1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
|
// See LICENSE for license details.
#include "mmu.h"
#include "arith.h"
#include "simif.h"
#include "processor.h"
mmu_t::mmu_t(simif_t* sim, processor_t* proc)
: sim(sim), proc(proc),
#ifdef RISCV_ENABLE_DUAL_ENDIAN
target_big_endian(false),
#endif
check_triggers_fetch(false),
check_triggers_load(false),
check_triggers_store(false),
matched_trigger(NULL)
{
flush_tlb();
yield_load_reservation();
}
mmu_t::~mmu_t()
{
}
void mmu_t::flush_icache()
{
for (size_t i = 0; i < ICACHE_ENTRIES; i++)
icache[i].tag = -1;
}
void mmu_t::flush_tlb()
{
memset(tlb_insn_tag, -1, sizeof(tlb_insn_tag));
memset(tlb_load_tag, -1, sizeof(tlb_load_tag));
memset(tlb_store_tag, -1, sizeof(tlb_store_tag));
flush_icache();
}
static void throw_access_exception(bool virt, reg_t addr, access_type type)
{
switch (type) {
case FETCH: throw trap_instruction_access_fault(virt, addr, 0, 0);
case LOAD: throw trap_load_access_fault(virt, addr, 0, 0);
case STORE: throw trap_store_access_fault(virt, addr, 0, 0);
default: abort();
}
}
reg_t mmu_t::translate(reg_t addr, reg_t len, access_type type, uint32_t xlate_flags)
{
if (!proc)
return addr;
bool virt = (proc) ? proc->state.v : false;
bool hlvx = xlate_flags & RISCV_XLATE_VIRT_HLVX;
reg_t mode = proc->state.prv;
if (type != FETCH) {
if (!proc->state.debug_mode && get_field(proc->state.mstatus, MSTATUS_MPRV)) {
mode = get_field(proc->state.mstatus, MSTATUS_MPP);
if (get_field(proc->state.mstatus, MSTATUS_MPV) && mode != PRV_M)
virt = true;
}
if (xlate_flags & RISCV_XLATE_VIRT) {
virt = true;
mode = get_field(proc->state.hstatus, HSTATUS_SPVP);
}
}
reg_t paddr = walk(addr, type, mode, virt, hlvx) | (addr & (PGSIZE-1));
if (!pmp_ok(paddr, len, type, mode))
throw_access_exception(virt, addr, type);
return paddr;
}
tlb_entry_t mmu_t::fetch_slow_path(reg_t vaddr)
{
reg_t paddr = translate(vaddr, sizeof(fetch_temp), FETCH, 0);
if (auto host_addr = sim->addr_to_mem(paddr)) {
return refill_tlb(vaddr, paddr, host_addr, FETCH);
} else {
if (!mmio_load(paddr, sizeof fetch_temp, (uint8_t*)&fetch_temp))
throw trap_instruction_access_fault(proc->state.v, vaddr, 0, 0);
tlb_entry_t entry = {(char*)&fetch_temp - vaddr, paddr - vaddr};
return entry;
}
}
reg_t reg_from_bytes(size_t len, const uint8_t* bytes)
{
switch (len) {
case 1:
return bytes[0];
case 2:
return bytes[0] |
(((reg_t) bytes[1]) << 8);
case 4:
return bytes[0] |
(((reg_t) bytes[1]) << 8) |
(((reg_t) bytes[2]) << 16) |
(((reg_t) bytes[3]) << 24);
case 8:
return bytes[0] |
(((reg_t) bytes[1]) << 8) |
(((reg_t) bytes[2]) << 16) |
(((reg_t) bytes[3]) << 24) |
(((reg_t) bytes[4]) << 32) |
(((reg_t) bytes[5]) << 40) |
(((reg_t) bytes[6]) << 48) |
(((reg_t) bytes[7]) << 56);
}
abort();
}
bool mmu_t::mmio_ok(reg_t addr, access_type type)
{
// Disallow access to debug region when not in debug mode
if (addr >= DEBUG_START && addr <= DEBUG_END && proc && !proc->state.debug_mode)
return false;
return true;
}
bool mmu_t::mmio_load(reg_t addr, size_t len, uint8_t* bytes)
{
if (!mmio_ok(addr, LOAD))
return false;
return sim->mmio_load(addr, len, bytes);
}
bool mmu_t::mmio_store(reg_t addr, size_t len, const uint8_t* bytes)
{
if (!mmio_ok(addr, STORE))
return false;
return sim->mmio_store(addr, len, bytes);
}
void mmu_t::load_slow_path(reg_t addr, reg_t len, uint8_t* bytes, uint32_t xlate_flags)
{
reg_t paddr = translate(addr, len, LOAD, xlate_flags);
if (auto host_addr = sim->addr_to_mem(paddr)) {
memcpy(bytes, host_addr, len);
if (tracer.interested_in_range(paddr, paddr + PGSIZE, LOAD))
tracer.trace(paddr, len, LOAD);
else if (xlate_flags == 0)
refill_tlb(addr, paddr, host_addr, LOAD);
} else if (!mmio_load(paddr, len, bytes)) {
throw trap_load_access_fault((proc) ? proc->state.v : false, addr, 0, 0);
}
if (!matched_trigger) {
reg_t data = reg_from_bytes(len, bytes);
matched_trigger = trigger_exception(OPERATION_LOAD, addr, data);
if (matched_trigger)
throw *matched_trigger;
}
}
void mmu_t::store_slow_path(reg_t addr, reg_t len, const uint8_t* bytes, uint32_t xlate_flags)
{
reg_t paddr = translate(addr, len, STORE, xlate_flags);
if (!matched_trigger) {
reg_t data = reg_from_bytes(len, bytes);
matched_trigger = trigger_exception(OPERATION_STORE, addr, data);
if (matched_trigger)
throw *matched_trigger;
}
if (auto host_addr = sim->addr_to_mem(paddr)) {
memcpy(host_addr, bytes, len);
if (tracer.interested_in_range(paddr, paddr + PGSIZE, STORE))
tracer.trace(paddr, len, STORE);
else if (xlate_flags == 0)
refill_tlb(addr, paddr, host_addr, STORE);
} else if (!mmio_store(paddr, len, bytes)) {
throw trap_store_access_fault((proc) ? proc->state.v : false, addr, 0, 0);
}
}
tlb_entry_t mmu_t::refill_tlb(reg_t vaddr, reg_t paddr, char* host_addr, access_type type)
{
reg_t idx = (vaddr >> PGSHIFT) % TLB_ENTRIES;
reg_t expected_tag = vaddr >> PGSHIFT;
tlb_entry_t entry = {host_addr - vaddr, paddr - vaddr};
if (proc && get_field(proc->state.mstatus, MSTATUS_MPRV))
return entry;
if ((tlb_load_tag[idx] & ~TLB_CHECK_TRIGGERS) != expected_tag)
tlb_load_tag[idx] = -1;
if ((tlb_store_tag[idx] & ~TLB_CHECK_TRIGGERS) != expected_tag)
tlb_store_tag[idx] = -1;
if ((tlb_insn_tag[idx] & ~TLB_CHECK_TRIGGERS) != expected_tag)
tlb_insn_tag[idx] = -1;
if ((check_triggers_fetch && type == FETCH) ||
(check_triggers_load && type == LOAD) ||
(check_triggers_store && type == STORE))
expected_tag |= TLB_CHECK_TRIGGERS;
if (pmp_homogeneous(paddr & ~reg_t(PGSIZE - 1), PGSIZE)) {
if (type == FETCH) tlb_insn_tag[idx] = expected_tag;
else if (type == STORE) tlb_store_tag[idx] = expected_tag;
else tlb_load_tag[idx] = expected_tag;
}
tlb_data[idx] = entry;
return entry;
}
reg_t mmu_t::pmp_ok(reg_t addr, reg_t len, access_type type, reg_t mode)
{
if (!proc || proc->n_pmp == 0)
return true;
reg_t base = 0;
for (size_t i = 0; i < proc->n_pmp; i++) {
reg_t tor = (proc->state.pmpaddr[i] & proc->pmp_tor_mask()) << PMP_SHIFT;
uint8_t cfg = proc->state.pmpcfg[i];
if (cfg & PMP_A) {
bool is_tor = (cfg & PMP_A) == PMP_TOR;
bool is_na4 = (cfg & PMP_A) == PMP_NA4;
reg_t mask = (proc->state.pmpaddr[i] << 1) | (!is_na4) | ~proc->pmp_tor_mask();
mask = ~(mask & ~(mask + 1)) << PMP_SHIFT;
// Check each 4-byte sector of the access
bool any_match = false;
bool all_match = true;
for (reg_t offset = 0; offset < len; offset += 1 << PMP_SHIFT) {
reg_t cur_addr = addr + offset;
bool napot_match = ((cur_addr ^ tor) & mask) == 0;
bool tor_match = base <= cur_addr && cur_addr < tor;
bool match = is_tor ? tor_match : napot_match;
any_match |= match;
all_match &= match;
}
if (any_match) {
// If the PMP matches only a strict subset of the access, fail it
if (!all_match)
return false;
return
(mode == PRV_M && !(cfg & PMP_L)) ||
(type == LOAD && (cfg & PMP_R)) ||
(type == STORE && (cfg & PMP_W)) ||
(type == FETCH && (cfg & PMP_X));
}
}
base = tor;
}
return mode == PRV_M;
}
reg_t mmu_t::pmp_homogeneous(reg_t addr, reg_t len)
{
if ((addr | len) & (len - 1))
abort();
if (!proc)
return true;
reg_t base = 0;
for (size_t i = 0; i < proc->n_pmp; i++) {
reg_t tor = (proc->state.pmpaddr[i] & proc->pmp_tor_mask()) << PMP_SHIFT;
uint8_t cfg = proc->state.pmpcfg[i];
if (cfg & PMP_A) {
bool is_tor = (cfg & PMP_A) == PMP_TOR;
bool is_na4 = (cfg & PMP_A) == PMP_NA4;
bool begins_after_lower = addr >= base;
bool begins_after_upper = addr >= tor;
bool ends_before_lower = (addr & -len) < (base & -len);
bool ends_before_upper = (addr & -len) < (tor & -len);
bool tor_homogeneous = ends_before_lower || begins_after_upper ||
(begins_after_lower && ends_before_upper);
reg_t mask = (proc->state.pmpaddr[i] << 1) | (!is_na4) | ~proc->pmp_tor_mask();
mask = ~(mask & ~(mask + 1)) << PMP_SHIFT;
bool mask_homogeneous = ~(mask << 1) & len;
bool napot_homogeneous = mask_homogeneous || ((addr ^ tor) / len) != 0;
if (!(is_tor ? tor_homogeneous : napot_homogeneous))
return false;
}
base = tor;
}
return true;
}
reg_t mmu_t::s2xlate(reg_t gva, reg_t gpa, access_type type, access_type trap_type, bool virt, bool hlvx)
{
if (!virt)
return gpa;
vm_info vm = decode_vm_info(proc->max_xlen, true, 0, proc->get_state()->hgatp);
if (vm.levels == 0)
return gpa;
bool mxr = proc->state.mstatus & MSTATUS_MXR;
reg_t base = vm.ptbase;
for (int i = vm.levels - 1; i >= 0; i--) {
int ptshift = i * vm.idxbits;
int idxbits = (i == (vm.levels - 1)) ? vm.idxbits + vm.widenbits : vm.idxbits;
reg_t idx = (gpa >> (PGSHIFT + ptshift)) & ((reg_t(1) << idxbits) - 1);
// check that physical address of PTE is legal
auto pte_paddr = base + idx * vm.ptesize;
auto ppte = sim->addr_to_mem(pte_paddr);
if (!ppte || !pmp_ok(pte_paddr, vm.ptesize, LOAD, PRV_S)) {
throw_access_exception(virt, gva, trap_type);
}
reg_t pte = vm.ptesize == 4 ? from_target(*(target_endian<uint32_t>*)ppte) : from_target(*(target_endian<uint64_t>*)ppte);
reg_t ppn = (pte & ~reg_t(PTE_ATTR)) >> PTE_PPN_SHIFT;
if (pte & PTE_RSVD) {
break;
} else if (PTE_TABLE(pte)) { // next level of page table
if (pte & (PTE_D | PTE_A | PTE_U | PTE_N | PTE_PBMT))
break;
base = ppn << PGSHIFT;
} else if (!(pte & PTE_V) || (!(pte & PTE_R) && (pte & PTE_W))) {
break;
} else if (!(pte & PTE_U)) {
break;
} else if (type == FETCH || hlvx ? !(pte & PTE_X) :
type == LOAD ? !(pte & PTE_R) && !(mxr && (pte & PTE_X)) :
!((pte & PTE_R) && (pte & PTE_W))) {
break;
} else if ((ppn & ((reg_t(1) << ptshift) - 1)) != 0) {
break;
} else {
reg_t ad = PTE_A | ((type == STORE) * PTE_D);
#ifdef RISCV_ENABLE_DIRTY
// set accessed and possibly dirty bits.
if ((pte & ad) != ad) {
if (!pmp_ok(pte_paddr, vm.ptesize, STORE, PRV_S))
throw_access_exception(virt, gva, trap_type);
*(target_endian<uint32_t>*)ppte |= to_target((uint32_t)ad);
}
#else
// take exception if access or possibly dirty bit is not set.
if ((pte & ad) != ad)
break;
#endif
reg_t vpn = gpa >> PGSHIFT;
reg_t page_mask = (reg_t(1) << PGSHIFT) - 1;
int napot_bits = ((pte & PTE_N) ? (ctz(ppn) + 1) : 0);
if (((pte & PTE_N) && (ppn == 0 || i != 0)) || (napot_bits != 0 && napot_bits != 4))
break;
reg_t page_base = ((ppn & ~((reg_t(1) << napot_bits) - 1))
| (vpn & ((reg_t(1) << napot_bits) - 1))
| (vpn & ((reg_t(1) << ptshift) - 1))) << PGSHIFT;
return page_base | (gpa & page_mask);
}
}
switch (trap_type) {
case FETCH: throw trap_instruction_guest_page_fault(gva, gpa >> 2, 0);
case LOAD: throw trap_load_guest_page_fault(gva, gpa >> 2, 0);
case STORE: throw trap_store_guest_page_fault(gva, gpa >> 2, 0);
default: abort();
}
}
reg_t mmu_t::walk(reg_t addr, access_type type, reg_t mode, bool virt, bool hlvx)
{
reg_t page_mask = (reg_t(1) << PGSHIFT) - 1;
reg_t satp = (virt) ? proc->get_state()->vsatp : proc->get_state()->satp;
vm_info vm = decode_vm_info(proc->max_xlen, false, mode, satp);
if (vm.levels == 0)
return s2xlate(addr, addr & ((reg_t(2) << (proc->xlen-1))-1), type, type, virt, hlvx) & ~page_mask; // zero-extend from xlen
bool s_mode = mode == PRV_S;
bool sum = (virt ? proc->state.vsstatus : proc->state.mstatus) & MSTATUS_SUM;
bool mxr = (proc->state.mstatus | (virt ? proc->state.vsstatus : 0)) & MSTATUS_MXR;
// verify bits xlen-1:va_bits-1 are all equal
int va_bits = PGSHIFT + vm.levels * vm.idxbits;
reg_t mask = (reg_t(1) << (proc->xlen - (va_bits-1))) - 1;
reg_t masked_msbs = (addr >> (va_bits-1)) & mask;
if (masked_msbs != 0 && masked_msbs != mask)
vm.levels = 0;
reg_t base = vm.ptbase;
for (int i = vm.levels - 1; i >= 0; i--) {
int ptshift = i * vm.idxbits;
reg_t idx = (addr >> (PGSHIFT + ptshift)) & ((1 << vm.idxbits) - 1);
// check that physical address of PTE is legal
auto pte_paddr = s2xlate(addr, base + idx * vm.ptesize, LOAD, type, virt, false);
auto ppte = sim->addr_to_mem(pte_paddr);
if (!ppte || !pmp_ok(pte_paddr, vm.ptesize, LOAD, PRV_S))
throw_access_exception(virt, addr, type);
reg_t pte = vm.ptesize == 4 ? from_target(*(target_endian<uint32_t>*)ppte) : from_target(*(target_endian<uint64_t>*)ppte);
reg_t ppn = (pte & ~reg_t(PTE_ATTR)) >> PTE_PPN_SHIFT;
if (pte & PTE_RSVD) {
break;
} else if (PTE_TABLE(pte)) { // next level of page table
if (pte & (PTE_D | PTE_A | PTE_U | PTE_N | PTE_PBMT))
break;
base = ppn << PGSHIFT;
} else if ((pte & PTE_U) ? s_mode && (type == FETCH || !sum) : !s_mode) {
break;
} else if (!(pte & PTE_V) || (!(pte & PTE_R) && (pte & PTE_W))) {
break;
} else if (type == FETCH || hlvx ? !(pte & PTE_X) :
type == LOAD ? !(pte & PTE_R) && !(mxr && (pte & PTE_X)) :
!((pte & PTE_R) && (pte & PTE_W))) {
break;
} else if ((ppn & ((reg_t(1) << ptshift) - 1)) != 0) {
break;
} else {
reg_t ad = PTE_A | ((type == STORE) * PTE_D);
#ifdef RISCV_ENABLE_DIRTY
// set accessed and possibly dirty bits.
if ((pte & ad) != ad) {
if (!pmp_ok(pte_paddr, vm.ptesize, STORE, PRV_S))
throw_access_exception(virt, addr, type);
*(target_endian<uint32_t>*)ppte |= to_target((uint32_t)ad);
}
#else
// take exception if access or possibly dirty bit is not set.
if ((pte & ad) != ad)
break;
#endif
// for superpage or Svnapot NAPOT mappings, make a fake leaf PTE for the TLB's benefit.
reg_t vpn = addr >> PGSHIFT;
int napot_bits = ((pte & PTE_N) ? (ctz(ppn) + 1) : 0);
if (((pte & PTE_N) && (ppn == 0 || i != 0)) || (napot_bits != 0 && napot_bits != 4))
break;
reg_t page_base = ((ppn & ~((reg_t(1) << napot_bits) - 1))
| (vpn & ((reg_t(1) << napot_bits) - 1))
| (vpn & ((reg_t(1) << ptshift) - 1))) << PGSHIFT;
reg_t phys = page_base | (addr & page_mask);
return s2xlate(addr, phys, type, type, virt, hlvx) & ~page_mask;
}
}
switch (type) {
case FETCH: throw trap_instruction_page_fault(virt, addr, 0, 0);
case LOAD: throw trap_load_page_fault(virt, addr, 0, 0);
case STORE: throw trap_store_page_fault(virt, addr, 0, 0);
default: abort();
}
}
void mmu_t::register_memtracer(memtracer_t* t)
{
flush_tlb();
tracer.hook(t);
}
|