aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Target/AMDGPU/SIPreEmitPeephole.cpp
blob: 4d3331ab353d3359fc40846c6d999aafc50b0401 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
//===-- SIPreEmitPeephole.cpp ------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This pass performs the peephole optimizations before code emission.
///
/// Additionally, this pass also unpacks packed instructions (V_PK_MUL_F32/F16,
/// V_PK_ADD_F32/F16, V_PK_FMA_F32) adjacent to MFMAs such that they can be
/// co-issued. This helps with overlapping MFMA and certain vector instructions
/// in machine schedules and is expected to improve performance. Only those
/// packed instructions are unpacked that are overlapped by the MFMA latency.
/// Rest should remain untouched.
/// TODO: Add support for F16 packed instructions
//===----------------------------------------------------------------------===//

#include "AMDGPU.h"
#include "GCNSubtarget.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/TargetSchedule.h"
#include "llvm/Support/BranchProbability.h"

using namespace llvm;

#define DEBUG_TYPE "si-pre-emit-peephole"

namespace {

class SIPreEmitPeephole {
private:
  const SIInstrInfo *TII = nullptr;
  const SIRegisterInfo *TRI = nullptr;

  bool optimizeVccBranch(MachineInstr &MI) const;
  bool optimizeSetGPR(MachineInstr &First, MachineInstr &MI) const;
  bool getBlockDestinations(MachineBasicBlock &SrcMBB,
                            MachineBasicBlock *&TrueMBB,
                            MachineBasicBlock *&FalseMBB,
                            SmallVectorImpl<MachineOperand> &Cond);
  bool mustRetainExeczBranch(const MachineInstr &Branch,
                             const MachineBasicBlock &From,
                             const MachineBasicBlock &To) const;
  bool removeExeczBranch(MachineInstr &MI, MachineBasicBlock &SrcMBB);
  // Check if the machine instruction being processed is a supported packed
  // instruction.
  bool isUnpackingSupportedInstr(MachineInstr &MI) const;
  // Creates a list of packed instructions following an MFMA that are suitable
  // for unpacking.
  void collectUnpackingCandidates(MachineInstr &BeginMI,
                                  SetVector<MachineInstr *> &InstrsToUnpack,
                                  uint16_t NumMFMACycles);
  // v_pk_fma_f32 v[0:1], v[0:1], v[2:3], v[2:3] op_sel:[1,1,1]
  // op_sel_hi:[0,0,0]
  // ==>
  // v_fma_f32 v0, v1, v3, v3
  // v_fma_f32 v1, v0, v2, v2
  // Here, we have overwritten v0 before we use it. This function checks if
  // unpacking can lead to such a situation.
  bool canUnpackingClobberRegister(const MachineInstr &MI);
  // Unpack and insert F32 packed instructions, such as V_PK_MUL, V_PK_ADD, and
  // V_PK_FMA. Currently, only V_PK_MUL, V_PK_ADD, V_PK_FMA are supported for
  // this transformation.
  void performF32Unpacking(MachineInstr &I);
  // Select corresponding unpacked instruction
  uint16_t mapToUnpackedOpcode(MachineInstr &I);
  // Creates the unpacked instruction to be inserted. Adds source modifiers to
  // the unpacked instructions based on the source modifiers in the packed
  // instruction.
  MachineInstrBuilder createUnpackedMI(MachineInstr &I, uint16_t UnpackedOpcode,
                                       bool IsHiBits);
  // Process operands/source modifiers from packed instructions and insert the
  // appropriate source modifers and operands into the unpacked instructions.
  void addOperandAndMods(MachineInstrBuilder &NewMI, unsigned SrcMods,
                         bool IsHiBits, const MachineOperand &SrcMO);

public:
  bool run(MachineFunction &MF);
};

class SIPreEmitPeepholeLegacy : public MachineFunctionPass {
public:
  static char ID;

  SIPreEmitPeepholeLegacy() : MachineFunctionPass(ID) {
    initializeSIPreEmitPeepholeLegacyPass(*PassRegistry::getPassRegistry());
  }

  bool runOnMachineFunction(MachineFunction &MF) override {
    return SIPreEmitPeephole().run(MF);
  }
};

} // End anonymous namespace.

INITIALIZE_PASS(SIPreEmitPeepholeLegacy, DEBUG_TYPE,
                "SI peephole optimizations", false, false)

char SIPreEmitPeepholeLegacy::ID = 0;

char &llvm::SIPreEmitPeepholeID = SIPreEmitPeepholeLegacy::ID;

bool SIPreEmitPeephole::optimizeVccBranch(MachineInstr &MI) const {
  // Match:
  // sreg = -1 or 0
  // vcc = S_AND_B64 exec, sreg or S_ANDN2_B64 exec, sreg
  // S_CBRANCH_VCC[N]Z
  // =>
  // S_CBRANCH_EXEC[N]Z
  // We end up with this pattern sometimes after basic block placement.
  // It happens while combining a block which assigns -1 or 0 to a saved mask
  // and another block which consumes that saved mask and then a branch.
  //
  // While searching this also performs the following substitution:
  // vcc = V_CMP
  // vcc = S_AND exec, vcc
  // S_CBRANCH_VCC[N]Z
  // =>
  // vcc = V_CMP
  // S_CBRANCH_VCC[N]Z

  bool Changed = false;
  MachineBasicBlock &MBB = *MI.getParent();
  const GCNSubtarget &ST = MBB.getParent()->getSubtarget<GCNSubtarget>();
  const bool IsWave32 = ST.isWave32();
  const unsigned CondReg = TRI->getVCC();
  const unsigned ExecReg = IsWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
  const unsigned And = IsWave32 ? AMDGPU::S_AND_B32 : AMDGPU::S_AND_B64;
  const unsigned AndN2 = IsWave32 ? AMDGPU::S_ANDN2_B32 : AMDGPU::S_ANDN2_B64;
  const unsigned Mov = IsWave32 ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;

  MachineBasicBlock::reverse_iterator A = MI.getReverseIterator(),
                                      E = MBB.rend();
  bool ReadsCond = false;
  unsigned Threshold = 5;
  for (++A; A != E; ++A) {
    if (!--Threshold)
      return false;
    if (A->modifiesRegister(ExecReg, TRI))
      return false;
    if (A->modifiesRegister(CondReg, TRI)) {
      if (!A->definesRegister(CondReg, TRI) ||
          (A->getOpcode() != And && A->getOpcode() != AndN2))
        return false;
      break;
    }
    ReadsCond |= A->readsRegister(CondReg, TRI);
  }
  if (A == E)
    return false;

  MachineOperand &Op1 = A->getOperand(1);
  MachineOperand &Op2 = A->getOperand(2);
  if (Op1.getReg() != ExecReg && Op2.isReg() && Op2.getReg() == ExecReg) {
    TII->commuteInstruction(*A);
    Changed = true;
  }
  if (Op1.getReg() != ExecReg)
    return Changed;
  if (Op2.isImm() && !(Op2.getImm() == -1 || Op2.getImm() == 0))
    return Changed;

  int64_t MaskValue = 0;
  Register SReg;
  if (Op2.isReg()) {
    SReg = Op2.getReg();
    auto M = std::next(A);
    bool ReadsSreg = false;
    bool ModifiesExec = false;
    for (; M != E; ++M) {
      if (M->definesRegister(SReg, TRI))
        break;
      if (M->modifiesRegister(SReg, TRI))
        return Changed;
      ReadsSreg |= M->readsRegister(SReg, TRI);
      ModifiesExec |= M->modifiesRegister(ExecReg, TRI);
    }
    if (M == E)
      return Changed;
    // If SReg is VCC and SReg definition is a VALU comparison.
    // This means S_AND with EXEC is not required.
    // Erase the S_AND and return.
    // Note: isVOPC is used instead of isCompare to catch V_CMP_CLASS
    if (A->getOpcode() == And && SReg == CondReg && !ModifiesExec &&
        TII->isVOPC(*M)) {
      A->eraseFromParent();
      return true;
    }
    if (!M->isMoveImmediate() || !M->getOperand(1).isImm() ||
        (M->getOperand(1).getImm() != -1 && M->getOperand(1).getImm() != 0))
      return Changed;
    MaskValue = M->getOperand(1).getImm();
    // First if sreg is only used in the AND instruction fold the immediate
    // into the AND.
    if (!ReadsSreg && Op2.isKill()) {
      A->getOperand(2).ChangeToImmediate(MaskValue);
      M->eraseFromParent();
    }
  } else if (Op2.isImm()) {
    MaskValue = Op2.getImm();
  } else {
    llvm_unreachable("Op2 must be register or immediate");
  }

  // Invert mask for s_andn2
  assert(MaskValue == 0 || MaskValue == -1);
  if (A->getOpcode() == AndN2)
    MaskValue = ~MaskValue;

  if (!ReadsCond && A->registerDefIsDead(AMDGPU::SCC, /*TRI=*/nullptr)) {
    if (!MI.killsRegister(CondReg, TRI)) {
      // Replace AND with MOV
      if (MaskValue == 0) {
        BuildMI(*A->getParent(), *A, A->getDebugLoc(), TII->get(Mov), CondReg)
            .addImm(0);
      } else {
        BuildMI(*A->getParent(), *A, A->getDebugLoc(), TII->get(Mov), CondReg)
            .addReg(ExecReg);
      }
    }
    // Remove AND instruction
    A->eraseFromParent();
  }

  bool IsVCCZ = MI.getOpcode() == AMDGPU::S_CBRANCH_VCCZ;
  if (SReg == ExecReg) {
    // EXEC is updated directly
    if (IsVCCZ) {
      MI.eraseFromParent();
      return true;
    }
    MI.setDesc(TII->get(AMDGPU::S_BRANCH));
  } else if (IsVCCZ && MaskValue == 0) {
    // Will always branch
    // Remove all successors shadowed by new unconditional branch
    MachineBasicBlock *Parent = MI.getParent();
    SmallVector<MachineInstr *, 4> ToRemove;
    bool Found = false;
    for (MachineInstr &Term : Parent->terminators()) {
      if (Found) {
        if (Term.isBranch())
          ToRemove.push_back(&Term);
      } else {
        Found = Term.isIdenticalTo(MI);
      }
    }
    assert(Found && "conditional branch is not terminator");
    for (auto *BranchMI : ToRemove) {
      MachineOperand &Dst = BranchMI->getOperand(0);
      assert(Dst.isMBB() && "destination is not basic block");
      Parent->removeSuccessor(Dst.getMBB());
      BranchMI->eraseFromParent();
    }

    if (MachineBasicBlock *Succ = Parent->getFallThrough()) {
      Parent->removeSuccessor(Succ);
    }

    // Rewrite to unconditional branch
    MI.setDesc(TII->get(AMDGPU::S_BRANCH));
  } else if (!IsVCCZ && MaskValue == 0) {
    // Will never branch
    MachineOperand &Dst = MI.getOperand(0);
    assert(Dst.isMBB() && "destination is not basic block");
    MI.getParent()->removeSuccessor(Dst.getMBB());
    MI.eraseFromParent();
    return true;
  } else if (MaskValue == -1) {
    // Depends only on EXEC
    MI.setDesc(
        TII->get(IsVCCZ ? AMDGPU::S_CBRANCH_EXECZ : AMDGPU::S_CBRANCH_EXECNZ));
  }

  MI.removeOperand(MI.findRegisterUseOperandIdx(CondReg, TRI, false /*Kill*/));
  MI.addImplicitDefUseOperands(*MBB.getParent());

  return true;
}

bool SIPreEmitPeephole::optimizeSetGPR(MachineInstr &First,
                                       MachineInstr &MI) const {
  MachineBasicBlock &MBB = *MI.getParent();
  const MachineFunction &MF = *MBB.getParent();
  const MachineRegisterInfo &MRI = MF.getRegInfo();
  MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
  Register IdxReg = Idx->isReg() ? Idx->getReg() : Register();
  SmallVector<MachineInstr *, 4> ToRemove;
  bool IdxOn = true;

  if (!MI.isIdenticalTo(First))
    return false;

  // Scan back to find an identical S_SET_GPR_IDX_ON
  for (MachineBasicBlock::instr_iterator I = std::next(First.getIterator()),
                                         E = MI.getIterator();
       I != E; ++I) {
    if (I->isBundle())
      continue;
    switch (I->getOpcode()) {
    case AMDGPU::S_SET_GPR_IDX_MODE:
      return false;
    case AMDGPU::S_SET_GPR_IDX_OFF:
      IdxOn = false;
      ToRemove.push_back(&*I);
      break;
    default:
      if (I->modifiesRegister(AMDGPU::M0, TRI))
        return false;
      if (IdxReg && I->modifiesRegister(IdxReg, TRI))
        return false;
      if (llvm::any_of(I->operands(), [&MRI, this](const MachineOperand &MO) {
            return MO.isReg() && TRI->isVectorRegister(MRI, MO.getReg());
          })) {
        // The only exception allowed here is another indirect vector move
        // with the same mode.
        if (!IdxOn || !(I->getOpcode() == AMDGPU::V_MOV_B32_indirect_write ||
                        I->getOpcode() == AMDGPU::V_MOV_B32_indirect_read))
          return false;
      }
    }
  }

  MI.eraseFromBundle();
  for (MachineInstr *RI : ToRemove)
    RI->eraseFromBundle();
  return true;
}

bool SIPreEmitPeephole::getBlockDestinations(
    MachineBasicBlock &SrcMBB, MachineBasicBlock *&TrueMBB,
    MachineBasicBlock *&FalseMBB, SmallVectorImpl<MachineOperand> &Cond) {
  if (TII->analyzeBranch(SrcMBB, TrueMBB, FalseMBB, Cond))
    return false;

  if (!FalseMBB)
    FalseMBB = SrcMBB.getNextNode();

  return true;
}

namespace {
class BranchWeightCostModel {
  const SIInstrInfo &TII;
  const TargetSchedModel &SchedModel;
  BranchProbability BranchProb;
  static constexpr uint64_t BranchNotTakenCost = 1;
  uint64_t BranchTakenCost;
  uint64_t ThenCyclesCost = 0;

public:
  BranchWeightCostModel(const SIInstrInfo &TII, const MachineInstr &Branch,
                        const MachineBasicBlock &Succ)
      : TII(TII), SchedModel(TII.getSchedModel()) {
    const MachineBasicBlock &Head = *Branch.getParent();
    const auto *FromIt = find(Head.successors(), &Succ);
    assert(FromIt != Head.succ_end());

    BranchProb = Head.getSuccProbability(FromIt);
    if (BranchProb.isUnknown())
      BranchProb = BranchProbability::getZero();
    BranchTakenCost = SchedModel.computeInstrLatency(&Branch);
  }

  bool isProfitable(const MachineInstr &MI) {
    if (TII.isWaitcnt(MI.getOpcode()))
      return false;

    ThenCyclesCost += SchedModel.computeInstrLatency(&MI);

    // Consider `P = N/D` to be the probability of execz being false (skipping
    // the then-block) The transformation is profitable if always executing the
    // 'then' block is cheaper than executing sometimes 'then' and always
    // executing s_cbranch_execz:
    // * ThenCost <= P*ThenCost + (1-P)*BranchTakenCost + P*BranchNotTakenCost
    // * (1-P) * ThenCost <= (1-P)*BranchTakenCost + P*BranchNotTakenCost
    // * (D-N)/D * ThenCost <= (D-N)/D * BranchTakenCost + N/D *
    // BranchNotTakenCost
    uint64_t Numerator = BranchProb.getNumerator();
    uint64_t Denominator = BranchProb.getDenominator();
    return (Denominator - Numerator) * ThenCyclesCost <=
           ((Denominator - Numerator) * BranchTakenCost +
            Numerator * BranchNotTakenCost);
  }
};

bool SIPreEmitPeephole::mustRetainExeczBranch(
    const MachineInstr &Branch, const MachineBasicBlock &From,
    const MachineBasicBlock &To) const {
  assert(is_contained(Branch.getParent()->successors(), &From));
  BranchWeightCostModel CostModel{*TII, Branch, From};

  const MachineFunction *MF = From.getParent();
  for (MachineFunction::const_iterator MBBI(&From), ToI(&To), End = MF->end();
       MBBI != End && MBBI != ToI; ++MBBI) {
    const MachineBasicBlock &MBB = *MBBI;

    for (const MachineInstr &MI : MBB) {
      // When a uniform loop is inside non-uniform control flow, the branch
      // leaving the loop might never be taken when EXEC = 0.
      // Hence we should retain cbranch out of the loop lest it become infinite.
      if (MI.isConditionalBranch())
        return true;

      if (MI.isUnconditionalBranch() &&
          TII->getBranchDestBlock(MI) != MBB.getNextNode())
        return true;

      if (MI.isMetaInstruction())
        continue;

      if (TII->hasUnwantedEffectsWhenEXECEmpty(MI))
        return true;

      if (!CostModel.isProfitable(MI))
        return true;
    }
  }

  return false;
}
} // namespace

// Returns true if the skip branch instruction is removed.
bool SIPreEmitPeephole::removeExeczBranch(MachineInstr &MI,
                                          MachineBasicBlock &SrcMBB) {

  if (!TII->getSchedModel().hasInstrSchedModel())
    return false;

  MachineBasicBlock *TrueMBB = nullptr;
  MachineBasicBlock *FalseMBB = nullptr;
  SmallVector<MachineOperand, 1> Cond;

  if (!getBlockDestinations(SrcMBB, TrueMBB, FalseMBB, Cond))
    return false;

  // Consider only the forward branches.
  if (SrcMBB.getNumber() >= TrueMBB->getNumber())
    return false;

  // Consider only when it is legal and profitable
  if (mustRetainExeczBranch(MI, *FalseMBB, *TrueMBB))
    return false;

  LLVM_DEBUG(dbgs() << "Removing the execz branch: " << MI);
  MI.eraseFromParent();
  SrcMBB.removeSuccessor(TrueMBB);

  return true;
}

// If support is extended to new operations, add tests in
// llvm/test/CodeGen/AMDGPU/unpack-non-coissue-insts-post-ra-scheduler.mir.
bool SIPreEmitPeephole::isUnpackingSupportedInstr(MachineInstr &MI) const {
  if (!TII->isNeverCoissue(MI))
    return false;
  unsigned Opcode = MI.getOpcode();
  switch (Opcode) {
  case AMDGPU::V_PK_ADD_F32:
  case AMDGPU::V_PK_MUL_F32:
  case AMDGPU::V_PK_FMA_F32:
    return true;
  default:
    return false;
  }
  llvm_unreachable("Fully covered switch");
}

bool SIPreEmitPeephole::canUnpackingClobberRegister(const MachineInstr &MI) {
  unsigned OpCode = MI.getOpcode();
  Register DstReg = MI.getOperand(0).getReg();
  // Only the first register in the register pair needs to be checked due to the
  // unpacking order. Packed instructions are unpacked such that the lower 32
  // bits (i.e., the first register in the pair) are written first. This can
  // introduce dependencies if the first register is written in one instruction
  // and then read as part of the higher 32 bits in the subsequent instruction.
  // Such scenarios can arise due to specific combinations of op_sel and
  // op_sel_hi modifiers.
  Register UnpackedDstReg = TRI->getSubReg(DstReg, AMDGPU::sub0);

  const MachineOperand *Src0MO = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
  if (Src0MO && Src0MO->isReg()) {
    Register SrcReg0 = Src0MO->getReg();
    unsigned Src0Mods =
        TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm();
    Register HiSrc0Reg = (Src0Mods & SISrcMods::OP_SEL_1)
                             ? TRI->getSubReg(SrcReg0, AMDGPU::sub1)
                             : TRI->getSubReg(SrcReg0, AMDGPU::sub0);
    // Check if the register selected by op_sel_hi is the same as the first
    // register in the destination register pair.
    if (TRI->regsOverlap(UnpackedDstReg, HiSrc0Reg))
      return true;
  }

  const MachineOperand *Src1MO = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
  if (Src1MO && Src1MO->isReg()) {
    Register SrcReg1 = Src1MO->getReg();
    unsigned Src1Mods =
        TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm();
    Register HiSrc1Reg = (Src1Mods & SISrcMods::OP_SEL_1)
                             ? TRI->getSubReg(SrcReg1, AMDGPU::sub1)
                             : TRI->getSubReg(SrcReg1, AMDGPU::sub0);
    if (TRI->regsOverlap(UnpackedDstReg, HiSrc1Reg))
      return true;
  }

  // Applicable for packed instructions with 3 source operands, such as
  // V_PK_FMA.
  if (AMDGPU::hasNamedOperand(OpCode, AMDGPU::OpName::src2)) {
    const MachineOperand *Src2MO =
        TII->getNamedOperand(MI, AMDGPU::OpName::src2);
    if (Src2MO && Src2MO->isReg()) {
      Register SrcReg2 = Src2MO->getReg();
      unsigned Src2Mods =
          TII->getNamedOperand(MI, AMDGPU::OpName::src2_modifiers)->getImm();
      Register HiSrc2Reg = (Src2Mods & SISrcMods::OP_SEL_1)
                               ? TRI->getSubReg(SrcReg2, AMDGPU::sub1)
                               : TRI->getSubReg(SrcReg2, AMDGPU::sub0);
      if (TRI->regsOverlap(UnpackedDstReg, HiSrc2Reg))
        return true;
    }
  }
  return false;
}

uint16_t SIPreEmitPeephole::mapToUnpackedOpcode(MachineInstr &I) {
  unsigned Opcode = I.getOpcode();
  // Use 64 bit encoding to allow use of VOP3 instructions.
  // VOP3 e64 instructions allow source modifiers
  // e32 instructions don't allow source modifiers.
  switch (Opcode) {
  case AMDGPU::V_PK_ADD_F32:
    return AMDGPU::V_ADD_F32_e64;
  case AMDGPU::V_PK_MUL_F32:
    return AMDGPU::V_MUL_F32_e64;
  case AMDGPU::V_PK_FMA_F32:
    return AMDGPU::V_FMA_F32_e64;
  default:
    return std::numeric_limits<uint16_t>::max();
  }
  llvm_unreachable("Fully covered switch");
}

void SIPreEmitPeephole::addOperandAndMods(MachineInstrBuilder &NewMI,
                                          unsigned SrcMods, bool IsHiBits,
                                          const MachineOperand &SrcMO) {
  unsigned NewSrcMods = 0;
  unsigned NegModifier = IsHiBits ? SISrcMods::NEG_HI : SISrcMods::NEG;
  unsigned OpSelModifier = IsHiBits ? SISrcMods::OP_SEL_1 : SISrcMods::OP_SEL_0;
  // Packed instructions (VOP3P) do not support ABS. Hence, no checks are done
  // for ABS modifiers.
  // If NEG or NEG_HI is true, we need to negate the corresponding 32 bit
  // lane.
  // NEG_HI shares the same bit position with ABS. But packed instructions do
  // not support ABS. Therefore, NEG_HI must be translated to NEG source
  // modifier for the higher 32 bits. Unpacked VOP3 instructions support
  // ABS, but do not support NEG_HI. Therefore we need to explicitly add the
  // NEG modifier if present in the packed instruction.
  if (SrcMods & NegModifier)
    NewSrcMods |= SISrcMods::NEG;
  // Src modifiers. Only negative modifiers are added if needed. Unpacked
  // operations do not have op_sel, therefore it must be handled explicitly as
  // done below.
  NewMI.addImm(NewSrcMods);
  if (SrcMO.isImm()) {
    NewMI.addImm(SrcMO.getImm());
    return;
  }
  // If op_sel == 0, select register 0 of reg:sub0_sub1.
  Register UnpackedSrcReg = (SrcMods & OpSelModifier)
                                ? TRI->getSubReg(SrcMO.getReg(), AMDGPU::sub1)
                                : TRI->getSubReg(SrcMO.getReg(), AMDGPU::sub0);

  MachineOperand UnpackedSrcMO =
      MachineOperand::CreateReg(UnpackedSrcReg, /*isDef=*/false);
  if (SrcMO.isKill()) {
    // For each unpacked instruction, mark its source registers as killed if the
    // corresponding source register in the original packed instruction was
    // marked as killed.
    //
    // Exception:
    // If the op_sel and op_sel_hi modifiers require both unpacked instructions
    // to use the same register (e.g., due to overlapping access to low/high
    // bits of the same packed register), then only the *second* (latter)
    // instruction should mark the register as killed. This is because the
    // second instruction handles the higher bits and is effectively the last
    // user of the full register pair.

    bool OpSel = SrcMods & SISrcMods::OP_SEL_0;
    bool OpSelHi = SrcMods & SISrcMods::OP_SEL_1;
    bool KillState = true;
    if ((OpSel == OpSelHi) && !IsHiBits)
      KillState = false;
    UnpackedSrcMO.setIsKill(KillState);
  }
  NewMI.add(UnpackedSrcMO);
}

void SIPreEmitPeephole::collectUnpackingCandidates(
    MachineInstr &BeginMI, SetVector<MachineInstr *> &InstrsToUnpack,
    uint16_t NumMFMACycles) {
  auto *BB = BeginMI.getParent();
  auto E = BB->end();
  int TotalCyclesBetweenCandidates = 0;
  auto SchedModel = TII->getSchedModel();
  Register MFMADef = BeginMI.getOperand(0).getReg();

  for (auto I = std::next(BeginMI.getIterator()); I != E; ++I) {
    MachineInstr &Instr = *I;
    if (Instr.isMetaInstruction())
      continue;
    if ((Instr.isTerminator()) ||
        (TII->isNeverCoissue(Instr) && !isUnpackingSupportedInstr(Instr)) ||
        (SIInstrInfo::modifiesModeRegister(Instr) &&
         Instr.modifiesRegister(AMDGPU::EXEC, TRI)))
      return;

    const MCSchedClassDesc *InstrSchedClassDesc =
        SchedModel.resolveSchedClass(&Instr);
    uint16_t Latency =
        SchedModel.getWriteProcResBegin(InstrSchedClassDesc)->ReleaseAtCycle;
    TotalCyclesBetweenCandidates += Latency;

    if (TotalCyclesBetweenCandidates >= NumMFMACycles - 1)
      return;
    // Identify register dependencies between those used by the MFMA
    // instruction and the following packed instructions. Also checks for
    // transitive dependencies between the MFMA def and candidate instruction
    // def and uses. Conservatively ensures that we do not incorrectly
    // read/write registers.
    for (const MachineOperand &InstrMO : Instr.operands()) {
      if (!InstrMO.isReg() || !InstrMO.getReg().isValid())
        continue;
      if (TRI->regsOverlap(MFMADef, InstrMO.getReg()))
        return;
    }
    if (!isUnpackingSupportedInstr(Instr))
      continue;

    if (canUnpackingClobberRegister(Instr))
      return;
    // If it's a packed instruction, adjust latency: remove the packed
    // latency, add latency of two unpacked instructions (currently estimated
    // as 2 cycles).
    TotalCyclesBetweenCandidates -= Latency;
    // TODO: improve latency handling based on instruction modeling.
    TotalCyclesBetweenCandidates += 2;
    // Subtract 1 to account for MFMA issue latency.
    if (TotalCyclesBetweenCandidates < NumMFMACycles - 1)
      InstrsToUnpack.insert(&Instr);
  }
  return;
}

void SIPreEmitPeephole::performF32Unpacking(MachineInstr &I) {
  MachineOperand DstOp = I.getOperand(0);

  uint16_t UnpackedOpcode = mapToUnpackedOpcode(I);
  assert(UnpackedOpcode != std::numeric_limits<uint16_t>::max() &&
         "Unsupported Opcode");

  MachineInstrBuilder Op0LOp1L =
      createUnpackedMI(I, UnpackedOpcode, /*IsHiBits=*/false);
  MachineOperand LoDstOp = Op0LOp1L->getOperand(0);

  LoDstOp.setIsUndef(DstOp.isUndef());

  MachineInstrBuilder Op0HOp1H =
      createUnpackedMI(I, UnpackedOpcode, /*IsHiBits=*/true);
  MachineOperand HiDstOp = Op0HOp1H->getOperand(0);

  if (I.getFlag(MachineInstr::MIFlag::NoFPExcept)) {
    Op0LOp1L->setFlag(MachineInstr::MIFlag::NoFPExcept);
    Op0HOp1H->setFlag(MachineInstr::MIFlag::NoFPExcept);
  }
  if (I.getFlag(MachineInstr::MIFlag::FmContract)) {
    Op0LOp1L->setFlag(MachineInstr::MIFlag::FmContract);
    Op0HOp1H->setFlag(MachineInstr::MIFlag::FmContract);
  }

  LoDstOp.setIsRenamable(DstOp.isRenamable());
  HiDstOp.setIsRenamable(DstOp.isRenamable());

  I.eraseFromParent();
  return;
}

MachineInstrBuilder SIPreEmitPeephole::createUnpackedMI(MachineInstr &I,
                                                        uint16_t UnpackedOpcode,
                                                        bool IsHiBits) {
  MachineBasicBlock &MBB = *I.getParent();
  const DebugLoc &DL = I.getDebugLoc();
  const MachineOperand *SrcMO1 = TII->getNamedOperand(I, AMDGPU::OpName::src0);
  const MachineOperand *SrcMO2 = TII->getNamedOperand(I, AMDGPU::OpName::src1);
  Register DstReg = I.getOperand(0).getReg();
  unsigned OpCode = I.getOpcode();
  Register UnpackedDstReg = IsHiBits ? TRI->getSubReg(DstReg, AMDGPU::sub1)
                                     : TRI->getSubReg(DstReg, AMDGPU::sub0);

  int64_t ClampVal = TII->getNamedOperand(I, AMDGPU::OpName::clamp)->getImm();
  unsigned Src0Mods =
      TII->getNamedOperand(I, AMDGPU::OpName::src0_modifiers)->getImm();
  unsigned Src1Mods =
      TII->getNamedOperand(I, AMDGPU::OpName::src1_modifiers)->getImm();

  MachineInstrBuilder NewMI = BuildMI(MBB, I, DL, TII->get(UnpackedOpcode));
  NewMI.addDef(UnpackedDstReg); // vdst
  addOperandAndMods(NewMI, Src0Mods, IsHiBits, *SrcMO1);
  addOperandAndMods(NewMI, Src1Mods, IsHiBits, *SrcMO2);

  if (AMDGPU::hasNamedOperand(OpCode, AMDGPU::OpName::src2)) {
    const MachineOperand *SrcMO3 =
        TII->getNamedOperand(I, AMDGPU::OpName::src2);
    unsigned Src2Mods =
        TII->getNamedOperand(I, AMDGPU::OpName::src2_modifiers)->getImm();
    addOperandAndMods(NewMI, Src2Mods, IsHiBits, *SrcMO3);
  }
  NewMI.addImm(ClampVal); // clamp
  // Packed instructions do not support output modifiers. safe to assign them 0
  // for this use case
  NewMI.addImm(0); // omod
  return NewMI;
}

PreservedAnalyses
llvm::SIPreEmitPeepholePass::run(MachineFunction &MF,
                                 MachineFunctionAnalysisManager &MFAM) {
  if (!SIPreEmitPeephole().run(MF))
    return PreservedAnalyses::all();

  return getMachineFunctionPassPreservedAnalyses();
}

bool SIPreEmitPeephole::run(MachineFunction &MF) {
  const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
  TII = ST.getInstrInfo();
  TRI = &TII->getRegisterInfo();
  bool Changed = false;

  MF.RenumberBlocks();

  for (MachineBasicBlock &MBB : MF) {
    MachineBasicBlock::iterator TermI = MBB.getFirstTerminator();
    // Check first terminator for branches to optimize
    if (TermI != MBB.end()) {
      MachineInstr &MI = *TermI;
      switch (MI.getOpcode()) {
      case AMDGPU::S_CBRANCH_VCCZ:
      case AMDGPU::S_CBRANCH_VCCNZ:
        Changed |= optimizeVccBranch(MI);
        break;
      case AMDGPU::S_CBRANCH_EXECZ:
        Changed |= removeExeczBranch(MI, MBB);
        break;
      }
    }

    if (!ST.hasVGPRIndexMode())
      continue;

    MachineInstr *SetGPRMI = nullptr;
    const unsigned Threshold = 20;
    unsigned Count = 0;
    // Scan the block for two S_SET_GPR_IDX_ON instructions to see if a
    // second is not needed. Do expensive checks in the optimizeSetGPR()
    // and limit the distance to 20 instructions for compile time purposes.
    // Note: this needs to work on bundles as S_SET_GPR_IDX* instructions
    // may be bundled with the instructions they modify.
    for (auto &MI : make_early_inc_range(MBB.instrs())) {
      if (Count == Threshold)
        SetGPRMI = nullptr;
      else
        ++Count;

      if (MI.getOpcode() != AMDGPU::S_SET_GPR_IDX_ON)
        continue;

      Count = 0;
      if (!SetGPRMI) {
        SetGPRMI = &MI;
        continue;
      }

      if (optimizeSetGPR(*SetGPRMI, MI))
        Changed = true;
      else
        SetGPRMI = &MI;
    }
  }

  // TODO: Fold this into previous block, if possible. Evaluate and handle any
  // side effects.
  for (MachineBasicBlock &MBB : MF) {
    // Unpack packed instructions overlapped by MFMAs. This allows the compiler
    // to co-issue unpacked instructions with MFMA
    auto SchedModel = TII->getSchedModel();
    SetVector<MachineInstr *> InstrsToUnpack;
    for (auto &MI : make_early_inc_range(MBB.instrs())) {
      if (!SIInstrInfo::isMFMA(MI))
        continue;
      const MCSchedClassDesc *SchedClassDesc =
          SchedModel.resolveSchedClass(&MI);
      uint16_t NumMFMACycles =
          SchedModel.getWriteProcResBegin(SchedClassDesc)->ReleaseAtCycle;
      collectUnpackingCandidates(MI, InstrsToUnpack, NumMFMACycles);
    }
    for (MachineInstr *MI : InstrsToUnpack) {
      performF32Unpacking(*MI);
    }
  }

  return Changed;
}