1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
|
// SPDX-License-Identifier: Apache-2.0
/*
* Service Processor serial console handling code
*
* Copyright 2013-2019 IBM Corp.
*/
#include <io.h>
#include <psi.h>
#include <fsp.h>
#include <opal.h>
#include <interrupts.h>
#include <cpu.h>
#include <dio-p9.h>
#include <trace.h>
#include <xscom.h>
#include <chip.h>
#include <lpc.h>
#include <i2c.h>
#include <timebase.h>
#include <platform.h>
#include <errorlog.h>
#include <xive.h>
#include <sbe-p9.h>
#include <phys-map.h>
#include <occ.h>
static LIST_HEAD(psis);
static u64 psi_link_timer;
static u64 psi_link_timeout;
static bool psi_link_poll_active;
static void psi_activate_phb(struct psi *psi);
struct lock psi_lock = LOCK_UNLOCKED;
DEFINE_LOG_ENTRY(OPAL_RC_PSI_TIMEOUT, OPAL_PLATFORM_ERR_EVT, OPAL_PSI,
OPAL_PLATFORM_FIRMWARE,
OPAL_UNRECOVERABLE_ERR_LOSS_OF_FUNCTION, OPAL_NA);
void psi_set_link_polling(bool active)
{
printf("PSI: %sing link polling\n",
active ? "start" : "stopp");
psi_link_poll_active = active;
}
void psi_disable_link(struct psi *psi)
{
lock(&psi_lock);
/*
* Note: This can be called with the link already down but
* not detected as such yet by this layer since psi_check_link_active()
* operates locklessly and thus won't update the PSI structure. This
* is a non-issue, the only consequence is the messages in the log
* mentioning first the link having gone down then being disabled.
*/
if (psi->active) {
u64 reg;
psi->active = false;
/* Mask errors in SEMR */
reg = in_be64(psi->regs + PSIHB_SEMR);
reg &= ((0xfffull << 36) | (0xfffull << 20));
out_be64(psi->regs + PSIHB_SEMR, reg);
printf("PSI: SEMR set to %llx\n", reg);
/* Reset all the error bits in PSIHB_CR and
* disable FSP interrupts
*/
reg = in_be64(psi->regs + PSIHB_CR);
reg &= ~(0x7ffull << 20);
reg &= ~PSIHB_CR_PSI_LINK_ENABLE; /* flip link enable */
/*
* Ensure no commands/spurious interrupts reach
* the processor, by flipping the command enable.
*/
reg &= ~PSIHB_CR_FSP_CMD_ENABLE;
reg &= ~PSIHB_CR_FSP_IRQ_ENABLE;
reg &= ~PSIHB_CR_FSP_IRQ; /* Clear interrupt state too */
printf("PSI[0x%03x]: Disabling link!\n", psi->chip_id);
out_be64(psi->regs + PSIHB_CR, reg);
printf("PSI: PSIHB_CR (error bits) set to %llx\n",
in_be64(psi->regs + PSIHB_CR));
psi_set_link_polling(true);
}
unlock(&psi_lock);
}
/*
* Resetting the FSP is a multi step sequence:
* 1. Read the PSIHBCR
* 2. Set the PSIHBCR[6] -- write register back.
* 3. Read PSIHBCR again
* 4. Reset PSIHBCR[6] -- write register back.
*/
void psi_reset_fsp(struct psi *psi)
{
lock(&psi_lock);
if (psi->active) {
u64 reg;
printf("PSI: Driving FSP reset via PSI\n");
reg = in_be64(psi->regs + PSIHB_CR);
reg &= ~(0xfffull << 20); /* Reset error bits */
reg |= PSIHB_CR_FSP_RESET; /* FSP reset trigger start */
out_be64(psi->regs + PSIHB_CR, reg);
printf("PSI[0x%03x]: FSP reset start PSIHBCR set to %llx\n",
psi->chip_id, in_be64(psi->regs + PSIHB_CR));
reg = in_be64(psi->regs + PSIHB_CR);
reg &= ~PSIHB_CR_FSP_RESET; /* Clear FSP reset bit */
out_be64(psi->regs + PSIHB_CR, reg); /* Complete reset */
printf("PSI[0x%03x]: FSP reset complete. PSIHBCR set to %llx\n",
psi->chip_id, in_be64(psi->regs + PSIHB_CR));
}
unlock(&psi_lock);
/* Now bring down the PSI link too... */
psi_disable_link(psi);
}
bool psi_check_link_active(struct psi *psi)
{
u64 val = in_be64(psi->regs + PSIHB_CR);
/*
* Unlocked, used during fsp_poke_msg so we really want
* to avoid fancy link re-entrancy and deadlocks here
*/
if (!psi->active)
return false;
return (val & PSIHB_CR_PSI_LINK_ENABLE) &&
(val & PSIHB_CR_FSP_LINK_ACTIVE);
}
struct psi *psi_find_link(uint32_t chip_id)
{
struct psi *psi;
list_for_each(&psis, psi, list) {
if (psi->chip_id == chip_id)
return psi;
}
return NULL;
}
#define PSI_LINK_CHECK_INTERVAL 10 /* Interval in secs */
#define PSI_LINK_RECOVERY_TIMEOUT 1800 /* 30 minutes */
static void psi_link_poll(void *data __unused)
{
struct psi *psi;
u64 now;
if (!psi_link_poll_active)
return;
now = mftb();
if (psi_link_timer == 0 ||
(tb_compare(now, psi_link_timer) == TB_AAFTERB) ||
(tb_compare(now, psi_link_timer) == TB_AEQUALB)) {
lock(&psi_lock);
list_for_each(&psis, psi, list) {
u64 val;
if (psi->active)
continue;
val = in_be64(psi->regs + PSIHB_CR);
printf("PSI[0x%03x]: Poll CR=0x%016llx\n",
psi->chip_id, val);
if ((val & PSIHB_CR_PSI_LINK_ENABLE) &&
(val & PSIHB_CR_FSP_LINK_ACTIVE)) {
printf("PSI[0x%03x]: Found active link!\n",
psi->chip_id);
psi_link_timeout = 0;
psi->active = true;
psi_activate_phb(psi);
psi_set_link_polling(false);
unlock(&psi_lock);
if (platform.psi && platform.psi->link_established)
platform.psi->link_established();
return;
}
}
if (!psi_link_timeout)
psi_link_timeout =
now + secs_to_tb(PSI_LINK_RECOVERY_TIMEOUT);
if (tb_compare(now, psi_link_timeout) == TB_AAFTERB) {
log_simple_error(&e_info(OPAL_RC_PSI_TIMEOUT),
"PSI: Link timeout -- loss of FSP\n");
/* Reset the link timeout and continue looking */
psi_link_timeout = 0;
}
/* Poll every 10 seconds */
psi_link_timer = now + secs_to_tb(PSI_LINK_CHECK_INTERVAL);
unlock(&psi_lock);
}
}
void psi_enable_fsp_interrupt(struct psi *psi)
{
/* Enable FSP interrupts in the GXHB */
lock(&psi_lock);
out_be64(psi->regs + PSIHB_CR,
in_be64(psi->regs + PSIHB_CR) | PSIHB_CR_FSP_IRQ_ENABLE);
unlock(&psi_lock);
}
/* Multiple bits can be set on errors */
static void decode_psihb_error(u64 val)
{
if (val & PSIHB_CR_PSI_ERROR)
printf("PSI: PSI Reported Error\n");
if (val & PSIHB_CR_PSI_LINK_INACTIVE)
printf("PSI: PSI Link Inactive Transition\n");
if (val & PSIHB_CR_FSP_ACK_TIMEOUT)
printf("PSI: FSP Ack Timeout\n");
if (val & PSIHB_CR_MMIO_LOAD_TIMEOUT)
printf("PSI: MMIO Load Timeout\n");
if (val & PSIHB_CR_MMIO_LENGTH_ERROR)
printf("PSI: MMIO Length Error\n");
if (val & PSIHB_CR_MMIO_ADDRESS_ERROR)
printf("PSI: MMIO Address Error\n");
if (val & PSIHB_CR_MMIO_TYPE_ERROR)
printf("PSI: MMIO Type Error\n");
if (val & PSIHB_CR_UE)
printf("PSI: UE Detected\n");
if (val & PSIHB_CR_PARITY_ERROR)
printf("PSI: Internal Parity Error\n");
if (val & PSIHB_CR_SYNC_ERR_ALERT1)
printf("PSI: Sync Error Alert1\n");
if (val & PSIHB_CR_SYNC_ERR_ALERT2)
printf("PSI: Sync Error Alert2\n");
if (val & PSIHB_CR_FSP_COMMAND_ERROR)
printf("PSI: FSP Command Error\n");
}
static void handle_psi_interrupt(struct psi *psi, u64 val)
{
printf("PSI[0x%03x]: PSI mgmnt interrupt CR=0x%016llx\n",
psi->chip_id, val);
if (val & (0xfffull << 20)) {
decode_psihb_error(val);
psi_disable_link(psi);
} else if (val & (0x1full << 11))
printf("PSI: FSP error detected\n");
}
static void psi_spurious_fsp_irq(struct psi *psi)
{
u64 reg, bit;
prerror("PSI: Spurious interrupt, attempting clear\n");
if (proc_gen == proc_gen_p9) {
reg = PSIHB_XSCOM_P9_HBCSR_CLR;
bit = PSIHB_XSCOM_P9_HBSCR_FSP_IRQ;
} else if (proc_gen == proc_gen_p8) {
reg = PSIHB_XSCOM_P8_HBCSR_CLR;
bit = PSIHB_XSCOM_P8_HBSCR_FSP_IRQ;
} else {
assert(false);
}
xscom_write(psi->chip_id, psi->xscom_base + reg, bit);
}
bool psi_poll_fsp_interrupt(struct psi *psi)
{
return !!(in_be64(psi->regs + PSIHB_CR) & PSIHB_CR_FSP_IRQ);
}
static void psihb_interrupt(struct irq_source *is, uint32_t isn __unused)
{
struct psi *psi = is->data;
u64 val;
val = in_be64(psi->regs + PSIHB_CR);
if (psi_link_poll_active) {
printf("PSI[0x%03x]: PSI interrupt CR=0x%016llx (A=%d)\n",
psi->chip_id, val, psi->active);
}
/* Handle PSI interrupts first in case it's a link down */
if (val & PSIHB_CR_PSI_IRQ) {
handle_psi_interrupt(psi, val);
/*
* If the link went down, re-read PSIHB_CR as
* the FSP interrupt might have been cleared.
*/
if (!psi->active)
val = in_be64(psi->regs + PSIHB_CR);
}
/*
* We avoid forwarding FSP interrupts if the link isn't
* active. They should be masked anyway but it looks
* like the CR bit can remain set.
*/
if (val & PSIHB_CR_FSP_IRQ) {
/*
* We have a case a flood with FSP mailbox interrupts
* when the link is down, see if we manage to clear
* the condition
*/
if (!psi->active)
psi_spurious_fsp_irq(psi);
else {
if (platform.psi && platform.psi->fsp_interrupt)
platform.psi->fsp_interrupt();
}
}
if (platform.psi && platform.psi->psihb_interrupt)
platform.psi->psihb_interrupt();
}
static const uint32_t psi_p8_irq_to_xivr[P8_IRQ_PSI_IRQ_COUNT] = {
[P8_IRQ_PSI_FSP] = PSIHB_XIVR_FSP,
[P8_IRQ_PSI_OCC] = PSIHB_XIVR_OCC,
[P8_IRQ_PSI_FSI] = PSIHB_XIVR_FSI,
[P8_IRQ_PSI_LPC] = PSIHB_XIVR_LPC,
[P8_IRQ_PSI_LOCAL_ERR] = PSIHB_XIVR_LOCAL_ERR,
[P8_IRQ_PSI_EXTERNAL]= PSIHB_XIVR_HOST_ERR,
};
static void psi_cleanup_irq(struct psi *psi)
{
uint32_t irq;
uint64_t xivr, xivr_p;
for (irq = 0; irq < P8_IRQ_PSI_IRQ_COUNT; irq++) {
prlog(PR_DEBUG, "PSI[0x%03x]: Cleaning up IRQ %d\n",
psi->chip_id, irq);
xivr_p = psi_p8_irq_to_xivr[irq];
xivr = in_be64(psi->regs + xivr_p);
xivr |= (0xffull << 32);
out_be64(psi->regs + xivr_p, xivr);
time_wait_ms_nopoll(10);
xivr = in_be64(psi->regs + xivr_p);
if (xivr & PPC_BIT(39)) {
printf(" Need EOI !\n");
icp_send_eoi(psi->interrupt + irq);
}
}
}
/* Called on a fast reset, make sure we aren't stuck with
* an accepted and never EOId PSI interrupt
*/
void psi_irq_reset(void)
{
struct psi *psi;
printf("PSI: Hot reset!\n");
assert(proc_gen == proc_gen_p8);
list_for_each(&psis, psi, list) {
psi_cleanup_irq(psi);
}
}
static int64_t psi_p8_set_xive(struct irq_source *is, uint32_t isn,
uint16_t server, uint8_t priority)
{
struct psi *psi = is->data;
uint64_t xivr_p, xivr;
uint32_t irq_idx = isn & 7;
if (irq_idx >= P8_IRQ_PSI_IRQ_COUNT)
return OPAL_PARAMETER;
xivr_p = psi_p8_irq_to_xivr[irq_idx];
/* Populate the XIVR */
xivr = (uint64_t)server << 40;
xivr |= (uint64_t)priority << 32;
xivr |= (uint64_t)(isn & 7) << 29;
out_be64(psi->regs + xivr_p, xivr);
return OPAL_SUCCESS;
}
static int64_t psi_p8_get_xive(struct irq_source *is, uint32_t isn __unused,
uint16_t *server, uint8_t *priority)
{
struct psi *psi = is->data;
uint64_t xivr_p, xivr;
uint32_t irq_idx = isn & 7;
if (irq_idx >= P8_IRQ_PSI_IRQ_COUNT)
return OPAL_PARAMETER;
xivr_p = psi_p8_irq_to_xivr[irq_idx];
/* Read & decode the XIVR */
xivr = in_be64(psi->regs + xivr_p);
*server = (xivr >> 40) & 0xffff;
*priority = (xivr >> 32) & 0xff;
return OPAL_SUCCESS;
}
static void psihb_p8_interrupt(struct irq_source *is, uint32_t isn)
{
struct psi *psi = is->data;
uint32_t idx = isn - psi->interrupt;
switch (idx) {
case P8_IRQ_PSI_FSP:
psihb_interrupt(is, isn);
break;
case P8_IRQ_PSI_OCC:
occ_p8_interrupt(psi->chip_id);
break;
case P8_IRQ_PSI_FSI:
printf("PSI: FSI irq received\n");
break;
case P8_IRQ_PSI_LPC:
lpc_interrupt(psi->chip_id);
/*
* i2c interrupts are ORed with the LPC ones on
* Murano DD2.1 and Venice DD2.0
*/
p8_i2c_interrupt(psi->chip_id);
break;
case P8_IRQ_PSI_LOCAL_ERR:
prd_psi_interrupt(psi->chip_id);
break;
case P8_IRQ_PSI_EXTERNAL:
if (platform.external_irq)
platform.external_irq(psi->chip_id);
break;
}
/*
* TODO: Per Vicente Chung, CRESPs don't generate interrupts,
* and are just informational. Need to define the policy
* to handle them.
*/
}
static uint64_t psi_p8_irq_attributes(struct irq_source *is, uint32_t isn)
{
struct psi *psi = is->data;
uint32_t idx = isn - psi->interrupt;
uint64_t attr;
if (psi->no_lpc_irqs && idx == P8_IRQ_PSI_LPC)
return IRQ_ATTR_TARGET_LINUX;
/* Only direct external interrupts to OPAL if we have a handler */
if (idx == P8_IRQ_PSI_EXTERNAL && !platform.external_irq)
return IRQ_ATTR_TARGET_LINUX;
attr = IRQ_ATTR_TARGET_OPAL | IRQ_ATTR_TYPE_LSI;
if (idx == P8_IRQ_PSI_EXTERNAL || idx == P8_IRQ_PSI_LPC ||
idx == P8_IRQ_PSI_FSP)
attr |= IRQ_ATTR_TARGET_FREQUENT;
return attr;
}
static char *psi_p8_irq_name(struct irq_source *is, uint32_t isn)
{
struct psi *psi = is->data;
uint32_t idx = isn - psi->interrupt;
char tmp[30];
static const char *names[P8_IRQ_PSI_IRQ_COUNT] = {
"fsp",
"occ",
"fsi",
"lpchc",
"local_err",
"external",
};
if (idx >= P8_IRQ_PSI_IRQ_COUNT)
return NULL;
snprintf(tmp, sizeof(tmp), "psi#%x:%s",
psi->chip_id, names[idx]);
return strdup(tmp);
}
static const struct irq_source_ops psi_p8_irq_ops = {
.get_xive = psi_p8_get_xive,
.set_xive = psi_p8_set_xive,
.interrupt = psihb_p8_interrupt,
.attributes = psi_p8_irq_attributes,
.name = psi_p8_irq_name,
};
static const char *psi_p9_irq_names[P9_PSI_NUM_IRQS] = {
"fsp",
"occ",
"fsi",
"lpchc",
"local_err",
"global_err",
"external",
"lpc_serirq_mux0", /* Have a callback to get name ? */
"lpc_serirq_mux1", /* Have a callback to get name ? */
"lpc_serirq_mux2", /* Have a callback to get name ? */
"lpc_serirq_mux3", /* Have a callback to get name ? */
"i2c",
"dio",
"psu"
};
static void psi_p9_mask_unhandled_irq(struct irq_source *is, uint32_t isn)
{
struct psi *psi = is->data;
int idx = isn - psi->interrupt;
const char *name;
if (idx < ARRAY_SIZE(psi_p9_irq_names))
name = psi_p9_irq_names[idx];
else
name = "unknown!";
prerror("PSI[0x%03x]: Masking unhandled LSI %d (%s)\n",
psi->chip_id, idx, name);
/*
* All the PSI interrupts are LSIs and will be constantly re-fired
* unless the underlying interrupt condition is cleared. If we don't
* have a handler for the interrupt then it needs to be masked to
* prevent the IRQ from locking up the thread which handles it.
*/
xive_source_mask(is, isn);
}
static void psihb_p9_interrupt(struct irq_source *is, uint32_t isn)
{
struct psi *psi = is->data;
uint32_t idx = isn - psi->interrupt;
switch (idx) {
case P9_PSI_IRQ_PSI:
psihb_interrupt(is, isn);
break;
case P9_PSI_IRQ_OCC:
occ_p9_interrupt(psi->chip_id);
break;
case P9_PSI_IRQ_LPCHC:
lpc_interrupt(psi->chip_id);
break;
case P9_PSI_IRQ_LOCAL_ERR:
prd_psi_interrupt(psi->chip_id);
break;
case P9_PSI_IRQ_EXTERNAL:
if (platform.external_irq)
platform.external_irq(psi->chip_id);
else
psi_p9_mask_unhandled_irq(is, isn);
break;
case P9_PSI_IRQ_LPC_SIRQ0:
case P9_PSI_IRQ_LPC_SIRQ1:
case P9_PSI_IRQ_LPC_SIRQ2:
case P9_PSI_IRQ_LPC_SIRQ3:
lpc_serirq(psi->chip_id, idx - P9_PSI_IRQ_LPC_SIRQ0);
break;
case P9_PSI_IRQ_SBE_I2C:
p8_i2c_interrupt(psi->chip_id);
break;
case P9_PSI_IRQ_DIO:
printf("PSI: DIO irq received\n");
dio_interrupt_handler(psi->chip_id);
break;
case P9_PSI_IRQ_PSU:
p9_sbe_interrupt(psi->chip_id);
break;
default:
psi_p9_mask_unhandled_irq(is, isn);
}
}
static uint64_t psi_p9_irq_attributes(struct irq_source *is __unused,
uint32_t isn)
{
struct psi *psi = is->data;
unsigned int idx = isn & 0xf;
bool is_lpc_serirq;
is_lpc_serirq =
(idx == P9_PSI_IRQ_LPC_SIRQ0 ||
idx == P9_PSI_IRQ_LPC_SIRQ1 ||
idx == P9_PSI_IRQ_LPC_SIRQ2 ||
idx == P9_PSI_IRQ_LPC_SIRQ3);
/* If LPC interrupts are disabled, route them to Linux
* (who will not request them since they aren't referenced
* in the device tree)
*/
if (is_lpc_serirq && psi->no_lpc_irqs)
return IRQ_ATTR_TARGET_LINUX;
/* For serirq, check the LPC layer for policy */
if (is_lpc_serirq)
return lpc_get_irq_policy(psi->chip_id, idx - P9_PSI_IRQ_LPC_SIRQ0);
/* Only direct external interrupts to OPAL if we have a handler */
if (idx == P9_PSI_IRQ_EXTERNAL && !platform.external_irq)
return IRQ_ATTR_TARGET_LINUX | IRQ_ATTR_TYPE_LSI;
return IRQ_ATTR_TARGET_OPAL | IRQ_ATTR_TYPE_LSI;
}
static char *psi_p9_irq_name(struct irq_source *is, uint32_t isn)
{
struct psi *psi = is->data;
uint32_t idx = isn - psi->interrupt;
char tmp[30];
if (idx >= ARRAY_SIZE(psi_p9_irq_names))
return NULL;
snprintf(tmp, sizeof(tmp), "psi#%x:%s",
psi->chip_id, psi_p9_irq_names[idx]);
return strdup(tmp);
}
static const struct irq_source_ops psi_p9_irq_ops = {
.interrupt = psihb_p9_interrupt,
.attributes = psi_p9_irq_attributes,
.name = psi_p9_irq_name,
};
static void psi_init_p8_interrupts(struct psi *psi)
{
uint32_t irq;
uint64_t xivr_p;
/* On P8 we get a block of 8, set up the base/mask
* and mask all the sources for now
*/
out_be64(psi->regs + PSIHB_IRSN,
SETFIELD(PSIHB_IRSN_COMP, 0ul, psi->interrupt) |
SETFIELD(PSIHB_IRSN_MASK, 0ul, 0x7fff8ul) |
PSIHB_IRSN_DOWNSTREAM_EN |
PSIHB_IRSN_UPSTREAM_EN);
for (irq = 0; irq < P8_IRQ_PSI_IRQ_COUNT; irq++) {
xivr_p = psi_p8_irq_to_xivr[irq];
out_be64(psi->regs + xivr_p, (0xffull << 32) | (irq << 29));
}
/*
* Register the IRQ sources FSP, OCC, FSI, LPC
* and Local Error. Host Error is actually the
* external interrupt and the policy for that comes
* from the platform
*/
register_irq_source(&psi_p8_irq_ops, psi,
psi->interrupt, P8_IRQ_PSI_IRQ_COUNT);
}
static void psi_init_p9_interrupts(struct psi *psi)
{
struct proc_chip *chip;
u64 val;
/* Grab chip */
chip = get_chip(psi->chip_id);
if (!chip)
return;
/* Configure the CI BAR */
phys_map_get(chip->id, PSIHB_ESB, 0, &val, NULL);
val |= PSIHB_ESB_CI_VALID;
out_be64(psi->regs + PSIHB_ESB_CI_BASE, val);
val = in_be64(psi->regs + PSIHB_ESB_CI_BASE);
psi->esb_mmio = (void *)(val & ~PSIHB_ESB_CI_VALID);
prlog(PR_DEBUG, "PSI[0x%03x]: ESB MMIO at @%p\n",
psi->chip_id, psi->esb_mmio);
/* Grab and configure the notification port */
val = xive_get_notify_port(psi->chip_id, XIVE_HW_SRC_PSI);
val |= PSIHB_ESB_NOTIF_VALID;
out_be64(psi->regs + PSIHB_ESB_NOTIF_ADDR, val);
/* Setup interrupt offset */
val = xive_get_notify_base(psi->interrupt);
val <<= 32;
out_be64(psi->regs + PSIHB_IVT_OFFSET, val);
/* Register sources */
prlog(PR_DEBUG,
"PSI[0x%03x]: Interrupts sources registered for P9 DD2.x\n",
psi->chip_id);
xive_register_hw_source(psi->interrupt, P9_PSI_NUM_IRQS,
12, psi->esb_mmio, XIVE_SRC_LSI,
psi, &psi_p9_irq_ops);
/* Reset irq handling and switch to ESB mode */
out_be64(psi->regs + PSIHB_INTERRUPT_CONTROL, PSIHB_IRQ_RESET);
out_be64(psi->regs + PSIHB_INTERRUPT_CONTROL, 0);
}
static void psi_init_interrupts(struct psi *psi)
{
/* Configure the interrupt BUID and mask it */
switch (proc_gen) {
case proc_gen_p8:
psi_init_p8_interrupts(psi);
break;
case proc_gen_p9:
psi_init_p9_interrupts(psi);
break;
default:
/* Unknown: just no interrupts */
prerror("PSI: Unknown interrupt type\n");
}
}
static void psi_activate_phb(struct psi *psi)
{
u64 reg;
/*
* Disable interrupt emission in the control register,
* it will be re-enabled later, after the mailbox one
* will have been enabled.
*/
reg = in_be64(psi->regs + PSIHB_CR);
reg &= ~PSIHB_CR_FSP_IRQ_ENABLE;
out_be64(psi->regs + PSIHB_CR, reg);
/* Enable interrupts in the mask register. We enable everything
* except for bit "FSP command error detected" which the doc
* (P7 BookIV) says should be masked for normal ops. It also
* seems to be masked under OPAL.
*/
reg = 0x0000010000100000ull;
out_be64(psi->regs + PSIHB_SEMR, reg);
#if 0
/* Dump the GXHB registers */
printf(" PSIHB_BBAR : %llx\n",
in_be64(psi->regs + PSIHB_BBAR));
printf(" PSIHB_FSPBAR : %llx\n",
in_be64(psi->regs + PSIHB_FSPBAR));
printf(" PSIHB_FSPMMR : %llx\n",
in_be64(psi->regs + PSIHB_FSPMMR));
printf(" PSIHB_TAR : %llx\n",
in_be64(psi->regs + PSIHB_TAR));
printf(" PSIHB_CR : %llx\n",
in_be64(psi->regs + PSIHB_CR));
printf(" PSIHB_SEMR : %llx\n",
in_be64(psi->regs + PSIHB_SEMR));
printf(" PSIHB_XIVR : %llx\n",
in_be64(psi->regs + PSIHB_XIVR));
#endif
}
static void psi_create_p9_int_map(struct psi *psi, struct dt_node *np)
{
uint32_t map[P9_PSI_NUM_IRQS][4];
int i;
for (i = 0; i < P9_PSI_NUM_IRQS; i++) {
map[i][0] = cpu_to_be32(i);
map[i][1] = cpu_to_be32(get_ics_phandle());
map[i][2] = cpu_to_be32(psi->interrupt + i);
map[i][3] = cpu_to_be32(1);
}
dt_add_property(np, "interrupt-map", map, sizeof(map));
dt_add_property_cells(np, "#address-cells", 0);
dt_add_property_cells(np, "#interrupt-cells", 1);
}
static void psi_create_mm_dtnode(struct psi *psi)
{
struct dt_node *np;
uint64_t addr = (uint64_t)psi->regs;
np = dt_new_addr(dt_root, "psi", addr);
if (!np)
return;
/* Hard wire size to 4G */
dt_add_property_u64s(np, "reg", addr, 0x100000000ull);
switch (proc_gen) {
case proc_gen_p8:
dt_add_property_strings(np, "compatible", "ibm,psi",
"ibm,power8-psi");
break;
case proc_gen_p9:
dt_add_property_strings(np, "compatible", "ibm,psi",
"ibm,power9-psi");
psi_create_p9_int_map(psi, np);
break;
default:
assert(0);
break;
}
dt_add_property_cells(np, "interrupt-parent", get_ics_phandle());
dt_add_property_cells(np, "interrupts", psi->interrupt, 1);
dt_add_property_cells(np, "ibm,chip-id", psi->chip_id);
psi->node = np;
}
static struct psi *alloc_psi(struct proc_chip *chip, uint64_t base)
{
struct psi *psi;
psi = zalloc(sizeof(struct psi));
if (!psi) {
prerror("PSI: Could not allocate memory\n");
return NULL;
}
psi->xscom_base = base;
psi->chip_id = chip->id;
return psi;
}
static struct psi *psi_probe_p8(struct proc_chip *chip, u64 base)
{
struct psi *psi = NULL;
uint64_t rc, val;
rc = xscom_read(chip->id, base + PSIHB_XSCOM_P8_BASE, &val);
if (rc) {
prerror("PSI[0x%03x]: Error %llx reading PSIHB BAR\n",
chip->id, rc);
return NULL;
}
if (val & PSIHB_XSCOM_P8_HBBAR_EN) {
psi = alloc_psi(chip, base);
if (!psi)
return NULL;
psi->regs = (void *)(val & ~PSIHB_XSCOM_P8_HBBAR_EN);
psi->interrupt = get_psi_interrupt(chip->id);
} else
printf("PSI[0x%03x]: Working chip not found\n", chip->id);
return psi;
}
static struct psi *psi_probe_p9(struct proc_chip *chip, u64 base)
{
struct psi *psi = NULL;
uint64_t addr;
phys_map_get(chip->id, PSIHB_REG, 0, &addr, NULL);
xscom_write(chip->id, base + PSIHB_XSCOM_P9_BASE,
addr | PSIHB_XSCOM_P9_HBBAR_EN);
psi = alloc_psi(chip, base);
if (!psi)
return NULL;
psi->regs = (void *)addr;
psi->interrupt = xive_alloc_hw_irqs(chip->id, P9_PSI_NUM_IRQS, 16);
return psi;
}
static bool psi_init_psihb(struct dt_node *psihb)
{
uint32_t chip_id = dt_get_chip_id(psihb);
struct proc_chip *chip = get_chip(chip_id);
struct psi *psi = NULL;
u64 base, val;
if (!chip) {
prerror("PSI: Can't find chip!\n");
return false;
}
base = dt_get_address(psihb, 0, NULL);
if (dt_node_is_compatible(psihb, "ibm,power8-psihb-x"))
psi = psi_probe_p8(chip, base);
else if (dt_node_is_compatible(psihb, "ibm,power9-psihb-x"))
psi = psi_probe_p9(chip, base);
else {
prerror("PSI: Unknown processor type\n");
return false;
}
if (!psi)
return false;
list_add(&psis, &psi->list);
val = in_be64(psi->regs + PSIHB_CR);
if (val & PSIHB_CR_FSP_LINK_ACTIVE) {
lock(&psi_lock);
psi->active = true;
unlock(&psi_lock);
}
chip->psi = psi;
if (dt_has_node_property(psihb, "no-lpc-interrupts", NULL))
psi->no_lpc_irqs = true;
psi_activate_phb(psi);
psi_init_interrupts(psi);
psi_create_mm_dtnode(psi);
prlog(PR_INFO, "PSI[0x%03x]: Found PSI bridge [active=%d]\n",
psi->chip_id, psi->active);
return true;
}
void psi_fsp_link_in_use(struct psi *psi __unused)
{
static bool poller_created = false;
/* Do this once only */
if (!poller_created) {
poller_created = true;
opal_add_poller(psi_link_poll, NULL);
}
}
struct psi *psi_find_functional_chip(void)
{
return list_top(&psis, struct psi, list);
}
void psi_init(void)
{
struct dt_node *np;
dt_for_each_compatible(dt_root, np, "ibm,psihb-x")
psi_init_psihb(np);
}
|