aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib
diff options
context:
space:
mode:
authorMichael Zuckerman <Michael.zuckerman@intel.com>2017-07-26 08:10:14 +0000
committerMichael Zuckerman <Michael.zuckerman@intel.com>2017-07-26 08:10:14 +0000
commitc1918ad571e0552249eb64d525381b51b79753fe (patch)
tree384cce25c79ab943cdd22b058298ca06099a630a /llvm/lib
parent1b73682243b2a21832169ef1faf88f1b1508255d (diff)
downloadllvm-c1918ad571e0552249eb64d525381b51b79753fe.zip
llvm-c1918ad571e0552249eb64d525381b51b79753fe.tar.gz
llvm-c1918ad571e0552249eb64d525381b51b79753fe.tar.bz2
[X86][LLVM]Expanding Supports lowerInterleavedStore() in X86InterleavedAccess.
This patch expands the support of lowerInterleavedStore to 32x8i stride 4. LLVM creates suboptimal shuffle code-gen for AVX2. In overall, this patch is a specific fix for the pattern (Strid=4 VF=32) and we plan to include more patterns in the future. To reach our goal of "more patterns". We include two mask creators. The first function creates shuffle's mask equivalent to unpacklo/unpackhi instructions. The other creator creates mask equivalent to a concat of two half vectors(high/low). The patch goal is to optimize the following sequence: At the end of the computation, we have ymm2, ymm0, ymm12 and ymm3 holding each 32 chars: c0, c1, , c31 m0, m1, , m31 y0, y1, , y31 k0, k1, ., k31 And these need to be transposed/interleaved and stored like so: c0 m0 y0 k0 c1 m1 y1 k1 c2 m2 y2 k2 c3 m3 y3 k3 .... Reviewers: dorit Farhana RKSimon guyblank DavidKreitzer Differential Revision: https://reviews.llvm.org/D34601 llvm-svn: 309086
Diffstat (limited to 'llvm/lib')
-rw-r--r--llvm/lib/Target/X86/X86InterleavedAccess.cpp139
1 files changed, 132 insertions, 7 deletions
diff --git a/llvm/lib/Target/X86/X86InterleavedAccess.cpp b/llvm/lib/Target/X86/X86InterleavedAccess.cpp
index de3f672..6649308a 100644
--- a/llvm/lib/Target/X86/X86InterleavedAccess.cpp
+++ b/llvm/lib/Target/X86/X86InterleavedAccess.cpp
@@ -14,7 +14,6 @@
///
//===--------------------------------------------------------------------===//
-#include "X86ISelLowering.h"
#include "X86TargetMachine.h"
#include "llvm/Analysis/VectorUtils.h"
@@ -69,8 +68,9 @@ class X86InterleavedAccessGroup {
/// Out-V2 = p3, q3, r3, s3
/// Out-V3 = P4, q4, r4, s4
void transpose_4x4(ArrayRef<Instruction *> InputVectors,
- SmallVectorImpl<Value *> &TrasposedVectors);
-
+ SmallVectorImpl<Value *> &TransposedMatrix);
+ void interleave8bit_32x4(ArrayRef<Instruction *> InputVectors,
+ SmallVectorImpl<Value *> &TransposedMatrix);
public:
/// In order to form an interleaved access group X86InterleavedAccessGroup
/// requires a wide-load instruction \p 'I', a group of interleaved-vectors
@@ -101,18 +101,27 @@ bool X86InterleavedAccessGroup::isSupported() const {
Type *ShuffleEltTy = ShuffleVecTy->getVectorElementType();
unsigned ShuffleElemSize = DL.getTypeSizeInBits(ShuffleEltTy);
unsigned SupportedNumElem = 4;
+ if (ShuffleElemSize == 8)
+ SupportedNumElem = 32;
unsigned WideInstSize;
- // Currently, lowering is supported for 4-element vectors of 64 bits on AVX.
+ // Currently, lowering is supported for the following vectors:
+ // 1. 4-element vectors of 64 bits on AVX.
+ // 2. 32-element vectors of 8 bits on AVX.
if (isa<LoadInst>(Inst)) {
- if (DL.getTypeSizeInBits(ShuffleVecTy) != SupportedNumElem * ShuffleElemSize)
+ if (DL.getTypeSizeInBits(ShuffleVecTy) !=
+ SupportedNumElem * ShuffleElemSize)
return false;
WideInstSize = DL.getTypeSizeInBits(Inst->getType());
} else
WideInstSize = DL.getTypeSizeInBits(Shuffles[0]->getType());
- if (!Subtarget.hasAVX() || Factor != 4 || ShuffleElemSize != 64 ||
+ if (DL.getTypeSizeInBits(ShuffleEltTy) == 8 && !isa<StoreInst>(Inst))
+ return false;
+
+ if (!Subtarget.hasAVX() || Factor != 4 ||
+ (ShuffleElemSize != 64 && ShuffleElemSize != 8) ||
WideInstSize != (Factor * ShuffleElemSize * SupportedNumElem))
return false;
@@ -163,6 +172,113 @@ void X86InterleavedAccessGroup::decompose(
}
}
+// Create shuffle mask for concatenation of two half vectors.
+// Low = false: mask generated for the shuffle
+// shuffle(VEC1,VEC2,{NumElement/2, NumElement/2+1, NumElement/2+2...,
+// NumElement-1, NumElement+NumElement/2,
+// NumElement+NumElement/2+1..., 2*NumElement-1})
+// = concat(high_half(VEC1),high_half(VEC2))
+// Low = true: mask generated for the shuffle
+// shuffle(VEC1,VEC2,{0,1,2,...,NumElement/2-1,NumElement,
+// NumElement+1...,NumElement+NumElement/2-1})
+// = concat(low_half(VEC1),low_half(VEC2))
+static void createConcatShuffleMask(int NumElements,
+ SmallVectorImpl<uint32_t> &Mask, bool Low) {
+ int NumHalfElements = NumElements / 2;
+ int Offset = Low ? 0 : NumHalfElements;
+ for (int i = 0; i < NumHalfElements; ++i)
+ Mask.push_back(i + Offset);
+ for (int i = 0; i < NumHalfElements; ++i)
+ Mask.push_back(i + Offset + NumElements);
+}
+
+void X86InterleavedAccessGroup::interleave8bit_32x4(
+ ArrayRef<Instruction *> Matrix,
+ SmallVectorImpl<Value *> &TransposedMatrix) {
+
+ // Example: Assuming we start from the following vectors:
+ // Matrix[0]= c0 c1 c2 c3 c4 ... c31
+ // Matrix[1]= m0 m1 m2 m3 m4 ... m31
+ // Matrix[2]= y0 y1 y2 y3 y4 ... y31
+ // Matrix[3]= k0 k1 k2 k3 k4 ... k31
+
+ TransposedMatrix.resize(4);
+
+ SmallVector<uint32_t, 32> MaskHighTemp;
+ SmallVector<uint32_t, 32> MaskLowTemp;
+ SmallVector<uint32_t, 32> MaskHighTemp1;
+ SmallVector<uint32_t, 32> MaskLowTemp1;
+ SmallVector<uint32_t, 32> MaskHighTemp2;
+ SmallVector<uint32_t, 32> MaskLowTemp2;
+ SmallVector<uint32_t, 32> ConcatLow;
+ SmallVector<uint32_t, 32> ConcatHigh;
+
+ // MaskHighTemp and MaskLowTemp built in the vpunpckhbw and vpunpcklbw X86
+ // shuffle pattern.
+
+ createUnpackShuffleMask<uint32_t>(MVT::v32i8, MaskHighTemp, false, false);
+ createUnpackShuffleMask<uint32_t>(MVT::v32i8, MaskLowTemp, true, false);
+ ArrayRef<uint32_t> MaskHigh = makeArrayRef(MaskHighTemp);
+ ArrayRef<uint32_t> MaskLow = makeArrayRef(MaskLowTemp);
+
+ // ConcatHigh and ConcatLow built in the vperm2i128 and vinserti128 X86
+ // shuffle pattern.
+
+ createConcatShuffleMask(32, ConcatLow, true);
+ createConcatShuffleMask(32, ConcatHigh, false);
+ ArrayRef<uint32_t> MaskConcatLow = makeArrayRef(ConcatLow);
+ ArrayRef<uint32_t> MaskConcatHigh = makeArrayRef(ConcatHigh);
+
+ // MaskHighTemp1 and MaskLowTemp1 built in the vpunpckhdw and vpunpckldw X86
+ // shuffle pattern.
+
+ createUnpackShuffleMask<uint32_t>(MVT::v16i16, MaskLowTemp1, true, false);
+ createUnpackShuffleMask<uint32_t>(MVT::v16i16, MaskHighTemp1, false, false);
+ scaleShuffleMask<uint32_t>(2, makeArrayRef(MaskHighTemp1), MaskHighTemp2);
+ scaleShuffleMask<uint32_t>(2, makeArrayRef(MaskLowTemp1), MaskLowTemp2);
+ ArrayRef<uint32_t> MaskHighWord = makeArrayRef(MaskHighTemp2);
+ ArrayRef<uint32_t> MaskLowWord = makeArrayRef(MaskLowTemp2);
+
+ // IntrVec1Low = c0 m0 c1 m1 ... c7 m7 | c16 m16 c17 m17 ... c23 m23
+ // IntrVec1High = c8 m8 c9 m9 ... c15 m15 | c24 m24 c25 m25 ... c31 m31
+ // IntrVec2Low = y0 k0 y1 k1 ... y7 k7 | y16 k16 y17 k17 ... y23 k23
+ // IntrVec2High = y8 k8 y9 k9 ... y15 k15 | y24 k24 y25 k25 ... y31 k31
+
+ Value *IntrVec1Low =
+ Builder.CreateShuffleVector(Matrix[0], Matrix[1], MaskLow);
+ Value *IntrVec1High =
+ Builder.CreateShuffleVector(Matrix[0], Matrix[1], MaskHigh);
+ Value *IntrVec2Low =
+ Builder.CreateShuffleVector(Matrix[2], Matrix[3], MaskLow);
+ Value *IntrVec2High =
+ Builder.CreateShuffleVector(Matrix[2], Matrix[3], MaskHigh);
+
+ // cmyk4 cmyk5 cmyk6 cmyk7 | cmyk20 cmyk21 cmyk22 cmyk23
+ // cmyk12 cmyk13 cmyk14 cmyk15 | cmyk28 cmyk29 cmyk30 cmyk31
+ // cmyk0 cmyk1 cmyk2 cmyk3 | cmyk16 cmyk17 cmyk18 cmyk19
+ // cmyk8 cmyk9 cmyk10 cmyk11 | cmyk24 cmyk25 cmyk26 cmyk27
+
+ Value *High =
+ Builder.CreateShuffleVector(IntrVec1Low, IntrVec2Low, MaskHighWord);
+ Value *High1 =
+ Builder.CreateShuffleVector(IntrVec1High, IntrVec2High, MaskHighWord);
+ Value *Low =
+ Builder.CreateShuffleVector(IntrVec1Low, IntrVec2Low, MaskLowWord);
+ Value *Low1 =
+ Builder.CreateShuffleVector(IntrVec1High, IntrVec2High, MaskLowWord);
+
+ // cmyk0 cmyk1 cmyk2 cmyk3 | cmyk4 cmyk5 cmyk6 cmyk7
+ // cmyk8 cmyk9 cmyk10 cmyk11 | cmyk12 cmyk13 cmyk14 cmyk15
+ // cmyk16 cmyk17 cmyk18 cmyk19 | cmyk20 cmyk21 cmyk22 cmyk23
+ // cmyk24 cmyk25 cmyk26 cmyk27 | cmyk28 cmyk29 cmyk30 cmyk31
+
+ TransposedMatrix[0] = Builder.CreateShuffleVector(Low, High, MaskConcatLow);
+ TransposedMatrix[1] = Builder.CreateShuffleVector(Low1, High1, MaskConcatLow);
+ TransposedMatrix[2] = Builder.CreateShuffleVector(Low, High, MaskConcatHigh);
+ TransposedMatrix[3] =
+ Builder.CreateShuffleVector(Low1, High1, MaskConcatHigh);
+}
+
void X86InterleavedAccessGroup::transpose_4x4(
ArrayRef<Instruction *> Matrix,
SmallVectorImpl<Value *> &TransposedMatrix) {
@@ -229,7 +345,16 @@ bool X86InterleavedAccessGroup::lowerIntoOptimizedSequence() {
// 2. Transpose the interleaved-vectors into vectors of contiguous
// elements.
- transpose_4x4(DecomposedVectors, TransposedVectors);
+ switch (NumSubVecElems) {
+ case 4:
+ transpose_4x4(DecomposedVectors, TransposedVectors);
+ break;
+ case 32:
+ interleave8bit_32x4(DecomposedVectors, TransposedVectors);
+ break;
+ default:
+ return false;
+ }
// 3. Concatenate the contiguous-vectors back into a wide vector.
Value *WideVec = concatenateVectors(Builder, TransposedVectors);