diff options
Diffstat (limited to 'llvm')
-rw-r--r-- | llvm/lib/Transforms/Vectorize/LoopVectorize.cpp | 16 | ||||
-rw-r--r-- | llvm/lib/Transforms/Vectorize/VPlan.cpp | 9 | ||||
-rw-r--r-- | llvm/lib/Transforms/Vectorize/VPlanHelpers.h | 16 | ||||
-rw-r--r-- | llvm/lib/Transforms/Vectorize/VPlanRecipes.cpp | 123 | ||||
-rw-r--r-- | llvm/test/Transforms/LoopVectorize/X86/replicating-load-store-costs.ll | 126 | ||||
-rw-r--r-- | llvm/tools/llvm-c-test/debuginfo.c | 2 |
6 files changed, 31 insertions, 261 deletions
diff --git a/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp b/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp index cb6bfb2..56a3d6d 100644 --- a/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp +++ b/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp @@ -3903,8 +3903,7 @@ void LoopVectorizationPlanner::emitInvalidCostRemarks( if (VF.isScalar()) continue; - VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind, - *CM.PSE.getSE()); + VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind); precomputeCosts(*Plan, VF, CostCtx); auto Iter = vp_depth_first_deep(Plan->getVectorLoopRegion()->getEntry()); for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { @@ -4161,8 +4160,7 @@ VectorizationFactor LoopVectorizationPlanner::selectVectorizationFactor() { // Add on other costs that are modelled in VPlan, but not in the legacy // cost model. - VPCostContext CostCtx(CM.TTI, *CM.TLI, *P, CM, CM.CostKind, - *CM.PSE.getSE()); + VPCostContext CostCtx(CM.TTI, *CM.TLI, *P, CM, CM.CostKind); VPRegionBlock *VectorRegion = P->getVectorLoopRegion(); assert(VectorRegion && "Expected to have a vector region!"); for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( @@ -6854,7 +6852,7 @@ LoopVectorizationPlanner::precomputeCosts(VPlan &Plan, ElementCount VF, InstructionCost LoopVectorizationPlanner::cost(VPlan &Plan, ElementCount VF) const { - VPCostContext CostCtx(CM.TTI, *CM.TLI, Plan, CM, CM.CostKind, *PSE.getSE()); + VPCostContext CostCtx(CM.TTI, *CM.TLI, Plan, CM, CM.CostKind); InstructionCost Cost = precomputeCosts(Plan, VF, CostCtx); // Now compute and add the VPlan-based cost. @@ -7087,8 +7085,7 @@ VectorizationFactor LoopVectorizationPlanner::computeBestVF() { // simplifications not accounted for in the legacy cost model. If that's the // case, don't trigger the assertion, as the extra simplifications may cause a // different VF to be picked by the VPlan-based cost model. - VPCostContext CostCtx(CM.TTI, *CM.TLI, BestPlan, CM, CM.CostKind, - *CM.PSE.getSE()); + VPCostContext CostCtx(CM.TTI, *CM.TLI, BestPlan, CM, CM.CostKind); precomputeCosts(BestPlan, BestFactor.Width, CostCtx); // Verify that the VPlan-based and legacy cost models agree, except for VPlans // with early exits and plans with additional VPlan simplifications. The @@ -8624,8 +8621,7 @@ VPlanPtr LoopVectorizationPlanner::tryToBuildVPlanWithVPRecipes( // TODO: Enable following transform when the EVL-version of extended-reduction // and mulacc-reduction are implemented. if (!CM.foldTailWithEVL()) { - VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind, - *CM.PSE.getSE()); + VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind); VPlanTransforms::runPass(VPlanTransforms::convertToAbstractRecipes, *Plan, CostCtx, Range); } @@ -10079,7 +10075,7 @@ bool LoopVectorizePass::processLoop(Loop *L) { bool ForceVectorization = Hints.getForce() == LoopVectorizeHints::FK_Enabled; VPCostContext CostCtx(CM.TTI, *CM.TLI, LVP.getPlanFor(VF.Width), CM, - CM.CostKind, *CM.PSE.getSE()); + CM.CostKind); if (!ForceVectorization && !isOutsideLoopWorkProfitable(Checks, VF, L, PSE, CostCtx, LVP.getPlanFor(VF.Width), SEL, diff --git a/llvm/lib/Transforms/Vectorize/VPlan.cpp b/llvm/lib/Transforms/Vectorize/VPlan.cpp index 2555ebe..07b191a 100644 --- a/llvm/lib/Transforms/Vectorize/VPlan.cpp +++ b/llvm/lib/Transforms/Vectorize/VPlan.cpp @@ -1772,8 +1772,7 @@ VPCostContext::getOperandInfo(VPValue *V) const { } InstructionCost VPCostContext::getScalarizationOverhead( - Type *ResultTy, ArrayRef<const VPValue *> Operands, ElementCount VF, - bool AlwaysIncludeReplicatingR) { + Type *ResultTy, ArrayRef<const VPValue *> Operands, ElementCount VF) { if (VF.isScalar()) return 0; @@ -1793,11 +1792,7 @@ InstructionCost VPCostContext::getScalarizationOverhead( SmallPtrSet<const VPValue *, 4> UniqueOperands; SmallVector<Type *> Tys; for (auto *Op : Operands) { - if (Op->isLiveIn() || - (!AlwaysIncludeReplicatingR && - isa<VPReplicateRecipe, VPPredInstPHIRecipe>(Op)) || - (isa<VPReplicateRecipe>(Op) && - cast<VPReplicateRecipe>(Op)->getOpcode() == Instruction::Load) || + if (Op->isLiveIn() || isa<VPReplicateRecipe, VPPredInstPHIRecipe>(Op) || !UniqueOperands.insert(Op).second) continue; Tys.push_back(toVectorizedTy(Types.inferScalarType(Op), VF)); diff --git a/llvm/lib/Transforms/Vectorize/VPlanHelpers.h b/llvm/lib/Transforms/Vectorize/VPlanHelpers.h index 1580a3b..fc1a09e 100644 --- a/llvm/lib/Transforms/Vectorize/VPlanHelpers.h +++ b/llvm/lib/Transforms/Vectorize/VPlanHelpers.h @@ -349,14 +349,12 @@ struct VPCostContext { LoopVectorizationCostModel &CM; SmallPtrSet<Instruction *, 8> SkipCostComputation; TargetTransformInfo::TargetCostKind CostKind; - ScalarEvolution &SE; VPCostContext(const TargetTransformInfo &TTI, const TargetLibraryInfo &TLI, const VPlan &Plan, LoopVectorizationCostModel &CM, - TargetTransformInfo::TargetCostKind CostKind, - ScalarEvolution &SE) + TargetTransformInfo::TargetCostKind CostKind) : TTI(TTI), TLI(TLI), Types(Plan), LLVMCtx(Plan.getContext()), CM(CM), - CostKind(CostKind), SE(SE) {} + CostKind(CostKind) {} /// Return the cost for \p UI with \p VF using the legacy cost model as /// fallback until computing the cost of all recipes migrates to VPlan. @@ -376,12 +374,10 @@ struct VPCostContext { /// Estimate the overhead of scalarizing a recipe with result type \p ResultTy /// and \p Operands with \p VF. This is a convenience wrapper for the - /// type-based getScalarizationOverhead API. If \p AlwaysIncludeReplicatingR - /// is true, always compute the cost of scalarizing replicating operands. - InstructionCost - getScalarizationOverhead(Type *ResultTy, ArrayRef<const VPValue *> Operands, - ElementCount VF, - bool AlwaysIncludeReplicatingR = false); + /// type-based getScalarizationOverhead API. + InstructionCost getScalarizationOverhead(Type *ResultTy, + ArrayRef<const VPValue *> Operands, + ElementCount VF); }; /// This class can be used to assign names to VPValues. For VPValues without diff --git a/llvm/lib/Transforms/Vectorize/VPlanRecipes.cpp b/llvm/lib/Transforms/Vectorize/VPlanRecipes.cpp index a88cffc..67b9244 100644 --- a/llvm/lib/Transforms/Vectorize/VPlanRecipes.cpp +++ b/llvm/lib/Transforms/Vectorize/VPlanRecipes.cpp @@ -40,7 +40,6 @@ #include <cassert> using namespace llvm; -using namespace llvm::VPlanPatternMatch; using VectorParts = SmallVector<Value *, 2>; @@ -304,6 +303,7 @@ VPPartialReductionRecipe::computeCost(ElementCount VF, VPRecipeBase *OpR = Op->getDefiningRecipe(); // If the partial reduction is predicated, a select will be operand 0 + using namespace llvm::VPlanPatternMatch; if (match(getOperand(1), m_Select(m_VPValue(), m_VPValue(Op), m_VPValue()))) { OpR = Op->getDefiningRecipe(); } @@ -1963,6 +1963,7 @@ InstructionCost VPWidenSelectRecipe::computeCost(ElementCount VF, Type *VectorTy = toVectorTy(Ctx.Types.inferScalarType(this), VF); VPValue *Op0, *Op1; + using namespace llvm::VPlanPatternMatch; if (!ScalarCond && ScalarTy->getScalarSizeInBits() == 1 && (match(this, m_LogicalAnd(m_VPValue(Op0), m_VPValue(Op1))) || match(this, m_LogicalOr(m_VPValue(Op0), m_VPValue(Op1))))) { @@ -3110,62 +3111,6 @@ bool VPReplicateRecipe::shouldPack() const { }); } -/// Returns true if \p Ptr is a pointer computation for which the legacy cost -/// model computes a SCEV expression when computing the address cost. -static bool shouldUseAddressAccessSCEV(const VPValue *Ptr) { - auto *PtrR = Ptr->getDefiningRecipe(); - if (!PtrR || !((isa<VPReplicateRecipe>(PtrR) && - cast<VPReplicateRecipe>(PtrR)->getOpcode() == - Instruction::GetElementPtr) || - isa<VPWidenGEPRecipe>(PtrR) || - match(Ptr, m_GetElementPtr(m_VPValue(), m_VPValue())))) - return false; - - // We are looking for a GEP where all indices are either loop invariant or - // inductions. - for (VPValue *Opd : drop_begin(PtrR->operands())) { - if (!Opd->isDefinedOutsideLoopRegions() && - !isa<VPScalarIVStepsRecipe, VPWidenIntOrFpInductionRecipe>(Opd)) - return false; - } - - return true; -} - -/// Returns true if \p V is used as part of the address of another load or -/// store. -static bool isUsedByLoadStoreAddress(const VPUser *V) { - SmallPtrSet<const VPUser *, 4> Seen; - SmallVector<const VPUser *> WorkList = {V}; - - while (!WorkList.empty()) { - auto *Cur = dyn_cast<VPSingleDefRecipe>(WorkList.pop_back_val()); - if (!Cur || !Seen.insert(Cur).second) - continue; - - for (VPUser *U : Cur->users()) { - if (auto *InterleaveR = dyn_cast<VPInterleaveBase>(U)) - if (InterleaveR->getAddr() == Cur) - return true; - if (auto *RepR = dyn_cast<VPReplicateRecipe>(U)) { - if (RepR->getOpcode() == Instruction::Load && - RepR->getOperand(0) == Cur) - return true; - if (RepR->getOpcode() == Instruction::Store && - RepR->getOperand(1) == Cur) - return true; - } - if (auto *MemR = dyn_cast<VPWidenMemoryRecipe>(U)) { - if (MemR->getAddr() == Cur && MemR->isConsecutive()) - return true; - } - } - - append_range(WorkList, cast<VPSingleDefRecipe>(Cur)->users()); - } - return false; -} - InstructionCost VPReplicateRecipe::computeCost(ElementCount VF, VPCostContext &Ctx) const { Instruction *UI = cast<Instruction>(getUnderlyingValue()); @@ -3273,59 +3218,21 @@ InstructionCost VPReplicateRecipe::computeCost(ElementCount VF, } case Instruction::Load: case Instruction::Store: { - if (VF.isScalable() && !isSingleScalar()) - return InstructionCost::getInvalid(); - + if (isSingleScalar()) { + bool IsLoad = UI->getOpcode() == Instruction::Load; + Type *ValTy = Ctx.Types.inferScalarType(IsLoad ? this : getOperand(0)); + Type *ScalarPtrTy = Ctx.Types.inferScalarType(getOperand(IsLoad ? 0 : 1)); + const Align Alignment = getLoadStoreAlignment(UI); + unsigned AS = getLoadStoreAddressSpace(UI); + TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(UI->getOperand(0)); + InstructionCost ScalarMemOpCost = Ctx.TTI.getMemoryOpCost( + UI->getOpcode(), ValTy, Alignment, AS, Ctx.CostKind, OpInfo, UI); + return ScalarMemOpCost + Ctx.TTI.getAddressComputationCost( + ScalarPtrTy, nullptr, nullptr, Ctx.CostKind); + } // TODO: See getMemInstScalarizationCost for how to handle replicating and // predicated cases. - const VPRegionBlock *ParentRegion = getParent()->getParent(); - if (ParentRegion && ParentRegion->isReplicator()) - break; - - bool IsLoad = UI->getOpcode() == Instruction::Load; - const VPValue *PtrOp = getOperand(!IsLoad); - // TODO: Handle cases where we need to pass a SCEV to - // getAddressComputationCost. - if (shouldUseAddressAccessSCEV(PtrOp)) - break; - - Type *ValTy = Ctx.Types.inferScalarType(IsLoad ? this : getOperand(0)); - Type *ScalarPtrTy = Ctx.Types.inferScalarType(PtrOp); - const Align Alignment = getLoadStoreAlignment(UI); - unsigned AS = getLoadStoreAddressSpace(UI); - TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(UI->getOperand(0)); - InstructionCost ScalarMemOpCost = Ctx.TTI.getMemoryOpCost( - UI->getOpcode(), ValTy, Alignment, AS, Ctx.CostKind, OpInfo); - - Type *PtrTy = isSingleScalar() ? ScalarPtrTy : toVectorTy(ScalarPtrTy, VF); - bool UsedByLoadStoreAddress = isUsedByLoadStoreAddress(this); - InstructionCost ScalarCost = - ScalarMemOpCost + Ctx.TTI.getAddressComputationCost( - PtrTy, UsedByLoadStoreAddress ? nullptr : &Ctx.SE, - nullptr, Ctx.CostKind); - if (isSingleScalar()) - return ScalarCost; - - SmallVector<const VPValue *> OpsToScalarize; - Type *ResultTy = Type::getVoidTy(PtrTy->getContext()); - // Set ResultTy and OpsToScalarize, if scalarization is needed. Currently we - // don't assign scalarization overhead in general, if the target prefers - // vectorized addressing or the loaded value is used as part of an address - // of another load or store. - bool PreferVectorizedAddressing = Ctx.TTI.prefersVectorizedAddressing(); - if (PreferVectorizedAddressing || !UsedByLoadStoreAddress) { - bool EfficientVectorLoadStore = - Ctx.TTI.supportsEfficientVectorElementLoadStore(); - if (!(IsLoad && !PreferVectorizedAddressing) && - !(!IsLoad && EfficientVectorLoadStore)) - append_range(OpsToScalarize, operands()); - - if (!EfficientVectorLoadStore) - ResultTy = Ctx.Types.inferScalarType(this); - } - - return (ScalarCost * VF.getFixedValue()) + - Ctx.getScalarizationOverhead(ResultTy, OpsToScalarize, VF, true); + break; } } diff --git a/llvm/test/Transforms/LoopVectorize/X86/replicating-load-store-costs.ll b/llvm/test/Transforms/LoopVectorize/X86/replicating-load-store-costs.ll index f5329cf..8784873 100644 --- a/llvm/test/Transforms/LoopVectorize/X86/replicating-load-store-costs.ll +++ b/llvm/test/Transforms/LoopVectorize/X86/replicating-load-store-costs.ll @@ -454,132 +454,6 @@ exit: ret void } -declare i1 @cond() - -define double @test_load_used_by_other_load_scev(ptr %ptr.a, ptr %ptr.b, ptr %ptr.c) { -; I64-LABEL: define double @test_load_used_by_other_load_scev( -; I64-SAME: ptr [[PTR_A:%.*]], ptr [[PTR_B:%.*]], ptr [[PTR_C:%.*]]) { -; I64-NEXT: [[ENTRY:.*]]: -; I64-NEXT: br label %[[OUTER_LOOP:.*]] -; I64: [[OUTER_LOOP_LOOPEXIT:.*]]: -; I64-NEXT: br label %[[OUTER_LOOP]] -; I64: [[OUTER_LOOP]]: -; I64-NEXT: [[ACCUM:%.*]] = phi double [ 0.000000e+00, %[[ENTRY]] ], [ [[TMP29:%.*]], %[[OUTER_LOOP_LOOPEXIT]] ] -; I64-NEXT: [[COND:%.*]] = call i1 @cond() -; I64-NEXT: br i1 [[COND]], label %[[INNER_LOOP_PREHEADER:.*]], label %[[EXIT:.*]] -; I64: [[INNER_LOOP_PREHEADER]]: -; I64-NEXT: br label %[[VECTOR_PH:.*]] -; I64: [[VECTOR_PH]]: -; I64-NEXT: br label %[[VECTOR_BODY:.*]] -; I64: [[VECTOR_BODY]]: -; I64-NEXT: [[TMP0:%.*]] = add i64 0, 1 -; I64-NEXT: [[TMP1:%.*]] = add i64 1, 1 -; I64-NEXT: [[TMP2:%.*]] = getelementptr i8, ptr [[PTR_C]], i64 [[TMP0]] -; I64-NEXT: [[TMP3:%.*]] = getelementptr i8, ptr [[PTR_C]], i64 [[TMP1]] -; I64-NEXT: [[TMP4:%.*]] = getelementptr i64, ptr [[PTR_A]], i64 [[TMP0]] -; I64-NEXT: [[TMP5:%.*]] = getelementptr i64, ptr [[PTR_A]], i64 [[TMP1]] -; I64-NEXT: [[TMP6:%.*]] = load i64, ptr [[TMP4]], align 8 -; I64-NEXT: [[TMP7:%.*]] = load i64, ptr [[TMP5]], align 8 -; I64-NEXT: [[TMP8:%.*]] = getelementptr double, ptr [[PTR_B]], i64 [[TMP6]] -; I64-NEXT: [[TMP9:%.*]] = getelementptr double, ptr [[PTR_B]], i64 [[TMP7]] -; I64-NEXT: [[TMP10:%.*]] = load double, ptr [[PTR_A]], align 8 -; I64-NEXT: [[BROADCAST_SPLATINSERT:%.*]] = insertelement <2 x double> poison, double [[TMP10]], i64 0 -; I64-NEXT: [[BROADCAST_SPLAT:%.*]] = shufflevector <2 x double> [[BROADCAST_SPLATINSERT]], <2 x double> poison, <2 x i32> zeroinitializer -; I64-NEXT: [[TMP11:%.*]] = fadd <2 x double> [[BROADCAST_SPLAT]], zeroinitializer -; I64-NEXT: [[TMP12:%.*]] = getelementptr i8, ptr [[TMP2]], i64 8 -; I64-NEXT: [[TMP13:%.*]] = getelementptr i8, ptr [[TMP3]], i64 8 -; I64-NEXT: [[TMP14:%.*]] = load double, ptr [[TMP12]], align 8 -; I64-NEXT: [[TMP15:%.*]] = load double, ptr [[TMP13]], align 8 -; I64-NEXT: [[TMP16:%.*]] = insertelement <2 x double> poison, double [[TMP14]], i32 0 -; I64-NEXT: [[TMP17:%.*]] = insertelement <2 x double> [[TMP16]], double [[TMP15]], i32 1 -; I64-NEXT: [[TMP18:%.*]] = fmul <2 x double> [[TMP11]], zeroinitializer -; I64-NEXT: [[BROADCAST_SPLATINSERT1:%.*]] = insertelement <2 x double> poison, double [[ACCUM]], i64 0 -; I64-NEXT: [[BROADCAST_SPLAT2:%.*]] = shufflevector <2 x double> [[BROADCAST_SPLATINSERT1]], <2 x double> poison, <2 x i32> zeroinitializer -; I64-NEXT: [[TMP19:%.*]] = shufflevector <2 x double> [[BROADCAST_SPLAT2]], <2 x double> [[TMP18]], <2 x i32> <i32 1, i32 2> -; I64-NEXT: [[TMP20:%.*]] = fmul <2 x double> [[TMP17]], zeroinitializer -; I64-NEXT: [[TMP21:%.*]] = fadd <2 x double> [[TMP20]], zeroinitializer -; I64-NEXT: [[TMP22:%.*]] = fadd <2 x double> [[TMP21]], splat (double 1.000000e+00) -; I64-NEXT: [[TMP23:%.*]] = load double, ptr [[TMP8]], align 8 -; I64-NEXT: [[TMP24:%.*]] = load double, ptr [[TMP9]], align 8 -; I64-NEXT: [[TMP25:%.*]] = insertelement <2 x double> poison, double [[TMP23]], i32 0 -; I64-NEXT: [[TMP26:%.*]] = insertelement <2 x double> [[TMP25]], double [[TMP24]], i32 1 -; I64-NEXT: [[TMP27:%.*]] = fdiv <2 x double> [[TMP26]], [[TMP22]] -; I64-NEXT: [[TMP28:%.*]] = fsub <2 x double> [[TMP19]], [[TMP27]] -; I64-NEXT: br label %[[MIDDLE_BLOCK:.*]] -; I64: [[MIDDLE_BLOCK]]: -; I64-NEXT: [[TMP29]] = extractelement <2 x double> [[TMP28]], i32 1 -; I64-NEXT: br label %[[OUTER_LOOP_LOOPEXIT]] -; I64: [[EXIT]]: -; I64-NEXT: ret double [[ACCUM]] -; -; I32-LABEL: define double @test_load_used_by_other_load_scev( -; I32-SAME: ptr [[PTR_A:%.*]], ptr [[PTR_B:%.*]], ptr [[PTR_C:%.*]]) { -; I32-NEXT: [[ENTRY:.*]]: -; I32-NEXT: br label %[[OUTER_LOOP:.*]] -; I32: [[OUTER_LOOP]]: -; I32-NEXT: [[ACCUM:%.*]] = phi double [ 0.000000e+00, %[[ENTRY]] ], [ [[RESULT:%.*]], %[[INNER_LOOP:.*]] ] -; I32-NEXT: [[COND:%.*]] = call i1 @cond() -; I32-NEXT: br i1 [[COND]], label %[[INNER_LOOP]], label %[[EXIT:.*]] -; I32: [[INNER_LOOP]]: -; I32-NEXT: [[IV:%.*]] = phi i64 [ 0, %[[OUTER_LOOP]] ], [ [[IV_NEXT:%.*]], %[[INNER_LOOP]] ] -; I32-NEXT: [[ACCUM_INNER:%.*]] = phi double [ [[ACCUM]], %[[OUTER_LOOP]] ], [ [[MUL1:%.*]], %[[INNER_LOOP]] ] -; I32-NEXT: [[IDX_PLUS1:%.*]] = add i64 [[IV]], 1 -; I32-NEXT: [[GEP_C:%.*]] = getelementptr i8, ptr [[PTR_C]], i64 [[IDX_PLUS1]] -; I32-NEXT: [[GEP_A_I64:%.*]] = getelementptr i64, ptr [[PTR_A]], i64 [[IDX_PLUS1]] -; I32-NEXT: [[LOAD_IDX:%.*]] = load i64, ptr [[GEP_A_I64]], align 8 -; I32-NEXT: [[GEP_B:%.*]] = getelementptr double, ptr [[PTR_B]], i64 [[LOAD_IDX]] -; I32-NEXT: [[LOAD_A:%.*]] = load double, ptr [[PTR_A]], align 8 -; I32-NEXT: [[ADD1:%.*]] = fadd double [[LOAD_A]], 0.000000e+00 -; I32-NEXT: [[GEP_C_OFFSET:%.*]] = getelementptr i8, ptr [[GEP_C]], i64 8 -; I32-NEXT: [[LOAD_C:%.*]] = load double, ptr [[GEP_C_OFFSET]], align 8 -; I32-NEXT: [[MUL1]] = fmul double [[ADD1]], 0.000000e+00 -; I32-NEXT: [[MUL2:%.*]] = fmul double [[LOAD_C]], 0.000000e+00 -; I32-NEXT: [[ADD2:%.*]] = fadd double [[MUL2]], 0.000000e+00 -; I32-NEXT: [[ADD3:%.*]] = fadd double [[ADD2]], 1.000000e+00 -; I32-NEXT: [[LOAD_B:%.*]] = load double, ptr [[GEP_B]], align 8 -; I32-NEXT: [[DIV:%.*]] = fdiv double [[LOAD_B]], [[ADD3]] -; I32-NEXT: [[RESULT]] = fsub double [[ACCUM_INNER]], [[DIV]] -; I32-NEXT: [[IV_NEXT]] = add i64 [[IV]], 1 -; I32-NEXT: [[EXITCOND:%.*]] = icmp eq i64 [[IV]], 1 -; I32-NEXT: br i1 [[EXITCOND]], label %[[OUTER_LOOP]], label %[[INNER_LOOP]] -; I32: [[EXIT]]: -; I32-NEXT: ret double [[ACCUM]] -; -entry: - br label %outer.loop - -outer.loop: - %accum = phi double [ 0.0, %entry ], [ %result, %inner.loop ] - %cond = call i1 @cond() - br i1 %cond, label %inner.loop, label %exit - -inner.loop: - %iv = phi i64 [ 0, %outer.loop ], [ %iv.next, %inner.loop ] - %accum.inner = phi double [ %accum, %outer.loop ], [ %mul1, %inner.loop ] - %idx.plus1 = add i64 %iv, 1 - %gep.c = getelementptr i8, ptr %ptr.c, i64 %idx.plus1 - %gep.a.i64 = getelementptr i64, ptr %ptr.a, i64 %idx.plus1 - %load.idx = load i64, ptr %gep.a.i64, align 8 - %gep.b = getelementptr double, ptr %ptr.b, i64 %load.idx - %load.a = load double, ptr %ptr.a, align 8 - %add1 = fadd double %load.a, 0.000000e+00 - %gep.c.offset = getelementptr i8, ptr %gep.c, i64 8 - %load.c = load double, ptr %gep.c.offset, align 8 - %mul1 = fmul double %add1, 0.000000e+00 - %mul2 = fmul double %load.c, 0.000000e+00 - %add2 = fadd double %mul2, 0.000000e+00 - %add3 = fadd double %add2, 1.000000e+00 - %load.b = load double, ptr %gep.b, align 8 - %div = fdiv double %load.b, %add3 - %result = fsub double %accum.inner, %div - %iv.next = add i64 %iv, 1 - %exitcond = icmp eq i64 %iv, 1 - br i1 %exitcond, label %outer.loop, label %inner.loop - -exit: - ret double %accum -} - attributes #0 = { "target-cpu"="znver2" } !0 = distinct !{!0, !1} diff --git a/llvm/tools/llvm-c-test/debuginfo.c b/llvm/tools/llvm-c-test/debuginfo.c index e376d82..a2f4b3e 100644 --- a/llvm/tools/llvm-c-test/debuginfo.c +++ b/llvm/tools/llvm-c-test/debuginfo.c @@ -328,8 +328,10 @@ int llvm_test_dibuilder(void) { // Test that LLVMGetFirstDbgRecord and LLVMGetLastDbgRecord return NULL for // instructions without debug info. LLVMDbgRecordRef Phi1FirstDbgRecord = LLVMGetFirstDbgRecord(Phi1); + (void)Phi1FirstDbgRecord; assert(Phi1FirstDbgRecord == NULL); LLVMDbgRecordRef Phi1LastDbgRecord = LLVMGetLastDbgRecord(Phi1); + (void)Phi1LastDbgRecord; assert(Phi1LastDbgRecord == NULL); // Insert a non-phi before the `ret` but not before the debug records to |