aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Target/X86
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Target/X86')
-rw-r--r--llvm/lib/Target/X86/X86ISelLowering.cpp38
-rw-r--r--llvm/lib/Target/X86/X86ISelLowering.h1
-rw-r--r--llvm/lib/Target/X86/X86ISelLoweringCall.cpp9
-rw-r--r--llvm/lib/Target/X86/X86InstrAVX512.td2
-rw-r--r--llvm/lib/Target/X86/X86ScheduleZnver4.td110
5 files changed, 92 insertions, 68 deletions
diff --git a/llvm/lib/Target/X86/X86ISelLowering.cpp b/llvm/lib/Target/X86/X86ISelLowering.cpp
index b5f8ee5..410f20e 100644
--- a/llvm/lib/Target/X86/X86ISelLowering.cpp
+++ b/llvm/lib/Target/X86/X86ISelLowering.cpp
@@ -2632,6 +2632,10 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
setOperationAction(Op, MVT::f32, Promote);
}
+ setOperationPromotedToType(ISD::ATOMIC_LOAD, MVT::f16, MVT::i16);
+ setOperationPromotedToType(ISD::ATOMIC_LOAD, MVT::f32, MVT::i32);
+ setOperationPromotedToType(ISD::ATOMIC_LOAD, MVT::f64, MVT::i64);
+
// We have target-specific dag combine patterns for the following nodes:
setTargetDAGCombine({ISD::VECTOR_SHUFFLE,
ISD::SCALAR_TO_VECTOR,
@@ -20558,7 +20562,7 @@ static SDValue lowerUINT_TO_FP_vXi32(SDValue Op, const SDLoc &DL,
// float4 fhi = (float4) hi - (0x1.0p39f + 0x1.0p23f);
// NOTE: By using fsub of a positive constant instead of fadd of a negative
- // constant, we avoid reassociation in MachineCombiner when unsafe-fp-math is
+ // constant, we avoid reassociation in MachineCombiner when reassoc is
// enabled. See PR24512.
SDValue HighBitcast = DAG.getBitcast(VecFloatVT, High);
// TODO: Are there any fast-math-flags to propagate here?
@@ -29516,11 +29520,8 @@ static SDValue LowerFMINIMUM_FMAXIMUM(SDValue Op, const X86Subtarget &Subtarget,
if (IgnoreNaN || DAG.isKnownNeverNaN(IsNum ? NewY : NewX))
return MinMax;
- if (DAG.isKnownNeverNaN(NewX))
- NewX = NewY;
-
- SDValue IsNaN =
- DAG.getSetCC(DL, SetCCType, NewX, NewX, IsNum ? ISD::SETO : ISD::SETUO);
+ SDValue NaNSrc = IsNum ? MinMax : NewX;
+ SDValue IsNaN = DAG.getSetCC(DL, SetCCType, NaNSrc, NaNSrc, ISD::SETUO);
return DAG.getSelect(DL, VT, IsNaN, NewX, MinMax);
}
@@ -57616,10 +57617,10 @@ static SDValue combineX86AddSub(SDNode *N, SelectionDAG &DAG,
}
// Fold any similar generic ADD/SUB opcodes to reuse this node.
- auto MatchGeneric = [&](SDValue N0, SDValue N1, bool Negate) {
+ auto MatchGeneric = [&](unsigned Opc, SDValue N0, SDValue N1, bool Negate) {
SDValue Ops[] = {N0, N1};
SDVTList VTs = DAG.getVTList(N->getValueType(0));
- if (SDNode *GenericAddSub = DAG.getNodeIfExists(GenericOpc, VTs, Ops)) {
+ if (SDNode *GenericAddSub = DAG.getNodeIfExists(Opc, VTs, Ops)) {
SDValue Op(N, 0);
if (Negate) {
// Bail if this is only used by a user of the x86 add/sub.
@@ -57631,8 +57632,25 @@ static SDValue combineX86AddSub(SDNode *N, SelectionDAG &DAG,
DCI.CombineTo(GenericAddSub, Op);
}
};
- MatchGeneric(LHS, RHS, false);
- MatchGeneric(RHS, LHS, X86ISD::SUB == N->getOpcode());
+ MatchGeneric(GenericOpc, LHS, RHS, false);
+ MatchGeneric(GenericOpc, RHS, LHS, X86ISD::SUB == N->getOpcode());
+
+ if (auto *Const = dyn_cast<ConstantSDNode>(RHS)) {
+ SDValue NegC = DAG.getConstant(-Const->getAPIntValue(), DL, VT);
+ if (X86ISD::SUB == N->getOpcode()) {
+ // Fold generic add(LHS, -C) to X86ISD::SUB(LHS, C).
+ MatchGeneric(ISD::ADD, LHS, NegC, false);
+ } else {
+ // Negate X86ISD::ADD(LHS, C) and replace generic sub(-C, LHS).
+ MatchGeneric(ISD::SUB, NegC, LHS, true);
+ }
+ } else if (auto *Const = dyn_cast<ConstantSDNode>(LHS)) {
+ if (X86ISD::SUB == N->getOpcode()) {
+ SDValue NegC = DAG.getConstant(-Const->getAPIntValue(), DL, VT);
+ // Negate X86ISD::SUB(C, RHS) and replace generic add(RHS, -C).
+ MatchGeneric(ISD::ADD, RHS, NegC, true);
+ }
+ }
// TODO: Can we drop the ZeroSecondOpOnly limit? This is to guarantee that the
// EFLAGS result doesn't change.
diff --git a/llvm/lib/Target/X86/X86ISelLowering.h b/llvm/lib/Target/X86/X86ISelLowering.h
index e28b9c1..b7151f6 100644
--- a/llvm/lib/Target/X86/X86ISelLowering.h
+++ b/llvm/lib/Target/X86/X86ISelLowering.h
@@ -1592,7 +1592,6 @@ namespace llvm {
bool useLoadStackGuardNode(const Module &M) const override;
bool useStackGuardXorFP() const override;
void insertSSPDeclarations(Module &M) const override;
- Function *getSSPStackGuardCheck(const Module &M) const override;
SDValue emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val,
const SDLoc &DL) const override;
diff --git a/llvm/lib/Target/X86/X86ISelLoweringCall.cpp b/llvm/lib/Target/X86/X86ISelLoweringCall.cpp
index 37d7772..a61bbe5 100644
--- a/llvm/lib/Target/X86/X86ISelLoweringCall.cpp
+++ b/llvm/lib/Target/X86/X86ISelLoweringCall.cpp
@@ -640,15 +640,6 @@ void X86TargetLowering::insertSSPDeclarations(Module &M) const {
TargetLowering::insertSSPDeclarations(M);
}
-Function *X86TargetLowering::getSSPStackGuardCheck(const Module &M) const {
- // MSVC CRT has a function to validate security cookie.
- if (Subtarget.getTargetTriple().isWindowsMSVCEnvironment() ||
- Subtarget.getTargetTriple().isWindowsItaniumEnvironment()) {
- return M.getFunction("__security_check_cookie");
- }
- return TargetLowering::getSSPStackGuardCheck(M);
-}
-
Value *
X86TargetLowering::getSafeStackPointerLocation(IRBuilderBase &IRB) const {
// Android provides a fixed TLS slot for the SafeStack pointer. See the
diff --git a/llvm/lib/Target/X86/X86InstrAVX512.td b/llvm/lib/Target/X86/X86InstrAVX512.td
index 83bd6ac..1b748b7 100644
--- a/llvm/lib/Target/X86/X86InstrAVX512.td
+++ b/llvm/lib/Target/X86/X86InstrAVX512.td
@@ -5519,7 +5519,7 @@ defm VMIN : avx512_binop_s_sae<0x5D, "vmin", X86any_fmin, X86fmins, X86fminSAEs,
defm VMAX : avx512_binop_s_sae<0x5F, "vmax", X86any_fmax, X86fmaxs, X86fmaxSAEs,
SchedWriteFCmpSizes, 0>;
-// MIN/MAX nodes are commutable under "unsafe-fp-math". In this case we use
+// MIN/MAX nodes are commutable under (nnan + ninf). In this case we use
// X86fminc and X86fmaxc instead of X86fmin and X86fmax
multiclass avx512_comutable_binop_s<bits<8> opc, string OpcodeStr,
X86VectorVTInfo _, SDNode OpNode,
diff --git a/llvm/lib/Target/X86/X86ScheduleZnver4.td b/llvm/lib/Target/X86/X86ScheduleZnver4.td
index cc30054..ac4d31d 100644
--- a/llvm/lib/Target/X86/X86ScheduleZnver4.td
+++ b/llvm/lib/Target/X86/X86ScheduleZnver4.td
@@ -15,7 +15,7 @@
//===----------------------------------------------------------------------===//
def Znver4Model : SchedMachineModel {
- // AMD SOG Zen4, 2.9.6 Dispatch
+ // AMD SOG Zen4, 2.9.8 Dispatch
// The processor may dispatch up to 6 macro ops per cycle
// into the execution engine.
let IssueWidth = 6;
@@ -46,8 +46,9 @@ def Znver4Model : SchedMachineModel {
int VecLoadLatency = 7;
// Latency of a simple store operation.
int StoreLatency = 1;
- // FIXME:
- let HighLatency = 25; // FIXME: any better choice?
+ // Mean and median value for all instructions with latencies >6
+ // Source: Zen4 Instruction Latencies spreadsheet (included with SOG)
+ let HighLatency = 13;
// AMD SOG Zen4, 2.8 Optimizing Branching
// The branch misprediction penalty is in the range from 11 to 18 cycles,
// <...>. The common case penalty is 13 cycles.
@@ -612,6 +613,7 @@ def Zn4WriteLEA : SchedWriteVariant<[
def : InstRW<[Zn4WriteLEA], (instrs LEA32r, LEA64r, LEA64_32r)>;
+// values from uops.info
def Zn4SlowLEA16r : SchedWriteRes<[Zn4ALU0123]> {
let Latency = 2; // FIXME: not from llvm-exegesis
let ReleaseAtCycles = [4];
@@ -659,15 +661,15 @@ def : InstRW<[Zn4WriteCMPXCHG8rm_LCMPXCHG8], (instrs CMPXCHG8rm, LCMPXCHG8)>;
def Zn4WriteCMPXCHG8B : SchedWriteRes<[Zn4ALU0123]> {
let Latency = 3; // FIXME: not from llvm-exegesis
- let ReleaseAtCycles = [24];
- let NumMicroOps = 19;
+ let ReleaseAtCycles = [20];
+ let NumMicroOps = 15;
}
def : InstRW<[Zn4WriteCMPXCHG8B], (instrs CMPXCHG8B)>;
def Zn4WriteCMPXCHG16B_LCMPXCHG16B : SchedWriteRes<[Zn4ALU0123]> {
- let Latency = 4; // FIXME: not from llvm-exegesis
- let ReleaseAtCycles = [59];
- let NumMicroOps = 28;
+ let Latency = 2; // FIXME: not from llvm-exegesis
+ let ReleaseAtCycles = [40];
+ let NumMicroOps = 26;
}
def : InstRW<[Zn4WriteCMPXCHG16B_LCMPXCHG16B], (instrs CMPXCHG16B, LCMPXCHG16B)>;
@@ -681,7 +683,7 @@ def : InstRW<[Zn4WriteWriteXCHGUnrenameable], (instrs XCHG8rr, XCHG16rr, XCHG16a
def Zn4WriteXCHG8rm_XCHG16rm : SchedWriteRes<[Zn4AGU012, Zn4Load, Zn4ALU0123]> {
let Latency = !add(Znver4Model.LoadLatency, 3); // FIXME: not from llvm-exegesis
let ReleaseAtCycles = [1, 1, 2];
- let NumMicroOps = 5;
+ let NumMicroOps = 2;
}
def : InstRW<[Zn4WriteXCHG8rm_XCHG16rm], (instrs XCHG8rm, XCHG16rm)>;
@@ -693,19 +695,17 @@ def Zn4WriteXCHG32rm_XCHG64rm : SchedWriteRes<[Zn4AGU012, Zn4Load, Zn4ALU0123]>
def : InstRW<[Zn4WriteXCHG32rm_XCHG64rm], (instrs XCHG32rm, XCHG64rm)>;
// Integer division.
-// FIXME: uops for 8-bit division measures as 2. for others it's a guess.
-// FIXME: latency for 8-bit division measures as 10. for others it's a guess.
-defm : Zn4WriteResIntPair<WriteDiv8, [Zn4Divider], 10, [10], 2>;
-defm : Zn4WriteResIntPair<WriteDiv16, [Zn4Divider], 11, [11], 2>;
-defm : Zn4WriteResIntPair<WriteDiv32, [Zn4Divider], 13, [13], 2>;
-defm : Zn4WriteResIntPair<WriteDiv64, [Zn4Divider], 17, [17], 2>;
-defm : Zn4WriteResIntPair<WriteIDiv8, [Zn4Divider], 10, [10], 2>;
-defm : Zn4WriteResIntPair<WriteIDiv16, [Zn4Divider], 11, [11], 2>;
-defm : Zn4WriteResIntPair<WriteIDiv32, [Zn4Divider], 13, [13], 2>;
-defm : Zn4WriteResIntPair<WriteIDiv64, [Zn4Divider], 17, [17], 2>;
-
-defm : Zn4WriteResIntPair<WriteBSF, [Zn4ALU1], 1, [1], 6, /*LoadUOps=*/1>; // Bit scan forward.
-defm : Zn4WriteResIntPair<WriteBSR, [Zn4ALU1], 1, [1], 6, /*LoadUOps=*/1>; // Bit scan reverse.
+defm : Zn4WriteResIntPair<WriteDiv8, [Zn4Divider], 9, [9], 2>;
+defm : Zn4WriteResIntPair<WriteDiv16, [Zn4Divider], 10, [10], 2>;
+defm : Zn4WriteResIntPair<WriteDiv32, [Zn4Divider], 12, [12], 2>;
+defm : Zn4WriteResIntPair<WriteDiv64, [Zn4Divider], 18, [18], 2>;
+defm : Zn4WriteResIntPair<WriteIDiv8, [Zn4Divider], 9, [9], 2>;
+defm : Zn4WriteResIntPair<WriteIDiv16, [Zn4Divider], 10, [10], 2>;
+defm : Zn4WriteResIntPair<WriteIDiv32, [Zn4Divider], 12, [12], 2>;
+defm : Zn4WriteResIntPair<WriteIDiv64, [Zn4Divider], 18, [18], 2>;
+
+defm : Zn4WriteResIntPair<WriteBSF, [Zn4ALU1], 1, [1], 1, /*LoadUOps=*/1>; // Bit scan forward.
+defm : Zn4WriteResIntPair<WriteBSR, [Zn4ALU1], 1, [1], 1, /*LoadUOps=*/1>; // Bit scan reverse.
defm : Zn4WriteResIntPair<WritePOPCNT, [Zn4ALU0123], 1, [1], 1>; // Bit population count.
@@ -725,12 +725,12 @@ def Zn4WriteLZCNT16rr : SchedWriteRes<[Zn4ALU0123]> {
}
def : InstRW<[Zn4WriteLZCNT16rr], (instrs LZCNT16rr)>;
-defm : Zn4WriteResIntPair<WriteTZCNT, [Zn4ALU12], 2, [1], 2>; // Trailing zero count.
+defm : Zn4WriteResIntPair<WriteTZCNT, [Zn4ALU12], 1, [1], 1>; // Trailing zero count.
def Zn4WriteTZCNT16rr : SchedWriteRes<[Zn4ALU0123]> {
- let Latency = 2;
- let ReleaseAtCycles = [4];
- let NumMicroOps = 2;
+ let Latency = 1;
+ let ReleaseAtCycles = [1];
+ let NumMicroOps = 1;
}
def : InstRW<[Zn4WriteTZCNT16rr], (instrs TZCNT16rr)>;
@@ -1109,15 +1109,31 @@ def Zn4WriteVecOpMaskKRMov : SchedWriteRes<[Zn4FPOpMask4]> {
}
def : InstRW<[Zn4WriteVecOpMaskKRMov], (instrs KMOVBkr, KMOVDkr, KMOVQkr, KMOVWkr)>;
-def Zn4WriteVecALU2Slow : SchedWriteRes<[Zn4FPVAdd12]> {
- // TODO: All align instructions are expected to be of 4 cycle latency
- let Latency = 4;
+// 128-bit VALIGN
+def Zn4WriteXMMVecALU2Slow : SchedWriteRes<[Zn4FPVAdd12]> {
+ let Latency = 2;
let ReleaseAtCycles = [1];
let NumMicroOps = 1;
}
-def : InstRW<[Zn4WriteVecALU2Slow], (instrs VALIGNDZrri, VALIGNDZ128rri, VALIGNDZ256rri,
- VALIGNQZrri, VALIGNQZ128rri, VALIGNQZ256rri)
- >;
+
+// 256-bit VALIGN
+def Zn4WriteYMMVecALU2Slow : SchedWriteRes<[Zn4FPVAdd12]> {
+ let Latency = 3;
+ let ReleaseAtCycles = [1];
+ let NumMicroOps = 1;
+}
+
+// 512-bit VALIGN
+def Zn4WriteZMMVecALU2Slow : SchedWriteRes<[Zn4FPVAdd12]> {
+ let Latency = 4;
+ let ReleaseAtCycles = [2];
+ let NumMicroOps = 1;
+}
+
+def : InstRW<[Zn4WriteXMMVecALU2Slow], (instrs VALIGNDZrri, VALIGNQZrri)>;
+def : InstRW<[Zn4WriteYMMVecALU2Slow], (instrs VALIGNDZ128rri, VALIGNQZ128rri)>;
+def : InstRW<[Zn4WriteZMMVecALU2Slow], (instrs VALIGNDZ256rri, VALIGNQZ256rri)>;
+
defm : Zn4WriteResYMMPair<WriteVecALUY, [Zn4FPVAdd0123], 1, [1], 1>; // Vector integer ALU op, no logicals (YMM).
def Zn4WriteVecALUYSlow : SchedWriteRes<[Zn4FPVAdd01]> {
@@ -1326,9 +1342,9 @@ def : InstRW<[Zn4WriteSHA256RNDS2rr], (instrs SHA256RNDS2rr)>;
// Strings instructions.
// Packed Compare Implicit Length Strings, Return Mask
-defm : Zn4WriteResXMMPair<WritePCmpIStrM, [Zn4FPVAdd0123], 6, [8], 3, /*LoadUOps=*/1>;
+defm : Zn4WriteResXMMPair<WritePCmpIStrM, [Zn4FPVAdd0123], 7, [8], 3, /*LoadUOps=*/1>;
// Packed Compare Explicit Length Strings, Return Mask
-defm : Zn4WriteResXMMPair<WritePCmpEStrM, [Zn4FPVAdd0123], 6, [12], 7, /*LoadUOps=*/5>;
+defm : Zn4WriteResXMMPair<WritePCmpEStrM, [Zn4FPVAdd0123], 7, [12], 7, /*LoadUOps=*/5>;
// Packed Compare Implicit Length Strings, Return Index
defm : Zn4WriteResXMMPair<WritePCmpIStrI, [Zn4FPVAdd0123], 2, [8], 4>;
// Packed Compare Explicit Length Strings, Return Index
@@ -1340,7 +1356,7 @@ defm : Zn4WriteResXMMPair<WriteAESIMC, [Zn4FPAES01], 4, [1], 1>; // InvMixColumn
defm : Zn4WriteResXMMPair<WriteAESKeyGen, [Zn4FPAES01], 4, [1], 1>; // Key Generation.
// Carry-less multiplication instructions.
-defm : Zn4WriteResXMMPair<WriteCLMul, [Zn4FPCLM01], 4, [4], 4>;
+defm : Zn4WriteResXMMPair<WriteCLMul, [Zn4FPCLM01], 4, [3], 4>;
// EMMS/FEMMS
defm : Zn4WriteResInt<WriteEMMS, [Zn4ALU0123], 2, [1], 1>; // FIXME: latency not from llvm-exegesis
@@ -1386,44 +1402,44 @@ def Zn4WriteVPERM2F128rm : SchedWriteRes<[Zn4AGU012, Zn4Load, Zn4FPVShuf]> {
def : InstRW<[Zn4WriteVPERM2F128rm], (instrs VPERM2F128rmi)>;
def Zn4WriteVPERMPSYrr : SchedWriteRes<[Zn4FPVShuf]> {
- let Latency = 7;
+ let Latency = 4;
let ReleaseAtCycles = [1];
- let NumMicroOps = 2;
+ let NumMicroOps = 1;
}
def : InstRW<[Zn4WriteVPERMPSYrr], (instrs VPERMPSYrr)>;
def Zn4WriteVPERMPSYrm : SchedWriteRes<[Zn4AGU012, Zn4Load, Zn4FPVShuf]> {
let Latency = !add(Znver4Model.VecLoadLatency, Zn4WriteVPERMPSYrr.Latency);
- let ReleaseAtCycles = [1, 1, 2];
- let NumMicroOps = !add(Zn4WriteVPERMPSYrr.NumMicroOps, 1);
+ let ReleaseAtCycles = [1, 1, 1];
+ let NumMicroOps = 1;
}
def : InstRW<[Zn4WriteVPERMPSYrm], (instrs VPERMPSYrm)>;
def Zn4WriteVPERMYri : SchedWriteRes<[Zn4FPVShuf]> {
- let Latency = 6;
+ let Latency = 4;
let ReleaseAtCycles = [1];
- let NumMicroOps = 2;
+ let NumMicroOps = 1;
}
def : InstRW<[Zn4WriteVPERMYri], (instrs VPERMPDYri, VPERMQYri)>;
def Zn4WriteVPERMPDYmi : SchedWriteRes<[Zn4AGU012, Zn4Load, Zn4FPVShuf]> {
let Latency = !add(Znver4Model.VecLoadLatency, Zn4WriteVPERMYri.Latency);
- let ReleaseAtCycles = [1, 1, 2];
- let NumMicroOps = !add(Zn4WriteVPERMYri.NumMicroOps, 1);
+ let ReleaseAtCycles = [1, 1, 1];
+ let NumMicroOps = 1;
}
def : InstRW<[Zn4WriteVPERMPDYmi], (instrs VPERMPDYmi)>;
def Zn4WriteVPERMDYrr : SchedWriteRes<[Zn4FPVShuf]> {
- let Latency = 5;
+ let Latency = 4;
let ReleaseAtCycles = [1];
- let NumMicroOps = 2;
+ let NumMicroOps = 1;
}
def : InstRW<[Zn4WriteVPERMDYrr], (instrs VPERMDYrr)>;
def Zn4WriteVPERMYm : SchedWriteRes<[Zn4AGU012, Zn4Load, Zn4FPVShuf]> {
let Latency = !add(Znver4Model.VecLoadLatency, Zn4WriteVPERMDYrr.Latency);
- let ReleaseAtCycles = [1, 1, 2];
- let NumMicroOps = !add(Zn4WriteVPERMDYrr.NumMicroOps, 0);
+ let ReleaseAtCycles = [1, 1, 1];
+ let NumMicroOps = 1;
}
def : InstRW<[Zn4WriteVPERMYm], (instrs VPERMQYmi, VPERMDYrm)>;