//===-- SIPreEmitPeephole.cpp ------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// This pass performs the peephole optimizations before code emission. /// /// Additionally, this pass also unpacks packed instructions (V_PK_MUL_F32/F16, /// V_PK_ADD_F32/F16, V_PK_FMA_F32) adjacent to MFMAs such that they can be /// co-issued. This helps with overlapping MFMA and certain vector instructions /// in machine schedules and is expected to improve performance. Only those /// packed instructions are unpacked that are overlapped by the MFMA latency. /// Rest should remain untouched. /// TODO: Add support for F16 packed instructions //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "GCNSubtarget.h" #include "MCTargetDesc/AMDGPUMCTargetDesc.h" #include "llvm/ADT/SetVector.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/TargetSchedule.h" #include "llvm/Support/BranchProbability.h" using namespace llvm; #define DEBUG_TYPE "si-pre-emit-peephole" namespace { class SIPreEmitPeephole { private: const SIInstrInfo *TII = nullptr; const SIRegisterInfo *TRI = nullptr; bool optimizeVccBranch(MachineInstr &MI) const; bool optimizeSetGPR(MachineInstr &First, MachineInstr &MI) const; bool getBlockDestinations(MachineBasicBlock &SrcMBB, MachineBasicBlock *&TrueMBB, MachineBasicBlock *&FalseMBB, SmallVectorImpl &Cond); bool mustRetainExeczBranch(const MachineInstr &Branch, const MachineBasicBlock &From, const MachineBasicBlock &To) const; bool removeExeczBranch(MachineInstr &MI, MachineBasicBlock &SrcMBB); // Check if the machine instruction being processed is a supported packed // instruction. bool isUnpackingSupportedInstr(MachineInstr &MI) const; // Creates a list of packed instructions following an MFMA that are suitable // for unpacking. void collectUnpackingCandidates(MachineInstr &BeginMI, SetVector &InstrsToUnpack, uint16_t NumMFMACycles); // v_pk_fma_f32 v[0:1], v[0:1], v[2:3], v[2:3] op_sel:[1,1,1] // op_sel_hi:[0,0,0] // ==> // v_fma_f32 v0, v1, v3, v3 // v_fma_f32 v1, v0, v2, v2 // Here, we have overwritten v0 before we use it. This function checks if // unpacking can lead to such a situation. bool canUnpackingClobberRegister(const MachineInstr &MI); // Unpack and insert F32 packed instructions, such as V_PK_MUL, V_PK_ADD, and // V_PK_FMA. Currently, only V_PK_MUL, V_PK_ADD, V_PK_FMA are supported for // this transformation. void performF32Unpacking(MachineInstr &I); // Select corresponding unpacked instruction uint16_t mapToUnpackedOpcode(MachineInstr &I); // Creates the unpacked instruction to be inserted. Adds source modifiers to // the unpacked instructions based on the source modifiers in the packed // instruction. MachineInstrBuilder createUnpackedMI(MachineInstr &I, uint16_t UnpackedOpcode, bool IsHiBits); // Process operands/source modifiers from packed instructions and insert the // appropriate source modifers and operands into the unpacked instructions. void addOperandAndMods(MachineInstrBuilder &NewMI, unsigned SrcMods, bool IsHiBits, const MachineOperand &SrcMO); public: bool run(MachineFunction &MF); }; class SIPreEmitPeepholeLegacy : public MachineFunctionPass { public: static char ID; SIPreEmitPeepholeLegacy() : MachineFunctionPass(ID) { initializeSIPreEmitPeepholeLegacyPass(*PassRegistry::getPassRegistry()); } bool runOnMachineFunction(MachineFunction &MF) override { return SIPreEmitPeephole().run(MF); } }; } // End anonymous namespace. INITIALIZE_PASS(SIPreEmitPeepholeLegacy, DEBUG_TYPE, "SI peephole optimizations", false, false) char SIPreEmitPeepholeLegacy::ID = 0; char &llvm::SIPreEmitPeepholeID = SIPreEmitPeepholeLegacy::ID; bool SIPreEmitPeephole::optimizeVccBranch(MachineInstr &MI) const { // Match: // sreg = -1 or 0 // vcc = S_AND_B64 exec, sreg or S_ANDN2_B64 exec, sreg // S_CBRANCH_VCC[N]Z // => // S_CBRANCH_EXEC[N]Z // We end up with this pattern sometimes after basic block placement. // It happens while combining a block which assigns -1 or 0 to a saved mask // and another block which consumes that saved mask and then a branch. // // While searching this also performs the following substitution: // vcc = V_CMP // vcc = S_AND exec, vcc // S_CBRANCH_VCC[N]Z // => // vcc = V_CMP // S_CBRANCH_VCC[N]Z bool Changed = false; MachineBasicBlock &MBB = *MI.getParent(); const GCNSubtarget &ST = MBB.getParent()->getSubtarget(); const bool IsWave32 = ST.isWave32(); const unsigned CondReg = TRI->getVCC(); const unsigned ExecReg = IsWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC; const unsigned And = IsWave32 ? AMDGPU::S_AND_B32 : AMDGPU::S_AND_B64; const unsigned AndN2 = IsWave32 ? AMDGPU::S_ANDN2_B32 : AMDGPU::S_ANDN2_B64; const unsigned Mov = IsWave32 ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; MachineBasicBlock::reverse_iterator A = MI.getReverseIterator(), E = MBB.rend(); bool ReadsCond = false; unsigned Threshold = 5; for (++A; A != E; ++A) { if (!--Threshold) return false; if (A->modifiesRegister(ExecReg, TRI)) return false; if (A->modifiesRegister(CondReg, TRI)) { if (!A->definesRegister(CondReg, TRI) || (A->getOpcode() != And && A->getOpcode() != AndN2)) return false; break; } ReadsCond |= A->readsRegister(CondReg, TRI); } if (A == E) return false; MachineOperand &Op1 = A->getOperand(1); MachineOperand &Op2 = A->getOperand(2); if (Op1.getReg() != ExecReg && Op2.isReg() && Op2.getReg() == ExecReg) { TII->commuteInstruction(*A); Changed = true; } if (Op1.getReg() != ExecReg) return Changed; if (Op2.isImm() && !(Op2.getImm() == -1 || Op2.getImm() == 0)) return Changed; int64_t MaskValue = 0; Register SReg; if (Op2.isReg()) { SReg = Op2.getReg(); auto M = std::next(A); bool ReadsSreg = false; bool ModifiesExec = false; for (; M != E; ++M) { if (M->definesRegister(SReg, TRI)) break; if (M->modifiesRegister(SReg, TRI)) return Changed; ReadsSreg |= M->readsRegister(SReg, TRI); ModifiesExec |= M->modifiesRegister(ExecReg, TRI); } if (M == E) return Changed; // If SReg is VCC and SReg definition is a VALU comparison. // This means S_AND with EXEC is not required. // Erase the S_AND and return. // Note: isVOPC is used instead of isCompare to catch V_CMP_CLASS if (A->getOpcode() == And && SReg == CondReg && !ModifiesExec && TII->isVOPC(*M)) { A->eraseFromParent(); return true; } if (!M->isMoveImmediate() || !M->getOperand(1).isImm() || (M->getOperand(1).getImm() != -1 && M->getOperand(1).getImm() != 0)) return Changed; MaskValue = M->getOperand(1).getImm(); // First if sreg is only used in the AND instruction fold the immediate // into the AND. if (!ReadsSreg && Op2.isKill()) { A->getOperand(2).ChangeToImmediate(MaskValue); M->eraseFromParent(); } } else if (Op2.isImm()) { MaskValue = Op2.getImm(); } else { llvm_unreachable("Op2 must be register or immediate"); } // Invert mask for s_andn2 assert(MaskValue == 0 || MaskValue == -1); if (A->getOpcode() == AndN2) MaskValue = ~MaskValue; if (!ReadsCond && A->registerDefIsDead(AMDGPU::SCC, /*TRI=*/nullptr)) { if (!MI.killsRegister(CondReg, TRI)) { // Replace AND with MOV if (MaskValue == 0) { BuildMI(*A->getParent(), *A, A->getDebugLoc(), TII->get(Mov), CondReg) .addImm(0); } else { BuildMI(*A->getParent(), *A, A->getDebugLoc(), TII->get(Mov), CondReg) .addReg(ExecReg); } } // Remove AND instruction A->eraseFromParent(); } bool IsVCCZ = MI.getOpcode() == AMDGPU::S_CBRANCH_VCCZ; if (SReg == ExecReg) { // EXEC is updated directly if (IsVCCZ) { MI.eraseFromParent(); return true; } MI.setDesc(TII->get(AMDGPU::S_BRANCH)); } else if (IsVCCZ && MaskValue == 0) { // Will always branch // Remove all successors shadowed by new unconditional branch MachineBasicBlock *Parent = MI.getParent(); SmallVector ToRemove; bool Found = false; for (MachineInstr &Term : Parent->terminators()) { if (Found) { if (Term.isBranch()) ToRemove.push_back(&Term); } else { Found = Term.isIdenticalTo(MI); } } assert(Found && "conditional branch is not terminator"); for (auto *BranchMI : ToRemove) { MachineOperand &Dst = BranchMI->getOperand(0); assert(Dst.isMBB() && "destination is not basic block"); Parent->removeSuccessor(Dst.getMBB()); BranchMI->eraseFromParent(); } if (MachineBasicBlock *Succ = Parent->getFallThrough()) { Parent->removeSuccessor(Succ); } // Rewrite to unconditional branch MI.setDesc(TII->get(AMDGPU::S_BRANCH)); } else if (!IsVCCZ && MaskValue == 0) { // Will never branch MachineOperand &Dst = MI.getOperand(0); assert(Dst.isMBB() && "destination is not basic block"); MI.getParent()->removeSuccessor(Dst.getMBB()); MI.eraseFromParent(); return true; } else if (MaskValue == -1) { // Depends only on EXEC MI.setDesc( TII->get(IsVCCZ ? AMDGPU::S_CBRANCH_EXECZ : AMDGPU::S_CBRANCH_EXECNZ)); } MI.removeOperand(MI.findRegisterUseOperandIdx(CondReg, TRI, false /*Kill*/)); MI.addImplicitDefUseOperands(*MBB.getParent()); return true; } bool SIPreEmitPeephole::optimizeSetGPR(MachineInstr &First, MachineInstr &MI) const { MachineBasicBlock &MBB = *MI.getParent(); const MachineFunction &MF = *MBB.getParent(); const MachineRegisterInfo &MRI = MF.getRegInfo(); MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::src0); Register IdxReg = Idx->isReg() ? Idx->getReg() : Register(); SmallVector ToRemove; bool IdxOn = true; if (!MI.isIdenticalTo(First)) return false; // Scan back to find an identical S_SET_GPR_IDX_ON for (MachineBasicBlock::instr_iterator I = std::next(First.getIterator()), E = MI.getIterator(); I != E; ++I) { if (I->isBundle()) continue; switch (I->getOpcode()) { case AMDGPU::S_SET_GPR_IDX_MODE: return false; case AMDGPU::S_SET_GPR_IDX_OFF: IdxOn = false; ToRemove.push_back(&*I); break; default: if (I->modifiesRegister(AMDGPU::M0, TRI)) return false; if (IdxReg && I->modifiesRegister(IdxReg, TRI)) return false; if (llvm::any_of(I->operands(), [&MRI, this](const MachineOperand &MO) { return MO.isReg() && TRI->isVectorRegister(MRI, MO.getReg()); })) { // The only exception allowed here is another indirect vector move // with the same mode. if (!IdxOn || !(I->getOpcode() == AMDGPU::V_MOV_B32_indirect_write || I->getOpcode() == AMDGPU::V_MOV_B32_indirect_read)) return false; } } } MI.eraseFromBundle(); for (MachineInstr *RI : ToRemove) RI->eraseFromBundle(); return true; } bool SIPreEmitPeephole::getBlockDestinations( MachineBasicBlock &SrcMBB, MachineBasicBlock *&TrueMBB, MachineBasicBlock *&FalseMBB, SmallVectorImpl &Cond) { if (TII->analyzeBranch(SrcMBB, TrueMBB, FalseMBB, Cond)) return false; if (!FalseMBB) FalseMBB = SrcMBB.getNextNode(); return true; } namespace { class BranchWeightCostModel { const SIInstrInfo &TII; const TargetSchedModel &SchedModel; BranchProbability BranchProb; static constexpr uint64_t BranchNotTakenCost = 1; uint64_t BranchTakenCost; uint64_t ThenCyclesCost = 0; public: BranchWeightCostModel(const SIInstrInfo &TII, const MachineInstr &Branch, const MachineBasicBlock &Succ) : TII(TII), SchedModel(TII.getSchedModel()) { const MachineBasicBlock &Head = *Branch.getParent(); const auto *FromIt = find(Head.successors(), &Succ); assert(FromIt != Head.succ_end()); BranchProb = Head.getSuccProbability(FromIt); if (BranchProb.isUnknown()) BranchProb = BranchProbability::getZero(); BranchTakenCost = SchedModel.computeInstrLatency(&Branch); } bool isProfitable(const MachineInstr &MI) { if (TII.isWaitcnt(MI.getOpcode())) return false; ThenCyclesCost += SchedModel.computeInstrLatency(&MI); // Consider `P = N/D` to be the probability of execz being false (skipping // the then-block) The transformation is profitable if always executing the // 'then' block is cheaper than executing sometimes 'then' and always // executing s_cbranch_execz: // * ThenCost <= P*ThenCost + (1-P)*BranchTakenCost + P*BranchNotTakenCost // * (1-P) * ThenCost <= (1-P)*BranchTakenCost + P*BranchNotTakenCost // * (D-N)/D * ThenCost <= (D-N)/D * BranchTakenCost + N/D * // BranchNotTakenCost uint64_t Numerator = BranchProb.getNumerator(); uint64_t Denominator = BranchProb.getDenominator(); return (Denominator - Numerator) * ThenCyclesCost <= ((Denominator - Numerator) * BranchTakenCost + Numerator * BranchNotTakenCost); } }; bool SIPreEmitPeephole::mustRetainExeczBranch( const MachineInstr &Branch, const MachineBasicBlock &From, const MachineBasicBlock &To) const { assert(is_contained(Branch.getParent()->successors(), &From)); BranchWeightCostModel CostModel{*TII, Branch, From}; const MachineFunction *MF = From.getParent(); for (MachineFunction::const_iterator MBBI(&From), ToI(&To), End = MF->end(); MBBI != End && MBBI != ToI; ++MBBI) { const MachineBasicBlock &MBB = *MBBI; for (const MachineInstr &MI : MBB) { // When a uniform loop is inside non-uniform control flow, the branch // leaving the loop might never be taken when EXEC = 0. // Hence we should retain cbranch out of the loop lest it become infinite. if (MI.isConditionalBranch()) return true; if (MI.isUnconditionalBranch() && TII->getBranchDestBlock(MI) != MBB.getNextNode()) return true; if (MI.isMetaInstruction()) continue; if (TII->hasUnwantedEffectsWhenEXECEmpty(MI)) return true; if (!CostModel.isProfitable(MI)) return true; } } return false; } } // namespace // Returns true if the skip branch instruction is removed. bool SIPreEmitPeephole::removeExeczBranch(MachineInstr &MI, MachineBasicBlock &SrcMBB) { if (!TII->getSchedModel().hasInstrSchedModel()) return false; MachineBasicBlock *TrueMBB = nullptr; MachineBasicBlock *FalseMBB = nullptr; SmallVector Cond; if (!getBlockDestinations(SrcMBB, TrueMBB, FalseMBB, Cond)) return false; // Consider only the forward branches. if (SrcMBB.getNumber() >= TrueMBB->getNumber()) return false; // Consider only when it is legal and profitable if (mustRetainExeczBranch(MI, *FalseMBB, *TrueMBB)) return false; LLVM_DEBUG(dbgs() << "Removing the execz branch: " << MI); MI.eraseFromParent(); SrcMBB.removeSuccessor(TrueMBB); return true; } // If support is extended to new operations, add tests in // llvm/test/CodeGen/AMDGPU/unpack-non-coissue-insts-post-ra-scheduler.mir. bool SIPreEmitPeephole::isUnpackingSupportedInstr(MachineInstr &MI) const { if (!TII->isNeverCoissue(MI)) return false; unsigned Opcode = MI.getOpcode(); switch (Opcode) { case AMDGPU::V_PK_ADD_F32: case AMDGPU::V_PK_MUL_F32: case AMDGPU::V_PK_FMA_F32: return true; default: return false; } llvm_unreachable("Fully covered switch"); } bool SIPreEmitPeephole::canUnpackingClobberRegister(const MachineInstr &MI) { unsigned OpCode = MI.getOpcode(); Register DstReg = MI.getOperand(0).getReg(); // Only the first register in the register pair needs to be checked due to the // unpacking order. Packed instructions are unpacked such that the lower 32 // bits (i.e., the first register in the pair) are written first. This can // introduce dependencies if the first register is written in one instruction // and then read as part of the higher 32 bits in the subsequent instruction. // Such scenarios can arise due to specific combinations of op_sel and // op_sel_hi modifiers. Register UnpackedDstReg = TRI->getSubReg(DstReg, AMDGPU::sub0); const MachineOperand *Src0MO = TII->getNamedOperand(MI, AMDGPU::OpName::src0); if (Src0MO && Src0MO->isReg()) { Register SrcReg0 = Src0MO->getReg(); unsigned Src0Mods = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm(); Register HiSrc0Reg = (Src0Mods & SISrcMods::OP_SEL_1) ? TRI->getSubReg(SrcReg0, AMDGPU::sub1) : TRI->getSubReg(SrcReg0, AMDGPU::sub0); // Check if the register selected by op_sel_hi is the same as the first // register in the destination register pair. if (TRI->regsOverlap(UnpackedDstReg, HiSrc0Reg)) return true; } const MachineOperand *Src1MO = TII->getNamedOperand(MI, AMDGPU::OpName::src1); if (Src1MO && Src1MO->isReg()) { Register SrcReg1 = Src1MO->getReg(); unsigned Src1Mods = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm(); Register HiSrc1Reg = (Src1Mods & SISrcMods::OP_SEL_1) ? TRI->getSubReg(SrcReg1, AMDGPU::sub1) : TRI->getSubReg(SrcReg1, AMDGPU::sub0); if (TRI->regsOverlap(UnpackedDstReg, HiSrc1Reg)) return true; } // Applicable for packed instructions with 3 source operands, such as // V_PK_FMA. if (AMDGPU::hasNamedOperand(OpCode, AMDGPU::OpName::src2)) { const MachineOperand *Src2MO = TII->getNamedOperand(MI, AMDGPU::OpName::src2); if (Src2MO && Src2MO->isReg()) { Register SrcReg2 = Src2MO->getReg(); unsigned Src2Mods = TII->getNamedOperand(MI, AMDGPU::OpName::src2_modifiers)->getImm(); Register HiSrc2Reg = (Src2Mods & SISrcMods::OP_SEL_1) ? TRI->getSubReg(SrcReg2, AMDGPU::sub1) : TRI->getSubReg(SrcReg2, AMDGPU::sub0); if (TRI->regsOverlap(UnpackedDstReg, HiSrc2Reg)) return true; } } return false; } uint16_t SIPreEmitPeephole::mapToUnpackedOpcode(MachineInstr &I) { unsigned Opcode = I.getOpcode(); // Use 64 bit encoding to allow use of VOP3 instructions. // VOP3 e64 instructions allow source modifiers // e32 instructions don't allow source modifiers. switch (Opcode) { case AMDGPU::V_PK_ADD_F32: return AMDGPU::V_ADD_F32_e64; case AMDGPU::V_PK_MUL_F32: return AMDGPU::V_MUL_F32_e64; case AMDGPU::V_PK_FMA_F32: return AMDGPU::V_FMA_F32_e64; default: return std::numeric_limits::max(); } llvm_unreachable("Fully covered switch"); } void SIPreEmitPeephole::addOperandAndMods(MachineInstrBuilder &NewMI, unsigned SrcMods, bool IsHiBits, const MachineOperand &SrcMO) { unsigned NewSrcMods = 0; unsigned NegModifier = IsHiBits ? SISrcMods::NEG_HI : SISrcMods::NEG; unsigned OpSelModifier = IsHiBits ? SISrcMods::OP_SEL_1 : SISrcMods::OP_SEL_0; // Packed instructions (VOP3P) do not support ABS. Hence, no checks are done // for ABS modifiers. // If NEG or NEG_HI is true, we need to negate the corresponding 32 bit // lane. // NEG_HI shares the same bit position with ABS. But packed instructions do // not support ABS. Therefore, NEG_HI must be translated to NEG source // modifier for the higher 32 bits. Unpacked VOP3 instructions support // ABS, but do not support NEG_HI. Therefore we need to explicitly add the // NEG modifier if present in the packed instruction. if (SrcMods & NegModifier) NewSrcMods |= SISrcMods::NEG; // Src modifiers. Only negative modifiers are added if needed. Unpacked // operations do not have op_sel, therefore it must be handled explicitly as // done below. NewMI.addImm(NewSrcMods); if (SrcMO.isImm()) { NewMI.addImm(SrcMO.getImm()); return; } // If op_sel == 0, select register 0 of reg:sub0_sub1. Register UnpackedSrcReg = (SrcMods & OpSelModifier) ? TRI->getSubReg(SrcMO.getReg(), AMDGPU::sub1) : TRI->getSubReg(SrcMO.getReg(), AMDGPU::sub0); MachineOperand UnpackedSrcMO = MachineOperand::CreateReg(UnpackedSrcReg, /*isDef=*/false); if (SrcMO.isKill()) { // For each unpacked instruction, mark its source registers as killed if the // corresponding source register in the original packed instruction was // marked as killed. // // Exception: // If the op_sel and op_sel_hi modifiers require both unpacked instructions // to use the same register (e.g., due to overlapping access to low/high // bits of the same packed register), then only the *second* (latter) // instruction should mark the register as killed. This is because the // second instruction handles the higher bits and is effectively the last // user of the full register pair. bool OpSel = SrcMods & SISrcMods::OP_SEL_0; bool OpSelHi = SrcMods & SISrcMods::OP_SEL_1; bool KillState = true; if ((OpSel == OpSelHi) && !IsHiBits) KillState = false; UnpackedSrcMO.setIsKill(KillState); } NewMI.add(UnpackedSrcMO); } void SIPreEmitPeephole::collectUnpackingCandidates( MachineInstr &BeginMI, SetVector &InstrsToUnpack, uint16_t NumMFMACycles) { auto *BB = BeginMI.getParent(); auto E = BB->end(); int TotalCyclesBetweenCandidates = 0; auto SchedModel = TII->getSchedModel(); Register MFMADef = BeginMI.getOperand(0).getReg(); for (auto I = std::next(BeginMI.getIterator()); I != E; ++I) { MachineInstr &Instr = *I; if (Instr.isMetaInstruction()) continue; if ((Instr.isTerminator()) || (TII->isNeverCoissue(Instr) && !isUnpackingSupportedInstr(Instr)) || (SIInstrInfo::modifiesModeRegister(Instr) && Instr.modifiesRegister(AMDGPU::EXEC, TRI))) return; const MCSchedClassDesc *InstrSchedClassDesc = SchedModel.resolveSchedClass(&Instr); uint16_t Latency = SchedModel.getWriteProcResBegin(InstrSchedClassDesc)->ReleaseAtCycle; TotalCyclesBetweenCandidates += Latency; if (TotalCyclesBetweenCandidates >= NumMFMACycles - 1) return; // Identify register dependencies between those used by the MFMA // instruction and the following packed instructions. Also checks for // transitive dependencies between the MFMA def and candidate instruction // def and uses. Conservatively ensures that we do not incorrectly // read/write registers. for (const MachineOperand &InstrMO : Instr.operands()) { if (!InstrMO.isReg() || !InstrMO.getReg().isValid()) continue; if (TRI->regsOverlap(MFMADef, InstrMO.getReg())) return; } if (!isUnpackingSupportedInstr(Instr)) continue; if (canUnpackingClobberRegister(Instr)) return; // If it's a packed instruction, adjust latency: remove the packed // latency, add latency of two unpacked instructions (currently estimated // as 2 cycles). TotalCyclesBetweenCandidates -= Latency; // TODO: improve latency handling based on instruction modeling. TotalCyclesBetweenCandidates += 2; // Subtract 1 to account for MFMA issue latency. if (TotalCyclesBetweenCandidates < NumMFMACycles - 1) InstrsToUnpack.insert(&Instr); } return; } void SIPreEmitPeephole::performF32Unpacking(MachineInstr &I) { MachineOperand DstOp = I.getOperand(0); uint16_t UnpackedOpcode = mapToUnpackedOpcode(I); assert(UnpackedOpcode != std::numeric_limits::max() && "Unsupported Opcode"); MachineInstrBuilder Op0LOp1L = createUnpackedMI(I, UnpackedOpcode, /*IsHiBits=*/false); MachineOperand LoDstOp = Op0LOp1L->getOperand(0); LoDstOp.setIsUndef(DstOp.isUndef()); MachineInstrBuilder Op0HOp1H = createUnpackedMI(I, UnpackedOpcode, /*IsHiBits=*/true); MachineOperand HiDstOp = Op0HOp1H->getOperand(0); if (I.getFlag(MachineInstr::MIFlag::NoFPExcept)) { Op0LOp1L->setFlag(MachineInstr::MIFlag::NoFPExcept); Op0HOp1H->setFlag(MachineInstr::MIFlag::NoFPExcept); } if (I.getFlag(MachineInstr::MIFlag::FmContract)) { Op0LOp1L->setFlag(MachineInstr::MIFlag::FmContract); Op0HOp1H->setFlag(MachineInstr::MIFlag::FmContract); } LoDstOp.setIsRenamable(DstOp.isRenamable()); HiDstOp.setIsRenamable(DstOp.isRenamable()); I.eraseFromParent(); return; } MachineInstrBuilder SIPreEmitPeephole::createUnpackedMI(MachineInstr &I, uint16_t UnpackedOpcode, bool IsHiBits) { MachineBasicBlock &MBB = *I.getParent(); const DebugLoc &DL = I.getDebugLoc(); const MachineOperand *SrcMO1 = TII->getNamedOperand(I, AMDGPU::OpName::src0); const MachineOperand *SrcMO2 = TII->getNamedOperand(I, AMDGPU::OpName::src1); Register DstReg = I.getOperand(0).getReg(); unsigned OpCode = I.getOpcode(); Register UnpackedDstReg = IsHiBits ? TRI->getSubReg(DstReg, AMDGPU::sub1) : TRI->getSubReg(DstReg, AMDGPU::sub0); int64_t ClampVal = TII->getNamedOperand(I, AMDGPU::OpName::clamp)->getImm(); unsigned Src0Mods = TII->getNamedOperand(I, AMDGPU::OpName::src0_modifiers)->getImm(); unsigned Src1Mods = TII->getNamedOperand(I, AMDGPU::OpName::src1_modifiers)->getImm(); MachineInstrBuilder NewMI = BuildMI(MBB, I, DL, TII->get(UnpackedOpcode)); NewMI.addDef(UnpackedDstReg); // vdst addOperandAndMods(NewMI, Src0Mods, IsHiBits, *SrcMO1); addOperandAndMods(NewMI, Src1Mods, IsHiBits, *SrcMO2); if (AMDGPU::hasNamedOperand(OpCode, AMDGPU::OpName::src2)) { const MachineOperand *SrcMO3 = TII->getNamedOperand(I, AMDGPU::OpName::src2); unsigned Src2Mods = TII->getNamedOperand(I, AMDGPU::OpName::src2_modifiers)->getImm(); addOperandAndMods(NewMI, Src2Mods, IsHiBits, *SrcMO3); } NewMI.addImm(ClampVal); // clamp // Packed instructions do not support output modifiers. safe to assign them 0 // for this use case NewMI.addImm(0); // omod return NewMI; } PreservedAnalyses llvm::SIPreEmitPeepholePass::run(MachineFunction &MF, MachineFunctionAnalysisManager &MFAM) { if (!SIPreEmitPeephole().run(MF)) return PreservedAnalyses::all(); return getMachineFunctionPassPreservedAnalyses(); } bool SIPreEmitPeephole::run(MachineFunction &MF) { const GCNSubtarget &ST = MF.getSubtarget(); TII = ST.getInstrInfo(); TRI = &TII->getRegisterInfo(); bool Changed = false; MF.RenumberBlocks(); for (MachineBasicBlock &MBB : MF) { MachineBasicBlock::iterator TermI = MBB.getFirstTerminator(); // Check first terminator for branches to optimize if (TermI != MBB.end()) { MachineInstr &MI = *TermI; switch (MI.getOpcode()) { case AMDGPU::S_CBRANCH_VCCZ: case AMDGPU::S_CBRANCH_VCCNZ: Changed |= optimizeVccBranch(MI); break; case AMDGPU::S_CBRANCH_EXECZ: Changed |= removeExeczBranch(MI, MBB); break; } } if (!ST.hasVGPRIndexMode()) continue; MachineInstr *SetGPRMI = nullptr; const unsigned Threshold = 20; unsigned Count = 0; // Scan the block for two S_SET_GPR_IDX_ON instructions to see if a // second is not needed. Do expensive checks in the optimizeSetGPR() // and limit the distance to 20 instructions for compile time purposes. // Note: this needs to work on bundles as S_SET_GPR_IDX* instructions // may be bundled with the instructions they modify. for (auto &MI : make_early_inc_range(MBB.instrs())) { if (Count == Threshold) SetGPRMI = nullptr; else ++Count; if (MI.getOpcode() != AMDGPU::S_SET_GPR_IDX_ON) continue; Count = 0; if (!SetGPRMI) { SetGPRMI = &MI; continue; } if (optimizeSetGPR(*SetGPRMI, MI)) Changed = true; else SetGPRMI = &MI; } } // TODO: Fold this into previous block, if possible. Evaluate and handle any // side effects. for (MachineBasicBlock &MBB : MF) { // Unpack packed instructions overlapped by MFMAs. This allows the compiler // to co-issue unpacked instructions with MFMA auto SchedModel = TII->getSchedModel(); SetVector InstrsToUnpack; for (auto &MI : make_early_inc_range(MBB.instrs())) { if (!SIInstrInfo::isMFMA(MI)) continue; const MCSchedClassDesc *SchedClassDesc = SchedModel.resolveSchedClass(&MI); uint16_t NumMFMACycles = SchedModel.getWriteProcResBegin(SchedClassDesc)->ReleaseAtCycle; collectUnpackingCandidates(MI, InstrsToUnpack, NumMFMACycles); } for (MachineInstr *MI : InstrsToUnpack) { performF32Unpacking(*MI); } } return Changed; }