Age | Commit message (Collapse) | Author | Files | Lines |
|
Changed m_SpecificICst, m_SpecificICstSplat and m_SpecificICstorSplat to
match against APInt as well.
|
|
This adds a Flags parameter to the BinaryOp_match, allowing it to detect
different flags like Disjoint. A m_GDisjointOr is added to detect Or's
with disjoint flags, and G_AddLike is then either a m_GADD or
m_GDisjointOr.
The rest is trying to allow matching `const MachineInstr&`, as opposed
to non-const references.
|
|
This pattern does the same thing as m_SpecificReg/Type except the value
it matches against origniated from an earlier pattern in the same
mi_match expression.
This patch also changes how commutative patterns are handled: in order
to support m_DefferedReg/Type, we always have to run the LHS-pattern
before the RHS one.
|
|
And make all unsigned and signed versions of min/max matchers
commutative, since we already made a precedent of m_GAdd that is
commutative by default.
|
|
m_Type is supposed to extract the underlying value type (equality type
comparison is covered by m_SpecificType), therefore it should take a LLT
reference as its argument rather than passing by value.
This was originated from de256478e61d6488db751689af82d280ba114a6f, which
refactored out a good chunk of LLT reference usages. And it's just so
happen that (for some reasons) no one is using m_Type and no test was
covering it.
|
|
Recommits llvm/llvm-project#80378 which was reverted in
llvm/llvm-project#84330. The problem was that the change in
llvm/test/CodeGen/AArch64/GlobalISel/legalizer-info-validation.mir used
217 as an opcode instead of a regex.
|
|
types" (#84330)
Reverts llvm/llvm-project#80378
causing Buildbot failures that did not show up with check-llvm or CI.
|
|
This patch is stacked on
https://github.com/llvm/llvm-project/pull/80372,
https://github.com/llvm/llvm-project/pull/80307, and
https://github.com/llvm/llvm-project/pull/80306.
ShuffleVector on scalable vector types gets IRTranslate'd to
G_SPLAT_VECTOR since a ShuffleVector that has operates on scalable
vectors is a splat vector where the value of the splat vector is the 0th
element of the first operand, because the index mask operand is the
zeroinitializer (undef and poison are treated as zeroinitializer here).
This is analogous to what happens in SelectionDAG for ShuffleVector.
`buildSplatVector` is renamed to`buildBuildVectorSplatVector`. I did not
make this a separate patch because it would cause problems to revert
that change without reverting this change too.
|
|
Basically NFC: A TEST/TEST_F/etc that bails out early (usually because
setup failed or some other runtime condition wasn't met) generally
should use GTEST_SKIP() to report its status correctly, unless it
takes steps to report another status (e.g., FAIL()).
I did see a handful of tests show up as SKIPPED after this change,
which is not unexpected. The status seemed appropriate in all the new
cases.
|
|
Add support to the MI matching of vector splats for patterns that
consist of `G_CONCAT_VECTORS` of smaller splats with the same constant
value. With this, we would consider the following pseudo-MIR to be a splat:
```
%0 = G_[F]CONSTANT [...]
%1 = G_BUILD_VECTOR %0, %0, ..., %0
%2 = G_CONCAT_VECTORS %1, %1, ..., %1
```
Since it uses recursion for matching splats, it could match pretty
complicated patterns with all sorts of combinations of `G_BUILD_VECTOR`
and `G_CONCAT_VECTORS` (e.g. a `G_CONCAT_VECTORS` with
a `G_BUILD_VECTOR_TRUNC` and another `G_CONCAT_VECTORS` as operands),
and it should also look through copies etc.
This should make it easier to match complex immediates for certain
instructions on AMDGPU, where for instance a <8 x s16> will be split
before instruction selection into a `G_CONCAT_VECTORS` of <2 x s16>
splats.
Differential Revision: https://reviews.llvm.org/D141902
|
|
|
|
This adds:
* `m_c_GICmp`
* `m_c_GFCmp`
These work the same way as the standard matchers, but will also try to commute
the LHS and RHS of a compare to get a match.
E.g.
```
m_c_GICmp(m_Pred(...), m_GAdd(...), m_GSub(...))
```
Can match either of
```
icmp cc (add x, y), (sub a, b)
icmp swapped_cc (sub a, b), (add x, y)
```
Differential Revision: https://reviews.llvm.org/D135415
|
|
Similar to the specific matchers for constants.
The intention here is to make it easier to write combines which check if a
specific register is used more than once.
e.g. matching patterns like:
```
(X + Y) == Y
```
Differential Revision: https://reviews.llvm.org/D135378
|
|
This change adds the constant splat versions of m_ICst() (by using
getBuildVectorConstantSplat()) and uses it in
matchOrShiftToFunnelShift(). The getBuildVectorConstantSplat() name is
shortened to getIConstantSplatVal() so that the *SExtVal() version would
have a more compact name.
Differential Revision: https://reviews.llvm.org/D125516
|
|
This change exposes isBuildVectorConstantSplat() to the llvm namespace
and uses it to implement the constant splat versions of
m_SpecificICst().
CombinerHelper::matchOrShiftToFunnelShift() can now work with vector
types and CombinerHelper::matchMulOBy2()'s match for a constant splat is
simplified.
Differential Revision: https://reviews.llvm.org/D114625
|
|
This moves the registry higher in the LLVM library dependency stack.
Every client of the target registry needs to link against MC anyway to
actually use the target, so we might as well move this out of Support.
This allows us to ensure that Support doesn't have includes from MC/*.
Differential Revision: https://reviews.llvm.org/D111454
|
|
MachineInstr::addOperand
Based on the reasoning of D53903, register operands of DBG_VALUE are
invariably treated as RegState::Debug operands. This change enforces
this invariant as part of MachineInstr::addOperand so that all passes
emit this flag consistently.
RegState::Debug is inconsistently set on DBG_VALUE registers throughout
LLVM. This runs the risk of a filtering iterator like
MachineRegisterInfo::reg_nodbg_iterator to process these operands
erroneously when not parsed from MIR sources.
This issue was observed in the development of the llvm-mos fork which
adds a backend that relies on physical register operands much more than
existing targets. Physical RegUnit 0 has the same numeric encoding as
$noreg (indicating an undef for DBG_VALUE). Allowing debug operands into
the machine scheduler correlates $noreg with RegUnit 0 (i.e. a collision
of register numbers with different zero semantics). Eventually, this
causes an assert where DBG_VALUE instructions are prohibited from
participating in live register ranges.
Reviewed By: MatzeB, StephenTozer
Differential Revision: https://reviews.llvm.org/D110105
|
|
Add generic helper function that matches constant splat. It has option to
match constant splat with undef (some elements can be undef but not all).
Add util function and matcher for G_FCONSTANT splat.
Differential Revision: https://reviews.llvm.org/D104410
|
|
Rework getConstantstVRegValWithLookThrough in order to make it clear if we
are matching integer/float constant only or any constant(default).
Add helper functions that get DefVReg and APInt/APFloat from constant instr
getIConstantVRegValWithLookThrough: integer constant, only G_CONSTANT
getFConstantVRegValWithLookThrough: float constant, only G_FCONSTANT
getAnyConstantVRegValWithLookThrough: either G_CONSTANT or G_FCONSTANT
Rename getConstantVRegVal and getConstantVRegSExtVal to getIConstantVRegVal
and getIConstantVRegSExtVal. These now only match G_CONSTANT as described
in comment.
Relevant matchers now return both DefVReg and APInt/APFloat.
Replace existing uses of getConstantstVRegValWithLookThrough and
getConstantVRegVal with new helper functions. Any constant match is
only required in:
ConstantFoldBinOp: for constant argument that was bit-cast of float to int
getAArch64VectorSplat: AArch64::G_DUP operands can be any constant
amdgpu select for G_BUILD_VECTOR_TRUNC: operands can be any constant
In other places use integer only constant match.
Differential Revision: https://reviews.llvm.org/D104409
|
|
This also adds new interfaces for the fixed- and scalable case:
* LLT::fixed_vector
* LLT::scalable_vector
The strategy for migrating to the new interfaces was as follows:
* If the new LLT is a (modified) clone of another LLT, taking the
same number of elements, then use LLT::vector(OtherTy.getElementCount())
or if the number of elements is halfed/doubled, it uses .divideCoefficientBy(2)
or operator*. That is because there is no reason to specifically restrict
the types to 'fixed_vector'.
* If the algorithm works on the number of elements (as unsigned), then
just use fixed_vector. This will need to be fixed up in the future when
modifying the algorithm to also work for scalable vectors, and will need
then need additional tests to confirm the behaviour works the same for
scalable vectors.
* If the test used the '/*Scalable=*/true` flag of LLT::vector, then
this is replaced by LLT::scalable_vector.
Reviewed By: aemerson
Differential Revision: https://reviews.llvm.org/D104451
|
|
Add matchers that support commutative and non-commutative binary opcodes.
Differential Revision: https://reviews.llvm.org/D99736
|
|
This utility allows more efficient start of pattern match.
Often MachineInstr(MI) is available and instead of using
mi_match(MI.getOperand(0).getReg(), MRI, ...) followed by
MRI.getVRegDef(Reg) that gives back MI we now use
mi_match(MI, MRI, ...).
Differential Revision: https://reviews.llvm.org/D99735
|
|
Matches G_CONSTANT and returns its def register.
Differential Revision: https://reviews.llvm.org/D99734
|
|
ConstantFoldingMIRBuilder was an experiment which is not used for
anything. The constant folding functionality is now part of
CSEMIRBuilder.
Differential Revision: https://reviews.llvm.org/D101050
|
|
with SetUp() from gtest"
Forgot to apply commit message changes from phabricator
This reverts commit 3a016e31ecef7eeb876b540c928a25a7c5d2e07a.
|
|
SetUp() from gtest
Also, make it structurally required so it can't be forgotten and re-introduce
the bug that led to the rotten green tests.
Differential Revision: https://reviews.llvm.org/D99692
|
|
Add a matcher that checks if the given subpattern has only one non-debug use.
Also improve existing m_OneUse testcase.
Differential Revision: https://reviews.llvm.org/D94705
|
|
Add a matcher which recognizes G_PTR_ADD and add a test.
Differential Revision: https://reviews.llvm.org/D94348
|
|
Add a convenience matcher which handles
```
G_XOR %not_reg, -1
```
And a convenience matcher which returns true if an integer constant is
all-ones.
Differential Revision: https://reviews.llvm.org/D91459
|
|
It's fairly common to need matchers for a specific constant value, or for
common idioms like finding a negated register.
Add
- `m_SpecificICst`, which returns true when matching a specific value..
- `m_ZeroInt`, which returns true when an integer 0 is matched.
- `m_Neg`, which returns when a register is negated.
Also update a few places which use idioms related to the new matchers.
Differential Revision: https://reviews.llvm.org/D91397
|
|
|
|
Currently all GlobalISel unittests use a hardcoded AArch64 target
machine. Factor this so I can write some for AMDGPU specific known
bits unittests.
|
|
|
|
|
|
Reviewers: arsenm
Subscribers: wdng, hiraditya, Petar.Avramovic, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73262
|
|
Split the ConstantFold part into a separate file and
make it use the fixture GISelMITest.
llvm-svn: 374245
|
|
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.
llvm-svn: 369013
|
|
Summary:
Targets often have instructions that can sign-extend certain cases faster
than the equivalent shift-left/arithmetic-shift-right. Such cases can be
identified by matching a shift-left/shift-right pair but there are some
issues with this in the context of combines. For example, suppose you can
sign-extend 8-bit up to 32-bit with a target extend instruction.
%1:_(s32) = G_SHL %0:_(s32), i32 24 # (I've inlined the G_CONSTANT for brevity)
%2:_(s32) = G_ASHR %1:_(s32), i32 24
%3:_(s32) = G_ASHR %2:_(s32), i32 1
would reasonably combine to:
%1:_(s32) = G_SHL %0:_(s32), i32 24
%2:_(s32) = G_ASHR %1:_(s32), i32 25
which no longer matches the special case. If your shifts and extend are
equal cost, this would break even as a pair of shifts but if your shift is
more expensive than the extend then it's cheaper as:
%2:_(s32) = G_SEXT_INREG %0:_(s32), i32 8
%3:_(s32) = G_ASHR %2:_(s32), i32 1
It's possible to match the shift-pair in ISel and emit an extend and ashr.
However, this is far from the only way to break this shift pair and make
it hard to match the extends. Another example is that with the right
known-zeros, this:
%1:_(s32) = G_SHL %0:_(s32), i32 24
%2:_(s32) = G_ASHR %1:_(s32), i32 24
%3:_(s32) = G_MUL %2:_(s32), i32 2
can become:
%1:_(s32) = G_SHL %0:_(s32), i32 24
%2:_(s32) = G_ASHR %1:_(s32), i32 23
All upstream targets have been configured to lower it to the current
G_SHL,G_ASHR pair but will likely want to make it legal in some cases to
handle their faster cases.
To follow-up: Provide a way to legalize based on the constant. At the
moment, I'm thinking that the best way to achieve this is to provide the
MI in LegalityQuery but that opens the door to breaking core principles
of the legalizer (legality is not context sensitive). That said, it's
worth noting that looking at other instructions and acting on that
information doesn't violate this principle in itself. It's only a
violation if, at the end of legalization, a pass that checks legality
without being able to see the context would say an instruction might not be
legal. That's a fairly subtle distinction so to give a concrete example,
saying %2 in:
%1 = G_CONSTANT 16
%2 = G_SEXT_INREG %0, %1
is legal is in violation of that principle if the legality of %2 depends
on %1 being constant and/or being 16. However, legalizing to either:
%2 = G_SEXT_INREG %0, 16
or:
%1 = G_CONSTANT 16
%2:_(s32) = G_SHL %0, %1
%3:_(s32) = G_ASHR %2, %1
depending on whether %1 is constant and 16 does not violate that principle
since both outputs are genuinely legal.
Reviewers: bogner, aditya_nandakumar, volkan, aemerson, paquette, arsenm
Subscribers: sdardis, jvesely, wdng, nhaehnle, rovka, kristof.beyls, javed.absar, hiraditya, jrtc27, atanasyan, Petar.Avramovic, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61289
llvm-svn: 368487
|
|
Force using Register.
One downside is the generated register enums require explicit
conversion.
llvm-svn: 364194
|
|
Avoids using a plain unsigned for registers throughoug codegen.
Doesn't attempt to change every register use, just something a little
more than the set needed to build after changing the return type of
MachineOperand::getReg().
llvm-svn: 364191
|
|
https://reviews.llvm.org/D63302
llvm-svn: 363424
|
|
Don't unnecessarily use ASSERT_*, and print the MachineFunction
on failure.
llvm-svn: 353072
|
|
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
|
|
build Instrs
https://reviews.llvm.org/D55294
Previously MachineIRBuilder::buildInstr used to accept variadic
arguments for sources (which were either unsigned or
MachineInstrBuilder). While this worked well in common cases, it doesn't
allow us to build instructions that have multiple destinations.
Additionally passing in other optional parameters in the end (such as
flags) is not possible trivially. Also a trivial call such as
B.buildInstr(Opc, Reg1, Reg2, Reg3)
can be interpreted differently based on the opcode (2defs + 1 src for
unmerge vs 1 def + 2srcs).
This patch refactors the buildInstr to
buildInstr(Opc, ArrayRef<DstOps>, ArrayRef<SrcOps>)
where DstOps and SrcOps are typed unions that know how to add itself to
MachineInstrBuilder.
After this patch, most invocations would look like
B.buildInstr(Opc, {s32, DstReg}, {SrcRegs..., SrcMIBs..});
Now all the other calls (such as buildAdd, buildSub etc) forward to
buildInstr. It also makes it possible to build instructions with
multiple defs.
Additionally in a subsequent patch, we should make it possible to add
flags directly while building instructions.
Additionally, the main buildInstr method is now virtual and other
builders now only have to override buildInstr (for say constant
folding/cseing) is straightforward.
Also attached here (https://reviews.llvm.org/F7675680) is a clang-tidy
patch that should upgrade the API calls if necessary.
llvm-svn: 348815
|
|
MachineModuleInfo can only be used in code using lib/CodeGen, hence we
can keep a more specific reference to LLVMTargetMachine rather than just
TargetMachine around.
llvm-svn: 346182
|
|
https://reviews.llvm.org/D47547
Add matching templates for G_FSUB, and G_FNEG.
Reviewed by: aemerson.
llvm-svn: 333685
|
|
building.
https://reviews.llvm.org/D45067
This change attempts to do two things:
1) It separates out the state that is stored in the
MachineIRBuilder(InsertionPt, MF, MRI, InsertFunction etc) into a
separate object called MachineIRBuilderState.
2) Add the ability to constant fold operations while building instructions
(optionally). MachineIRBuilder is now refactored into a MachineIRBuilderBase
which contains lots of non foldable build methods and their implementation.
Instructions which can be constant folded/transformed are now in a class
called FoldableInstructionBuilder which uses CRTP to use the implementation
of the derived class for buildBinaryOps. Additionally buildInstr in the derived
class can be used to implement other kinds of transformations.
Also because of separation of state, given a MachineIRBuilder in an API,
if one wishes to use another MachineIRBuilder, a new one can be
constructed from the state locally. For eg,
void doFoo(MachineIRBuilder &B) {
MyCustomBuilder CustomB(B.getState());
// Use CustomB for building.
}
reviewed by : aemerson
llvm-svn: 329596
|
|
getConstantVRegVal() returns int64_t but we use uint64_t.
llvm-svn: 327461
|
|
Added helpers to build G_FCONSTANT, along with matching ConstantFP and
unit tests for the same.
Sample usage.
auto MIB = Builder.buildFConstant(s32, 0.5); // Build IEEESingle
For Matching the above
const ConstantFP* Tmp;
mi_match(DstReg, MRI, m_GFCst(Tmp));
https://reviews.llvm.org/D44128
reviewed by: volkan
llvm-svn: 327152
|
|
Summary:
Fabs is a common floating-point operation, especially for some expansions. This patch adds
a new generic opcode for llvm.fabs.* intrinsic in order to avoid building/matching this intrinsic.
Reviewers: qcolombet, aditya_nandakumar, dsanders, rovka
Reviewed By: aditya_nandakumar
Subscribers: kristof.beyls, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D43864
llvm-svn: 326749
|