aboutsummaryrefslogtreecommitdiff
path: root/include/fpu
diff options
context:
space:
mode:
Diffstat (limited to 'include/fpu')
-rw-r--r--include/fpu/softfloat-helpers.h89
-rw-r--r--include/fpu/softfloat-types.h225
-rw-r--r--include/fpu/softfloat.h107
3 files changed, 359 insertions, 62 deletions
diff --git a/include/fpu/softfloat-helpers.h b/include/fpu/softfloat-helpers.h
index 94cbe07..90862f5 100644
--- a/include/fpu/softfloat-helpers.h
+++ b/include/fpu/softfloat-helpers.h
@@ -75,6 +75,36 @@ static inline void set_floatx80_rounding_precision(FloatX80RoundPrec val,
status->floatx80_rounding_precision = val;
}
+static inline void set_floatx80_behaviour(FloatX80Behaviour b,
+ float_status *status)
+{
+ status->floatx80_behaviour = b;
+}
+
+static inline void set_float_2nan_prop_rule(Float2NaNPropRule rule,
+ float_status *status)
+{
+ status->float_2nan_prop_rule = rule;
+}
+
+static inline void set_float_3nan_prop_rule(Float3NaNPropRule rule,
+ float_status *status)
+{
+ status->float_3nan_prop_rule = rule;
+}
+
+static inline void set_float_infzeronan_rule(FloatInfZeroNaNRule rule,
+ float_status *status)
+{
+ status->float_infzeronan_rule = rule;
+}
+
+static inline void set_float_default_nan_pattern(uint8_t dnan_pattern,
+ float_status *status)
+{
+ status->default_nan_pattern = dnan_pattern;
+}
+
static inline void set_flush_to_zero(bool val, float_status *status)
{
status->flush_to_zero = val;
@@ -85,6 +115,12 @@ static inline void set_flush_inputs_to_zero(bool val, float_status *status)
status->flush_inputs_to_zero = val;
}
+static inline void set_float_ftz_detection(FloatFTZDetection d,
+ float_status *status)
+{
+ status->ftz_detection = d;
+}
+
static inline void set_default_nan_mode(bool val, float_status *status)
{
status->default_nan_mode = val;
@@ -95,50 +131,79 @@ static inline void set_snan_bit_is_one(bool val, float_status *status)
status->snan_bit_is_one = val;
}
-static inline void set_use_first_nan(bool val, float_status *status)
-{
- status->use_first_nan = val;
-}
-
static inline void set_no_signaling_nans(bool val, float_status *status)
{
status->no_signaling_nans = val;
}
-static inline bool get_float_detect_tininess(float_status *status)
+static inline bool get_float_detect_tininess(const float_status *status)
{
return status->tininess_before_rounding;
}
-static inline FloatRoundMode get_float_rounding_mode(float_status *status)
+static inline FloatRoundMode get_float_rounding_mode(const float_status *status)
{
return status->float_rounding_mode;
}
-static inline int get_float_exception_flags(float_status *status)
+static inline int get_float_exception_flags(const float_status *status)
{
return status->float_exception_flags;
}
static inline FloatX80RoundPrec
-get_floatx80_rounding_precision(float_status *status)
+get_floatx80_rounding_precision(const float_status *status)
{
return status->floatx80_rounding_precision;
}
-static inline bool get_flush_to_zero(float_status *status)
+static inline FloatX80Behaviour
+get_floatx80_behaviour(const float_status *status)
+{
+ return status->floatx80_behaviour;
+}
+
+static inline Float2NaNPropRule
+get_float_2nan_prop_rule(const float_status *status)
+{
+ return status->float_2nan_prop_rule;
+}
+
+static inline Float3NaNPropRule
+get_float_3nan_prop_rule(const float_status *status)
+{
+ return status->float_3nan_prop_rule;
+}
+
+static inline FloatInfZeroNaNRule
+get_float_infzeronan_rule(const float_status *status)
+{
+ return status->float_infzeronan_rule;
+}
+
+static inline uint8_t get_float_default_nan_pattern(const float_status *status)
+{
+ return status->default_nan_pattern;
+}
+
+static inline bool get_flush_to_zero(const float_status *status)
{
return status->flush_to_zero;
}
-static inline bool get_flush_inputs_to_zero(float_status *status)
+static inline bool get_flush_inputs_to_zero(const float_status *status)
{
return status->flush_inputs_to_zero;
}
-static inline bool get_default_nan_mode(float_status *status)
+static inline bool get_default_nan_mode(const float_status *status)
{
return status->default_nan_mode;
}
+static inline FloatFTZDetection get_float_ftz_detection(const float_status *status)
+{
+ return status->ftz_detection;
+}
+
#endif /* SOFTFLOAT_HELPERS_H */
diff --git a/include/fpu/softfloat-types.h b/include/fpu/softfloat-types.h
index 0884ec4..1af2a0c 100644
--- a/include/fpu/softfloat-types.h
+++ b/include/fpu/softfloat-types.h
@@ -80,6 +80,8 @@ this code that are retained.
#ifndef SOFTFLOAT_TYPES_H
#define SOFTFLOAT_TYPES_H
+#include "hw/registerfields.h"
+
/*
* Software IEC/IEEE floating-point types.
*/
@@ -138,6 +140,8 @@ typedef enum __attribute__((__packed__)) {
float_round_to_odd = 5,
/* Not an IEEE rounding mode: round to closest odd, overflow to inf */
float_round_to_odd_inf = 6,
+ /* Not an IEEE rounding mode: round to nearest even, overflow to max */
+ float_round_nearest_even_max = 7,
} FloatRoundMode;
/*
@@ -150,8 +154,10 @@ enum {
float_flag_overflow = 0x0004,
float_flag_underflow = 0x0008,
float_flag_inexact = 0x0010,
- float_flag_input_denormal = 0x0020,
- float_flag_output_denormal = 0x0040,
+ /* We flushed an input denormal to 0 (because of flush_inputs_to_zero) */
+ float_flag_input_denormal_flushed = 0x0020,
+ /* We flushed an output denormal to 0 (because of flush_to_zero) */
+ float_flag_output_denormal_flushed = 0x0040,
float_flag_invalid_isi = 0x0080, /* inf - inf */
float_flag_invalid_imz = 0x0100, /* inf * 0 */
float_flag_invalid_idi = 0x0200, /* inf / inf */
@@ -159,6 +165,13 @@ enum {
float_flag_invalid_sqrt = 0x0800, /* sqrt(-x) */
float_flag_invalid_cvti = 0x1000, /* non-nan to integer */
float_flag_invalid_snan = 0x2000, /* any operand was snan */
+ /*
+ * An input was denormal and we used it (without flushing it to zero).
+ * Not set if we do not actually use the denormal input (e.g.
+ * because some other input was a NaN, or because the operation
+ * wasn't actually carried out (divide-by-zero; invalid))
+ */
+ float_flag_input_denormal_used = 0x4000,
};
/*
@@ -171,6 +184,193 @@ typedef enum __attribute__((__packed__)) {
} FloatX80RoundPrec;
/*
+ * 2-input NaN propagation rule. Individual architectures have
+ * different rules for which input NaN is propagated to the output
+ * when there is more than one NaN on the input.
+ *
+ * If default_nan_mode is enabled then it is valid not to set a
+ * NaN propagation rule, because the softfloat code guarantees
+ * not to try to pick a NaN to propagate in default NaN mode.
+ * When not in default-NaN mode, it is an error for the target
+ * not to set the rule in float_status, and we will assert if
+ * we need to handle an input NaN and no rule was selected.
+ */
+typedef enum __attribute__((__packed__)) {
+ /* No propagation rule specified */
+ float_2nan_prop_none = 0,
+ /* Prefer SNaN over QNaN, then operand A over B */
+ float_2nan_prop_s_ab,
+ /* Prefer SNaN over QNaN, then operand B over A */
+ float_2nan_prop_s_ba,
+ /* Prefer A over B regardless of SNaN vs QNaN */
+ float_2nan_prop_ab,
+ /* Prefer B over A regardless of SNaN vs QNaN */
+ float_2nan_prop_ba,
+ /*
+ * This implements x87 NaN propagation rules:
+ * SNaN + QNaN => return the QNaN
+ * two SNaNs => return the one with the larger significand, silenced
+ * two QNaNs => return the one with the larger significand
+ * SNaN and a non-NaN => return the SNaN, silenced
+ * QNaN and a non-NaN => return the QNaN
+ *
+ * If we get down to comparing significands and they are the same,
+ * return the NaN with the positive sign bit (if any).
+ */
+ float_2nan_prop_x87,
+} Float2NaNPropRule;
+
+/*
+ * 3-input NaN propagation rule, for fused multiply-add. Individual
+ * architectures have different rules for which input NaN is
+ * propagated to the output when there is more than one NaN on the
+ * input.
+ *
+ * If default_nan_mode is enabled then it is valid not to set a NaN
+ * propagation rule, because the softfloat code guarantees not to try
+ * to pick a NaN to propagate in default NaN mode. When not in
+ * default-NaN mode, it is an error for the target not to set the rule
+ * in float_status if it uses a muladd, and we will assert if we need
+ * to handle an input NaN and no rule was selected.
+ *
+ * The naming scheme for Float3NaNPropRule values is:
+ * float_3nan_prop_s_abc:
+ * = "Prefer SNaN over QNaN, then operand A over B over C"
+ * float_3nan_prop_abc:
+ * = "Prefer A over B over C regardless of SNaN vs QNAN"
+ *
+ * For QEMU, the multiply-add operation is A * B + C.
+ */
+
+/*
+ * We set the Float3NaNPropRule enum values up so we can select the
+ * right value in pickNaNMulAdd in a data driven way.
+ */
+FIELD(3NAN, 1ST, 0, 2) /* which operand is most preferred ? */
+FIELD(3NAN, 2ND, 2, 2) /* which operand is next most preferred ? */
+FIELD(3NAN, 3RD, 4, 2) /* which operand is least preferred ? */
+FIELD(3NAN, SNAN, 6, 1) /* do we prefer SNaN over QNaN ? */
+
+#define PROPRULE(X, Y, Z) \
+ ((X << R_3NAN_1ST_SHIFT) | (Y << R_3NAN_2ND_SHIFT) | (Z << R_3NAN_3RD_SHIFT))
+
+typedef enum __attribute__((__packed__)) {
+ float_3nan_prop_none = 0, /* No propagation rule specified */
+ float_3nan_prop_abc = PROPRULE(0, 1, 2),
+ float_3nan_prop_acb = PROPRULE(0, 2, 1),
+ float_3nan_prop_bac = PROPRULE(1, 0, 2),
+ float_3nan_prop_bca = PROPRULE(1, 2, 0),
+ float_3nan_prop_cab = PROPRULE(2, 0, 1),
+ float_3nan_prop_cba = PROPRULE(2, 1, 0),
+ float_3nan_prop_s_abc = float_3nan_prop_abc | R_3NAN_SNAN_MASK,
+ float_3nan_prop_s_acb = float_3nan_prop_acb | R_3NAN_SNAN_MASK,
+ float_3nan_prop_s_bac = float_3nan_prop_bac | R_3NAN_SNAN_MASK,
+ float_3nan_prop_s_bca = float_3nan_prop_bca | R_3NAN_SNAN_MASK,
+ float_3nan_prop_s_cab = float_3nan_prop_cab | R_3NAN_SNAN_MASK,
+ float_3nan_prop_s_cba = float_3nan_prop_cba | R_3NAN_SNAN_MASK,
+} Float3NaNPropRule;
+
+#undef PROPRULE
+
+/*
+ * Rule for result of fused multiply-add 0 * Inf + NaN.
+ * This must be a NaN, but implementations differ on whether this
+ * is the input NaN or the default NaN.
+ *
+ * You don't need to set this if default_nan_mode is enabled.
+ * When not in default-NaN mode, it is an error for the target
+ * not to set the rule in float_status if it uses muladd, and we
+ * will assert if we need to handle an input NaN and no rule was
+ * selected.
+ */
+typedef enum __attribute__((__packed__)) {
+ /* No propagation rule specified */
+ float_infzeronan_none = 0,
+ /* Result is never the default NaN (so always the input NaN) */
+ float_infzeronan_dnan_never = 1,
+ /* Result is always the default NaN */
+ float_infzeronan_dnan_always = 2,
+ /* Result is the default NaN if the input NaN is quiet */
+ float_infzeronan_dnan_if_qnan = 3,
+ /*
+ * Don't raise Invalid for 0 * Inf + NaN. Default is to raise.
+ * IEEE 754-2008 section 7.2 makes it implementation defined whether
+ * 0 * Inf + QNaN raises Invalid or not. Note that 0 * Inf + SNaN will
+ * raise the Invalid flag for the SNaN anyway.
+ *
+ * This is a flag which can be ORed in with any of the above
+ * DNaN behaviour options.
+ */
+ float_infzeronan_suppress_invalid = (1 << 7),
+} FloatInfZeroNaNRule;
+
+/*
+ * When flush_to_zero is set, should we detect denormal results to
+ * be flushed before or after rounding? For most architectures this
+ * should be set to match the tininess_before_rounding setting,
+ * but a few architectures, e.g. MIPS MSA, detect FTZ before
+ * rounding but tininess after rounding.
+ *
+ * This enum is arranged so that the default if the target doesn't
+ * configure it matches the default for tininess_before_rounding
+ * (i.e. "after rounding").
+ */
+typedef enum __attribute__((__packed__)) {
+ float_ftz_after_rounding = 0,
+ float_ftz_before_rounding = 1,
+} FloatFTZDetection;
+
+/*
+ * floatx80 is primarily used by x86 and m68k, and there are
+ * differences in the handling, largely related to the explicit
+ * Integer bit which floatx80 has and the other float formats do not.
+ * These flag values allow specification of the target's requirements
+ * and can be ORed together to set floatx80_behaviour.
+ */
+typedef enum __attribute__((__packed__)) {
+ /* In the default Infinity value, is the Integer bit 0 ? */
+ floatx80_default_inf_int_bit_is_zero = 1,
+ /*
+ * Are Pseudo-infinities (Inf with the Integer bit zero) valid?
+ * If so, floatx80_is_infinity() will return true for them.
+ * If not, floatx80_invalid_encoding will return false for them,
+ * and using them as inputs to a float op will raise Invalid.
+ */
+ floatx80_pseudo_inf_valid = 2,
+ /*
+ * Are Pseudo-NaNs (NaNs where the Integer bit is zero) valid?
+ * If not, floatx80_invalid_encoding() will return false for them,
+ * and using them as inputs to a float op will raise Invalid.
+ */
+ floatx80_pseudo_nan_valid = 4,
+ /*
+ * Are Unnormals (0 < exp < 0x7fff, Integer bit zero) valid?
+ * If not, floatx80_invalid_encoding() will return false for them,
+ * and using them as inputs to a float op will raise Invalid.
+ */
+ floatx80_unnormal_valid = 8,
+
+ /*
+ * If the exponent is 0 and the Integer bit is set, Intel call
+ * this a "pseudo-denormal"; x86 supports that only on input
+ * (treating them as denormals by ignoring the Integer bit).
+ * For m68k, the integer bit is considered validly part of the
+ * input value when the exponent is 0, and may be 0 or 1,
+ * giving extra range. They may also be generated as outputs.
+ * (The m68k manual actually calls these values part of the
+ * normalized number range, not the denormalized number range.)
+ *
+ * By default you get the Intel behaviour where the Integer
+ * bit is ignored; if this is set then the Integer bit value
+ * is honoured, m68k-style.
+ *
+ * Either way, floatx80_invalid_encoding() will always accept
+ * pseudo-denormals.
+ */
+ floatx80_pseudo_denormal_valid = 16,
+} FloatX80Behaviour;
+
+/*
* Floating Point Status. Individual architectures may maintain
* several versions of float_status for different functions. The
* correct status for the operation is then passed by reference to
@@ -181,19 +381,34 @@ typedef struct float_status {
uint16_t float_exception_flags;
FloatRoundMode float_rounding_mode;
FloatX80RoundPrec floatx80_rounding_precision;
+ FloatX80Behaviour floatx80_behaviour;
+ Float2NaNPropRule float_2nan_prop_rule;
+ Float3NaNPropRule float_3nan_prop_rule;
+ FloatInfZeroNaNRule float_infzeronan_rule;
bool tininess_before_rounding;
- /* should denormalised results go to zero and set the inexact flag? */
+ /* should denormalised results go to zero and set output_denormal_flushed? */
bool flush_to_zero;
- /* should denormalised inputs go to zero and set the input_denormal flag? */
+ /* do we detect and flush denormal results before or after rounding? */
+ FloatFTZDetection ftz_detection;
+ /* should denormalised inputs go to zero and set input_denormal_flushed? */
bool flush_inputs_to_zero;
bool default_nan_mode;
/*
+ * The pattern to use for the default NaN. Here the high bit specifies
+ * the default NaN's sign bit, and bits 6..0 specify the high bits of the
+ * fractional part. The low bits of the fractional part are copies of bit 0.
+ * The exponent of the default NaN is (as for any NaN) always all 1s.
+ * Note that a value of 0 here is not a valid NaN. The target must set
+ * this to the correct non-zero value, or we will assert when trying to
+ * create a default NaN.
+ */
+ uint8_t default_nan_pattern;
+ /*
* The flags below are not used on all specializations and may
* constant fold away (see snan_bit_is_one()/no_signalling_nans() in
* softfloat-specialize.inc.c)
*/
bool snan_bit_is_one;
- bool use_first_nan;
bool no_signaling_nans;
/* should overflowed results subtract re_bias to its exponent? */
bool rebias_overflow;
diff --git a/include/fpu/softfloat.h b/include/fpu/softfloat.h
index eb64075..c18ab2c 100644
--- a/include/fpu/softfloat.h
+++ b/include/fpu/softfloat.h
@@ -120,14 +120,16 @@ bfloat16 bfloat16_squash_input_denormal(bfloat16 a, float_status *status);
| Using these differs from negating an input or output before calling
| the muladd function in that this means that a NaN doesn't have its
| sign bit inverted before it is propagated.
-| We also support halving the result before rounding, as a special
-| case to support the ARM fused-sqrt-step instruction FRSQRTS.
+|
+| With float_muladd_suppress_add_product_zero, if A or B is zero
+| such that the product is a true zero, then return C without addition.
+| This preserves the sign of C when C is +/- 0. Used for Hexagon.
*----------------------------------------------------------------------------*/
enum {
float_muladd_negate_c = 1,
float_muladd_negate_product = 2,
float_muladd_negate_result = 4,
- float_muladd_halve_result = 8,
+ float_muladd_suppress_add_product_zero = 8,
};
/*----------------------------------------------------------------------------
@@ -238,6 +240,8 @@ float16 float16_add(float16, float16, float_status *status);
float16 float16_sub(float16, float16, float_status *status);
float16 float16_mul(float16, float16, float_status *status);
float16 float16_muladd(float16, float16, float16, int, float_status *status);
+float16 float16_muladd_scalbn(float16, float16, float16,
+ int, int, float_status *status);
float16 float16_div(float16, float16, float_status *status);
float16 float16_scalbn(float16, int, float_status *status);
float16 float16_min(float16, float16, float_status *status);
@@ -597,6 +601,8 @@ float32 float32_mul(float32, float32, float_status *status);
float32 float32_div(float32, float32, float_status *status);
float32 float32_rem(float32, float32, float_status *status);
float32 float32_muladd(float32, float32, float32, int, float_status *status);
+float32 float32_muladd_scalbn(float32, float32, float32,
+ int, int, float_status *status);
float32 float32_sqrt(float32, float_status *status);
float32 float32_exp2(float32, float_status *status);
float32 float32_log2(float32, float_status *status);
@@ -792,6 +798,8 @@ float64 float64_mul(float64, float64, float_status *status);
float64 float64_div(float64, float64, float_status *status);
float64 float64_rem(float64, float64, float_status *status);
float64 float64_muladd(float64, float64, float64, int, float_status *status);
+float64 float64_muladd_scalbn(float64, float64, float64,
+ int, int, float_status *status);
float64 float64_sqrt(float64, float_status *status);
float64 float64_log2(float64, float_status *status);
FloatRelation float64_compare(float64, float64, float_status *status);
@@ -952,7 +960,7 @@ float128 floatx80_to_float128(floatx80, float_status *status);
/*----------------------------------------------------------------------------
| The pattern for an extended double-precision inf.
*----------------------------------------------------------------------------*/
-extern const floatx80 floatx80_infinity;
+floatx80 floatx80_default_inf(bool zSign, float_status *status);
/*----------------------------------------------------------------------------
| Software IEC/IEEE extended double-precision operations.
@@ -987,14 +995,19 @@ static inline floatx80 floatx80_chs(floatx80 a)
return a;
}
-static inline bool floatx80_is_infinity(floatx80 a)
+static inline bool floatx80_is_infinity(floatx80 a, float_status *status)
{
-#if defined(TARGET_M68K)
- return (a.high & 0x7fff) == floatx80_infinity.high && !(a.low << 1);
-#else
- return (a.high & 0x7fff) == floatx80_infinity.high &&
- a.low == floatx80_infinity.low;
-#endif
+ /*
+ * It's target-specific whether the Integer bit is permitted
+ * to be 0 in a valid Infinity value. (x86 says no, m68k says yes).
+ */
+ bool intbit = a.low >> 63;
+
+ if (!intbit &&
+ !(status->floatx80_behaviour & floatx80_pseudo_inf_valid)) {
+ return false;
+ }
+ return (a.high & 0x7fff) == 0x7fff && !(a.low << 1);
}
static inline bool floatx80_is_neg(floatx80 a)
@@ -1060,41 +1073,45 @@ static inline bool floatx80_unordered_quiet(floatx80 a, floatx80 b,
/*----------------------------------------------------------------------------
| Return whether the given value is an invalid floatx80 encoding.
-| Invalid floatx80 encodings arise when the integer bit is not set, but
-| the exponent is not zero. The only times the integer bit is permitted to
-| be zero is in subnormal numbers and the value zero.
-| This includes what the Intel software developer's manual calls pseudo-NaNs,
-| pseudo-infinities and un-normal numbers. It does not include
-| pseudo-denormals, which must still be correctly handled as inputs even
-| if they are never generated as outputs.
+| Invalid floatx80 encodings may arise when the integer bit is not set
+| correctly; this is target-specific. In Intel terminology the
+| categories are:
+| exp == 0, int = 0, mantissa == 0 : zeroes
+| exp == 0, int = 0, mantissa != 0 : denormals
+| exp == 0, int = 1 : pseudo-denormals
+| 0 < exp < 0x7fff, int = 0 : unnormals
+| 0 < exp < 0x7fff, int = 1 : normals
+| exp == 0x7fff, int = 0, mantissa == 0 : pseudo-infinities
+| exp == 0x7fff, int = 1, mantissa == 0 : infinities
+| exp == 0x7fff, int = 0, mantissa != 0 : pseudo-NaNs
+| exp == 0x7fff, int = 1, mantissa == 0 : NaNs
+|
+| The usual IEEE cases of zero, denormal, normal, inf and NaN are always valid.
+| x87 permits as input also pseudo-denormals.
+| m68k permits all those and also pseudo-infinities, pseudo-NaNs and unnormals.
+|
+| Since we don't have a target that handles floatx80 but prohibits
+| pseudo-denormals in input, we don't currently have a floatx80_behaviour
+| flag for that case, but instead always accept it. Conveniently this
+| means that all cases with either exponent 0 or the integer bit set are
+| valid for all targets.
*----------------------------------------------------------------------------*/
-static inline bool floatx80_invalid_encoding(floatx80 a)
-{
-#if defined(TARGET_M68K)
- /*-------------------------------------------------------------------------
- | With m68k, the explicit integer bit can be zero in the case of:
- | - zeros (exp == 0, mantissa == 0)
- | - denormalized numbers (exp == 0, mantissa != 0)
- | - unnormalized numbers (exp != 0, exp < 0x7FFF)
- | - infinities (exp == 0x7FFF, mantissa == 0)
- | - not-a-numbers (exp == 0x7FFF, mantissa != 0)
- |
- | For infinities and NaNs, the explicit integer bit can be either one or
- | zero.
- |
- | The IEEE 754 standard does not define a zero integer bit. Such a number
- | is an unnormalized number. Hardware does not directly support
- | denormalized and unnormalized numbers, but implicitly supports them by
- | trapping them as unimplemented data types, allowing efficient conversion
- | in software.
- |
- | See "M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL",
- | "1.6 FLOATING-POINT DATA TYPES"
- *------------------------------------------------------------------------*/
- return false;
-#else
- return (a.low & (1ULL << 63)) == 0 && (a.high & 0x7FFF) != 0;
-#endif
+static inline bool floatx80_invalid_encoding(floatx80 a, float_status *s)
+{
+ if ((a.low >> 63) || (a.high & 0x7fff) == 0) {
+ /* Anything with the Integer bit set or the exponent 0 is valid */
+ return false;
+ }
+
+ if ((a.high & 0x7fff) == 0x7fff) {
+ if (a.low) {
+ return !(s->floatx80_behaviour & floatx80_pseudo_nan_valid);
+ } else {
+ return !(s->floatx80_behaviour & floatx80_pseudo_inf_valid);
+ }
+ } else {
+ return !(s->floatx80_behaviour & floatx80_unnormal_valid);
+ }
}
#define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)