documentation. - -@itemize @bullet -@item @var{name} ... may be used to reference the flash bank -in other flash commands. A number is also available. -@item @var{driver} ... identifies the controller driver -associated with the flash bank being declared. -This is usually @code{cfi} for external flash, or else -the name of a microcontroller with embedded flash memory. -@xref{flashdriverlist,,Flash Driver List}. -@item @var{base} ... Base address of the flash chip. -@item @var{size} ... Size of the chip, in bytes. -For some drivers, this value is detected from the hardware. -@item @var{chip_width} ... Width of the flash chip, in bytes; -ignored for most microcontroller drivers. -@item @var{bus_width} ... Width of the data bus used to access the -chip, in bytes; ignored for most microcontroller drivers. -@item @var{target} ... Names the target used to issue -commands to the flash controller. -@comment Actually, it's currently a controller-specific parameter... -@item @var{driver_options} ... drivers may support, or require, -additional parameters. See the driver-specific documentation -for more information. -@end itemize -@quotation Note -This command is not available after OpenOCD initialization has completed. -Use it in board specific configuration files, not interactively. -@end quotation -@end deffn - -@comment the REAL name for this command is "ocd_flash_banks" -@comment less confusing would be: "flash list" (like "nand list") -@deffn Command {flash banks} -Prints a one-line summary of each device that was -declared using @command{flash bank}, numbered from zero. -Note that this is the @emph{plural} form; -the @emph{singular} form is a very different command. -@end deffn - -@deffn Command {flash list} -Retrieves a list of associative arrays for each device that was -declared using @command{flash bank}, numbered from zero. -This returned list can be manipulated easily from within scripts. -@end deffn - -@deffn Command {flash probe} num -Identify the flash, or validate the parameters of the configured flash. Operation -depends on the flash type. -The @var{num} parameter is a value shown by @command{flash banks}. -Most flash commands will implicitly @emph{autoprobe} the bank; -flash drivers can distinguish between probing and autoprobing, -but most don't bother. -@end deffn - -@section Erasing, Reading, Writing to Flash -@cindex flash erasing -@cindex flash reading -@cindex flash writing -@cindex flash programming -@anchor{flashprogrammingcommands} - -One feature distinguishing NOR flash from NAND or serial flash technologies -is that for read access, it acts exactly like any other addressible memory. -This means you can use normal memory read commands like @command{mdw} or -@command{dump_image} with it, with no special @command{flash} subcommands. -@xref{memoryaccess,,Memory access}, and @ref{imageaccess,,Image access}. - -Write access works differently. Flash memory normally needs to be erased -before it's written. Erasing a sector turns all of its bits to ones, and -writing can turn ones into zeroes. This is why there are special commands -for interactive erasing and writing, and why GDB needs to know which parts -of the address space hold NOR flash memory. - -@quotation Note -Most of these erase and write commands leverage the fact that NOR flash -chips consume target address space. They implicitly refer to the current -JTAG target, and map from an address in that target's address space -back to a flash bank. -@comment In May 2009, those mappings may fail if any bank associated -@comment with that target doesn't succesfuly autoprobe ... bug worth fixing? -A few commands use abstract addressing based on bank and sector numbers, -and don't depend on searching the current target and its address space. -Avoid confusing the two command models. -@end quotation - -Some flash chips implement software protection against accidental writes, -since such buggy writes could in some cases ``brick'' a system. -For such systems, erasing and writing may require sector protection to be -disabled first. -Examples include CFI flash such as ``Intel Advanced Bootblock flash'', -and AT91SAM7 on-chip flash. -@xref{flashprotect,,flash protect}. - -@deffn Command {flash erase_sector} num first last -Erase sectors in bank @var{num}, starting at sector @var{first} -up to and including @var{last}. -Sector numbering starts at 0. -Providing a @var{last} sector of @option{last} -specifies "to the end of the flash bank". -The @var{num} parameter is a value shown by @command{flash banks}. -@end deffn - -@deffn Command {flash erase_address} [@option{pad}] [@option{unlock}] address length -Erase sectors starting at @var{address} for @var{length} bytes. -Unless @option{pad} is specified, @math{address} must begin a -flash sector, and @math{address + length - 1} must end a sector. -Specifying @option{pad} erases extra data at the beginning and/or -end of the specified region, as needed to erase only full sectors. -The flash bank to use is inferred from the @var{address}, and -the specified length must stay within that bank. -As a special case, when @var{length} is zero and @var{address} is -the start of the bank, the whole flash is erased. -If @option{unlock} is specified, then the flash is unprotected -before erase starts. -@end deffn - -@deffn Command {flash fillw} address word length -@deffnx Command {flash fillh} address halfword length -@deffnx Command {flash fillb} address byte length -Fills flash memory with the specified @var{word} (32 bits), -@var{halfword} (16 bits), or @var{byte} (8-bit) pattern, -starting at @var{address} and continuing -for @var{length} units (word/halfword/byte). -No erasure is done before writing; when needed, that must be done -before issuing this command. -Writes are done in blocks of up to 1024 bytes, and each write is -verified by reading back the data and comparing it to what was written. -The flash bank to use is inferred from the @var{address} of -each block, and the specified length must stay within that bank. -@end deffn -@comment no current checks for errors if fill blocks touch multiple banks! - -@deffn Command {flash write_bank} num filename offset -Write the binary @file{filename} to flash bank @var{num}, -starting at @var{offset} bytes from the beginning of the bank. -The @var{num} parameter is a value shown by @command{flash banks}. -@end deffn - -@deffn Command {flash read_bank} num filename offset length -Read @var{length} bytes from the flash bank @var{num} starting at @var{offset} -and write the contents to the binary @file{filename}. -The @var{num} parameter is a value shown by @command{flash banks}. -@end deffn - -@deffn Command {flash verify_bank} num filename offset -Compare the contents of the binary file @var{filename} with the contents of the -flash @var{num} starting at @var{offset}. Fails if the contents do not match. -The @var{num} parameter is a value shown by @command{flash banks}. -@end deffn - -@deffn Command {flash write_image} [erase] [unlock] filename [offset] [type] -Write the image @file{filename} to the current target's flash bank(s). -Only loadable sections from the image are written. -A relocation @var{offset} may be specified, in which case it is added -to the base address for each section in the image. -The file [@var{type}] can be specified -explicitly as @option{bin} (binary), @option{ihex} (Intel hex), -@option{elf} (ELF file), @option{s19} (Motorola s19). -@option{mem}, or @option{builder}. -The relevant flash sectors will be erased prior to programming -if the @option{erase} parameter is given. If @option{unlock} is -provided, then the flash banks are unlocked before erase and -program. The flash bank to use is inferred from the address of -each image section. - -@quotation Warning -Be careful using the @option{erase} flag when the flash is holding -data you want to preserve. -Portions of the flash outside those described in the image's -sections might be erased with no notice. -@itemize -@item -When a section of the image being written does not fill out all the -sectors it uses, the unwritten parts of those sectors are necessarily -also erased, because sectors can't be partially erased. -@item -Data stored in sector "holes" between image sections are also affected. -For example, "@command{flash write_image erase ...}" of an image with -one byte at the beginning of a flash bank and one byte at the end -erases the entire bank -- not just the two sectors being written. -@end itemize -Also, when flash protection is important, you must re-apply it after -it has been removed by the @option{unlock} flag. -@end quotation - -@end deffn - -@section Other Flash commands -@cindex flash protection - -@deffn Command {flash erase_check} num -Check erase state of sectors in flash bank @var{num}, -and display that status. -The @var{num} parameter is a value shown by @command{flash banks}. -@end deffn - -@deffn Command {flash info} num [sectors] -Print info about flash bank @var{num}, a list of protection blocks -and their status. Use @option{sectors} to show a list of sectors instead. - -The @var{num} parameter is a value shown by @command{flash banks}. -This command will first query the hardware, it does not print cached -and possibly stale information. -@end deffn - -@anchor{flashprotect} -@deffn Command {flash protect} num first last (@option{on}|@option{off}) -Enable (@option{on}) or disable (@option{off}) protection of flash sectors -in flash bank @var{num}, starting at sector @var{first} -and continuing up to and including @var{last}. -Providing a @var{last} sector of @option{last} -specifies "to the end of the flash bank". -The @var{num} parameter is a value shown by @command{flash banks}. -@end deffn - -@deffn Command {flash padded_value} num value -Sets the default value used for padding any image sections, This should -normally match the flash bank erased value. If not specified by this -comamnd or the flash driver then it defaults to 0xff. -@end deffn - -@anchor{program} -@deffn Command {program} filename [verify] [reset] [exit] [offset] -This is a helper script that simplifies using OpenOCD as a standalone -programmer. The only required parameter is @option{filename}, the others are optional. -@xref{Flash Programming}. -@end deffn - -@anchor{flashdriverlist} -@section Flash Driver List -As noted above, the @command{flash bank} command requires a driver name, -and allows driver-specific options and behaviors. -Some drivers also activate driver-specific commands. - -@deffn {Flash Driver} virtual -This is a special driver that maps a previously defined bank to another -address. All bank settings will be copied from the master physical bank. - -The @var{virtual} driver defines one mandatory parameters, - -@itemize -@item @var{master_bank} The bank that this virtual address refers to. -@end itemize - -So in the following example addresses 0xbfc00000 and 0x9fc00000 refer to -the flash bank defined at address 0x1fc00000. Any cmds executed on -the virtual banks are actually performed on the physical banks. -@example -flash bank $_FLASHNAME pic32mx 0x1fc00000 0 0 0 $_TARGETNAME -flash bank vbank0 virtual 0xbfc00000 0 0 0 $_TARGETNAME $_FLASHNAME -flash bank vbank1 virtual 0x9fc00000 0 0 0 $_TARGETNAME $_FLASHNAME -@end example -@end deffn - -@subsection External Flash - -@deffn {Flash Driver} cfi -@cindex Common Flash Interface -@cindex CFI -The ``Common Flash Interface'' (CFI) is the main standard for -external NOR flash chips, each of which connects to a -specific external chip select on the CPU. -Frequently the first such chip is used to boot the system. -Your board's @code{reset-init} handler might need to -configure additional chip selects using other commands (like: @command{mww} to -configure a bus and its timings), or -perhaps configure a GPIO pin that controls the ``write protect'' pin -on the flash chip. -The CFI driver can use a target-specific working area to significantly -speed up operation. - -The CFI driver can accept the following optional parameters, in any order: - -@itemize -@item @var{jedec_probe} ... is used to detect certain non-CFI flash ROMs, -like AM29LV010 and similar types. -@item @var{x16_as_x8} ... when a 16-bit flash is hooked up to an 8-bit bus. -@item @var{bus_swap} ... when data bytes in a 16-bit flash needs to be swapped. -@item @var{data_swap} ... when data bytes in a 16-bit flash needs to be -swapped when writing data values (ie. not CFI commands). -@end itemize - -To configure two adjacent banks of 16 MBytes each, both sixteen bits (two bytes) -wide on a sixteen bit bus: - -@example -flash bank $_FLASHNAME cfi 0x00000000 0x01000000 2 2 $_TARGETNAME -flash bank $_FLASHNAME cfi 0x01000000 0x01000000 2 2 $_TARGETNAME -@end example - -To configure one bank of 32 MBytes -built from two sixteen bit (two byte) wide parts wired in parallel -to create a thirty-two bit (four byte) bus with doubled throughput: - -@example -flash bank $_FLASHNAME cfi 0x00000000 0x02000000 2 4 $_TARGETNAME -@end example - -@c "cfi part_id" disabled -@end deffn - -@deffn {Flash Driver} jtagspi -@cindex Generic JTAG2SPI driver -@cindex SPI -@cindex jtagspi -@cindex bscan_spi -Several FPGAs and CPLDs can retrieve their configuration (bitstream) from a -SPI flash connected to them. To access this flash from the host, the device -is first programmed with a special proxy bitstream that -exposes the SPI flash on the device's JTAG interface. The flash can then be -accessed through JTAG. - -Since signaling between JTAG and SPI is compatible, all that is required for -a proxy bitstream is to connect TDI-MOSI, TDO-MISO, TCK-CLK and activate -the flash chip select when the JTAG state machine is in SHIFT-DR. Such -a bitstream for several Xilinx FPGAs can be found in -@file{contrib/loaders/flash/fpga/xilinx_bscan_spi.py}. It requires migen -(@url{http://github.com/m-labs/migen}) and a Xilinx toolchain to build. - -This flash bank driver requires a target on a JTAG tap and will access that -tap directly. Since no support from the target is needed, the target can be a -"testee" dummy. Since the target does not expose the flash memory -mapping, target commands that would otherwise be expected to access the flash -will not work. These include all @command{*_image} and -@command{$target_name m*} commands as well as @command{program}. Equivalent -functionality is available through the @command{flash write_bank}, -@command{flash read_bank}, and @command{flash verify_bank} commands. - -@itemize -@item @var{ir} ... is loaded into the JTAG IR to map the flash as the JTAG DR. -For the bitstreams generated from @file{xilinx_bscan_spi.py} this is the -@var{USER1} instruction. -@item @var{dr_length} ... is the length of the DR register. This will be 1 for -@file{xilinx_bscan_spi.py} bitstreams and most other cases. -@end itemize - -@example -target create $_TARGETNAME testee -chain-position $_CHIPNAME.fpga -set _XILINX_USER1 0x02 -set _DR_LENGTH 1 -flash bank $_FLASHNAME spi 0x0 0 0 0 $_TARGETNAME $_XILINX_USER1 $_DR_LENGTH -@end example -@end deffn - -@deffn {Flash Driver} lpcspifi -@cindex NXP SPI Flash Interface -@cindex SPIFI -@cindex lpcspifi -NXP's LPC43xx and LPC18xx families include a proprietary SPI -Flash Interface (SPIFI) peripheral that can drive and provide -memory mapped access to external SPI flash devices. - -The lpcspifi driver initializes this interface and provides -program and erase functionality for these serial flash devices. -Use of this driver @b{requires} a working area of at least 1kB -to be configured on the target device; more than this will -significantly reduce flash programming times. - -The setup command only requires the @var{base} parameter. All -other parameters are ignored, and the flash size and layout -are configured by the driver. - -@example -flash bank $_FLASHNAME lpcspifi 0x14000000 0 0 0 $_TARGETNAME -@end example - -@end deffn - -@deffn {Flash Driver} stmsmi -@cindex STMicroelectronics Serial Memory Interface -@cindex SMI -@cindex stmsmi -Some devices form STMicroelectronics (e.g. STR75x MCU family, -SPEAr MPU family) include a proprietary -``Serial Memory Interface'' (SMI) controller able to drive external -SPI flash devices. -Depending on specific device and board configuration, up to 4 external -flash devices can be connected. - -SMI makes the flash content directly accessible in the CPU address -space; each external device is mapped in a memory bank. -CPU can directly read data, execute code and boot from SMI banks. -Normal OpenOCD commands like @command{mdw} can be used to display -the flash content. - -The setup command only requires the @var{base} parameter in order -to identify the memory bank. -All other parameters are ignored. Additional information, like -flash size, are detected automatically. - -@example -flash bank $_FLASHNAME stmsmi 0xf8000000 0 0 0 $_TARGETNAME -@end example - -@end deffn - -@deffn {Flash Driver} mrvlqspi -This driver supports QSPI flash controller of Marvell's Wireless -Microcontroller platform. - -The flash size is autodetected based on the table of known JEDEC IDs -hardcoded in the OpenOCD sources. - -@example -flash bank $_FLASHNAME mrvlqspi 0x0 0 0 0 $_TARGETNAME 0x46010000 -@end example - -@end deffn - -@subsection Internal Flash (Microcontrollers) - -@deffn {Flash Driver} aduc702x -The ADUC702x analog microcontrollers from Analog Devices -include internal flash and use ARM7TDMI cores. -The aduc702x flash driver works with models ADUC7019 through ADUC7028. -The setup command only requires the @var{target} argument -since all devices in this family have the same memory layout. - -@example -flash bank $_FLASHNAME aduc702x 0 0 0 0 $_TARGETNAME -@end example -@end deffn - -@deffn {Flash Driver} ambiqmicro -@cindex ambiqmicro -@cindex apollo -All members of the Apollo microcontroller family from -Ambiq Micro include internal flash and use ARM's Cortex-M4 core. -The host connects over USB to an FTDI interface that communicates -with the target using SWD. - -The @var{ambiqmicro} driver reads the Chip Information Register detect -the device class of the MCU. -The Flash and Sram sizes directly follow device class, and are used -to set up the flash banks. -If this fails, the driver will use default values set to the minimum -sizes of an Apollo chip. - -All Apollo chips have two flash banks of the same size. -In all cases the first flash bank starts at location 0, -and the second bank starts after the first. - -@example -# Flash bank 0 -flash bank $_FLASHNAME ambiqmicro 0 0x00040000 0 0 $_TARGETNAME -# Flash bank 1 - same size as bank0, starts after bank 0. -flash bank $_FLASHNAME ambiqmicro 0x00040000 0x00040000 0 0 $_TARGETNAME -@end example - -Flash is programmed using custom entry points into the bootloader. -This is the only way to program the flash as no flash control registers -are available to the user. - -The @var{ambiqmicro} driver adds some additional commands: - -@deffn Command {ambiqmicro mass_erase} <bank> -Erase entire bank. -@end deffn -@deffn Command {ambiqmicro page_erase} <bank> <first> <last> -Erase device pages. -@end deffn -@deffn Command {ambiqmicro program_otp} <bank> <offset> <count> -Program OTP is a one time operation to create write protected flash. -The user writes sectors to sram starting at 0x10000010. -Program OTP will write these sectors from sram to flash, and write protect -the flash. -@end deffn -@end deffn - -@anchor{at91samd} -@deffn {Flash Driver} at91samd -@cindex at91samd -All members of the ATSAMD, ATSAMR, ATSAML and ATSAMC microcontroller -families from Atmel include internal flash and use ARM's Cortex-M0+ core. -This driver uses the same cmd names/syntax as @xref{at91sam3}. - -@deffn Command {at91samd chip-erase} -Issues a complete Flash erase via the Device Service Unit (DSU). This can be -used to erase a chip back to its factory state and does not require the -processor to be halted. -@end deffn - -@deffn Command {at91samd set-security} -Secures the Flash via the Set Security Bit (SSB) command. This prevents access -to the Flash and can only be undone by using the chip-erase command which -erases the Flash contents and turns off the security bit. Warning: at this -time, openocd will not be able to communicate with a secured chip and it is -therefore not possible to chip-erase it without using another tool. - -@example -at91samd set-security enable -@end example -@end deffn - -@deffn Command {at91samd eeprom} -Shows or sets the EEPROM emulation size configuration, stored in the User Row -of the Flash. When setting, the EEPROM size must be specified in bytes and it -must be one of the permitted sizes according to the datasheet. Settings are -written immediately but only take effect on MCU reset. EEPROM emulation -requires additional firmware support and the minumum EEPROM size may not be -the same as the minimum that the hardware supports. Set the EEPROM size to 0 -in order to disable this feature. - -@example -at91samd eeprom -at91samd eeprom 1024 -@end example -@end deffn - -@deffn Command {at91samd bootloader} -Shows or sets the bootloader size configuration, stored in the User Row of the -Flash. This is called the BOOTPROT region. When setting, the bootloader size -must be specified in bytes and it must be one of the permitted sizes according -to the datasheet. Settings are written immediately but only take effect on -MCU reset. Setting the bootloader size to 0 disables bootloader protection. - -@example -at91samd bootloader -at91samd bootloader 16384 -@end example -@end deffn - -@deffn Command {at91samd dsu_reset_deassert} -This command releases internal reset held by DSU -and prepares reset vector catch in case of reset halt. -Command is used internally in event event reset-deassert-post. -@end deffn - -@end deffn - -@anchor{at91sam3} -@deffn {Flash Driver} at91sam3 -@cindex at91sam3 -All members of the AT91SAM3 microcontroller family from -Atmel include internal flash and use ARM's Cortex-M3 core. The driver -currently (6/22/09) recognizes the AT91SAM3U[1/2/4][C/E] chips. Note -that the driver was orginaly developed and tested using the -AT91SAM3U4E, using a SAM3U-EK eval board. Support for other chips in -the family was cribbed from the data sheet. @emph{Note to future -readers/updaters: Please remove this worrysome comment after other -chips are confirmed.} - -The AT91SAM3U4[E/C] (256K) chips have two flash banks; most other chips -have one flash bank. In all cases the flash banks are at -the following fixed locations: - -@example -# Flash bank 0 - all chips -flash bank $_FLASHNAME at91sam3 0x00080000 0 1 1 $_TARGETNAME -# Flash bank 1 - only 256K chips -flash bank $_FLASHNAME at91sam3 0x00100000 0 1 1 $_TARGETNAME -@end example - -Internally, the AT91SAM3 flash memory is organized as follows. -Unlike the AT91SAM7 chips, these are not used as parameters -to the @command{flash bank} command: - -@itemize -@item @emph{N-Banks:} 256K chips have 2 banks, others have 1 bank. -@item @emph{Bank Size:} 128K/64K Per flash bank -@item @emph{Sectors:} 16 or 8 per bank -@item @emph{SectorSize:} 8K Per Sector -@item @emph{PageSize:} 256 bytes per page. Note that OpenOCD operates on 'sector' sizes, not page sizes. -@end itemize - -The AT91SAM3 driver adds some additional commands: - -@deffn Command {at91sam3 gpnvm} -@deffnx Command {at91sam3 gpnvm clear} number -@deffnx Command {at91sam3 gpnvm set} number -@deffnx Command {at91sam3 gpnvm show} [@option{all}|number] -With no parameters, @command{show} or @command{show all}, -shows the status of all GPNVM bits. -With @command{show} @var{number}, displays that bit. - -With @command{set} @var{number} or @command{clear} @var{number}, -modifies that GPNVM bit. -@end deffn - -@deffn Command {at91sam3 info} -This command attempts to display information about the AT91SAM3 -chip. @emph{First} it read the @code{CHIPID_CIDR} [address 0x400e0740, see -Section 28.2.1, page 505 of the AT91SAM3U 29/may/2009 datasheet, -document id: doc6430A] and decodes the values. @emph{Second} it reads the -various clock configuration registers and attempts to display how it -believes the chip is configured. By default, the SLOWCLK is assumed to -be 32768 Hz, see the command @command{at91sam3 slowclk}. -@end deffn - -@deffn Command {at91sam3 slowclk} [value] -This command shows/sets the slow clock frequency used in the -@command{at91sam3 info} command calculations above. -@end deffn -@end deffn - -@deffn {Flash Driver} at91sam4 -@cindex at91sam4 -All members of the AT91SAM4 microcontroller family from -Atmel include internal flash and use ARM's Cortex-M4 core. -This driver uses the same cmd names/syntax as @xref{at91sam3}. -@end deffn - -@deffn {Flash Driver} at91sam4l -@cindex at91sam4l -All members of the AT91SAM4L microcontroller family from -Atmel include internal flash and use ARM's Cortex-M4 core. -This driver uses the same cmd names/syntax as @xref{at91sam3}. - -The AT91SAM4L driver adds some additional commands: -@deffn Command {at91sam4l smap_reset_deassert} -This command releases internal reset held by SMAP -and prepares reset vector catch in case of reset halt. -Command is used internally in event event reset-deassert-post. -@end deffn -@end deffn - -@deffn {Flash Driver} atsamv -@cindex atsamv -All members of the ATSAMV, ATSAMS, and ATSAME families from -Atmel include internal flash and use ARM's Cortex-M7 core. -This driver uses the same cmd names/syntax as @xref{at91sam3}. -@end deffn - -@deffn {Flash Driver} at91sam7 -All members of the AT91SAM7 microcontroller family from Atmel include -internal flash and use ARM7TDMI cores. The driver automatically -recognizes a number of these chips using the chip identification -register, and autoconfigures itself. - -@example -flash bank $_FLASHNAME at91sam7 0 0 0 0 $_TARGETNAME -@end example - -For chips which are not recognized by the controller driver, you must -provide additional parameters in the following order: - -@itemize -@item @var{chip_model} ... label used with @command{flash info} -@item @var{banks} -@item @var{sectors_per_bank} -@item @var{pages_per_sector} -@item @var{pages_size} -@item @var{num_nvm_bits} -@item @var{freq_khz} ... required if an external clock is provided, -optional (but recommended) when the oscillator frequency is known -@end itemize - -It is recommended that you provide zeroes for all of those values -except the clock frequency, so that everything except that frequency -will be autoconfigured. -Knowing the frequency helps ensure correct timings for flash access. - -The flash controller handles erases automatically on a page (128/256 byte) -basis, so explicit erase commands are not necessary for flash programming. -However, there is an ``EraseAll`` command that can erase an entire flash -plane (of up to 256KB), and it will be used automatically when you issue -@command{flash erase_sector} or @command{flash erase_address} commands. - -@deffn Command {at91sam7 gpnvm} bitnum (@option{set}|@option{clear}) -Set or clear a ``General Purpose Non-Volatile Memory'' (GPNVM) -bit for the processor. Each processor has a number of such bits, -used for controlling features such as brownout detection (so they -are not truly general purpose). -@quotation Note -This assumes that the first flash bank (number 0) is associated with -the appropriate at91sam7 target. -@end quotation -@end deffn -@end deffn - -@deffn {Flash Driver} avr -The AVR 8-bit microcontrollers from Atmel integrate flash memory. -@emph{The current implementation is incomplete.} -@comment - defines mass_erase ... pointless given flash_erase_address -@end deffn - -@deffn {Flash Driver} efm32 -All members of the EFM32 microcontroller family from Energy Micro include -internal flash and use ARM Cortex-M3 cores. The driver automatically recognizes -a number of these chips using the chip identification register, and -autoconfigures itself. -@example -flash bank $_FLASHNAME efm32 0 0 0 0 $_TARGETNAME -@end example -A special feature of efm32 controllers is that it is possible to completely disable the -debug interface by writing the correct values to the 'Debug Lock Word'. OpenOCD supports -this via the following command: -@example -efm32 debuglock num -@end example -The @var{num} parameter is a value shown by @command{flash banks}. -Note that in order for this command to take effect, the target needs to be reset. -@emph{The current implementation is incomplete. Unprotecting flash pages is not -supported.} -@end deffn - -@deffn {Flash Driver} fm3 -All members of the FM3 microcontroller family from Fujitsu -include internal flash and use ARM Cortex-M3 cores. -The @var{fm3} driver uses the @var{target} parameter to select the -correct bank config, it can currently be one of the following: -@code{mb9bfxx1.cpu}, @code{mb9bfxx2.cpu}, @code{mb9bfxx3.cpu}, -@code{mb9bfxx4.cpu}, @code{mb9bfxx5.cpu} or @code{mb9bfxx6.cpu}. - -@example -flash bank $_FLASHNAME fm3 0 0 0 0 $_TARGETNAME -@end example -@end deffn - -@deffn {Flash Driver} fm4 -All members of the FM4 microcontroller family from Spansion (formerly Fujitsu) -include internal flash and use ARM Cortex-M4 cores. -The @var{fm4} driver uses a @var{family} parameter to select the -correct bank config, it can currently be one of the following: -@code{MB9BFx64}, @code{MB9BFx65}, @code{MB9BFx66}, @code{MB9BFx67}, @code{MB9BFx68}, -@code{S6E2Cx8}, @code{S6E2Cx9}, @code{S6E2CxA} or @code{S6E2Dx}, -with @code{x} treated as wildcard and otherwise case (and any trailing -characters) ignored. - -@example -flash bank $@{_FLASHNAME@}0 fm4 0x00000000 0 0 0 $_TARGETNAME S6E2CCAJ0A -flash bank $@{_FLASHNAME@}1 fm4 0x00100000 0 0 0 $_TARGETNAME S6E2CCAJ0A -@end example -@emph{The current implementation is incomplete. Protection is not supported, -nor is Chip Erase (only Sector Erase is implemented).} -@end deffn - -@deffn {Flash Driver} kinetis -@cindex kinetis -Kx and KLx members of the Kinetis microcontroller family from Freescale include -internal flash and use ARM Cortex-M0+ or M4 cores. The driver automatically -recognizes flash size and a number of flash banks (1-4) using the chip -identification register, and autoconfigures itself. - -@example -flash bank $_FLASHNAME kinetis 0 0 0 0 $_TARGETNAME -@end example - -@deffn Command {kinetis fcf_source} [protection|write] -Select what source is used when writing to a Flash Configuration Field. -@option{protection} mode builds FCF content from protection bits previously -set by 'flash protect' command. -This mode is default. MCU is protected from unwanted locking by immediate -writing FCF after erase of relevant sector. -@option{write} mode enables direct write to FCF. -Protection cannot be set by 'flash protect' command. FCF is written along -with the rest of a flash image. -@emph{BEWARE: Incorrect flash configuration may permanently lock the device!} -@end deffn - -@deffn Command {kinetis fopt} [num] -Set value to write to FOPT byte of Flash Configuration Field. -Used in kinetis 'fcf_source protection' mode only. -@end deffn - -@deffn Command {kinetis mdm check_security} -Checks status of device security lock. Used internally in examine-end event. -@end deffn - -@deffn Command {kinetis mdm halt} -Issues a halt via the MDM-AP. This command can be used to break a watchdog reset -loop when connecting to an unsecured target. -@end deffn - -@deffn Command {kinetis mdm mass_erase} -Issues a complete flash erase via the MDM-AP. This can be used to erase a chip -back to its factory state, removing security. It does not require the processor -to be halted, however the target will remain in a halted state after this -command completes. -@end deffn - -@deffn Command {kinetis nvm_partition} -For FlexNVM devices only (KxxDX and KxxFX). -Command shows or sets data flash or EEPROM backup size in kilobytes, -sets two EEPROM blocks sizes in bytes and enables/disables loading -of EEPROM contents to FlexRAM during reset. - -For details see device reference manual, Flash Memory Module, -Program Partition command. - -Setting is possible only once after mass_erase. -Reset the device after partition setting. - -Show partition size: -@example -kinetis nvm_partition info -@end example - -Set 32 KB data flash, rest of FlexNVM is EEPROM backup. EEPROM has two blocks -of 512 and 1536 bytes and its contents is loaded to FlexRAM during reset: -@example -kinetis nvm_partition dataflash 32 512 1536 on -@end example - -Set 16 KB EEPROM backup, rest of FlexNVM is a data flash. EEPROM has two blocks -of 1024 bytes and its contents is not loaded to FlexRAM during reset: -@example -kinetis nvm_partition eebkp 16 1024 1024 off -@end example -@end deffn - -@deffn Command {kinetis mdm reset} -Issues a reset via the MDM-AP. This causes the MCU to output a low pulse on the -RESET pin, which can be used to reset other hardware on board. -@end deffn - -@deffn Command {kinetis disable_wdog} -For Kx devices only (KLx has different COP watchdog, it is not supported). -Command disables watchdog timer. -@end deffn -@end deffn - -@deffn {Flash Driver} kinetis_ke -@cindex kinetis_ke -KE members of the Kinetis microcontroller family from Freescale include -internal flash and use ARM Cortex-M0+. The driver automatically recognizes -the KE family and sub-family using the chip identification register, and -autoconfigures itself. - -@example -flash bank $_FLASHNAME kinetis_ke 0 0 0 0 $_TARGETNAME -@end example - -@deffn Command {kinetis_ke mdm check_security} -Checks status of device security lock. Used internally in examine-end event. -@end deffn - -@deffn Command {kinetis_ke mdm mass_erase} -Issues a complete Flash erase via the MDM-AP. -This can be used to erase a chip back to its factory state. -Command removes security lock from a device (use of SRST highly recommended). -It does not require the processor to be halted. -@end deffn - -@deffn Command {kinetis_ke disable_wdog} -Command disables watchdog timer. -@end deffn -@end deffn - -@deffn {Flash Driver} lpc2000 -This is the driver to support internal flash of all members of the -LPC11(x)00 and LPC1300 microcontroller families and most members of -the LPC800, LPC1500, LPC1700, LPC1800, LPC2000, LPC4000 and LPC54100 -microcontroller families from NXP. - -@quotation Note -There are LPC2000 devices which are not supported by the @var{lpc2000} -driver: -The LPC2888 is supported by the @var{lpc288x} driver. -The LPC29xx family is supported by the @var{lpc2900} driver. -@end quotation - -The @var{lpc2000} driver defines two mandatory and one optional parameters, -which must appear in the following order: - -@itemize -@item @var{variant} ... required, may be -@option{lpc2000_v1} (older LPC21xx and LPC22xx) -@option{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx) -@option{lpc1700} (LPC175x and LPC176x and LPC177x/8x) -@option{lpc4300} - available also as @option{lpc1800} alias (LPC18x[2357] and -LPC43x[2357]) -@option{lpc800} (LPC8xx) -@option{lpc1100} (LPC11(x)xx and LPC13xx) -@option{lpc1500} (LPC15xx) -@option{lpc54100} (LPC541xx) -@option{lpc4000} (LPC40xx) -or @option{auto} - automatically detects flash variant and size for LPC11(x)00, -LPC8xx, LPC13xx, LPC17xx and LPC40xx -@item @var{clock_kHz} ... the frequency, in kiloHertz, -at which the core is running -@item @option{calc_checksum} ... optional (but you probably want to provide this!), -telling the driver to calculate a valid checksum for the exception vector table. -@quotation Note -If you don't provide @option{calc_checksum} when you're writing the vector -table, the boot ROM will almost certainly ignore your flash image. -However, if you do provide it, -with most tool chains @command{verify_image} will fail. -@end quotation -@end itemize - -LPC flashes don't require the chip and bus width to be specified. - -@example -flash bank $_FLASHNAME lpc2000 0x0 0x7d000 0 0 $_TARGETNAME \ - lpc2000_v2 14765 calc_checksum -@end example - -@deffn {Command} {lpc2000 part_id} bank -Displays the four byte part identifier associated with -the specified flash @var{bank}. -@end deffn -@end deffn - -@deffn {Flash Driver} lpc288x -The LPC2888 microcontroller from NXP needs slightly different flash -support from its lpc2000 siblings. -The @var{lpc288x} driver defines one mandatory parameter, -the programming clock rate in Hz. -LPC flashes don't require the chip and bus width to be specified. - -@example -flash bank $_FLASHNAME lpc288x 0 0 0 0 $_TARGETNAME 12000000 -@end example -@end deffn - -@deffn {Flash Driver} lpc2900 -This driver supports the LPC29xx ARM968E based microcontroller family -from NXP. - -The predefined parameters @var{base}, @var{size}, @var{chip_width} and -@var{bus_width} of the @code{flash bank} command are ignored. Flash size and -sector layout are auto-configured by the driver. -The driver has one additional mandatory parameter: The CPU clock rate -(in kHz) at the time the flash operations will take place. Most of the time this -will not be the crystal frequency, but a higher PLL frequency. The -@code{reset-init} event handler in the board script is usually the place where -you start the PLL. - -The driver rejects flashless devices (currently the LPC2930). - -The EEPROM in LPC2900 devices is not mapped directly into the address space. -It must be handled much more like NAND flash memory, and will therefore be -handled by a separate @code{lpc2900_eeprom} driver (not yet available). - -Sector protection in terms of the LPC2900 is handled transparently. Every time a -sector needs to be erased or programmed, it is automatically unprotected. -What is shown as protection status in the @code{flash info} command, is -actually the LPC2900 @emph{sector security}. This is a mechanism to prevent a -sector from ever being erased or programmed again. As this is an irreversible -mechanism, it is handled by a special command (@code{lpc2900 secure_sector}), -and not by the standard @code{flash protect} command. - -Example for a 125 MHz clock frequency: -@example -flash bank $_FLASHNAME lpc2900 0 0 0 0 $_TARGETNAME 125000 -@end example - -Some @code{lpc2900}-specific commands are defined. In the following command list, -the @var{bank} parameter is the bank number as obtained by the -@code{flash banks} command. - -@deffn Command {lpc2900 signature} bank -Calculates a 128-bit hash value, the @emph{signature}, from the whole flash -content. This is a hardware feature of the flash block, hence the calculation is -very fast. You may use this to verify the content of a programmed device against -a known signature. -Example: -@example -lpc2900 signature 0 - signature: 0x5f40cdc8:0xc64e592e:0x10490f89:0x32a0f317 -@end example -@end deffn - -@deffn Command {lpc2900 read_custom} bank filename -Reads the 912 bytes of customer information from the flash index sector, and -saves it to a file in binary format. -Example: -@example -lpc2900 read_custom 0 /path_to/customer_info.bin -@end example -@end deffn - -The index sector of the flash is a @emph{write-only} sector. It cannot be -erased! In order to guard against unintentional write access, all following -commands need to be preceeded by a successful call to the @code{password} -command: - -@deffn Command {lpc2900 password} bank password -You need to use this command right before each of the following commands: -@code{lpc2900 write_custom}, @code{lpc2900 secure_sector}, -@code{lpc2900 secure_jtag}. - -The password string is fixed to "I_know_what_I_am_doing". -Example: -@example -lpc2900 password 0 I_know_what_I_am_doing - Potentially dangerous operation allowed in next command! -@end example -@end deffn - -@deffn Command {lpc2900 write_custom} bank filename type -Writes the content of the file into the customer info space of the flash index -sector. The filetype can be specified with the @var{type} field. Possible values -for @var{type} are: @var{bin} (binary), @var{ihex} (Intel hex format), -@var{elf} (ELF binary) or @var{s19} (Motorola S-records). The file must -contain a single section, and the contained data length must be exactly -912 bytes. -@quotation Attention -This cannot be reverted! Be careful! -@end quotation -Example: -@example -lpc2900 write_custom 0 /path_to/customer_info.bin bin -@end example -@end deffn - -@deffn Command {lpc2900 secure_sector} bank first last -Secures the sector range from @var{first} to @var{last} (including) against -further program and erase operations. The sector security will be effective -after the next power cycle. -@quotation Attention -This cannot be reverted! Be careful! -@end quotation -Secured sectors appear as @emph{protected} in the @code{flash info} command. -Example: -@example -lpc2900 secure_sector 0 1 1 -flash info 0 - #0 : lpc2900 at 0x20000000, size 0x000c0000, (...) - # 0: 0x00000000 (0x2000 8kB) not protected - # 1: 0x00002000 (0x2000 8kB) protected - # 2: 0x00004000 (0x2000 8kB) not protected -@end example -@end deffn - -@deffn Command {lpc2900 secure_jtag} bank -Irreversibly disable the JTAG port. The new JTAG security setting will be -effective after the next power cycle. -@quotation Attention -This cannot be reverted! Be careful! -@end quotation -Examples: -@example -lpc2900 secure_jtag 0 -@end example -@end deffn -@end deffn - -@deffn {Flash Driver} mdr -This drivers handles the integrated NOR flash on Milandr Cortex-M -based controllers. A known limitation is that the Info memory can't be -read or verified as it's not memory mapped. - -@example -flash bank <name> mdr <base> <size> \ - 0 0 <target#> @var{type} @var{page_count} @var{sec_count} -@end example - -@itemize @bullet -@item @var{type} - 0 for main memory, 1 for info memory -@item @var{page_count} - total number of pages -@item @var{sec_count} - number of sector per page count -@end itemize - -Example usage: -@example -if @{ [info exists IMEMORY] && [string equal $IMEMORY true] @} @{ - flash bank $@{_CHIPNAME@}_info.flash mdr 0x00000000 0x01000 \ - 0 0 $_TARGETNAME 1 1 4 -@} else @{ - flash bank $_CHIPNAME.flash mdr 0x00000000 0x20000 \ - 0 0 $_TARGETNAME 0 32 4 -@} -@end example -@end deffn - -@deffn {Flash Driver} niietcm4 -This drivers handles the integrated NOR flash on NIIET Cortex-M4 -based controllers. Flash size and sector layout are auto-configured by the driver. -Main flash memory is called "Bootflash" and has main region and info region. -Info region is NOT memory mapped by default, -but it can replace first part of main region if needed. -Full erase, single and block writes are supported for both main and info regions. -There is additional not memory mapped flash called "Userflash", which -also have division into regions: main and info. -Purpose of userflash - to store system and user settings. -Driver has special commands to perform operations with this memmory. - -@example -flash bank $_FLASHNAME niietcm4 0 0 0 0 $_TARGETNAME -@end example - -Some niietcm4-specific commands are defined: - -@deffn Command {niietcm4 uflash_read_byte} bank ('main'|'info') address -Read byte from main or info userflash region. -@end deffn - -@deffn Command {niietcm4 uflash_write_byte} bank ('main'|'info') address value -Write byte to main or info userflash region. -@end deffn - -@deffn Command {niietcm4 uflash_full_erase} bank -Erase all userflash including info region. -@end deffn - -@deffn Command {niietcm4 uflash_erase} bank ('main'|'info') first_sector last_sector -Erase sectors of main or info userflash region, starting at sector first up to and including last. -@end deffn - -@deffn Command {niietcm4 uflash_protect_check} bank ('main'|'info') -Check sectors protect. -@end deffn - -@deffn Command {niietcm4 uflash_protect} bank ('main'|'info') first_sector last_sector ('on'|'off') -Protect sectors of main or info userflash region, starting at sector first up to and including last. -@end deffn - -@deffn Command {niietcm4 bflash_info_remap} bank ('on'|'off') -Enable remapping bootflash info region to 0x00000000 (or 0x40000000 if external memory boot used). -@end deffn - -@deffn Command {niietcm4 extmem_cfg} bank ('gpioa'|'gpiob'|'gpioc'|'gpiod'|'gpioe'|'gpiof'|'gpiog'|'gpioh') pin_num ('func1'|'func3') -Configure external memory interface for boot. -@end deffn - -@deffn Command {niietcm4 service_mode_erase} bank -Perform emergency erase of all flash (bootflash and userflash). -@end deffn - -@deffn Command {niietcm4 driver_info} bank -Show information about flash driver. -@end deffn - -@end deffn - -@deffn {Flash Driver} nrf51 -All members of the nRF51 microcontroller families from Nordic Semiconductor -include internal flash and use ARM Cortex-M0 core. - -@example -flash bank $_FLASHNAME nrf51 0 0x00000000 0 0 $_TARGETNAME -@end example - -Some nrf51-specific commands are defined: - -@deffn Command {nrf51 mass_erase} -Erases the contents of the code memory and user information -configuration registers as well. It must be noted that this command -works only for chips that do not have factory pre-programmed region 0 -code. -@end deffn - -@end deffn - -@deffn {Flash Driver} ocl -This driver is an implementation of the ``on chip flash loader'' -protocol proposed by Pavel Chromy. - -It is a minimalistic command-response protocol intended to be used -over a DCC when communicating with an internal or external flash -loader running from RAM. An example implementation for AT91SAM7x is -available in @file{contrib/loaders/flash/at91sam7x/}. - -@example -flash bank $_FLASHNAME ocl 0 0 0 0 $_TARGETNAME -@end example -@end deffn - -@deffn {Flash Driver} pic32mx -The PIC32MX microcontrollers are based on the MIPS 4K cores, -and integrate flash memory. - -@example -flash bank $_FLASHNAME pix32mx 0x1fc00000 0 0 0 $_TARGETNAME -flash bank $_FLASHNAME pix32mx 0x1d000000 0 0 0 $_TARGETNAME -@end example - -@comment numerous *disabled* commands are defined: -@comment - chip_erase ... pointless given flash_erase_address -@comment - lock, unlock ... pointless given protect on/off (yes?) -@comment - pgm_word ... shouldn't bank be deduced from address?? -Some pic32mx-specific commands are defined: -@deffn Command {pic32mx pgm_word} address value bank -Programs the specified 32-bit @var{value} at the given @var{address} -in the specified chip @var{bank}. -@end deffn -@deffn Command {pic32mx unlock} bank -Unlock and erase specified chip @var{bank}. -This will remove any Code Protection. -@end deffn -@end deffn - -@deffn {Flash Driver} psoc4 -All members of the PSoC 41xx/42xx microcontroller family from Cypress -include internal flash and use ARM Cortex-M0 cores. -The driver automatically recognizes a number of these chips using -the chip identification register, and autoconfigures itself. - -Note: Erased internal flash reads as 00. -System ROM of PSoC 4 does not implement erase of a flash sector. - -@example -flash bank $_FLASHNAME psoc4 0 0 0 0 $_TARGETNAME -@end example - -psoc4-specific commands -@deffn Command {psoc4 flash_autoerase} num (on|off) -Enables or disables autoerase mode for a flash bank. - -If flash_autoerase is off, use mass_erase before flash programming. -Flash erase command fails if region to erase is not whole flash memory. - -If flash_autoerase is on, a sector is both erased and programmed in one -system ROM call. Flash erase command is ignored. -This mode is suitable for gdb load. - -The @var{num} parameter is a value shown by @command{flash banks}. -@end deffn - -@deffn Command {psoc4 mass_erase} num -Erases the contents of the flash memory, protection and security lock. - -The @var{num} parameter is a value shown by @command{flash banks}. -@end deffn -@end deffn - -@deffn {Flash Driver} sim3x -All members of the SiM3 microcontroller family from Silicon Laboratories -include internal flash and use ARM Cortex-M3 cores. It supports both JTAG -and SWD interface. -The @var{sim3x} driver tries to probe the device to auto detect the MCU. -If this failes, it will use the @var{size} parameter as the size of flash bank. - -@example -flash bank $_FLASHNAME sim3x 0 $_CPUROMSIZE 0 0 $_TARGETNAME -@end example - -There are 2 commands defined in the @var{sim3x} driver: - -@deffn Command {sim3x mass_erase} -Erases the complete flash. This is used to unlock the flash. -And this command is only possible when using the SWD interface. -@end deffn - -@deffn Command {sim3x lock} -Lock the flash. To unlock use the @command{sim3x mass_erase} command. -@end deffn -@end deffn - -@deffn {Flash Driver} stellaris -All members of the Stellaris LM3Sxxx, LM4x and Tiva C microcontroller -families from Texas Instruments include internal flash. The driver -automatically recognizes a number of these chips using the chip -identification register, and autoconfigures itself. -@footnote{Currently there is a @command{stellaris mass_erase} command. -That seems pointless since the same effect can be had using the -standard @command{flash erase_address} command.} - -@example -flash bank $_FLASHNAME stellaris 0 0 0 0 $_TARGETNAME -@end example - -@deffn Command {stellaris recover} -Performs the @emph{Recovering a "Locked" Device} procedure to restore -the flash and its associated nonvolatile registers to their factory -default values (erased). This is the only way to remove flash -protection or re-enable debugging if that capability has been -disabled. - -Note that the final "power cycle the chip" step in this procedure -must be performed by hand, since OpenOCD can't do it. -@quotation Warning -if more than one Stellaris chip is connected, the procedure is -applied to all of them. -@end quotation -@end deffn -@end deffn - -@deffn {Flash Driver} stm32f1x -All members of the STM32F0, STM32F1 and STM32F3 microcontroller families -from ST Microelectronics include internal flash and use ARM Cortex-M0/M3/M4 cores. -The driver automatically recognizes a number of these chips using -the chip identification register, and autoconfigures itself. - -@example -flash bank $_FLASHNAME stm32f1x 0 0 0 0 $_TARGETNAME -@end example - -Note that some devices have been found that have a flash size register that contains -an invalid value, to workaround this issue you can override the probed value used by -the flash driver. - -@example -flash bank $_FLASHNAME stm32f1x 0 0x20000 0 0 $_TARGETNAME -@end example - -If you have a target with dual flash banks then define the second bank -as per the following example. -@example -flash bank $_FLASHNAME stm32f1x 0x08080000 0 0 0 $_TARGETNAME -@end example - -Some stm32f1x-specific commands -@footnote{Currently there is a @command{stm32f1x mass_erase} command. -That seems pointless since the same effect can be had using the -standard @command{flash erase_address} command.} -are defined: - -@deffn Command {stm32f1x lock} num -Locks the entire stm32 device. -The @var{num} parameter is a value shown by @command{flash banks}. -@end deffn - -@deffn Command {stm32f1x unlock} num -Unlocks the entire stm32 device. -The @var{num} parameter is a value shown by @command{flash banks}. -@end deffn - -@deffn Command {stm32f1x options_read} num -Read and display the stm32 option bytes written by -the @command{stm32f1x options_write} command. -The @var{num} parameter is a value shown by @command{flash banks}. -@end deffn - -@deffn Command {stm32f1x options_write} num (@option{SWWDG}|@option{HWWDG}) (@option{RSTSTNDBY}|@option{NORSTSTNDBY}) (@option{RSTSTOP}|@option{NORSTSTOP}) -Writes the stm32 option byte with the specified values. -The @var{num} parameter is a value shown by @command{flash banks}. -@end deffn -@end deffn - -@deffn {Flash Driver} stm32f2x -All members of the STM32F2, STM32F4 and STM32F7 microcontroller families from ST Microelectronics -include internal flash and use ARM Cortex-M3/M4/M7 cores. -The driver automatically recognizes a number of these chips using -the chip identification register, and autoconfigures itself. - -Note that some devices have been found that have a flash size register that contains -an invalid value, to workaround this issue you can override the probed value used by -the flash driver. - -@example -flash bank $_FLASHNAME stm32f2x 0 0x20000 0 0 $_TARGETNAME -@end example - -Some stm32f2x-specific commands are defined: - -@deffn Command {stm32f2x lock} num -Locks the entire stm32 device. -The @var{num} parameter is a value shown by @command{flash banks}. -@end deffn - -@deffn Command {stm32f2x unlock} num -Unlocks the entire stm32 device. -The @var{num} parameter is a value shown by @command{flash banks}. -@end deffn - -@deffn Command {stm32f2x options_read} num -Reads and displays user options and (where implemented) boot_addr0 and boot_addr1. -The @var{num} parameter is a value shown by @command{flash banks}. -@end deffn - -@deffn Command {stm32f2x options_write} num user_options boot_addr0 boot_addr1 -Writes user options and (where implemented) boot_addr0 and boot_addr1 in raw format. -Warning: The meaning of the various bits depends on the device, always check datasheet! -The @var{num} parameter is a value shown by @command{flash banks}, user_options a -12 bit value, consisting of bits 31-28 and 7-0 of FLASH_OPTCR, boot_addr0 and boot_addr1 -two halfwords (of FLASH_OPTCR1). -@end deffn -@end deffn - -@deffn {Flash Driver} stm32lx -All members of the STM32L microcontroller families from ST Microelectronics -include internal flash and use ARM Cortex-M3 and Cortex-M0+ cores. -The driver automatically recognizes a number of these chips using -the chip identification register, and autoconfigures itself. - -Note that some devices have been found that have a flash size register that contains -an invalid value, to workaround this issue you can override the probed value used by -the flash driver. If you use 0 as the bank base address, it tells the -driver to autodetect the bank location assuming you're configuring the -second bank. - -@example -flash bank $_FLASHNAME stm32lx 0x08000000 0x20000 0 0 $_TARGETNAME -@end example - -Some stm32lx-specific commands are defined: - -@deffn Command {stm32lx mass_erase} num -Mass erases the entire stm32lx device (all flash banks and EEPROM -data). This is the only way to unlock a protected flash (unless RDP -Level is 2 which can't be unlocked at all). -The @var{num} parameter is a value shown by @command{flash banks}. -@end deffn -@end deffn - -@deffn {Flash Driver} str7x -All members of the STR7 microcontroller family from ST Microelectronics -include internal flash and use ARM7TDMI cores. -The @var{str7x} driver defines one mandatory parameter, @var{variant}, -which is either @code{STR71x}, @code{STR73x} or @code{STR75x}. - -@example -flash bank $_FLASHNAME str7x \ - 0x40000000 0x00040000 0 0 $_TARGETNAME STR71x -@end example - -@deffn Command {str7x disable_jtag} bank -Activate the Debug/Readout protection mechanism -for the specified flash bank. -@end deffn -@end deffn - -@deffn {Flash Driver} str9x -Most members of the STR9 microcontroller family from ST Microelectronics -include internal flash and use ARM966E cores. -The str9 needs the flash controller to be configured using -the @command{str9x flash_config} command prior to Flash programming. - -@example -flash bank $_FLASHNAME str9x 0x40000000 0x00040000 0 0 $_TARGETNAME -str9x flash_config 0 4 2 0 0x80000 -@end example - -@deffn Command {str9x flash_config} num bbsr nbbsr bbadr nbbadr -Configures the str9 flash controller. -The @var{num} parameter is a value shown by @command{flash banks}. - -@itemize @bullet -@item @var{bbsr} - Boot Bank Size register -@item @var{nbbsr} - Non Boot Bank Size register -@item @var{bbadr} - Boot Bank Start Address register -@item @var{nbbadr} - Boot Bank Start Address register -@end itemize -@end deffn - -@end deffn - -@deffn {Flash Driver} str9xpec -@cindex str9xpec - -Only use this driver for locking/unlocking the device or configuring the option bytes. -Use the standard str9 driver for programming. -Before using the flash commands the turbo mode must be enabled using the -@command{str9xpec enable_turbo} command. - -Here is some background info to help -you better understand how this driver works. OpenOCD has two flash drivers for -the str9: -@enumerate -@item -Standard driver @option{str9x} programmed via the str9 core. Normally used for -flash programming as it is faster than the @option{str9xpec} driver. -@item -Direct programming @option{str9xpec} using the flash controller. This is an -ISC compilant (IEEE 1532) tap connected in series with the str9 core. The str9 -core does not need to be running to program using this flash driver. Typical use -for this driver is locking/unlocking the target and programming the option bytes. -@end enumerate - -Before we run any commands using the @option{str9xpec} driver we must first disable -the str9 core. This example assumes the @option{str9xpec} driver has been -configured for flash bank 0. -@example -# assert srst, we do not want core running -# while accessing str9xpec flash driver -jtag_reset 0 1 -# turn off target polling -poll off -# disable str9 core -str9xpec enable_turbo 0 -# read option bytes -str9xpec options_read 0 -# re-enable str9 core -str9xpec disable_turbo 0 -poll on -reset halt -@end example -The above example will read the str9 option bytes. -When performing a unlock remember that you will not be able to halt the str9 - it -has been locked. Halting the core is not required for the @option{str9xpec} driver -as mentioned above, just issue the commands above manually or from a telnet prompt. - -Several str9xpec-specific commands are defined: - -@deffn Command {str9xpec disable_turbo} num -Restore the str9 into JTAG chain. -@end deffn - -@deffn Command {str9xpec enable_turbo} num -Enable turbo mode, will simply remove the str9 from the chain and talk -directly to the embedded flash controller. -@end deffn - -@deffn Command {str9xpec lock} num -Lock str9 device. The str9 will only respond to an unlock command that will -erase the device. -@end deffn - -@deffn Command {str9xpec part_id} num -Prints the part identifier for bank @var{num}. -@end deffn - -@deffn Command {str9xpec options_cmap} num (@option{bank0}|@option{bank1}) -Configure str9 boot bank. -@end deffn - -@deffn Command {str9xpec options_lvdsel} num (@option{vdd}|@option{vdd_vddq}) -Configure str9 lvd source. -@end deffn - -@deffn Command {str9xpec options_lvdthd} num (@option{2.4v}|@option{2.7v}) -Configure str9 lvd threshold. -@end deffn - -@deffn Command {str9xpec options_lvdwarn} bank (@option{vdd}|@option{vdd_vddq}) -Configure str9 lvd reset warning source. -@end deffn - -@deffn Command {str9xpec options_read} num -Read str9 option bytes. -@end deffn - -@deffn Command {str9xpec options_write} num -Write str9 option bytes. -@end deffn - -@deffn Command {str9xpec unlock} num -unlock str9 device. -@end deffn - -@end deffn - -@deffn {Flash Driver} tms470 -Most members of the TMS470 microcontroller family from Texas Instruments -include internal flash and use ARM7TDMI cores. -This driver doesn't require the chip and bus width to be specified. - -Some tms470-specific commands are defined: - -@deffn Command {tms470 flash_keyset} key0 key1 key2 key3 -Saves programming keys in a register, to enable flash erase and write commands. -@end deffn - -@deffn Command {tms470 osc_mhz} clock_mhz -Reports the clock speed, which is used to calculate timings. -@end deffn - -@deffn Command {tms470 plldis} (0|1) -Disables (@var{1}) or enables (@var{0}) use of the PLL to speed up -the flash clock. -@end deffn -@end deffn - -@deffn {Flash Driver} xmc1xxx -All members of the XMC1xxx microcontroller family from Infineon. -This driver does not require the chip and bus width to be specified. -@end deffn - -@deffn {Flash Driver} xmc4xxx -All members of the XMC4xxx microcontroller family from Infineon. -This driver does not require the chip and bus width to be specified. - -Some xmc4xxx-specific commands are defined: - -@deffn Command {xmc4xxx flash_password} bank_id passwd1 passwd2 -Saves flash protection passwords which are used to lock the user flash -@end deffn - -@deffn Command {xmc4xxx flash_unprotect} bank_id user_level[0-1] -Removes Flash write protection from the selected user bank -@end deffn - -@end deffn - -@section NAND Flash Commands -@cindex NAND - -Compared to NOR or SPI flash, NAND devices are inexpensive -and high density. Today's NAND chips, and multi-chip modules, -commonly hold multiple GigaBytes of data. - -NAND chips consist of a number of ``erase blocks'' of a given -size (such as 128 KBytes), each of which is divided into a -number of pages (of perhaps 512 or 2048 bytes each). Each -page of a NAND flash has an ``out of band'' (OOB) area to hold -Error Correcting Code (ECC) and other metadata, usually 16 bytes -of OOB for every 512 bytes of page data. - -One key characteristic of NAND flash is that its error rate -is higher than that of NOR flash. In normal operation, that -ECC is used to correct and detect errors. However, NAND -blocks can also wear out and become unusable; those blocks -are then marked "bad". NAND chips are even shipped from the -manufacturer with a few bad blocks. The highest density chips -use a technology (MLC) that wears out more quickly, so ECC -support is increasingly important as a way to detect blocks -that have begun to fail, and help to preserve data integrity -with techniques such as wear leveling. - -Software is used to manage the ECC. Some controllers don't -support ECC directly; in those cases, software ECC is used. -Other controllers speed up the ECC calculations with hardware. -Single-bit error correction hardware is routine. Controllers -geared for newer MLC chips may correct 4 or more errors for -every 512 bytes of data. - -You will need to make sure that any data you write using -OpenOCD includes the apppropriate kind of ECC. For example, -that may mean passing the @code{oob_softecc} flag when -writing NAND data, or ensuring that the correct hardware -ECC mode is used. - -The basic steps for using NAND devices include: -@enumerate -@item Declare via the command @command{nand device} -@* Do this in a board-specific configuration file, -passing parameters as needed by the controller. -@item Configure each device using @command{nand probe}. -@* Do this only after the associated target is set up, -such as in its reset-init script or in procures defined -to access that device. -@item Operate on the flash via @command{nand subcommand} -@* Often commands to manipulate the flash are typed by a human, or run -via a script in some automated way. Common task include writing a -boot loader, operating system, or other data needed to initialize or -de-brick a board. -@end enumerate - -@b{NOTE:} At the time this text was written, the largest NAND -flash fully supported by OpenOCD is 2 GiBytes (16 GiBits). -This is because the variables used to hold offsets and lengths -are only 32 bits wide. -(Larger chips may work in some cases, unless an offset or length -is larger than 0xffffffff, the largest 32-bit unsigned integer.) -Some larger devices will work, since they are actually multi-chip -modules with two smaller chips and individual chipselect lines. - -@anchor{nandconfiguration} -@subsection NAND Configuration Commands -@cindex NAND configuration - -NAND chips must be declared in configuration scripts, -plus some additional configuration that's done after -OpenOCD has initialized. - -@deffn {Config Command} {nand device} name driver target [configparams...] -Declares a NAND device, which can be read and written to -after it has been configured through @command{nand probe}. -In OpenOCD, devices are single chips; this is unlike some -operating systems, which may manage multiple chips as if -they were a single (larger) device. -In some cases, configuring a device will activate extra -commands; see the controller-specific documentation. - -@b{NOTE:} This command is not available after OpenOCD -initialization has completed. Use it in board specific -configuration files, not interactively. - -@itemize @bullet -@item @var{name} ... may be used to reference the NAND bank -in most other NAND commands. A number is also available. -@item @var{driver} ... identifies the NAND controller driver -associated with the NAND device being declared. -@xref{nanddriverlist,,NAND Driver List}. -@item @var{target} ... names the target used when issuing -commands to the NAND controller. -@comment Actually, it's currently a controller-specific parameter... -@item @var{configparams} ... controllers may support, or require, -additional parameters. See the controller-specific documentation -for more information. -@end itemize -@end deffn - -@deffn Command {nand list} -Prints a summary of each device declared -using @command{nand device}, numbered from zero. -Note that un-probed devices show no details. -@example -> nand list -#0: NAND 1GiB 3,3V 8-bit (Micron) pagesize: 2048, buswidth: 8, - blocksize: 131072, blocks: 8192 -#1: NAND 1GiB 3,3V 8-bit (Micron) pagesize: 2048, buswidth: 8, - blocksize: 131072, blocks: 8192 -> -@end example -@end deffn - -@deffn Command {nand probe} num -Probes the specified device to determine key characteristics -like its page and block sizes, and how many blocks it has. -The @var{num} parameter is the value shown by @command{nand list}. -You must (successfully) probe a device before you can use -it with most other NAND commands. -@end deffn - -@subsection Erasing, Reading, Writing to NAND Flash - -@deffn Command {nand dump} num filename offset length [oob_option] -@cindex NAND reading -Reads binary data from the NAND device and writes it to the file, -starting at the specified offset. -The @var{num} parameter is the value shown by @command{nand list}. - -Use a complete path name for @var{filename}, so you don't depend -on the directory used to start the OpenOCD server. - -The @var{offset} and @var{length} must be exact multiples of the -device's page size. They describe a data region; the OOB data -associated with each such page may also be accessed. - -@b{NOTE:} At the time this text was written, no error correction -was done on the data that's read, unless raw access was disabled -and the underlying NAND controller driver had a @code{read_page} -method which handled that error correction. - -By default, only page data is saved to the specified file. -Use an @var{oob_option} parameter to save OOB data: -@itemize @bullet -@item no oob_* parameter -@*Output file holds only page data; OOB is discarded. -@item @code{oob_raw} -@*Output file interleaves page data and OOB data; -the file will be longer than "length" by the size of the -spare areas associated with each data page. -Note that this kind of "raw" access is different from -what's implied by @command{nand raw_access}, which just -controls whether a hardware-aware access method is used. -@item @code{oob_only} -@*Output file has only raw OOB data, and will -be smaller than "length" since it will contain only the -spare areas associated with each data page. -@end itemize -@end deffn - -@deffn Command {nand erase} num [offset length] -@cindex NAND erasing -@cindex NAND programming -Erases blocks on the specified NAND device, starting at the -specified @var{offset} and continuing for @var{length} bytes. -Both of those values must be exact multiples of the device's -block size, and the region they specify must fit entirely in the chip. -If those parameters are not specified, -the whole NAND chip will be erased. -The @var{num} parameter is the value shown by @command{nand list}. - -@b{NOTE:} This command will try to erase bad blocks, when told -to do so, which will probably invalidate the manufacturer's bad -block marker. -For the remainder of the current server session, @command{nand info} -will still report that the block ``is'' bad. -@end deffn - -@deffn Command {nand write} num filename offset [option...] -@cindex NAND writing -@cindex NAND programming -Writes binary data from the file into the specified NAND device, -starting at the specified offset. Those pages should already -have been erased; you can't change zero bits to one bits. -The @var{num} parameter is the value shown by @command{nand list}. - -Use a complete path name for @var{filename}, so you don't depend -on the directory used to start the OpenOCD server. - -The @var{offset} must be an exact multiple of the device's page size. -All data in the file will be written, assuming it doesn't run -past the end of the device. -Only full pages are written, and any extra space in the last -page will be filled with 0xff bytes. (That includes OOB data, -if that's being written.) - -@b{NOTE:} At the time this text was written, bad blocks are -ignored. That is, this routine will not skip bad blocks, -but will instead try to write them. This can cause problems. - -Provide at most one @var{option} parameter. With some -NAND drivers, the meanings of these parameters may change -if @command{nand raw_access} was used to disable hardware ECC. -@itemize @bullet -@item no oob_* parameter -@*File has only page data, which is written. -If raw acccess is in use, the OOB area will not be written. -Otherwise, if the underlying NAND controller driver has -a @code{write_page} routine, that routine may write the OOB -with hardware-computed ECC data. -@item @code{oob_only} -@*File has only raw OOB data, which is written to the OOB area. -Each page's data area stays untouched. @i{This can be a dangerous -option}, since it can invalidate the ECC data. -You may need to force raw access to use this mode. -@item @code{oob_raw} -@*File interleaves data and OOB data, both of which are written -If raw access is enabled, the data is written first, then the -un-altered OOB. -Otherwise, if the underlying NAND controller driver has -a @code{write_page} routine, that routine may modify the OOB -before it's written, to include hardware-computed ECC data. -@item @code{oob_softecc} -@*File has only page data, which is written. -The OOB area is filled with 0xff, except for a standard 1-bit -software ECC code stored in conventional locations. -You might need to force raw access to use this mode, to prevent -the underlying driver from applying hardware ECC. -@item @code{oob_softecc_kw} -@*File has only page data, which is written. -The OOB area is filled with 0xff, except for a 4-bit software ECC -specific to the boot ROM in Marvell Kirkwood SoCs. -You might need to force raw access to use this mode, to prevent -the underlying driver from applying hardware ECC. -@end itemize -@end deffn - -@deffn Command {nand verify} num filename offset [option...] -@cindex NAND verification -@cindex NAND programming -Verify the binary data in the file has been programmed to the -specified NAND device, starting at the specified offset. -The @var{num} parameter is the value shown by @command{nand list}. - -Use a complete path name for @var{filename}, so you don't depend -on the directory used to start the OpenOCD server. - -The @var{offset} must be an exact multiple of the device's page size. -All data in the file will be read and compared to the contents of the -flash, assuming it doesn't run past the end of the device. -As with @command{nand write}, only full pages are verified, so any extra -space in the last page will be filled with 0xff bytes. - -The same @var{options} accepted by @command{nand write}, -and the file will be processed similarly to produce the buffers that -can be compared against the contents produced from @command{nand dump}. - -@b{NOTE:} This will not work when the underlying NAND controller -driver's @code{write_page} routine must update the OOB with a -hardward-computed ECC before the data is written. This limitation may -be removed in a future release. -@end deffn - -@subsection Other NAND commands -@cindex NAND other commands - -@deffn Command {nand check_bad_blocks} num [offset length] -Checks for manufacturer bad block markers on the specified NAND -device. If no parameters are provided, checks the whole -device; otherwise, starts at the specified @var{offset} and -continues for @var{length} bytes. -Both of those values must be exact multiples of the device's -block size, and the region they specify must fit entirely in the chip. -The @var{num} parameter is the value shown by @command{nand list}. - -@b{NOTE:} Before using this command you should force raw access -with @command{nand raw_access enable} to ensure that the underlying -driver will not try to apply hardware ECC. -@end deffn - -@deffn Command {nand info} num -The @var{num} parameter is the value shown by @command{nand list}. -This prints the one-line summary from "nand list", plus for -devices which have been probed this also prints any known -status for each block. -@end deffn - -@deffn Command {nand raw_access} num (@option{enable}|@option{disable}) -Sets or clears an flag affecting how page I/O is done. -The @var{num} parameter is the value shown by @command{nand list}. - -This flag is cleared (disabled) by default, but changing that -value won't affect all NAND devices. The key factor is whether -the underlying driver provides @code{read_page} or @code{write_page} -methods. If it doesn't provide those methods, the setting of -this flag is irrelevant; all access is effectively ``raw''. - -When those methods exist, they are normally used when reading -data (@command{nand dump} or reading bad block markers) or -writing it (@command{nand write}). However, enabling -raw access (setting the flag) prevents use of those methods, -bypassing hardware ECC logic. -@i{This can be a dangerous option}, since writing blocks -with the wrong ECC data can cause them to be marked as bad. -@end deffn - -@anchor{nanddriverlist} -@subsection NAND Driver List -As noted above, the @command{nand device} command allows -driver-specific options and behaviors. -Some controllers also activate controller-specific commands. - -@deffn {NAND Driver} at91sam9 -This driver handles the NAND controllers found on AT91SAM9 family chips from -Atmel. It takes two extra parameters: address of the NAND chip; -address of the ECC controller. -@example -nand device $NANDFLASH at91sam9 $CHIPNAME 0x40000000 0xfffffe800 -@end example -AT91SAM9 chips support single-bit ECC hardware. The @code{write_page} and -@code{read_page} methods are used to utilize the ECC hardware unless they are -disabled by using the @command{nand raw_access} command. There are four -additional commands that are needed to fully configure the AT91SAM9 NAND -controller. Two are optional; most boards use the same wiring for ALE/CLE: -@deffn Command {at91sam9 cle} num addr_line -Configure the address line used for latching commands. The @var{num} -parameter is the value shown by @command{nand list}. -@end deffn -@deffn Command {at91sam9 ale} num addr_line -Configure the address line used for latching addresses. The @var{num} -parameter is the value shown by @command{nand list}. -@end deffn - -For the next two commands, it is assumed that the pins have already been -properly configured for input or output. -@deffn Command {at91sam9 rdy_busy} num pio_base_addr pin -Configure the RDY/nBUSY input from the NAND device. The @var{num} -parameter is the value shown by @command{nand list}. @var{pio_base_addr} -is the base address of the PIO controller and @var{pin} is the pin number. -@end deffn -@deffn Command {at91sam9 ce} num pio_base_addr pin -Configure the chip enable input to the NAND device. The @var{num} -parameter is the value shown by @command{nand list}. @var{pio_base_addr} -is the base address of the PIO controller and @var{pin} is the pin number. -@end deffn -@end deffn - -@deffn {NAND Driver} davinci -This driver handles the NAND controllers found on DaVinci family -chips from Texas Instruments. -It takes three extra parameters: -address of the NAND chip; -hardware ECC mode to use (@option{hwecc1}, -@option{hwecc4}, @option{hwecc4_infix}); -address of the AEMIF controller on this processor. -@example -nand device davinci dm355.arm 0x02000000 hwecc4 0x01e10000 -@end example -All DaVinci processors support the single-bit ECC hardware, -and newer ones also support the four-bit ECC hardware. -The @code{write_page} and @code{read_page} methods are used -to implement those ECC modes, unless they are disabled using -the @command{nand raw_access} command. -@end deffn - -@deffn {NAND Driver} lpc3180 -These controllers require an extra @command{nand device} -parameter: the clock rate used by the controller. -@deffn Command {lpc3180 select} num [mlc|slc] -Configures use of the MLC or SLC controller mode. -MLC implies use of hardware ECC. -The @var{num} parameter is the value shown by @command{nand list}. -@end deffn - -At this writing, this driver includes @code{write_page} -and @code{read_page} methods. Using @command{nand raw_access} -to disable those methods will prevent use of hardware ECC -in the MLC controller mode, but won't change SLC behavior. -@end deffn -@comment current lpc3180 code won't issue 5-byte address cycles - -@deffn {NAND Driver} mx3 -This driver handles the NAND controller in i.MX31. The mxc driver -should work for this chip aswell. -@end deffn - -@deffn {NAND Driver} mxc -This driver handles the NAND controller found in Freescale i.MX -chips. It has support for v1 (i.MX27 and i.MX31) and v2 (i.MX35). -The driver takes 3 extra arguments, chip (@option{mx27}, -@option{mx31}, @option{mx35}), ecc (@option{noecc}, @option{hwecc}) -and optionally if bad block information should be swapped between -main area and spare area (@option{biswap}), defaults to off. -@example -nand device mx35.nand mxc imx35.cpu mx35 hwecc biswap -@end example -@deffn Command {mxc biswap} bank_num [enable|disable] -Turns on/off bad block information swaping from main area, -without parameter query status. -@end deffn -@end deffn - -@deffn {NAND Driver} orion -These controllers require an extra @command{nand device} -parameter: the address of the controller. -@example -nand device orion 0xd8000000 -@end example -These controllers don't define any specialized commands. -At this writing, their drivers don't include @code{write_page} -or @code{read_page} methods, so @command{nand raw_access} won't -change any behavior. -@end deffn - -@deffn {NAND Driver} s3c2410 -@deffnx {NAND Driver} s3c2412 -@deffnx {NAND Driver} s3c2440 -@deffnx {NAND Driver} s3c2443 -@deffnx {NAND Driver} s3c6400 -These S3C family controllers don't have any special -@command{nand device} options, and don't define any -specialized commands. -At this writing, their drivers don't include @code{write_page} -or @code{read_page} methods, so @command{nand raw_access} won't -change any behavior. -@end deffn - -@section mFlash - -@subsection mFlash Configuration -@cindex mFlash Configuration - -@deffn {Config Command} {mflash bank} soc base RST_pin target -Configures a mflash for @var{soc} host bank at -address @var{base}. -The pin number format depends on the host GPIO naming convention. -Currently, the mflash driver supports s3c2440 and pxa270. - -Example for s3c2440 mflash where @var{RST pin} is GPIO B1: - -@example -mflash bank $_FLASHNAME s3c2440 0x10000000 1b 0 -@end example - -Example for pxa270 mflash where @var{RST pin} is GPIO 43: - -@example -mflash bank $_FLASHNAME pxa270 0x08000000 43 0 -@end example -@end deffn - -@subsection mFlash commands -@cindex mFlash commands - -@deffn Command {mflash config pll} frequency -Configure mflash PLL. -The @var{frequency} is the mflash input frequency, in Hz. -Issuing this command will erase mflash's whole internal nand and write new pll. -After this command, mflash needs power-on-reset for normal operation. -If pll was newly configured, storage and boot(optional) info also need to be update. -@end deffn - -@deffn Command {mflash config boot} -Configure bootable option. -If bootable option is set, mflash offer the first 8 sectors -(4kB) for boot. -@end deffn - -@deffn Command {mflash config storage} -Configure storage information. -For the normal storage operation, this information must be -written. -@end deffn - -@deffn Command {mflash dump} num filename offset size -Dump @var{size} bytes, starting at @var{offset} bytes from the -beginning of the bank @var{num}, to the file named @var{filename}. -@end deffn - -@deffn Command {mflash probe} -Probe mflash. -@end deffn - -@deffn Command {mflash write} num filename offset -Write the binary file @var{filename} to mflash bank @var{num}, starting at -@var{offset} bytes from the beginning of the bank. -@end deffn - -@node Flash Programming -@chapter Flash Programming - -OpenOCD implements numerous ways to program the target flash, whether internal or external. -Programming can be acheived by either using GDB @ref{programmingusinggdb,,Programming using GDB}, -or using the cmds given in @ref{flashprogrammingcommands,,Flash Programming Commands}. - -@*To simplify using the flash cmds directly a jimtcl script is available that handles the programming and verify stage. -OpenOCD will program/verify/reset the target and optionally shutdown. - -The script is executed as follows and by default the following actions will be peformed. -@enumerate -@item 'init' is executed. -@item 'reset init' is called to reset and halt the target, any 'reset init' scripts are executed. -@item @code{flash write_image} is called to erase and write any flash using the filename given. -@item @code{verify_image} is called if @option{verify} parameter is given. -@item @code{reset run} is called if @option{reset} parameter is given. -@item OpenOCD is shutdown if @option{exit} parameter is given. -@end enumerate - -An example of usage is given below. @xref{program}. - -@example -# program and verify using elf/hex/s19. verify and reset -# are optional parameters -openocd -f board/stm32f3discovery.cfg \ - -c "program filename.elf verify reset exit" - -# binary files need the flash address passing -openocd -f board/stm32f3discovery.cfg \ - -c "program filename.bin exit 0x08000000" -@end example - -@node PLD/FPGA Commands -@chapter PLD/FPGA Commands -@cindex PLD -@cindex FPGA - -Programmable Logic Devices (PLDs) and the more flexible -Field Programmable Gate Arrays (FPGAs) are both types of programmable hardware. -OpenOCD can support programming them. -Although PLDs are generally restrictive (cells are less functional, and -there are no special purpose cells for memory or computational tasks), -they share the same OpenOCD infrastructure. -Accordingly, both are called PLDs here. - -@section PLD/FPGA Configuration and Commands - -As it does for JTAG TAPs, debug targets, and flash chips (both NOR and NAND), -OpenOCD maintains a list of PLDs available for use in various commands. -Also, each such PLD requires a driver. - -They are referenced by the number shown by the @command{pld devices} command, -and new PLDs are defined by @command{pld device driver_name}. - -@deffn {Config Command} {pld device} driver_name tap_name [driver_options] -Defines a new PLD device, supported by driver @var{driver_name}, -using the TAP named @var{tap_name}. -The driver may make use of any @var{driver_options} to configure its -behavior. -@end deffn - -@deffn {Command} {pld devices} -Lists the PLDs and their numbers. -@end deffn - -@deffn {Command} {pld load} num filename -Loads the file @file{filename} into the PLD identified by @var{num}. -The file format must be inferred by the driver. -@end deffn - -@section PLD/FPGA Drivers, Options, and Commands - -Drivers may support PLD-specific options to the @command{pld device} -definition command, and may also define commands usable only with -that particular type of PLD. - -@deffn {FPGA Driver} virtex2 [no_jstart] -Virtex-II is a family of FPGAs sold by Xilinx. -It supports the IEEE 1532 standard for In-System Configuration (ISC). - -If @var{no_jstart} is non-zero, the JSTART instruction is not used after -loading the bitstream. While required for Series2, Series3, and Series6, it -breaks bitstream loading on Series7. - -@deffn {Command} {virtex2 read_stat} num -Reads and displays the Virtex-II status register (STAT) -for FPGA @var{num}. -@end deffn -@end deffn - -@node General Commands -@chapter General Commands -@cindex commands - -The commands documented in this chapter here are common commands that -you, as a human, may want to type and see the output of. Configuration type -commands are documented elsewhere. - -Intent: -@itemize @bullet -@item @b{Source Of Commands} -@* OpenOCD commands can occur in a configuration script (discussed -elsewhere) or typed manually by a human or supplied programatically, -or via one of several TCP/IP Ports. - -@item @b{From the human} -@* A human should interact with the telnet interface (default port: 4444) -or via GDB (default port 3333). - -To issue commands from within a GDB session, use the @option{monitor} -command, e.g. use @option{monitor poll} to issue the @option{poll} -command. All output is relayed through the GDB session. - -@item @b{Machine Interface} -The Tcl interface's intent is to be a machine interface. The default Tcl -port is 5555. -@end itemize - - -@section Daemon Commands - -@deffn {Command} exit -Exits the current telnet session. -@end deffn - -@deffn {Command} help [string] -With no parameters, prints help text for all commands. -Otherwise, prints each helptext containing @var{string}. -Not every command provides helptext. - -Configuration commands, and commands valid at any time, are -explicitly noted in parenthesis. -In most cases, no such restriction is listed; this indicates commands -which are only available after the configuration stage has completed. -@end deffn - -@deffn Command sleep msec [@option{busy}] -Wait for at least @var{msec} milliseconds before resuming. -If @option{busy} is passed, busy-wait instead of sleeping. -(This option is strongly discouraged.) -Useful in connection with script files -(@command{script} command and @command{target_name} configuration). -@end deffn - -@deffn Command shutdown [@option{error}] -Close the OpenOCD daemon, disconnecting all clients (GDB, telnet, -other). If option @option{error} is used, OpenOCD will return a -non-zero exit code to the parent process. -@end deffn - -@anchor{debuglevel} -@deffn Command debug_level [n] -@cindex message level -Display debug level. -If @var{n} (from 0..3) is provided, then set it to that level. -This affects the kind of messages sent to the server log. -Level 0 is error messages only; -level 1 adds warnings; -level 2 adds informational messages; -and level 3 adds debugging messages. -The default is level 2, but that can be overridden on -the command line along with the location of that log -file (which is normally the server's standard output). -@xref{Running}. -@end deffn - -@deffn Command echo [-n] message -Logs a message at "user" priority. -Output @var{message} to stdout. -Option "-n" suppresses trailing newline. -@example -echo "Downloading kernel -- please wait" -@end example -@end deffn - -@deffn Command log_output [filename] -Redirect logging to @var{filename}; -the initial log output channel is stderr. -@end deffn - -@deffn Command add_script_search_dir [directory] -Add @var{directory} to the file/script search path. -@end deffn - -@deffn Command bindto [name] -Specify address by name on which to listen for incoming TCP/IP connections. -By default, OpenOCD will listen on all available interfaces. -@end deffn - -@anchor{targetstatehandling} -@section Target State handling -@cindex reset -@cindex halt -@cindex target initialization - -In this section ``target'' refers to a CPU configured as -shown earlier (@pxref{CPU Configuration}). -These commands, like many, implicitly refer to -a current target which is used to perform the -various operations. The current target may be changed -by using @command{targets} command with the name of the -target which should become current. - -@deffn Command reg [(number|name) [(value|'force')]] -Access a single register by @var{number} or by its @var{name}. -The target must generally be halted before access to CPU core -registers is allowed. Depending on the hardware, some other -registers may be accessible while the target is running. - -@emph{With no arguments}: -list all available registers for the current target, -showing number, name, size, value, and cache status. -For valid entries, a value is shown; valid entries -which are also dirty (and will be written back later) -are flagged as such. - -@emph{With number/name}: display that register's value. -Use @var{force} argument to read directly from the target, -bypassing any internal cache. - -@emph{With both number/name and value}: set register's value. -Writes may be held in a writeback cache internal to OpenOCD, -so that setting the value marks the register as dirty instead -of immediately flushing that value. Resuming CPU execution -(including by single stepping) or otherwise activating the -relevant module will flush such values. - -Cores may have surprisingly many registers in their -Debug and trace infrastructure: - -@example -> reg -===== ARM registers -(0) r0 (/32): 0x0000D3C2 (dirty) -(1) r1 (/32): 0xFD61F31C -(2) r2 (/32) -... -(164) ETM_contextid_comparator_mask (/32) -> -@end example -@end deffn - -@deffn Command halt [ms] -@deffnx Command wait_halt [ms] -The @command{halt} command first sends a halt request to the target, -which @command{wait_halt} doesn't. -Otherwise these behave the same: wait up to @var{ms} milliseconds, -or 5 seconds if there is no parameter, for the target to halt -(and enter debug mode). -Using 0 as the @var{ms} parameter prevents OpenOCD from waiting. - -@quotation Warning -On ARM cores, software using the @emph{wait for interrupt} operation -often blocks the JTAG access needed by a @command{halt} command. -This is because that operation also puts the core into a low -power mode by gating the core clock; -but the core clock is needed to detect JTAG clock transitions. - -One partial workaround uses adaptive clocking: when the core is -interrupted the operation completes, then JTAG clocks are accepted -at least until the interrupt handler completes. -However, this workaround is often unusable since the processor, board, -and JTAG adapter must all support adaptive JTAG clocking. -Also, it can't work until an interrupt is issued. - -A more complete workaround is to not use that operation while you -work with a JTAG debugger. -Tasking environments generaly have idle loops where the body is the -@emph{wait for interrupt} operation. -(On older cores, it is a coprocessor action; -newer cores have a @option{wfi} instruction.) -Such loops can just remove that operation, at the cost of higher -power consumption (because the CPU is needlessly clocked). -@end quotation - -@end deffn - -@deffn Command resume [address] -Resume the target at its current code position, -or the optional @var{address} if it is provided. -OpenOCD will wait 5 seconds for the target to resume. -@end deffn - -@deffn Command step [address] -Single-step the target at its current code position, -or the optional @var{address} if it is provided. -@end deffn - -@anchor{resetcommand} -@deffn Command reset -@deffnx Command {reset run} -@deffnx Command {reset halt} -@deffnx Command {reset init} -Perform as hard a reset as possible, using SRST if possible. -@emph{All defined targets will be reset, and target -events will fire during the reset sequence.} - -The optional parameter specifies what should -happen after the reset. -If there is no parameter, a @command{reset run} is executed. -The other options will not work on all systems. -@xref{Reset Configuration}. - -@itemize @minus -@item @b{run} Let the target run -@item @b{halt} Immediately halt the target -@item @b{init} Immediately halt the target, and execute the reset-init script -@end itemize -@end deffn - -@deffn Command soft_reset_halt -Requesting target halt and executing a soft reset. This is often used -when a target cannot be reset and halted. The target, after reset is -released begins to execute code. OpenOCD attempts to stop the CPU and -then sets the program counter back to the reset vector. Unfortunately -the code that was executed may have left the hardware in an unknown -state. -@end deffn - -@section I/O Utilities - -These commands are available when -OpenOCD is built with @option{--enable-ioutil}. -They are mainly useful on embedded targets, -notably the ZY1000. -Hosts with operating systems have complementary tools. - -@emph{Note:} there are several more such commands. - -@deffn Command append_file filename [string]* -Appends the @var{string} parameters to -the text file @file{filename}. -Each string except the last one is followed by one space. -The last string is followed by a newline. -@end deffn - -@deffn Command cat filename -Reads and displays the text file @file{filename}. -@end deffn - -@deffn Command cp src_filename dest_filename -Copies contents from the file @file{src_filename} -into @file{dest_filename}. -@end deffn - -@deffn Command ip -@emph{No description provided.} -@end deffn - -@deffn Command ls -@emph{No description provided.} -@end deffn - -@deffn Command mac -@emph{No description provided.} -@end deffn - -@deffn Command meminfo -Display available RAM memory on OpenOCD host. -Used in OpenOCD regression testing scripts. -@end deffn - -@deffn Command peek -@emph{No description provided.} -@end deffn - -@deffn Command poke -@emph{No description provided.} -@end deffn - -@deffn Command rm filename -@c "rm" has both normal and Jim-level versions?? -Unlinks the file @file{filename}. -@end deffn - -@deffn Command trunc filename -Removes all data in the file @file{filename}. -@end deffn - -@anchor{memoryaccess} -@section Memory access commands -@cindex memory access - -These commands allow accesses of a specific size to the memory -system. Often these are used to configure the current target in some -special way. For example - one may need to write certain values to the -SDRAM controller to enable SDRAM. - -@enumerate -@item Use the @command{targets} (plural) command -to change the current target. -@item In system level scripts these commands are deprecated. -Please use their TARGET object siblings to avoid making assumptions -about what TAP is the current target, or about MMU configuration. -@end enumerate - -@deffn Command mdw [phys] addr [count] -@deffnx Command mdh [phys] addr [count] -@deffnx Command mdb [phys] addr [count] -Display contents of address @var{addr}, as -32-bit words (@command{mdw}), 16-bit halfwords (@command{mdh}), -or 8-bit bytes (@command{mdb}). -When the current target has an MMU which is present and active, -@var{addr} is interpreted as a virtual address. -Otherwise, or if the optional @var{phys} flag is specified, -@var{addr} is interpreted as a physical address. -If @var{count} is specified, displays that many units. -(If you want to manipulate the data instead of displaying it, -see the @code{mem2array} primitives.) -@end deffn - -@deffn Command mww [phys] addr word -@deffnx Command mwh [phys] addr halfword -@deffnx Command mwb [phys] addr byte -Writes the specified @var{word} (32 bits), -@var{halfword} (16 bits), or @var{byte} (8-bit) value, -at the specified address @var{addr}. -When the current target has an MMU which is present and active, -@var{addr} is interpreted as a virtual address. -Otherwise, or if the optional @var{phys} flag is specified, -@var{addr} is interpreted as a physical address. -@end deffn - -@anchor{imageaccess} -@section Image loading commands -@cindex image loading -@cindex image dumping - -@deffn Command {dump_image} filename address size -Dump @var{size} bytes of target memory starting at @var{address} to the -binary file named @var{filename}. -@end deffn - -@deffn Command {fast_load} -Loads an image stored in memory by @command{fast_load_image} to the -current target. Must be preceeded by fast_load_image. -@end deffn - -@deffn Command {fast_load_image} filename address [@option{bin}|@option{ihex}|@option{elf}|@option{s19}] -Normally you should be using @command{load_image} or GDB load. However, for -testing purposes or when I/O overhead is significant(OpenOCD running on an embedded -host), storing the image in memory and uploading the image to the target -can be a way to upload e.g. multiple debug sessions when the binary does not change. -Arguments are the same as @command{load_image}, but the image is stored in OpenOCD host -memory, i.e. does not affect target. This approach is also useful when profiling -target programming performance as I/O and target programming can easily be profiled -separately. -@end deffn - -@deffn Command {load_image} filename address [[@option{bin}|@option{ihex}|@option{elf}|@option{s19}] @option{min_addr} @option{max_length}] -Load image from file @var{filename} to target memory offset by @var{address} from its load address. -The file format may optionally be specified -(@option{bin}, @option{ihex}, @option{elf}, or @option{s19}). -In addition the following arguments may be specifed: -@var{min_addr} - ignore data below @var{min_addr} (this is w.r.t. to the target's load address + @var{address}) -@var{max_length} - maximum number of bytes to load. -@example -proc load_image_bin @{fname foffset address length @} @{ - # Load data from fname filename at foffset offset to - # target at address. Load at most length bytes. - load_image $fname [expr $address - $foffset] bin \ - $address $length -@} -@end example -@end deffn - -@deffn Command {test_image} filename [address [@option{bin}|@option{ihex}|@option{elf}]] -Displays image section sizes and addresses -as if @var{filename} were loaded into target memory -starting at @var{address} (defaults to zero). -The file format may optionally be specified -(@option{bin}, @option{ihex}, or @option{elf}) -@end deffn - -@deffn Command {verify_image} filename address [@option{bin}|@option{ihex}|@option{elf}] -Verify @var{filename} against target memory starting at @var{address}. -The file format may optionally be specified -(@option{bin}, @option{ihex}, or @option{elf}) -This will first attempt a comparison using a CRC checksum, if this fails it will try a binary compare. -@end deffn - - -@section Breakpoint and Watchpoint commands -@cindex breakpoint -@cindex watchpoint - -CPUs often make debug modules accessible through JTAG, with -hardware support for a handful of code breakpoints and data -watchpoints. -In addition, CPUs almost always support software breakpoints. - -@deffn Command {bp} [address len [@option{hw}]] -With no parameters, lists all active breakpoints. -Else sets a breakpoint on code execution starting -at @var{address} for @var{length} bytes. -This is a software breakpoint, unless @option{hw} is specified -in which case it will be a hardware breakpoint. - -(@xref{arm9vectorcatch,,arm9 vector_catch}, or @pxref{xscalevectorcatch,,xscale vector_catch}, -for similar mechanisms that do not consume hardware breakpoints.) -@end deffn - -@deffn Command {rbp} address -Remove the breakpoint at @var{address}. -@end deffn - -@deffn Command {rwp} address -Remove data watchpoint on @var{address} -@end deffn - -@deffn Command {wp} [address len [(@option{r}|@option{w}|@option{a}) [value [mask]]]] -With no parameters, lists all active watchpoints. -Else sets a data watchpoint on data from @var{address} for @var{length} bytes. -The watch point is an "access" watchpoint unless -the @option{r} or @option{w} parameter is provided, -defining it as respectively a read or write watchpoint. -If a @var{value} is provided, that value is used when determining if -the watchpoint should trigger. The value may be first be masked -using @var{mask} to mark ``don't care'' fields. -@end deffn - -@section Misc Commands - -@cindex profiling -@deffn Command {profile} seconds filename [start end] -Profiling samples the CPU's program counter as quickly as possible, -which is useful for non-intrusive stochastic profiling. -Saves up to 10000 samples in @file{filename} using ``gmon.out'' -format. Optional @option{start} and @option{end} parameters allow to -limit the address range. -@end deffn - -@deffn Command {version} -Displays a string identifying the version of this OpenOCD server. -@end deffn - -@deffn Command {virt2phys} virtual_address -Requests the current target to map the specified @var{virtual_address} -to its corresponding physical address, and displays the result. -@end deffn - -@node Architecture and Core Commands -@chapter Architecture and Core Commands -@cindex Architecture Specific Commands -@cindex Core Specific Commands - -Most CPUs have specialized JTAG operations to support debugging. -OpenOCD packages most such operations in its standard command framework. -Some of those operations don't fit well in that framework, so they are -exposed here as architecture or implementation (core) specific commands. - -@anchor{armhardwaretracing} -@section ARM Hardware Tracing -@cindex tracing -@cindex ETM -@cindex ETB - -CPUs based on ARM cores may include standard tracing interfaces, -based on an ``Embedded Trace Module'' (ETM) which sends voluminous -address and data bus trace records to a ``Trace Port''. - -@itemize -@item -Development-oriented boards will sometimes provide a high speed -trace connector for collecting that data, when the particular CPU -supports such an interface. -(The standard connector is a 38-pin Mictor, with both JTAG -and trace port support.) -Those trace connectors are supported by higher end JTAG adapters -and some logic analyzer modules; frequently those modules can -buffer several megabytes of trace data. -Configuring an ETM coupled to such an external trace port belongs -in the board-specific configuration file. -@item -If the CPU doesn't provide an external interface, it probably -has an ``Embedded Trace Buffer'' (ETB) on the chip, which is a -dedicated SRAM. 4KBytes is one common ETB size. -Configuring an ETM coupled only to an ETB belongs in the CPU-specific -(target) configuration file, since it works the same on all boards. -@end itemize - -ETM support in OpenOCD doesn't seem to be widely used yet. - -@quotation Issues -ETM support may be buggy, and at least some @command{etm config} -parameters should be detected by asking the ETM for them. - -ETM trigger events could also implement a kind of complex -hardware breakpoint, much more powerful than the simple -watchpoint hardware exported by EmbeddedICE modules. -@emph{Such breakpoints can be triggered even when using the -dummy trace port driver}. - -It seems like a GDB hookup should be possible, -as well as tracing only during specific states -(perhaps @emph{handling IRQ 23} or @emph{calls foo()}). - -There should be GUI tools to manipulate saved trace data and help -analyse it in conjunction with the source code. -It's unclear how much of a common interface is shared -with the current XScale trace support, or should be -shared with eventual Nexus-style trace module support. - -At this writing (November 2009) only ARM7, ARM9, and ARM11 support -for ETM modules is available. The code should be able to -work with some newer cores; but not all of them support -this original style of JTAG access. -@end quotation - -@subsection ETM Configuration -ETM setup is coupled with the trace port driver configuration. - -@deffn {Config Command} {etm config} target width mode clocking driver -Declares the ETM associated with @var{target}, and associates it -with a given trace port @var{driver}. @xref{traceportdrivers,,Trace Port Drivers}. - -Several of the parameters must reflect the trace port capabilities, -which are a function of silicon capabilties (exposed later -using @command{etm info}) and of what hardware is connected to -that port (such as an external pod, or ETB). -The @var{width} must be either 4, 8, or 16, -except with ETMv3.0 and newer modules which may also -support 1, 2, 24, 32, 48, and 64 bit widths. -(With those versions, @command{etm info} also shows whether -the selected port width and mode are supported.) - -The @var{mode} must be @option{normal}, @option{multiplexed}, -or @option{demultiplexed}. -The @var{clocking} must be @option{half} or @option{full}. - -@quotation Warning -With ETMv3.0 and newer, the bits set with the @var{mode} and -@var{clocking} parameters both control the mode. -This modified mode does not map to the values supported by -previous ETM modules, so this syntax is subject to change. -@end quotation - -@quotation Note -You can see the ETM registers using the @command{reg} command. -Not all possible registers are present in every ETM. -Most of the registers are write-only, and are used to configure -what CPU activities are traced. -@end quotation -@end deffn - -@deffn Command {etm info} -Displays information about the current target's ETM. -This includes resource counts from the @code{ETM_CONFIG} register, -as well as silicon capabilities (except on rather old modules). -from the @code{ETM_SYS_CONFIG} register. -@end deffn - -@deffn Command {etm status} -Displays status of the current target's ETM and trace port driver: -is the ETM idle, or is it collecting data? -Did trace data overflow? -Was it triggered? -@end deffn - -@deffn Command {etm tracemode} [type context_id_bits cycle_accurate branch_output] -Displays what data that ETM will collect. -If arguments are provided, first configures that data. -When the configuration changes, tracing is stopped -and any buffered trace data is invalidated. - -@itemize -@item @var{type} ... describing how data accesses are traced, -when they pass any ViewData filtering that that was set up. -The value is one of -@option{none} (save nothing), -@option{data} (save data), -@option{address} (save addresses), -@option{all} (save data and addresses) -@item @var{context_id_bits} ... 0, 8, 16, or 32 -@item @var{cycle_accurate} ... @option{enable} or @option{disable} -cycle-accurate instruction tracing. -Before ETMv3, enabling this causes much extra data to be recorded. -@item @var{branch_output} ... @option{enable} or @option{disable}. -Disable this unless you need to try reconstructing the instruction -trace stream without an image of the code. -@end itemize -@end deffn - -@deffn Command {etm trigger_debug} (@option{enable}|@option{disable}) -Displays whether ETM triggering debug entry (like a breakpoint) is -enabled or disabled, after optionally modifying that configuration. -The default behaviour is @option{disable}. -Any change takes effect after the next @command{etm start}. - -By using script commands to configure ETM registers, you can make the -processor enter debug state automatically when certain conditions, -more complex than supported by the breakpoint hardware, happen. -@end deffn - -@subsection ETM Trace Operation - -After setting up the ETM, you can use it to collect data. -That data can be exported to files for later analysis. -It can also be parsed with OpenOCD, for basic sanity checking. - -To configure what is being traced, you will need to write -various trace registers using @command{reg ETM_*} commands. -For the definitions of these registers, read ARM publication -@emph{IHI 0014, ``Embedded Trace Macrocell, Architecture Specification''}. -Be aware that most of the relevant registers are write-only, -and that ETM resources are limited. There are only a handful -of address comparators, data comparators, counters, and so on. - -Examples of scenarios you might arrange to trace include: - -@itemize -@item Code flow within a function, @emph{excluding} subroutines -it calls. Use address range comparators to enable tracing -for instruction access within that function's body. -@item Code flow within a function, @emph{including} subroutines -it calls. Use the sequencer and address comparators to activate -tracing on an ``entered function'' state, then deactivate it by -exiting that state when the function's exit code is invoked. -@item Code flow starting at the fifth invocation of a function, -combining one of the above models with a counter. -@item CPU data accesses to the registers for a particular device, -using address range comparators and the ViewData logic. -@item Such data accesses only during IRQ handling, combining the above -model with sequencer triggers which on entry and exit to the IRQ handler. -@item @emph{... more} -@end itemize - -At this writing, September 2009, there are no Tcl utility -procedures to help set up any common tracing scenarios. - -@deffn Command {etm analyze} -Reads trace data into memory, if it wasn't already present. -Decodes and prints the data that was collected. -@end deffn - -@deffn Command {etm dump} filename -Stores the captured trace data in @file{filename}. -@end deffn - -@deffn Command {etm image} filename [base_address] [type] -Opens an image file. -@end deffn - -@deffn Command {etm load} filename -Loads captured trace data from @file{filename}. -@end deffn - -@deffn Command {etm start} -Starts trace data collection. -@end deffn - -@deffn Command {etm stop} -Stops trace data collection. -@end deffn - -@anchor{traceportdrivers} -@subsection Trace Port Drivers - -To use an ETM trace port it must be associated with a driver. - -@deffn {Trace Port Driver} dummy -Use the @option{dummy} driver if you are configuring an ETM that's -not connected to anything (on-chip ETB or off-chip trace connector). -@emph{This driver lets OpenOCD talk to the ETM, but it does not expose -any trace data collection.} -@deffn {Config Command} {etm_dummy config} target -Associates the ETM for @var{target} with a dummy driver. -@end deffn -@end deffn - -@deffn {Trace Port Driver} etb -Use the @option{etb} driver if you are configuring an ETM -to use on-chip ETB memory. -@deffn {Config Command} {etb config} target etb_tap -Associates the ETM for @var{target} with the ETB at @var{etb_tap}. -You can see the ETB registers using the @command{reg} command. -@end deffn -@deffn Command {etb trigger_percent} [percent] -This displays, or optionally changes, ETB behavior after the -ETM's configured @emph{trigger} event fires. -It controls how much more trace data is saved after the (single) -trace trigger becomes active. - -@itemize -@item The default corresponds to @emph{trace around} usage, -recording 50 percent data before the event and the rest -afterwards. -@item The minimum value of @var{percent} is 2 percent, -recording almost exclusively data before the trigger. -Such extreme @emph{trace before} usage can help figure out -what caused that event to happen. -@item The maximum value of @var{percent} is 100 percent, -recording data almost exclusively after the event. -This extreme @emph{trace after} usage might help sort out -how the event caused trouble. -@end itemize -@c REVISIT allow "break" too -- enter debug mode. -@end deffn - -@end deffn - -@deffn {Trace Port Driver} oocd_trace -This driver isn't available unless OpenOCD was explicitly configured -with the @option{--enable-oocd_trace} option. You probably don't want -to configure it unless you've built the appropriate prototype hardware; -it's @emph{proof-of-concept} software. - -Use the @option{oocd_trace} driver if you are configuring an ETM that's -connected to an off-chip trace connector. - -@deffn {Config Command} {oocd_trace config} target tty -Associates the ETM for @var{target} with a trace driver which -collects data through the serial port @var{tty}. -@end deffn - -@deffn Command {oocd_trace resync} -Re-synchronizes with the capture clock. -@end deffn - -@deffn Command {oocd_trace status} -Reports whether the capture clock is locked or not. -@end deffn -@end deffn - - -@section Generic ARM -@cindex ARM - -These commands should be available on all ARM processors. -They are available in addition to other core-specific -commands that may be available. - -@deffn Command {arm core_state} [@option{arm}|@option{thumb}] -Displays the core_state, optionally changing it to process -either @option{arm} or @option{thumb} instructions. -The target may later be resumed in the currently set core_state. -(Processors may also support the Jazelle state, but -that is not currently supported in OpenOCD.) -@end deffn - -@deffn Command {arm disassemble} address [count [@option{thumb}]] -@cindex disassemble -Disassembles @var{count} instructions starting at @var{address}. -If @var{count} is not specified, a single instruction is disassembled. -If @option{thumb} is specified, or the low bit of the address is set, -Thumb2 (mixed 16/32-bit) instructions are used; -else ARM (32-bit) instructions are used. -(Processors may also support the Jazelle state, but -those instructions are not currently understood by OpenOCD.) - -Note that all Thumb instructions are Thumb2 instructions, -so older processors (without Thumb2 support) will still -see correct disassembly of Thumb code. -Also, ThumbEE opcodes are the same as Thumb2, -with a handful of exceptions. -ThumbEE disassembly currently has no explicit support. -@end deffn - -@deffn Command {arm mcr} pX op1 CRn CRm op2 value -Write @var{value} to a coprocessor @var{pX} register -passing parameters @var{CRn}, -@var{CRm}, opcodes @var{opc1} and @var{opc2}, -and using the MCR instruction. -(Parameter sequence matches the ARM instruction, but omits -an ARM register.) -@end deffn - -@deffn Command {arm mrc} pX coproc op1 CRn CRm op2 -Read a coprocessor @var{pX} register passing parameters @var{CRn}, -@var{CRm}, opcodes @var{opc1} and @var{opc2}, -and the MRC instruction. -Returns the result so it can be manipulated by Jim scripts. -(Parameter sequence matches the ARM instruction, but omits -an ARM register.) -@end deffn - -@deffn Command {arm reg} -Display a table of all banked core registers, fetching the current value from every -core mode if necessary. -@end deffn - -@deffn Command {arm semihosting} [@option{enable}|@option{disable}] -@cindex ARM semihosting -Display status of semihosting, after optionally changing that status. - -Semihosting allows for code executing on an ARM target to use the -I/O facilities on the host computer i.e. the system where OpenOCD -is running. The target application must be linked against a library -implementing the ARM semihosting convention that forwards operation -requests by using a special SVC instruction that is trapped at the -Supervisor Call vector by OpenOCD. -@end deffn - -@section ARMv4 and ARMv5 Architecture -@cindex ARMv4 -@cindex ARMv5 - -The ARMv4 and ARMv5 architectures are widely used in embedded systems, -and introduced core parts of the instruction set in use today. -That includes the Thumb instruction set, introduced in the ARMv4T -variant. - -@subsection ARM7 and ARM9 specific commands -@cindex ARM7 -@cindex ARM9 - -These commands are specific to ARM7 and ARM9 cores, like ARM7TDMI, ARM720T, -ARM9TDMI, ARM920T or ARM926EJ-S. -They are available in addition to the ARM commands, -and any other core-specific commands that may be available. - -@deffn Command {arm7_9 dbgrq} [@option{enable}|@option{disable}] -Displays the value of the flag controlling use of the -the EmbeddedIce DBGRQ signal to force entry into debug mode, -instead of breakpoints. -If a boolean parameter is provided, first assigns that flag. - -This should be -safe for all but ARM7TDMI-S cores (like NXP LPC). -This feature is enabled by default on most ARM9 cores, -including ARM9TDMI, ARM920T, and ARM926EJ-S. -@end deffn - -@deffn Command {arm7_9 dcc_downloads} [@option{enable}|@option{disable}] -@cindex DCC -Displays the value of the flag controlling use of the debug communications -channel (DCC) to write larger (>128 byte) amounts of memory. -If a boolean parameter is provided, first assigns that flag. - -DCC downloads offer a huge speed increase, but might be -unsafe, especially with targets running at very low speeds. This command was introduced -with OpenOCD rev. 60, and requires a few bytes of working area. -@end deffn - -@deffn Command {arm7_9 fast_memory_access} [@option{enable}|@option{disable}] -Displays the value of the flag controlling use of memory writes and reads -that don't check completion of the operation. -If a boolean parameter is provided, first assigns that flag. - -This provides a huge speed increase, especially with USB JTAG -cables (FT2232), but might be unsafe if used with targets running at very low -speeds, like the 32kHz startup clock of an AT91RM9200. -@end deffn - -@subsection ARM720T specific commands -@cindex ARM720T - -These commands are available to ARM720T based CPUs, -which are implementations of the ARMv4T architecture -based on the ARM7TDMI-S integer core. -They are available in addition to the ARM and ARM7/ARM9 commands. - -@deffn Command {arm720t cp15} opcode [value] -@emph{DEPRECATED -- avoid using this. -Use the @command{arm mrc} or @command{arm mcr} commands instead.} - -Display cp15 register returned by the ARM instruction @var{opcode}; -else if a @var{value} is provided, that value is written to that register. -The @var{opcode} should be the value of either an MRC or MCR instruction. -@end deffn - -@subsection ARM9 specific commands -@cindex ARM9 - -ARM9-family cores are built around ARM9TDMI or ARM9E (including ARM9EJS) -integer processors. -Such cores include the ARM920T, ARM926EJ-S, and ARM966. - -@c 9-june-2009: tried this on arm920t, it didn't work. -@c no-params always lists nothing caught, and that's how it acts. -@c 23-oct-2009: doesn't work _consistently_ ... as if the ICE -@c versions have different rules about when they commit writes. - -@anchor{arm9vectorcatch} -@deffn Command {arm9 vector_catch} [@option{all}|@option{none}|list] -@cindex vector_catch -Vector Catch hardware provides a sort of dedicated breakpoint -for hardware events such as reset, interrupt, and abort. -You can use this to conserve normal breakpoint resources, -so long as you're not concerned with code that branches directly -to those hardware vectors. - -This always finishes by listing the current configuration. -If parameters are provided, it first reconfigures the -vector catch hardware to intercept -@option{all} of the hardware vectors, -@option{none} of them, -or a list with one or more of the following: -@option{reset} @option{undef} @option{swi} @option{pabt} @option{dabt} -@option{irq} @option{fiq}. -@end deffn - -@subsection ARM920T specific commands -@cindex ARM920T - -These commands are available to ARM920T based CPUs, -which are implementations of the ARMv4T architecture -built using the ARM9TDMI integer core. -They are available in addition to the ARM, ARM7/ARM9, -and ARM9 commands. - -@deffn Command {arm920t cache_info} -Print information about the caches found. This allows to see whether your target -is an ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache). -@end deffn - -@deffn Command {arm920t cp15} regnum [value] -Display cp15 register @var{regnum}; -else if a @var{value} is provided, that value is written to that register. -This uses "physical access" and the register number is as -shown in bits 38..33 of table 9-9 in the ARM920T TRM. -(Not all registers can be written.) -@end deffn - -@deffn Command {arm920t cp15i} opcode [value [address]] -@emph{DEPRECATED -- avoid using this. -Use the @command{arm mrc} or @command{arm mcr} commands instead.} - -Interpreted access using ARM instruction @var{opcode}, which should -be the value of either an MRC or MCR instruction -(as shown tables 9-11, 9-12, and 9-13 in the ARM920T TRM). -If no @var{value} is provided, the result is displayed. -Else if that value is written using the specified @var{address}, -or using zero if no other address is provided. -@end deffn - -@deffn Command {arm920t read_cache} filename -Dump the content of ICache and DCache to a file named @file{filename}. -@end deffn - -@deffn Command {arm920t read_mmu} filename -Dump the content of the ITLB and DTLB to a file named @file{filename}. -@end deffn - -@subsection ARM926ej-s specific commands -@cindex ARM926ej-s - -These commands are available to ARM926ej-s based CPUs, -which are implementations of the ARMv5TEJ architecture -based on the ARM9EJ-S integer core. -They are available in addition to the ARM, ARM7/ARM9, -and ARM9 commands. - -The Feroceon cores also support these commands, although -they are not built from ARM926ej-s designs. - -@deffn Command {arm926ejs cache_info} -Print information about the caches found. -@end deffn - -@subsection ARM966E specific commands -@cindex ARM966E - -These commands are available to ARM966 based CPUs, -which are implementations of the ARMv5TE architecture. -They are available in addition to the ARM, ARM7/ARM9, -and ARM9 commands. - -@deffn Command {arm966e cp15} regnum [value] -Display cp15 register @var{regnum}; -else if a @var{value} is provided, that value is written to that register. -The six bit @var{regnum} values are bits 37..32 from table 7-2 of the -ARM966E-S TRM. -There is no current control over bits 31..30 from that table, -as required for BIST support. -@end deffn - -@subsection XScale specific commands -@cindex XScale - -Some notes about the debug implementation on the XScale CPUs: - -The XScale CPU provides a special debug-only mini-instruction cache -(mini-IC) in which exception vectors and target-resident debug handler -code are placed by OpenOCD. In order to get access to the CPU, OpenOCD -must point vector 0 (the reset vector) to the entry of the debug -handler. However, this means that the complete first cacheline in the -mini-IC is marked valid, which makes the CPU fetch all exception -handlers from the mini-IC, ignoring the code in RAM. - -To address this situation, OpenOCD provides the @code{xscale -vector_table} command, which allows the user to explicity write -individual entries to either the high or low vector table stored in -the mini-IC. - -It is recommended to place a pc-relative indirect branch in the vector -table, and put the branch destination somewhere in memory. Doing so -makes sure the code in the vector table stays constant regardless of -code layout in memory: -@example -_vectors: - ldr pc,[pc,#0x100-8] - ldr pc,[pc,#0x100-8] - ldr pc,[pc,#0x100-8] - ldr pc,[pc,#0x100-8] - ldr pc,[pc,#0x100-8] - ldr pc,[pc,#0x100-8] - ldr pc,[pc,#0x100-8] - ldr pc,[pc,#0x100-8] - .org 0x100 - .long real_reset_vector - .long real_ui_handler - .long real_swi_handler - .long real_pf_abort - .long real_data_abort - .long 0 /* unused */ - .long real_irq_handler - .long real_fiq_handler -@end example - -Alternatively, you may choose to keep some or all of the mini-IC -vector table entries synced with those written to memory by your -system software. The mini-IC can not be modified while the processor -is executing, but for each vector table entry not previously defined -using the @code{xscale vector_table} command, OpenOCD will copy the -value from memory to the mini-IC every time execution resumes from a -halt. This is done for both high and low vector tables (although the -table not in use may not be mapped to valid memory, and in this case -that copy operation will silently fail). This means that you will -need to briefly halt execution at some strategic point during system -start-up; e.g., after the software has initialized the vector table, -but before exceptions are enabled. A breakpoint can be used to -accomplish this once the appropriate location in the start-up code has -been identified. A watchpoint over the vector table region is helpful -in finding the location if you're not sure. Note that the same -situation exists any time the vector table is modified by the system -software. - -The debug handler must be placed somewhere in the address space using -the @code{xscale debug_handler} command. The allowed locations for the -debug handler are either (0x800 - 0x1fef800) or (0xfe000800 - -0xfffff800). The default value is 0xfe000800. - -XScale has resources to support two hardware breakpoints and two -watchpoints. However, the following restrictions on watchpoint -functionality apply: (1) the value and mask arguments to the @code{wp} -command are not supported, (2) the watchpoint length must be a -power of two and not less than four, and can not be greater than the -watchpoint address, and (3) a watchpoint with a length greater than -four consumes all the watchpoint hardware resources. This means that -at any one time, you can have enabled either two watchpoints with a -length of four, or one watchpoint with a length greater than four. - -These commands are available to XScale based CPUs, -which are implementations of the ARMv5TE architecture. - -@deffn Command {xscale analyze_trace} -Displays the contents of the trace buffer. -@end deffn - -@deffn Command {xscale cache_clean_address} address -Changes the address used when cleaning the data cache. -@end deffn - -@deffn Command {xscale cache_info} -Displays information about the CPU caches. -@end deffn - -@deffn Command {xscale cp15} regnum [value] -Display cp15 register @var{regnum}; -else if a @var{value} is provided, that value is written to that register. -@end deffn - -@deffn Command {xscale debug_handler} target address -Changes the address used for the specified target's debug handler. -@end deffn - -@deffn Command {xscale dcache} [@option{enable}|@option{disable}] -Enables or disable the CPU's data cache. -@end deffn - -@deffn Command {xscale dump_trace} filename -Dumps the raw contents of the trace buffer to @file{filename}. -@end deffn - -@deffn Command {xscale icache} [@option{enable}|@option{disable}] -Enables or disable the CPU's instruction cache. -@end deffn - -@deffn Command {xscale mmu} [@option{enable}|@option{disable}] -Enables or disable the CPU's memory management unit. -@end deffn - -@deffn Command {xscale trace_buffer} [@option{enable}|@option{disable} [@option{fill} [n] | @option{wrap}]] -Displays the trace buffer status, after optionally -enabling or disabling the trace buffer -and modifying how it is emptied. -@end deffn - -@deffn Command {xscale trace_image} filename [offset [type]] -Opens a trace image from @file{filename}, optionally rebasing -its segment addresses by @var{offset}. -The image @var{type} may be one of -@option{bin} (binary), @option{ihex} (Intel hex), -@option{elf} (ELF file), @option{s19} (Motorola s19), -@option{mem}, or @option{builder}. -@end deffn - -@anchor{xscalevectorcatch} -@deffn Command {xscale vector_catch} [mask] -@cindex vector_catch -Display a bitmask showing the hardware vectors to catch. -If the optional parameter is provided, first set the bitmask to that value. - -The mask bits correspond with bit 16..23 in the DCSR: -@example -0x01 Trap Reset -0x02 Trap Undefined Instructions -0x04 Trap Software Interrupt -0x08 Trap Prefetch Abort -0x10 Trap Data Abort -0x20 reserved -0x40 Trap IRQ -0x80 Trap FIQ -@end example -@end deffn - -@deffn Command {xscale vector_table} [(@option{low}|@option{high}) index value] -@cindex vector_table - -Set an entry in the mini-IC vector table. There are two tables: one for -low vectors (at 0x00000000), and one for high vectors (0xFFFF0000), each -holding the 8 exception vectors. @var{index} can be 1-7, because vector 0 -points to the debug handler entry and can not be overwritten. -@var{value} holds the 32-bit opcode that is placed in the mini-IC. - -Without arguments, the current settings are displayed. - -@end deffn - -@section ARMv6 Architecture -@cindex ARMv6 - -@subsection ARM11 specific commands -@cindex ARM11 - -@deffn Command {arm11 memwrite burst} [@option{enable}|@option{disable}] -Displays the value of the memwrite burst-enable flag, -which is enabled by default. -If a boolean parameter is provided, first assigns that flag. -Burst writes are only used for memory writes larger than 1 word. -They improve performance by assuming that the CPU has read each data -word over JTAG and completed its write before the next word arrives, -instead of polling for a status flag to verify that completion. -This is usually safe, because JTAG runs much slower than the CPU. -@end deffn - -@deffn Command {arm11 memwrite error_fatal} [@option{enable}|@option{disable}] -Displays the value of the memwrite error_fatal flag, -which is enabled by default. -If a boolean parameter is provided, first assigns that flag. -When set, certain memory write errors cause earlier transfer termination. -@end deffn - -@deffn Command {arm11 step_irq_enable} [@option{enable}|@option{disable}] -Displays the value of the flag controlling whether -IRQs are enabled during single stepping; -they are disabled by default. -If a boolean parameter is provided, first assigns that. -@end deffn - -@deffn Command {arm11 vcr} [value] -@cindex vector_catch -Displays the value of the @emph{Vector Catch Register (VCR)}, -coprocessor 14 register 7. -If @var{value} is defined, first assigns that. - -Vector Catch hardware provides dedicated breakpoints -for certain hardware events. -The specific bit values are core-specific (as in fact is using -coprocessor 14 register 7 itself) but all current ARM11 -cores @emph{except the ARM1176} use the same six bits. -@end deffn - -@section ARMv7 Architecture -@cindex ARMv7 - -@subsection ARMv7 Debug Access Port (DAP) specific commands -@cindex Debug Access Port -@cindex DAP -These commands are specific to ARM architecture v7 Debug Access Port (DAP), -included on Cortex-M and Cortex-A systems. -They are available in addition to other core-specific commands that may be available. - -@deffn Command {dap apid} [num] -Displays ID register from AP @var{num}, -defaulting to the currently selected AP. -@end deffn - -@deffn Command {dap apreg} ap_num reg [value] -Displays content of a register @var{reg} from AP @var{ap_num} -or set a new value @var{value}. -@var{reg} is byte address of a word register, 0, 4, 8 ... 0xfc. -@end deffn - -@deffn Command {dap apsel} [num] -Select AP @var{num}, defaulting to 0. -@end deffn - -@deffn Command {dap baseaddr} [num] -Displays debug base address from MEM-AP @var{num}, -defaulting to the currently selected AP. -@end deffn - -@deffn Command {dap info} [num] -Displays the ROM table for MEM-AP @var{num}, -defaulting to the currently selected AP. -@end deffn - -@deffn Command {dap memaccess} [value] -Displays the number of extra tck cycles in the JTAG idle to use for MEM-AP -memory bus access [0-255], giving additional time to respond to reads. -If @var{value} is defined, first assigns that. -@end deffn - -@deffn Command {dap apcsw} [0 / 1] -fix CSW_SPROT from register AP_REG_CSW on selected dap. -Defaulting to 0. -@end deffn - -@deffn Command {dap ti_be_32_quirks} [@option{enable}] -Set/get quirks mode for TI TMS450/TMS570 processors -Disabled by default -@end deffn - - -@subsection ARMv7-A specific commands -@cindex Cortex-A - -@deffn Command {cortex_a cache_info} -display information about target caches -@end deffn - -@deffn Command {cortex_a dacrfixup [@option{on}|@option{off}]} -Work around issues with software breakpoints when the program text is -mapped read-only by the operating system. This option sets the CP15 DACR -to "all-manager" to bypass MMU permission checks on memory access. -Defaults to 'off'. -@end deffn - -@deffn Command {cortex_a dbginit} -Initialize core debug -Enables debug by unlocking the Software Lock and clearing sticky powerdown indications -@end deffn - -@deffn Command {cortex_a smp_off} -Disable SMP mode -@end deffn - -@deffn Command {cortex_a smp_on} -Enable SMP mode -@end deffn - -@deffn Command {cortex_a smp_gdb} [core_id] -Display/set the current core displayed in GDB -@end deffn - -@deffn Command {cortex_a maskisr} [@option{on}|@option{off}] -Selects whether interrupts will be processed when single stepping -@end deffn - -@deffn Command {cache_config l2x} [base way] -configure l2x cache -@end deffn - - -@subsection ARMv7-R specific commands -@cindex Cortex-R - -@deffn Command {cortex_r dbginit} -Initialize core debug -Enables debug by unlocking the Software Lock and clearing sticky powerdown indications -@end deffn - -@deffn Command {cortex_r maskisr} [@option{on}|@option{off}] -Selects whether interrupts will be processed when single stepping -@end deffn - - -@subsection ARMv7-M specific commands -@cindex tracing -@cindex SWO -@cindex SWV -@cindex TPIU -@cindex ITM -@cindex ETM - -@deffn Command {tpiu config} (@option{disable} | ((@option{external} | @option{internal (@var{filename} | -)}) @ - (@option{sync @var{port_width}} | ((@option{manchester} | @option{uart}) @var{formatter_enable})) @ - @var{TRACECLKIN_freq} [@var{trace_freq}])) - -ARMv7-M architecture provides several modules to generate debugging -information internally (ITM, DWT and ETM). Their output is directed -through TPIU to be captured externally either on an SWO pin (this -configuration is called SWV) or on a synchronous parallel trace port. - -This command configures the TPIU module of the target and, if internal -capture mode is selected, starts to capture trace output by using the -debugger adapter features. - -Some targets require additional actions to be performed in the -@b{trace-config} handler for trace port to be activated. - -Command options: -@itemize @minus -@item @option{disable} disable TPIU handling; -@item @option{external} configure TPIU to let user capture trace -output externally (with an additional UART or logic analyzer hardware); -@item @option{internal @var{filename}} configure TPIU and debug adapter to -gather trace data and append it to @var{filename} (which can be -either a regular file or a named pipe); -@item @option{internal -} configure TPIU and debug adapter to -gather trace data, but not write to any file. Useful in conjunction with the @command{tcl_trace} command; -@item @option{sync @var{port_width}} use synchronous parallel trace output -mode, and set port width to @var{port_width}; -@item @option{manchester} use asynchronous SWO mode with Manchester -coding; -@item @option{uart} use asynchronous SWO mode with NRZ (same as -regular UART 8N1) coding; -@item @var{formatter_enable} is @option{on} or @option{off} to enable -or disable TPIU formatter which needs to be used when both ITM and ETM -data is to be output via SWO; -@item @var{TRACECLKIN_freq} this should be specified to match target's -current TRACECLKIN frequency (usually the same as HCLK); -@item @var{trace_freq} trace port frequency. Can be omitted in -internal mode to let the adapter driver select the maximum supported -rate automatically. -@end itemize - -Example usage: -@enumerate -@item STM32L152 board is programmed with an application that configures -PLL to provide core clock with 24MHz frequency; to use ITM output it's -enough to: -@example -#include <libopencm3/cm3/itm.h> - ... - ITM_STIM8(0) = c; - ... -@end example -(the most obvious way is to use the first stimulus port for printf, -for that this ITM_STIM8 assignment can be used inside _write(); to make it -blocking to avoid data loss, add @code{while (!(ITM_STIM8(0) & -ITM_STIM_FIFOREADY));}); -@item An FT2232H UART is connected to the SWO pin of the board; -@item Commands to configure UART for 12MHz baud rate: -@example -$ setserial /dev/ttyUSB1 spd_cust divisor 5 -$ stty -F /dev/ttyUSB1 38400 -@end example -(FT2232H's base frequency is 60MHz, spd_cust allows to alias 38400 -baud with our custom divisor to get 12MHz) -@item @code{itmdump -f /dev/ttyUSB1 -d1} -@item OpenOCD invocation line: -@example -openocd -f interface/stlink-v2-1.cfg \ - -c "transport select hla_swd" \ - -f target/stm32l1.cfg \ - -c "tpiu config external uart off 24000000 12000000" -@end example -@end enumerate -@end deffn - -@deffn Command {itm port} @var{port} (@option{0}|@option{1}|@option{on}|@option{off}) -Enable or disable trace output for ITM stimulus @var{port} (counting -from 0). Port 0 is enabled on target creation automatically. -@end deffn - -@deffn Command {itm ports} (@option{0}|@option{1}|@option{on}|@option{off}) -Enable or disable trace output for all ITM stimulus ports. -@end deffn - -@subsection Cortex-M specific commands -@cindex Cortex-M - -@deffn Command {cortex_m maskisr} (@option{auto}|@option{on}|@option{off}) -Control masking (disabling) interrupts during target step/resume. - -The @option{auto} option handles interrupts during stepping a way they get -served but don't disturb the program flow. The step command first allows -pending interrupt handlers to execute, then disables interrupts and steps over -the next instruction where the core was halted. After the step interrupts -are enabled again. If the interrupt handlers don't complete within 500ms, -the step command leaves with the core running. - -Note that a free breakpoint is required for the @option{auto} option. If no -breakpoint is available at the time of the step, then the step is taken -with interrupts enabled, i.e. the same way the @option{off} option does. - -Default is @option{auto}. -@end deffn - -@deffn Command {cortex_m vector_catch} [@option{all}|@option{none}|list] -@cindex vector_catch -Vector Catch hardware provides dedicated breakpoints -for certain hardware events. - -Parameters request interception of -@option{all} of these hardware event vectors, -@option{none} of them, -or one or more of the following: -@option{hard_err} for a HardFault exception; -@option{mm_err} for a MemManage exception; -@option{bus_err} for a BusFault exception; -@option{irq_err}, -@option{state_err}, -@option{chk_err}, or -@option{nocp_err} for various UsageFault exceptions; or -@option{reset}. -If NVIC setup code does not enable them, -MemManage, BusFault, and UsageFault exceptions -are mapped to HardFault. -UsageFault checks for -divide-by-zero and unaligned access -must also be explicitly enabled. - -This finishes by listing the current vector catch configuration. -@end deffn - -@deffn Command {cortex_m reset_config} (@option{srst}|@option{sysresetreq}|@option{vectreset}) -Control reset handling. The default @option{srst} is to use srst if fitted, -otherwise fallback to @option{vectreset}. -@itemize @minus -@item @option{srst} use hardware srst if fitted otherwise fallback to @option{vectreset}. -@item @option{sysresetreq} use NVIC SYSRESETREQ to reset system. -@item @option{vectreset} use NVIC VECTRESET to reset system. -@end itemize -Using @option{vectreset} is a safe option for all current Cortex-M cores. -This however has the disadvantage of only resetting the core, all peripherals -are uneffected. A solution would be to use a @code{reset-init} event handler to manually reset -the peripherals. -@xref{targetevents,,Target Events}. -@end deffn - -@section Intel Architecture - -Intel Quark X10xx is the first product in the Quark family of SoCs. It is an IA-32 -(Pentium x86 ISA) compatible SoC. The core CPU in the X10xx is codenamed Lakemont. -Lakemont version 1 (LMT1) is used in X10xx. The CPU TAP (Lakemont TAP) is used for -software debug and the CLTAP is used for SoC level operations. -Useful docs are here: https://communities.intel.com/community/makers/documentation -@itemize -@item Intel Quark SoC X1000 OpenOCD/GDB/Eclipse App Note (web search for doc num 330015) -@item Intel Quark SoC X1000 Debug Operations User Guide (web search for doc num 329866) -@item Intel Quark SoC X1000 Datasheet (web search for doc num 329676) -@end itemize - -@subsection x86 32-bit specific commands -The three main address spaces for x86 are memory, I/O and configuration space. -These commands allow a user to read and write to the 64Kbyte I/O address space. - -@deffn Command {x86_32 idw} address -Display the contents of a 32-bit I/O port from address range 0x0000 - 0xffff. -@end deffn - -@deffn Command {x86_32 idh} address -Display the contents of a 16-bit I/O port from address range 0x0000 - 0xffff. -@end deffn - -@deffn Command {x86_32 idb} address -Display the contents of a 8-bit I/O port from address range 0x0000 - 0xffff. -@end deffn - -@deffn Command {x86_32 iww} address -Write the contents of a 32-bit I/O port to address range 0x0000 - 0xffff. -@end deffn - -@deffn Command {x86_32 iwh} address -Write the contents of a 16-bit I/O port to address range 0x0000 - 0xffff. -@end deffn - -@deffn Command {x86_32 iwb} address -Write the contents of a 8-bit I/O port to address range 0x0000 - 0xffff. -@end deffn - -@section OpenRISC Architecture - -The OpenRISC CPU is a soft core. It is used in a programmable SoC which can be -configured with any of the TAP / Debug Unit available. - -@subsection TAP and Debug Unit selection commands -@deffn Command {tap_select} (@option{vjtag}|@option{mohor}|@option{xilinx_bscan}) -Select between the Altera Virtual JTAG , Xilinx Virtual JTAG and Mohor TAP. -@end deffn -@deffn Command {du_select} (@option{adv}|@option{mohor}) [option] -Select between the Advanced Debug Interface and the classic one. - -An option can be passed as a second argument to the debug unit. - -When using the Advanced Debug Interface, option = 1 means the RTL core is -configured with ADBG_USE_HISPEED = 1. This configuration skips status checking -between bytes while doing read or write bursts. -@end deffn - -@subsection Registers commands -@deffn Command {addreg} [name] [address] [feature] [reg_group] -Add a new register in the cpu register list. This register will be -included in the generated target descriptor file. - -@strong{[feature]} must be "org.gnu.gdb.or1k.group[0..10]". - -@strong{[reg_group]} can be anything. The default register list defines "system", - "dmmu", "immu", "dcache", "icache", "mac", "debug", "perf", "power", "pic" - and "timer" groups. - -@emph{example:} -@example -addreg rtest 0x1234 org.gnu.gdb.or1k.group0 system -@end example - - -@end deffn -@deffn Command {readgroup} (@option{group}) -Display all registers in @emph{group}. - -@emph{group} can be "system", - "dmmu", "immu", "dcache", "icache", "mac", "debug", "perf", "power", "pic", - "timer" or any new group created with addreg command. -@end deffn - -@anchor{softwaredebugmessagesandtracing} -@section Software Debug Messages and Tracing -@cindex Linux-ARM DCC support -@cindex tracing -@cindex libdcc -@cindex DCC -OpenOCD can process certain requests from target software, when -the target uses appropriate libraries. -The most powerful mechanism is semihosting, but there is also -a lighter weight mechanism using only the DCC channel. - -Currently @command{target_request debugmsgs} -is supported only for @option{arm7_9} and @option{cortex_m} cores. -These messages are received as part of target polling, so -you need to have @command{poll on} active to receive them. -They are intrusive in that they will affect program execution -times. If that is a problem, @pxref{armhardwaretracing,,ARM Hardware Tracing}. - -See @file{libdcc} in the contrib dir for more details. -In addition to sending strings, characters, and -arrays of various size integers from the target, -@file{libdcc} also exports a software trace point mechanism. -The target being debugged may -issue trace messages which include a 24-bit @dfn{trace point} number. -Trace point support includes two distinct mechanisms, -each supported by a command: - -@itemize -@item @emph{History} ... A circular buffer of trace points -can be set up, and then displayed at any time. -This tracks where code has been, which can be invaluable in -finding out how some fault was triggered. - -The buffer may overflow, since it collects records continuously. -It may be useful to use some of the 24 bits to represent a -particular event, and other bits to hold data. - -@item @emph{Counting} ... An array of counters can be set up, -and then displayed at any time. -This can help establish code coverage and identify hot spots. - -The array of counters is directly indexed by the trace point -number, so trace points with higher numbers are not counted. -@end itemize - -Linux-ARM kernels have a ``Kernel low-level debugging -via EmbeddedICE DCC channel'' option (CONFIG_DEBUG_ICEDCC, -depends on CONFIG_DEBUG_LL) which uses this mechanism to -deliver messages before a serial console can be activated. -This is not the same format used by @file{libdcc}. -Other software, such as the U-Boot boot loader, sometimes -does the same thing. - -@deffn Command {target_request debugmsgs} [@option{enable}|@option{disable}|@option{charmsg}] -Displays current handling of target DCC message requests. -These messages may be sent to the debugger while the target is running. -The optional @option{enable} and @option{charmsg} parameters -both enable the messages, while @option{disable} disables them. - -With @option{charmsg} the DCC words each contain one character, -as used by Linux with CONFIG_DEBUG_ICEDCC; -otherwise the libdcc format is used. -@end deffn - -@deffn Command {trace history} [@option{clear}|count] -With no parameter, displays all the trace points that have triggered -in the order they triggered. -With the parameter @option{clear}, erases all current trace history records. -With a @var{count} parameter, allocates space for that many -history records. -@end deffn - -@deffn Command {trace point} [@option{clear}|identifier] -With no parameter, displays all trace point identifiers and how many times -they have been triggered. -With the parameter @option{clear}, erases all current trace point counters. -With a numeric @var{identifier} parameter, creates a new a trace point counter -and associates it with that identifier. - -@emph{Important:} The identifier and the trace point number -are not related except by this command. -These trace point numbers always start at zero (from server startup, -or after @command{trace point clear}) and count up from there. -@end deffn - - -@node JTAG Commands -@chapter JTAG Commands -@cindex JTAG Commands -Most general purpose JTAG commands have been presented earlier. -(@xref{jtagspeed,,JTAG Speed}, @ref{Reset Configuration}, and @ref{TAP Declaration}.) -Lower level JTAG commands, as presented here, -may be needed to work with targets which require special -attention during operations such as reset or initialization. - -To use these commands you will need to understand some -of the basics of JTAG, including: - -@itemize @bullet -@item A JTAG scan chain consists of a sequence of individual TAP -devices such as a CPUs. -@item Control operations involve moving each TAP through the same -standard state machine (in parallel) -using their shared TMS and clock signals. -@item Data transfer involves shifting data through the chain of -instruction or data registers of each TAP, writing new register values -while the reading previous ones. -@item Data register sizes are a function of the instruction active in -a given TAP, while instruction register sizes are fixed for each TAP. -All TAPs support a BYPASS instruction with a single bit data register. -@item The way OpenOCD differentiates between TAP devices is by -shifting different instructions into (and out of) their instruction -registers. -@end itemize - -@section Low Level JTAG Commands - -These commands are used by developers who need to access -JTAG instruction or data registers, possibly controlling -the order of TAP state transitions. -If you're not debugging OpenOCD internals, or bringing up a -new JTAG adapter or a new type of TAP device (like a CPU or -JTAG router), you probably won't need to use these commands. -In a debug session that doesn't use JTAG for its transport protocol, -these commands are not available. - -@deffn Command {drscan} tap [numbits value]+ [@option{-endstate} tap_state] -Loads the data register of @var{tap} with a series of bit fields -that specify the entire register. -Each field is @var{numbits} bits long with -a numeric @var{value} (hexadecimal encouraged). -The return value holds the original value of each -of those fields. - -For example, a 38 bit number might be specified as one -field of 32 bits then one of 6 bits. -@emph{For portability, never pass fields which are more -than 32 bits long. Many OpenOCD implementations do not -support 64-bit (or larger) integer values.} - -All TAPs other than @var{tap} must be in BYPASS mode. -The single bit in their data registers does not matter. - -When @var{tap_state} is specified, the JTAG state machine is left -in that state. -For example @sc{drpause} might be specified, so that more -instructions can be issued before re-entering the @sc{run/idle} state. -If the end state is not specified, the @sc{run/idle} state is entered. - -@quotation Warning -OpenOCD does not record information about data register lengths, -so @emph{it is important that you get the bit field lengths right}. -Remember that different JTAG instructions refer to different -data registers, which may have different lengths. -Moreover, those lengths may not be fixed; -the SCAN_N instruction can change the length of -the register accessed by the INTEST instruction -(by connecting a different scan chain). -@end quotation -@end deffn - -@deffn Command {flush_count} -Returns the number of times the JTAG queue has been flushed. -This may be used for performance tuning. - -For example, flushing a queue over USB involves a -minimum latency, often several milliseconds, which does -not change with the amount of data which is written. -You may be able to identify performance problems by finding -tasks which waste bandwidth by flushing small transfers too often, -instead of batching them into larger operations. -@end deffn - -@deffn Command {irscan} [tap instruction]+ [@option{-endstate} tap_state] -For each @var{tap} listed, loads the instruction register -with its associated numeric @var{instruction}. -(The number of bits in that instruction may be displayed -using the @command{scan_chain} command.) -For other TAPs, a BYPASS instruction is loaded. - -When @var{tap_state} is specified, the JTAG state machine is left -in that state. -For example @sc{irpause} might be specified, so the data register -can be loaded before re-entering the @sc{run/idle} state. -If the end state is not specified, the @sc{run/idle} state is entered. - -@quotation Note -OpenOCD currently supports only a single field for instruction -register values, unlike data register values. -For TAPs where the instruction register length is more than 32 bits, -portable scripts currently must issue only BYPASS instructions. -@end quotation -@end deffn - -@deffn Command {jtag_reset} trst srst -Set values of reset signals. -The @var{trst} and @var{srst} parameter values may be -@option{0}, indicating that reset is inactive (pulled or driven high), -or @option{1}, indicating it is active (pulled or driven low). -The @command{reset_config} command should already have been used -to configure how the board and JTAG adapter treat these two -signals, and to say if either signal is even present. -@xref{Reset Configuration}. - -Note that TRST is specially handled. -It actually signifies JTAG's @sc{reset} state. -So if the board doesn't support the optional TRST signal, -or it doesn't support it along with the specified SRST value, -JTAG reset is triggered with TMS and TCK signals -instead of the TRST signal. -And no matter how that JTAG reset is triggered, once -the scan chain enters @sc{reset} with TRST inactive, -TAP @code{post-reset} events are delivered to all TAPs -with handlers for that event. -@end deffn - -@deffn Command {pathmove} start_state [next_state ...] -Start by moving to @var{start_state}, which -must be one of the @emph{stable} states. -Unless it is the only state given, this will often be the -current state, so that no TCK transitions are needed. -Then, in a series of single state transitions -(conforming to the JTAG state machine) shift to -each @var{next_state} in sequence, one per TCK cycle. -The final state must also be stable. -@end deffn - -@deffn Command {runtest} @var{num_cycles} -Move to the @sc{run/idle} state, and execute at least -@var{num_cycles} of the JTAG clock (TCK). -Instructions often need some time -to execute before they take effect. -@end deffn - -@c tms_sequence (short|long) -@c ... temporary, debug-only, other than USBprog bug workaround... - -@deffn Command {verify_ircapture} (@option{enable}|@option{disable}) -Verify values captured during @sc{ircapture} and returned -during IR scans. Default is enabled, but this can be -overridden by @command{verify_jtag}. -This flag is ignored when validating JTAG chain configuration. -@end deffn - -@deffn Command {verify_jtag} (@option{enable}|@option{disable}) -Enables verification of DR and IR scans, to help detect -programming errors. For IR scans, @command{verify_ircapture} -must also be enabled. -Default is enabled. -@end deffn - -@section TAP state names -@cindex TAP state names - -The @var{tap_state} names used by OpenOCD in the @command{drscan}, -@command{irscan}, and @command{pathmove} commands are the same -as those used in SVF boundary scan documents, except that -SVF uses @sc{idle} instead of @sc{run/idle}. - -@itemize @bullet -@item @b{RESET} ... @emph{stable} (with TMS high); -acts as if TRST were pulsed -@item @b{RUN/IDLE} ... @emph{stable}; don't assume this always means IDLE -@item @b{DRSELECT} -@item @b{DRCAPTURE} -@item @b{DRSHIFT} ... @emph{stable}; TDI/TDO shifting -through the data register -@item @b{DREXIT1} -@item @b{DRPAUSE} ... @emph{stable}; data register ready -for update or more shifting -@item @b{DREXIT2} -@item @b{DRUPDATE} -@item @b{IRSELECT} -@item @b{IRCAPTURE} -@item @b{IRSHIFT} ... @emph{stable}; TDI/TDO shifting -through the instruction register -@item @b{IREXIT1} -@item @b{IRPAUSE} ... @emph{stable}; instruction register ready -for update or more shifting -@item @b{IREXIT2} -@item @b{IRUPDATE} -@end itemize - -Note that only six of those states are fully ``stable'' in the -face of TMS fixed (low except for @sc{reset}) -and a free-running JTAG clock. For all the -others, the next TCK transition changes to a new state. - -@itemize @bullet -@item From @sc{drshift} and @sc{irshift}, clock transitions will -produce side effects by changing register contents. The values -to be latched in upcoming @sc{drupdate} or @sc{irupdate} states -may not be as expected. -@item @sc{run/idle}, @sc{drpause}, and @sc{irpause} are reasonable -choices after @command{drscan} or @command{irscan} commands, -since they are free of JTAG side effects. -@item @sc{run/idle} may have side effects that appear at non-JTAG -levels, such as advancing the ARM9E-S instruction pipeline. -Consult the documentation for the TAP(s) you are working with. -@end itemize - -@node Boundary Scan Commands -@chapter Boundary Scan Commands - -One of the original purposes of JTAG was to support -boundary scan based hardware testing. -Although its primary focus is to support On-Chip Debugging, -OpenOCD also includes some boundary scan commands. - -@section SVF: Serial Vector Format -@cindex Serial Vector Format -@cindex SVF - -The Serial Vector Format, better known as @dfn{SVF}, is a -way to represent JTAG test patterns in text files. -In a debug session using JTAG for its transport protocol, -OpenOCD supports running such test files. - -@deffn Command {svf} filename [@option{quiet}] -This issues a JTAG reset (Test-Logic-Reset) and then -runs the SVF script from @file{filename}. -Unless the @option{quiet} option is specified, -each command is logged before it is executed. -@end deffn - -@section XSVF: Xilinx Serial Vector Format -@cindex Xilinx Serial Vector Format -@cindex XSVF - -The Xilinx Serial Vector Format, better known as @dfn{XSVF}, is a -binary representation of SVF which is optimized for use with -Xilinx devices. -In a debug session using JTAG for its transport protocol, -OpenOCD supports running such test files. - -@quotation Important -Not all XSVF commands are supported. -@end quotation - -@deffn Command {xsvf} (tapname|@option{plain}) filename [@option{virt2}] [@option{quiet}] -This issues a JTAG reset (Test-Logic-Reset) and then -runs the XSVF script from @file{filename}. -When a @var{tapname} is specified, the commands are directed at -that TAP. -When @option{virt2} is specified, the @sc{xruntest} command counts -are interpreted as TCK cycles instead of microseconds. -Unless the @option{quiet} option is specified, -messages are logged for comments and some retries. -@end deffn - -The OpenOCD sources also include two utility scripts -for working with XSVF; they are not currently installed -after building the software. -You may find them useful: - -@itemize -@item @emph{svf2xsvf} ... converts SVF files into the extended XSVF -syntax understood by the @command{xsvf} command; see notes below. -@item @emph{xsvfdump} ... converts XSVF files into a text output format; -understands the OpenOCD extensions. -@end itemize - -The input format accepts a handful of non-standard extensions. -These include three opcodes corresponding to SVF extensions -from Lattice Semiconductor (LCOUNT, LDELAY, LDSR), and -two opcodes supporting a more accurate translation of SVF -(XTRST, XWAITSTATE). -If @emph{xsvfdump} shows a file is using those opcodes, it -probably will not be usable with other XSVF tools. - - -@node Utility Commands -@chapter Utility Commands -@cindex Utility Commands - -@section RAM testing -@cindex RAM testing - -There is often a need to stress-test random access memory (RAM) for -errors. OpenOCD comes with a Tcl implementation of well-known memory -testing procedures allowing the detection of all sorts of issues with -electrical wiring, defective chips, PCB layout and other common -hardware problems. - -To use them, you usually need to initialise your RAM controller first; -consult your SoC's documentation to get the recommended list of -register operations and translate them to the corresponding -@command{mww}/@command{mwb} commands. - -Load the memory testing functions with - -@example -source [find tools/memtest.tcl] -@end example - -to get access to the following facilities: - -@deffn Command {memTestDataBus} address -Test the data bus wiring in a memory region by performing a walking -1's test at a fixed address within that region. -@end deffn - -@deffn Command {memTestAddressBus} baseaddress size -Perform a walking 1's test on the relevant bits of the address and -check for aliasing. This test will find single-bit address failures -such as stuck-high, stuck-low, and shorted pins. -@end deffn - -@deffn Command {memTestDevice} baseaddress size -Test the integrity of a physical memory device by performing an -increment/decrement test over the entire region. In the process every -storage bit in the device is tested as zero and as one. -@end deffn - -@deffn Command {runAllMemTests} baseaddress size -Run all of the above tests over a specified memory region. -@end deffn - -@section Firmware recovery helpers -@cindex Firmware recovery - -OpenOCD includes an easy-to-use script to facilitate mass-market -devices recovery with JTAG. - -For quickstart instructions run: -@example -openocd -f tools/firmware-recovery.tcl -c firmware_help -@end example - -@node TFTP -@chapter TFTP -@cindex TFTP -If OpenOCD runs on an embedded host (as ZY1000 does), then TFTP can -be used to access files on PCs (either the developer's PC or some other PC). - -The way this works on the ZY1000 is to prefix a filename by -"/tftp/ip/" and append the TFTP path on the TFTP -server (tftpd). For example, - -@example -load_image /tftp/10.0.0.96/c:\temp\abc.elf -@end example - -will load c:\temp\abc.elf from the developer pc (10.0.0.96) into memory as -if the file was hosted on the embedded host. - -In order to achieve decent performance, you must choose a TFTP server -that supports a packet size bigger than the default packet size (512 bytes). There -are numerous TFTP servers out there (free and commercial) and you will have to do -a bit of googling to find something that fits your requirements. - -@node GDB and OpenOCD -@chapter GDB and OpenOCD -@cindex GDB -OpenOCD complies with the remote gdbserver protocol and, as such, can be used -to debug remote targets. -Setting up GDB to work with OpenOCD can involve several components: - -@itemize -@item The OpenOCD server support for GDB may need to be configured. -@xref{gdbconfiguration,,GDB Configuration}. -@item GDB's support for OpenOCD may need configuration, -as shown in this chapter. -@item If you have a GUI environment like Eclipse, -that also will probably need to be configured. -@end itemize - -Of course, the version of GDB you use will need to be one which has -been built to know about the target CPU you're using. It's probably -part of the tool chain you're using. For example, if you are doing -cross-development for ARM on an x86 PC, instead of using the native -x86 @command{gdb} command you might use @command{arm-none-eabi-gdb} -if that's the tool chain used to compile your code. - -@section Connecting to GDB -@cindex Connecting to GDB -Use GDB 6.7 or newer with OpenOCD if you run into trouble. For -instance GDB 6.3 has a known bug that produces bogus memory access -errors, which has since been fixed; see -@url{http://osdir.com/ml/gdb.bugs.discuss/2004-12/msg00018.html} - -OpenOCD can communicate with GDB in two ways: - -@enumerate -@item -A socket (TCP/IP) connection is typically started as follows: -@example -target remote localhost:3333 -@end example -This would cause GDB to connect to the gdbserver on the local pc using port 3333. - -It is also possible to use the GDB extended remote protocol as follows: -@example -target extended-remote localhost:3333 -@end example -@item -A pipe connection is typically started as follows: -@example -target remote | openocd -c "gdb_port pipe; log_output openocd.log" -@end example -This would cause GDB to run OpenOCD and communicate using pipes (stdin/stdout). -Using this method has the advantage of GDB starting/stopping OpenOCD for the debug -session. log_output sends the log output to a file to ensure that the pipe is -not saturated when using higher debug level outputs. -@end enumerate - -To list the available OpenOCD commands type @command{monitor help} on the -GDB command line. - -@section Sample GDB session startup - -With the remote protocol, GDB sessions start a little differently -than they do when you're debugging locally. -Here's an example showing how to start a debug session with a -small ARM program. -In this case the program was linked to be loaded into SRAM on a Cortex-M3. -Most programs would be written into flash (address 0) and run from there. - -@example -$ arm-none-eabi-gdb example.elf -(gdb) target remote localhost:3333 -Remote debugging using localhost:3333 -... -(gdb) monitor reset halt -... -(gdb) load -Loading section .vectors, size 0x100 lma 0x20000000 -Loading section .text, size 0x5a0 lma 0x20000100 -Loading section .data, size 0x18 lma 0x200006a0 -Start address 0x2000061c, load size 1720 -Transfer rate: 22 KB/sec, 573 bytes/write. -(gdb) continue -Continuing. -... -@end example - -You could then interrupt the GDB session to make the program break, -type @command{where} to show the stack, @command{list} to show the -code around the program counter, @command{step} through code, -set breakpoints or watchpoints, and so on. - -@section Configuring GDB for OpenOCD - -OpenOCD supports the gdb @option{qSupported} packet, this enables information -to be sent by the GDB remote server (i.e. OpenOCD) to GDB. Typical information includes -packet size and the device's memory map. -You do not need to configure the packet size by hand, -and the relevant parts of the memory map should be automatically -set up when you declare (NOR) flash banks. - -However, there are other things which GDB can't currently query. -You may need to set those up by hand. -As OpenOCD starts up, you will often see a line reporting -something like: - -@example -Info : lm3s.cpu: hardware has 6 breakpoints, 4 watchpoints -@end example - -You can pass that information to GDB with these commands: - -@example -set remote hardware-breakpoint-limit 6 -set remote hardware-watchpoint-limit 4 -@end example - -With that particular hardware (Cortex-M3) the hardware breakpoints -only work for code running from flash memory. Most other ARM systems -do not have such restrictions. - -Another example of useful GDB configuration came from a user who -found that single stepping his Cortex-M3 didn't work well with IRQs -and an RTOS until he told GDB to disable the IRQs while stepping: - -@example -define hook-step -mon cortex_m maskisr on -end -define hookpost-step -mon cortex_m maskisr off -end -@end example - -Rather than typing such commands interactively, you may prefer to -save them in a file and have GDB execute them as it starts, perhaps -using a @file{.gdbinit} in your project directory or starting GDB -using @command{gdb -x filename}. - -@section Programming using GDB -@cindex Programming using GDB -@anchor{programmingusinggdb} - -By default the target memory map is sent to GDB. This can be disabled by -the following OpenOCD configuration option: -@example -gdb_memory_map disable -@end example -For this to function correctly a valid flash configuration must also be set -in OpenOCD. For faster performance you should also configure a valid -working area. - -Informing GDB of the memory map of the target will enable GDB to protect any -flash areas of the target and use hardware breakpoints by default. This means -that the OpenOCD option @command{gdb_breakpoint_override} is not required when -using a memory map. @xref{gdbbreakpointoverride,,gdb_breakpoint_override}. - -To view the configured memory map in GDB, use the GDB command @option{info mem}. -All other unassigned addresses within GDB are treated as RAM. - -GDB 6.8 and higher set any memory area not in the memory map as inaccessible. -This can be changed to the old behaviour by using the following GDB command -@example -set mem inaccessible-by-default off -@end example - -If @command{gdb_flash_program enable} is also used, GDB will be able to -program any flash memory using the vFlash interface. - -GDB will look at the target memory map when a load command is given, if any -areas to be programmed lie within the target flash area the vFlash packets -will be used. - -If the target needs configuring before GDB programming, an event -script can be executed: -@example -$_TARGETNAME configure -event EVENTNAME BODY -@end example - -To verify any flash programming the GDB command @option{compare-sections} -can be used. -@anchor{usingopenocdsmpwithgdb} -@section Using OpenOCD SMP with GDB -@cindex SMP -For SMP support following GDB serial protocol packet have been defined : -@itemize @bullet -@item j - smp status request -@item J - smp set request -@end itemize - -OpenOCD implements : -@itemize @bullet -@item @option{jc} packet for reading core id displayed by -GDB connection. Reply is @option{XXXXXXXX} (8 hex digits giving core id) or - @option{E01} for target not smp. -@item @option{JcXXXXXXXX} (8 hex digits) packet for setting core id displayed at next GDB continue -(core id -1 is reserved for returning to normal resume mode). Reply @option{E01} -for target not smp or @option{OK} on success. -@end itemize - -Handling of this packet within GDB can be done : -@itemize @bullet -@item by the creation of an internal variable (i.e @option{_core}) by mean -of function allocate_computed_value allowing following GDB command. -@example -set $_core 1 -#Jc01 packet is sent -print $_core -#jc packet is sent and result is affected in $ -@end example - -@item by the usage of GDB maintenance command as described in following example (2 cpus in SMP with -core id 0 and 1 @pxref{definecputargetsworkinginsmp,,Define CPU targets working in SMP}). - -@example -# toggle0 : force display of coreid 0 -define toggle0 -maint packet Jc0 -continue -main packet Jc-1 -end -# toggle1 : force display of coreid 1 -define toggle1 -maint packet Jc1 -continue -main packet Jc-1 -end -@end example -@end itemize - -@section RTOS Support -@cindex RTOS Support -@anchor{gdbrtossupport} - -OpenOCD includes RTOS support, this will however need enabling as it defaults to disabled. -It can be enabled by passing @option{-rtos} arg to the target @xref{rtostype,,RTOS Type}. - -@* An example setup is below: - -@example -$_TARGETNAME configure -rtos auto -@end example - -This will attempt to auto detect the RTOS within your application. - -Currently supported rtos's include: -@itemize @bullet -@item @option{eCos} -@item @option{ThreadX} -@item @option{FreeRTOS} -@item @option{linux} -@item @option{ChibiOS} -@item @option{embKernel} -@item @option{mqx} -@end itemize - -@quotation Note -Before an RTOS can be detected, it must export certain symbols; otherwise, it cannot -be used by OpenOCD. Below is a list of the required symbols for each supported RTOS. -@end quotation - -@table @code -@item eCos symbols -Cyg_Thread::thread_list, Cyg_Scheduler_Base::current_thread. -@item ThreadX symbols -_tx_thread_current_ptr, _tx_thread_created_ptr, _tx_thread_created_count. -@item FreeRTOS symbols -@c The following is taken from recent texinfo to provide compatibility -@c with ancient versions that do not support @raggedright -@tex -\begingroup -\rightskip0pt plus2em \spaceskip.3333em \xspaceskip.5em\relax -pxCurrentTCB, pxReadyTasksLists, xDelayedTaskList1, xDelayedTaskList2, -pxDelayedTaskList, pxOverflowDelayedTaskList, xPendingReadyList, -uxCurrentNumberOfTasks, uxTopUsedPriority. -\par -\endgroup -@end tex -@item linux symbols -init_task. -@item ChibiOS symbols -rlist, ch_debug, chSysInit. -@item embKernel symbols -Rtos::sCurrentTask, Rtos::sListReady, Rtos::sListSleep, -Rtos::sListSuspended, Rtos::sMaxPriorities, Rtos::sCurrentTaskCount. -@item mqx symbols -_mqx_kernel_data, MQX_init_struct. -@end table - -For most RTOS supported the above symbols will be exported by default. However for -some, eg. FreeRTOS, extra steps must be taken. - -These RTOSes may require additional OpenOCD-specific file to be linked -along with the project: - -@table @code -@item FreeRTOS -contrib/rtos-helpers/FreeRTOS-openocd.c -@end table - -@node Tcl Scripting API -@chapter Tcl Scripting API -@cindex Tcl Scripting API -@cindex Tcl scripts -@section API rules - -Tcl commands are stateless; e.g. the @command{telnet} command has -a concept of currently active target, the Tcl API proc's take this sort -of state information as an argument to each proc. - -There are three main types of return values: single value, name value -pair list and lists. - -Name value pair. The proc 'foo' below returns a name/value pair -list. - -@example -> set foo(me) Duane -> set foo(you) Oyvind -> set foo(mouse) Micky -> set foo(duck) Donald -@end example - -If one does this: - -@example -> set foo -@end example - -The result is: - -@example -me Duane you Oyvind mouse Micky duck Donald -@end example - -Thus, to get the names of the associative array is easy: - -@verbatim -foreach { name value } [set foo] { - puts "Name: $name, Value: $value" -} -@end verbatim - -Lists returned should be relatively small. Otherwise, a range -should be passed in to the proc in question. - -@section Internal low-level Commands - -By "low-level," we mean commands that a human would typically not -invoke directly. - -Some low-level commands need to be prefixed with "ocd_"; e.g. -@command{ocd_flash_banks} -is the low-level API upon which @command{flash banks} is implemented. - -@itemize @bullet -@item @b{mem2array} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}> - -Read memory and return as a Tcl array for script processing -@item @b{array2mem} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}> - -Convert a Tcl array to memory locations and write the values -@item @b{ocd_flash_banks} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}> <@var{target}> [@option{driver options} ...] - -Return information about the flash banks - -@item @b{capture} <@var{command}> - -Run <@var{command}> and return full log output that was produced during -its execution. Example: - -@example -> capture "reset init" -@end example - -@end itemize - -OpenOCD commands can consist of two words, e.g. "flash banks". The -@file{startup.tcl} "unknown" proc will translate this into a Tcl proc -called "flash_banks". - -@section OpenOCD specific Global Variables - -Real Tcl has ::tcl_platform(), and platform::identify, and many other -variables. JimTCL, as implemented in OpenOCD creates $ocd_HOSTOS which -holds one of the following values: - -@itemize @bullet -@item @b{cygwin} Running under Cygwin -@item @b{darwin} Darwin (Mac-OS) is the underlying operating sytem. -@item @b{freebsd} Running under FreeBSD -@item @b{openbsd} Running under OpenBSD -@item @b{netbsd} Running under NetBSD -@item @b{linux} Linux is the underlying operating sytem -@item @b{mingw32} Running under MingW32 -@item @b{winxx} Built using Microsoft Visual Studio -@item @b{ecos} Running under eCos -@item @b{other} Unknown, none of the above. -@end itemize - -Note: 'winxx' was choosen because today (March-2009) no distinction is made between Win32 and Win64. - -@quotation Note -We should add support for a variable like Tcl variable -@code{tcl_platform(platform)}, it should be called -@code{jim_platform} (because it -is jim, not real tcl). -@end quotation - -@section Tcl RPC server -@cindex RPC - -OpenOCD provides a simple RPC server that allows to run arbitrary Tcl -commands and receive the results. - -To access it, your application needs to connect to a configured TCP port -(see @command{tcl_port}). Then it can pass any string to the -interpreter terminating it with @code{0x1a} and wait for the return -value (it will be terminated with @code{0x1a} as well). This can be -repeated as many times as desired without reopening the connection. - -Remember that most of the OpenOCD commands need to be prefixed with -@code{ocd_} to get the results back. Sometimes you might also need the -@command{capture} command. - -See @file{contrib/rpc_examples/} for specific client implementations. - -@section Tcl RPC server notifications -@cindex RPC Notifications - -Notifications are sent asynchronously to other commands being executed over -the RPC server, so the port must be polled continuously. - -Target event, state and reset notifications are emitted as Tcl associative arrays -in the following format. - -@verbatim -type target_event event [event-name] -type target_state state [state-name] -type target_reset mode [reset-mode] -@end verbatim - -@deffn {Command} tcl_notifications [on/off] -Toggle output of target notifications to the current Tcl RPC server. -Only available from the Tcl RPC server. -Defaults to off. - -@end deffn - -@section Tcl RPC server trace output -@cindex RPC trace output - -Trace data is sent asynchronously to other commands being executed over -the RPC server, so the port must be polled continuously. - -Target trace data is emitted as a Tcl associative array in the following format. - -@verbatim -type target_trace data [trace-data-hex-encoded] -@end verbatim - -@deffn {Command} tcl_trace [on/off] -Toggle output of target trace data to the current Tcl RPC server. -Only available from the Tcl RPC server. -Defaults to off. - -See an example application here: -@url{https://github.com/apmorton/OpenOcdTraceUtil} [OpenOcdTraceUtil] - -@end deffn - -@node FAQ -@chapter FAQ -@cindex faq -@enumerate -@anchor{faqrtck} -@item @b{RTCK, also known as: Adaptive Clocking - What is it?} -@cindex RTCK -@cindex adaptive clocking -@* - -In digital circuit design it is often refered to as ``clock -synchronisation'' the JTAG interface uses one clock (TCK or TCLK) -operating at some speed, your CPU target is operating at another. -The two clocks are not synchronised, they are ``asynchronous'' - -In order for the two to work together they must be synchronised -well enough to work; JTAG can't go ten times faster than the CPU, -for example. There are 2 basic options: -@enumerate -@item -Use a special "adaptive clocking" circuit to change the JTAG -clock rate to match what the CPU currently supports. -@item -The JTAG clock must be fixed at some speed that's enough slower than -the CPU clock that all TMS and TDI transitions can be detected. -@end enumerate - -@b{Does this really matter?} For some chips and some situations, this -is a non-issue, like a 500MHz ARM926 with a 5 MHz JTAG link; -the CPU has no difficulty keeping up with JTAG. -Startup sequences are often problematic though, as are other -situations where the CPU clock rate changes (perhaps to save -power). - -For example, Atmel AT91SAM chips start operation from reset with -a 32kHz system clock. Boot firmware may activate the main oscillator -and PLL before switching to a faster clock (perhaps that 500 MHz -ARM926 scenario). -If you're using JTAG to debug that startup sequence, you must slow -the JTAG clock to sometimes 1 to 4kHz. After startup completes, -JTAG can use a faster clock. - -Consider also debugging a 500MHz ARM926 hand held battery powered -device that enters a low power ``deep sleep'' mode, at 32kHz CPU -clock, between keystrokes unless it has work to do. When would -that 5 MHz JTAG clock be usable? - -@b{Solution #1 - A special circuit} - -In order to make use of this, -your CPU, board, and JTAG adapter must all support the RTCK -feature. Not all of them support this; keep reading! - -The RTCK ("Return TCK") signal in some ARM chips is used to help with -this problem. ARM has a good description of the problem described at -this link: @url{http://www.arm.com/support/faqdev/4170.html} [checked -28/nov/2008]. Link title: ``How does the JTAG synchronisation logic -work? / how does adaptive clocking work?''. - -The nice thing about adaptive clocking is that ``battery powered hand -held device example'' - the adaptiveness works perfectly all the -time. One can set a break point or halt the system in the deep power -down code, slow step out until the system speeds up. - -Note that adaptive clocking may also need to work at the board level, -when a board-level scan chain has multiple chips. -Parallel clock voting schemes are good way to implement this, -both within and between chips, and can easily be implemented -with a CPLD. -It's not difficult to have logic fan a module's input TCK signal out -to each TAP in the scan chain, and then wait until each TAP's RTCK comes -back with the right polarity before changing the output RTCK signal. -Texas Instruments makes some clock voting logic available -for free (with no support) in VHDL form; see -@url{http://tiexpressdsp.com/index.php/Adaptive_Clocking} - -@b{Solution #2 - Always works - but may be slower} - -Often this is a perfectly acceptable solution. - -In most simple terms: Often the JTAG clock must be 1/10 to 1/12 of -the target clock speed. But what that ``magic division'' is varies -depending on the chips on your board. -@b{ARM rule of thumb} Most ARM based systems require an 6:1 division; -ARM11 cores use an 8:1 division. -@b{Xilinx rule of thumb} is 1/12 the clock speed. - -Note: most full speed FT2232 based JTAG adapters are limited to a -maximum of 6MHz. The ones using USB high speed chips (FT2232H) -often support faster clock rates (and adaptive clocking). - -You can still debug the 'low power' situations - you just need to -either use a fixed and very slow JTAG clock rate ... or else -manually adjust the clock speed at every step. (Adjusting is painful -and tedious, and is not always practical.) - -It is however easy to ``code your way around it'' - i.e.: Cheat a little, -have a special debug mode in your application that does a ``high power -sleep''. If you are careful - 98% of your problems can be debugged -this way. - -Note that on ARM you may need to avoid using the @emph{wait for interrupt} -operation in your idle loops even if you don't otherwise change the CPU -clock rate. -That operation gates the CPU clock, and thus the JTAG clock; which -prevents JTAG access. One consequence is not being able to @command{halt} -cores which are executing that @emph{wait for interrupt} operation. - -To set the JTAG frequency use the command: - -@example -# Example: 1.234MHz -adapter_khz 1234 -@end example - - -@item @b{Win32 Pathnames} Why don't backslashes work in Windows paths? - -OpenOCD uses Tcl and a backslash is an escape char. Use @{ and @} -around Windows filenames. - -@example -> echo \a - -> echo @{\a@} -\a -> echo "\a" - -> -@end example - - -@item @b{Missing: cygwin1.dll} OpenOCD complains about a missing cygwin1.dll. - -Make sure you have Cygwin installed, or at least a version of OpenOCD that -claims to come with all the necessary DLLs. When using Cygwin, try launching -OpenOCD from the Cygwin shell. - -@item @b{Breakpoint Issue} I'm trying to set a breakpoint using GDB (or a frontend like Insight or -Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213 -arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled". - -GDB issues software breakpoints when a normal breakpoint is requested, or to implement -source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720T or ARM920T, -software breakpoints consume one of the two available hardware breakpoints. - -@item @b{LPC2000 Flash} When erasing or writing LPC2000 on-chip flash, the operation fails at random. - -Make sure the core frequency specified in the @option{flash lpc2000} line matches the -clock at the time you're programming the flash. If you've specified the crystal's -frequency, make sure the PLL is disabled. If you've specified the full core speed -(e.g. 60MHz), make sure the PLL is enabled. - -@item @b{Amontec Chameleon} When debugging using an Amontec Chameleon in its JTAG Accelerator configuration, -I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed -out while waiting for end of scan, rtck was disabled". - -Make sure your PC's parallel port operates in EPP mode. You might have to try several -settings in your PC BIOS (ECP, EPP, and different versions of those). - -@item @b{Data Aborts} When debugging with OpenOCD and GDB (plain GDB, Insight, or Eclipse), -I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory(): -memory read caused data abort". - -The errors are non-fatal, and are the result of GDB trying to trace stack frames -beyond the last valid frame. It might be possible to prevent this by setting up -a proper "initial" stack frame, if you happen to know what exactly has to -be done, feel free to add this here. - -@b{Simple:} In your startup code - push 8 registers of zeros onto the -stack before calling main(). What GDB is doing is ``climbing'' the run -time stack by reading various values on the stack using the standard -call frame for the target. GDB keeps going - until one of 2 things -happen @b{#1} an invalid frame is found, or @b{#2} some huge number of -stackframes have been processed. By pushing zeros on the stack, GDB -gracefully stops. - -@b{Debugging Interrupt Service Routines} - In your ISR before you call -your C code, do the same - artifically push some zeros onto the stack, -remember to pop them off when the ISR is done. - -@b{Also note:} If you have a multi-threaded operating system, they -often do not @b{in the intrest of saving memory} waste these few -bytes. Painful... - - -@item @b{JTAG Reset Config} I get the following message in the OpenOCD console (or log file): -"Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too". - -This warning doesn't indicate any serious problem, as long as you don't want to -debug your core right out of reset. Your .cfg file specified @option{jtag_reset -trst_and_srst srst_pulls_trst} to tell OpenOCD that either your board, -your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals -independently. With this setup, it's not possible to halt the core right out of -reset, everything else should work fine. - -@item @b{USB Power} When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto -toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be -unstable. When single-stepping over large blocks of code, GDB and OpenOCD -quit with an error message. Is there a stability issue with OpenOCD? - -No, this is not a stability issue concerning OpenOCD. Most users have solved -this issue by simply using a self-powered USB hub, which they connect their -Amontec JTAGkey to. Apparently, some computers do not provide a USB power -supply stable enough for the Amontec JTAGkey to be operated. - -@b{Laptops running on battery have this problem too...} - -@item @b{USB Power} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the -following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned: -4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232". -What does that mean and what might be the reason for this? - -First of all, the reason might be the USB power supply. Try using a self-powered -hub instead of a direct connection to your computer. Secondly, the error code 4 -corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB -chip ran into some sort of error - this points us to a USB problem. - -@item @b{GDB Disconnects} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following -error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054". -What does that mean and what might be the reason for this? - -Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB) -has closed the connection to OpenOCD. This might be a GDB issue. - -@item @b{LPC2000 Flash} In the configuration file in the section where flash device configurations -are described, there is a parameter for specifying the clock frequency -for LPC2000 internal flash devices (e.g. @option{flash bank $_FLASHNAME lpc2000 -0x0 0x40000 0 0 $_TARGETNAME lpc2000_v1 14746 calc_checksum}), which must be -specified in kilohertz. However, I do have a quartz crystal of a -frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz, -i.e. 14,745.600 kHz). Is it possible to specify real numbers for the -clock frequency? - -No. The clock frequency specified here must be given as an integral number. -However, this clock frequency is used by the In-Application-Programming (IAP) -routines of the LPC2000 family only, which seems to be very tolerant concerning -the given clock frequency, so a slight difference between the specified clock -frequency and the actual clock frequency will not cause any trouble. - -@item @b{Command Order} Do I have to keep a specific order for the commands in the configuration file? - -Well, yes and no. Commands can be given in arbitrary order, yet the -devices listed for the JTAG scan chain must be given in the right -order (jtag newdevice), with the device closest to the TDO-Pin being -listed first. In general, whenever objects of the same type exist -which require an index number, then these objects must be given in the -right order (jtag newtap, targets and flash banks - a target -references a jtag newtap and a flash bank references a target). - -You can use the ``scan_chain'' command to verify and display the tap order. - -Also, some commands can't execute until after @command{init} has been -processed. Such commands include @command{nand probe} and everything -else that needs to write to controller registers, perhaps for setting -up DRAM and loading it with code. - -@anchor{faqtaporder} -@item @b{JTAG TAP Order} Do I have to declare the TAPS in some -particular order? - -Yes; whenever you have more than one, you must declare them in -the same order used by the hardware. - -Many newer devices have multiple JTAG TAPs. For example: ST -Microsystems STM32 chips have two TAPs, a ``boundary scan TAP'' and -``Cortex-M3'' TAP. Example: The STM32 reference manual, Document ID: -RM0008, Section 26.5, Figure 259, page 651/681, the ``TDI'' pin is -connected to the boundary scan TAP, which then connects to the -Cortex-M3 TAP, which then connects to the TDO pin. - -Thus, the proper order for the STM32 chip is: (1) The Cortex-M3, then -(2) The boundary scan TAP. If your board includes an additional JTAG -chip in the scan chain (for example a Xilinx CPLD or FPGA) you could -place it before or after the STM32 chip in the chain. For example: - -@itemize @bullet -@item OpenOCD_TDI(output) -> STM32 TDI Pin (BS Input) -@item STM32 BS TDO (output) -> STM32 Cortex-M3 TDI (input) -@item STM32 Cortex-M3 TDO (output) -> SM32 TDO Pin -@item STM32 TDO Pin (output) -> Xilinx TDI Pin (input) -@item Xilinx TDO Pin -> OpenOCD TDO (input) -@end itemize - -The ``jtag device'' commands would thus be in the order shown below. Note: - -@itemize @bullet -@item jtag newtap Xilinx tap -irlen ... -@item jtag newtap stm32 cpu -irlen ... -@item jtag newtap stm32 bs -irlen ... -@item # Create the debug target and say where it is -@item target create stm32.cpu -chain-position stm32.cpu ... -@end itemize - - -@item @b{SYSCOMP} Sometimes my debugging session terminates with an error. When I look into the -log file, I can see these error messages: Error: arm7_9_common.c:561 -arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP - -TODO. - -@end enumerate - -@node Tcl Crash Course -@chapter Tcl Crash Course -@cindex Tcl - -Not everyone knows Tcl - this is not intended to be a replacement for -learning Tcl, the intent of this chapter is to give you some idea of -how the Tcl scripts work. - -This chapter is written with two audiences in mind. (1) OpenOCD users -who need to understand a bit more of how Jim-Tcl works so they can do -something useful, and (2) those that want to add a new command to -OpenOCD. - -@section Tcl Rule #1 -There is a famous joke, it goes like this: -@enumerate -@item Rule #1: The wife is always correct -@item Rule #2: If you think otherwise, See Rule #1 -@end enumerate - -The Tcl equal is this: - -@enumerate -@item Rule #1: Everything is a string -@item Rule #2: If you think otherwise, See Rule #1 -@end enumerate - -As in the famous joke, the consequences of Rule #1 are profound. Once -you understand Rule #1, you will understand Tcl. - -@section Tcl Rule #1b -There is a second pair of rules. -@enumerate -@item Rule #1: Control flow does not exist. Only commands -@* For example: the classic FOR loop or IF statement is not a control -flow item, they are commands, there is no such thing as control flow -in Tcl. -@item Rule #2: If you think otherwise, See Rule #1 -@* Actually what happens is this: There are commands that by -convention, act like control flow key words in other languages. One of -those commands is the word ``for'', another command is ``if''. -@end enumerate - -@section Per Rule #1 - All Results are strings -Every Tcl command results in a string. The word ``result'' is used -deliberatly. No result is just an empty string. Remember: @i{Rule #1 - -Everything is a string} - -@section Tcl Quoting Operators -In life of a Tcl script, there are two important periods of time, the -difference is subtle. -@enumerate -@item Parse Time -@item Evaluation Time -@end enumerate - -The two key items here are how ``quoted things'' work in Tcl. Tcl has -three primary quoting constructs, the [square-brackets] the -@{curly-braces@} and ``double-quotes'' - -By now you should know $VARIABLES always start with a $DOLLAR -sign. BTW: To set a variable, you actually use the command ``set'', as -in ``set VARNAME VALUE'' much like the ancient BASIC langauge ``let x -= 1'' statement, but without the equal sign. - -@itemize @bullet -@item @b{[square-brackets]} -@* @b{[square-brackets]} are command substitutions. It operates much -like Unix Shell `back-ticks`. The result of a [square-bracket] -operation is exactly 1 string. @i{Remember Rule #1 - Everything is a -string}. These two statements are roughly identical: -@example - # bash example - X=`date` - echo "The Date is: $X" - # Tcl example - set X [date] - puts "The Date is: $X" -@end example -@item @b{``double-quoted-things''} -@* @b{``double-quoted-things''} are just simply quoted -text. $VARIABLES and [square-brackets] are expanded in place - the -result however is exactly 1 string. @i{Remember Rule #1 - Everything -is a string} -@example - set x "Dinner" - puts "It is now \"[date]\", $x is in 1 hour" -@end example -@item @b{@{Curly-Braces@}} -@*@b{@{Curly-Braces@}} are magic: $VARIABLES and [square-brackets] are -parsed, but are NOT expanded or executed. @{Curly-Braces@} are like -'single-quote' operators in BASH shell scripts, with the added -feature: @{curly-braces@} can be nested, single quotes can not. @{@{@{this is -nested 3 times@}@}@} NOTE: [date] is a bad example; -at this writing, Jim/OpenOCD does not have a date command. -@end itemize - -@section Consequences of Rule 1/2/3/4 - -The consequences of Rule 1 are profound. - -@subsection Tokenisation & Execution. - -Of course, whitespace, blank lines and #comment lines are handled in -the normal way. - -As a script is parsed, each (multi) line in the script file is -tokenised and according to the quoting rules. After tokenisation, that -line is immedatly executed. - -Multi line statements end with one or more ``still-open'' -@{curly-braces@} which - eventually - closes a few lines later. - -@subsection Command Execution - -Remember earlier: There are no ``control flow'' -statements in Tcl. Instead there are COMMANDS that simply act like -control flow operators. - -Commands are executed like this: - -@enumerate -@item Parse the next line into (argc) and (argv[]). -@item Look up (argv[0]) in a table and call its function. -@item Repeat until End Of File. -@end enumerate - -It sort of works like this: -@example - for(;;)@{ - ReadAndParse( &argc, &argv ); - - cmdPtr = LookupCommand( argv[0] ); - - (*cmdPtr->Execute)( argc, argv ); - @} -@end example - -When the command ``proc'' is parsed (which creates a procedure -function) it gets 3 parameters on the command line. @b{1} the name of -the proc (function), @b{2} the list of parameters, and @b{3} the body -of the function. Not the choice of words: LIST and BODY. The PROC -command stores these items in a table somewhere so it can be found by -``LookupCommand()'' - -@subsection The FOR command - -The most interesting command to look at is the FOR command. In Tcl, -the FOR command is normally implemented in C. Remember, FOR is a -command just like any other command. - -When the ascii text containing the FOR command is parsed, the parser -produces 5 parameter strings, @i{(If in doubt: Refer to Rule #1)} they -are: - -@enumerate 0 -@item The ascii text 'for' -@item The start text -@item The test expression -@item The next text -@item The body text -@end enumerate - -Sort of reminds you of ``main( int argc, char **argv )'' does it not? -Remember @i{Rule #1 - Everything is a string.} The key point is this: -Often many of those parameters are in @{curly-braces@} - thus the -variables inside are not expanded or replaced until later. - -Remember that every Tcl command looks like the classic ``main( argc, -argv )'' function in C. In JimTCL - they actually look like this: - -@example -int -MyCommand( Jim_Interp *interp, - int *argc, - Jim_Obj * const *argvs ); -@end example - -Real Tcl is nearly identical. Although the newer versions have -introduced a byte-code parser and intepreter, but at the core, it -still operates in the same basic way. - -@subsection FOR command implementation - -To understand Tcl it is perhaps most helpful to see the FOR -command. Remember, it is a COMMAND not a control flow structure. - -In Tcl there are two underlying C helper functions. - -Remember Rule #1 - You are a string. - -The @b{first} helper parses and executes commands found in an ascii -string. Commands can be seperated by semicolons, or newlines. While -parsing, variables are expanded via the quoting rules. - -The @b{second} helper evaluates an ascii string as a numerical -expression and returns a value. - -Here is an example of how the @b{FOR} command could be -implemented. The pseudo code below does not show error handling. -@example -void Execute_AsciiString( void *interp, const char *string ); - -int Evaluate_AsciiExpression( void *interp, const char *string ); - -int -MyForCommand( void *interp, - int argc, - char **argv ) -@{ - if( argc != 5 )@{ - SetResult( interp, "WRONG number of parameters"); - return ERROR; - @} - - // argv[0] = the ascii string just like C - - // Execute the start statement. - Execute_AsciiString( interp, argv[1] ); - - // Top of loop test - for(;;)@{ - i = Evaluate_AsciiExpression(interp, argv[2]); - if( i == 0 ) - break; - - // Execute the body - Execute_AsciiString( interp, argv[3] ); - - // Execute the LOOP part - Execute_AsciiString( interp, argv[4] ); - @} - - // Return no error - SetResult( interp, "" ); - return SUCCESS; -@} -@end example - -Every other command IF, WHILE, FORMAT, PUTS, EXPR, everything works -in the same basic way. - -@section OpenOCD Tcl Usage - -@subsection source and find commands -@b{Where:} In many configuration files -@* Example: @b{ source [find FILENAME] } -@*Remember the parsing rules -@enumerate -@item The @command{find} command is in square brackets, -and is executed with the parameter FILENAME. It should find and return -the full path to a file with that name; it uses an internal search path. -The RESULT is a string, which is substituted into the command line in -place of the bracketed @command{find} command. -(Don't try to use a FILENAME which includes the "#" character. -That character begins Tcl comments.) -@item The @command{source} command is executed with the resulting filename; -it reads a file and executes as a script. -@end enumerate -@subsection format command -@b{Where:} Generally occurs in numerous places. -@* Tcl has no command like @b{printf()}, instead it has @b{format}, which is really more like -@b{sprintf()}. -@b{Example} -@example - set x 6 - set y 7 - puts [format "The answer: %d" [expr $x * $y]] -@end example -@enumerate -@item The SET command creates 2 variables, X and Y. -@item The double [nested] EXPR command performs math -@* The EXPR command produces numerical result as a string. -@* Refer to Rule #1 -@item The format command is executed, producing a single string -@* Refer to Rule #1. -@item The PUTS command outputs the text. -@end enumerate -@subsection Body or Inlined Text -@b{Where:} Various TARGET scripts. -@example -#1 Good - proc someproc @{@} @{ - ... multiple lines of stuff ... - @} - $_TARGETNAME configure -event FOO someproc -#2 Good - no variables - $_TARGETNAME confgure -event foo "this ; that;" -#3 Good Curly Braces - $_TARGETNAME configure -event FOO @{ - puts "Time: [date]" - @} -#4 DANGER DANGER DANGER - $_TARGETNAME configure -event foo "puts \"Time: [date]\"" -@end example -@enumerate -@item The $_TARGETNAME is an OpenOCD variable convention. -@*@b{$_TARGETNAME} represents the last target created, the value changes -each time a new target is created. Remember the parsing rules. When -the ascii text is parsed, the @b{$_TARGETNAME} becomes a simple string, -the name of the target which happens to be a TARGET (object) -command. -@item The 2nd parameter to the @option{-event} parameter is a TCBODY -@*There are 4 examples: -@enumerate -@item The TCLBODY is a simple string that happens to be a proc name -@item The TCLBODY is several simple commands seperated by semicolons -@item The TCLBODY is a multi-line @{curly-brace@} quoted string -@item The TCLBODY is a string with variables that get expanded. -@end enumerate - -In the end, when the target event FOO occurs the TCLBODY is -evaluated. Method @b{#1} and @b{#2} are functionally identical. For -Method @b{#3} and @b{#4} it is more interesting. What is the TCLBODY? - -Remember the parsing rules. In case #3, @{curly-braces@} mean the -$VARS and [square-brackets] are expanded later, when the EVENT occurs, -and the text is evaluated. In case #4, they are replaced before the -``Target Object Command'' is executed. This occurs at the same time -$_TARGETNAME is replaced. In case #4 the date will never -change. @{BTW: [date] is a bad example; at this writing, -Jim/OpenOCD does not have a date command@} -@end enumerate -@subsection Global Variables -@b{Where:} You might discover this when writing your own procs @* In -simple terms: Inside a PROC, if you need to access a global variable -you must say so. See also ``upvar''. Example: -@example -proc myproc @{ @} @{ - set y 0 #Local variable Y - global x #Global variable X - puts [format "X=%d, Y=%d" $x $y] -@} -@end example -@section Other Tcl Hacks -@b{Dynamic variable creation} -@example -# Dynamically create a bunch of variables. -for @{ set x 0 @} @{ $x < 32 @} @{ set x [expr $x + 1]@} @{ - # Create var name - set vn [format "BIT%d" $x] - # Make it a global - global $vn - # Set it. - set $vn [expr (1 << $x)] -@} -@end example -@b{Dynamic proc/command creation} -@example -# One "X" function - 5 uart functions. -foreach who @{A B C D E@} - proc [format "show_uart%c" $who] @{ @} "show_UARTx $who" -@} -@end example - -@include fdl.texi - -@node OpenOCD Concept Index -@comment DO NOT use the plain word ``Index'', reason: CYGWIN filename -@comment case issue with ``Index.html'' and ``index.html'' -@comment Occurs when creating ``--html --no-split'' output -@comment This fix is based on: http://sourceware.org/ml/binutils/2006-05/msg00215.html -@unnumbered OpenOCD Concept Index - -@printindex cp - -@node Command and Driver Index -@unnumbered Command and Driver Index -@printindex fn - -@bye |