aboutsummaryrefslogtreecommitdiff
path: root/gcc/config/aarch64/aarch64.c
blob: 71d8dc4471ec141e9f11bf57663bc97686d1f100 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
/* Machine description for AArch64 architecture.
   Copyright (C) 2009-2017 Free Software Foundation, Inc.
   Contributed by ARM Ltd.

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3, or (at your option)
   any later version.

   GCC is distributed in the hope that it will be useful, but
   WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING3.  If not see
   <http://www.gnu.org/licenses/>.  */

#include "config.h"
#define INCLUDE_STRING
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "memmodel.h"
#include "gimple.h"
#include "cfghooks.h"
#include "cfgloop.h"
#include "df.h"
#include "tm_p.h"
#include "stringpool.h"
#include "attribs.h"
#include "optabs.h"
#include "regs.h"
#include "emit-rtl.h"
#include "recog.h"
#include "diagnostic.h"
#include "insn-attr.h"
#include "alias.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "calls.h"
#include "varasm.h"
#include "output.h"
#include "flags.h"
#include "explow.h"
#include "expr.h"
#include "reload.h"
#include "langhooks.h"
#include "opts.h"
#include "params.h"
#include "gimplify.h"
#include "dwarf2.h"
#include "gimple-iterator.h"
#include "tree-vectorizer.h"
#include "aarch64-cost-tables.h"
#include "dumpfile.h"
#include "builtins.h"
#include "rtl-iter.h"
#include "tm-constrs.h"
#include "sched-int.h"
#include "target-globals.h"
#include "common/common-target.h"
#include "selftest.h"
#include "selftest-rtl.h"

/* This file should be included last.  */
#include "target-def.h"

/* Defined for convenience.  */
#define POINTER_BYTES (POINTER_SIZE / BITS_PER_UNIT)

/* Classifies an address.

   ADDRESS_REG_IMM
       A simple base register plus immediate offset.

   ADDRESS_REG_WB
       A base register indexed by immediate offset with writeback.

   ADDRESS_REG_REG
       A base register indexed by (optionally scaled) register.

   ADDRESS_REG_UXTW
       A base register indexed by (optionally scaled) zero-extended register.

   ADDRESS_REG_SXTW
       A base register indexed by (optionally scaled) sign-extended register.

   ADDRESS_LO_SUM
       A LO_SUM rtx with a base register and "LO12" symbol relocation.

   ADDRESS_SYMBOLIC:
       A constant symbolic address, in pc-relative literal pool.  */

enum aarch64_address_type {
  ADDRESS_REG_IMM,
  ADDRESS_REG_WB,
  ADDRESS_REG_REG,
  ADDRESS_REG_UXTW,
  ADDRESS_REG_SXTW,
  ADDRESS_LO_SUM,
  ADDRESS_SYMBOLIC
};

struct aarch64_address_info {
  enum aarch64_address_type type;
  rtx base;
  rtx offset;
  int shift;
  enum aarch64_symbol_type symbol_type;
};

struct simd_immediate_info
{
  rtx value;
  int shift;
  int element_width;
  bool mvn;
  bool msl;
};

/* The current code model.  */
enum aarch64_code_model aarch64_cmodel;

#ifdef HAVE_AS_TLS
#undef TARGET_HAVE_TLS
#define TARGET_HAVE_TLS 1
#endif

static bool aarch64_composite_type_p (const_tree, machine_mode);
static bool aarch64_vfp_is_call_or_return_candidate (machine_mode,
						     const_tree,
						     machine_mode *, int *,
						     bool *);
static void aarch64_elf_asm_constructor (rtx, int) ATTRIBUTE_UNUSED;
static void aarch64_elf_asm_destructor (rtx, int) ATTRIBUTE_UNUSED;
static void aarch64_override_options_after_change (void);
static bool aarch64_vector_mode_supported_p (machine_mode);
static bool aarch64_vectorize_vec_perm_const_ok (machine_mode,
						 vec_perm_indices);
static int aarch64_address_cost (rtx, machine_mode, addr_space_t, bool);
static bool aarch64_builtin_support_vector_misalignment (machine_mode mode,
							 const_tree type,
							 int misalignment,
							 bool is_packed);
static machine_mode
aarch64_simd_container_mode (scalar_mode mode, unsigned width);

/* Major revision number of the ARM Architecture implemented by the target.  */
unsigned aarch64_architecture_version;

/* The processor for which instructions should be scheduled.  */
enum aarch64_processor aarch64_tune = cortexa53;

/* Mask to specify which instruction scheduling options should be used.  */
unsigned long aarch64_tune_flags = 0;

/* Global flag for PC relative loads.  */
bool aarch64_pcrelative_literal_loads;

/* Support for command line parsing of boolean flags in the tuning
   structures.  */
struct aarch64_flag_desc
{
  const char* name;
  unsigned int flag;
};

#define AARCH64_FUSION_PAIR(name, internal_name) \
  { name, AARCH64_FUSE_##internal_name },
static const struct aarch64_flag_desc aarch64_fusible_pairs[] =
{
  { "none", AARCH64_FUSE_NOTHING },
#include "aarch64-fusion-pairs.def"
  { "all", AARCH64_FUSE_ALL },
  { NULL, AARCH64_FUSE_NOTHING }
};

#define AARCH64_EXTRA_TUNING_OPTION(name, internal_name) \
  { name, AARCH64_EXTRA_TUNE_##internal_name },
static const struct aarch64_flag_desc aarch64_tuning_flags[] =
{
  { "none", AARCH64_EXTRA_TUNE_NONE },
#include "aarch64-tuning-flags.def"
  { "all", AARCH64_EXTRA_TUNE_ALL },
  { NULL, AARCH64_EXTRA_TUNE_NONE }
};

/* Tuning parameters.  */

static const struct cpu_addrcost_table generic_addrcost_table =
{
    {
      1, /* hi  */
      0, /* si  */
      0, /* di  */
      1, /* ti  */
    },
  0, /* pre_modify  */
  0, /* post_modify  */
  0, /* register_offset  */
  0, /* register_sextend  */
  0, /* register_zextend  */
  0 /* imm_offset  */
};

static const struct cpu_addrcost_table exynosm1_addrcost_table =
{
    {
      0, /* hi  */
      0, /* si  */
      0, /* di  */
      2, /* ti  */
    },
  0, /* pre_modify  */
  0, /* post_modify  */
  1, /* register_offset  */
  1, /* register_sextend  */
  2, /* register_zextend  */
  0, /* imm_offset  */
};

static const struct cpu_addrcost_table xgene1_addrcost_table =
{
    {
      1, /* hi  */
      0, /* si  */
      0, /* di  */
      1, /* ti  */
    },
  1, /* pre_modify  */
  0, /* post_modify  */
  0, /* register_offset  */
  1, /* register_sextend  */
  1, /* register_zextend  */
  0, /* imm_offset  */
};

static const struct cpu_addrcost_table thunderx2t99_addrcost_table =
{
    {
      1, /* hi  */
      1, /* si  */
      1, /* di  */
      2, /* ti  */
    },
  0, /* pre_modify  */
  0, /* post_modify  */
  2, /* register_offset  */
  3, /* register_sextend  */
  3, /* register_zextend  */
  0, /* imm_offset  */
};

static const struct cpu_regmove_cost generic_regmove_cost =
{
  1, /* GP2GP  */
  /* Avoid the use of slow int<->fp moves for spilling by setting
     their cost higher than memmov_cost.  */
  5, /* GP2FP  */
  5, /* FP2GP  */
  2 /* FP2FP  */
};

static const struct cpu_regmove_cost cortexa57_regmove_cost =
{
  1, /* GP2GP  */
  /* Avoid the use of slow int<->fp moves for spilling by setting
     their cost higher than memmov_cost.  */
  5, /* GP2FP  */
  5, /* FP2GP  */
  2 /* FP2FP  */
};

static const struct cpu_regmove_cost cortexa53_regmove_cost =
{
  1, /* GP2GP  */
  /* Avoid the use of slow int<->fp moves for spilling by setting
     their cost higher than memmov_cost.  */
  5, /* GP2FP  */
  5, /* FP2GP  */
  2 /* FP2FP  */
};

static const struct cpu_regmove_cost exynosm1_regmove_cost =
{
  1, /* GP2GP  */
  /* Avoid the use of slow int<->fp moves for spilling by setting
     their cost higher than memmov_cost (actual, 4 and 9).  */
  9, /* GP2FP  */
  9, /* FP2GP  */
  1 /* FP2FP  */
};

static const struct cpu_regmove_cost thunderx_regmove_cost =
{
  2, /* GP2GP  */
  2, /* GP2FP  */
  6, /* FP2GP  */
  4 /* FP2FP  */
};

static const struct cpu_regmove_cost xgene1_regmove_cost =
{
  1, /* GP2GP  */
  /* Avoid the use of slow int<->fp moves for spilling by setting
     their cost higher than memmov_cost.  */
  8, /* GP2FP  */
  8, /* FP2GP  */
  2 /* FP2FP  */
};

static const struct cpu_regmove_cost qdf24xx_regmove_cost =
{
  2, /* GP2GP  */
  /* Avoid the use of int<->fp moves for spilling.  */
  6, /* GP2FP  */
  6, /* FP2GP  */
  4 /* FP2FP  */
};

static const struct cpu_regmove_cost thunderx2t99_regmove_cost =
{
  1, /* GP2GP  */
  /* Avoid the use of int<->fp moves for spilling.  */
  8, /* GP2FP  */
  8, /* FP2GP  */
  4  /* FP2FP  */
};

/* Generic costs for vector insn classes.  */
static const struct cpu_vector_cost generic_vector_cost =
{
  1, /* scalar_int_stmt_cost  */
  1, /* scalar_fp_stmt_cost  */
  1, /* scalar_load_cost  */
  1, /* scalar_store_cost  */
  1, /* vec_int_stmt_cost  */
  1, /* vec_fp_stmt_cost  */
  2, /* vec_permute_cost  */
  1, /* vec_to_scalar_cost  */
  1, /* scalar_to_vec_cost  */
  1, /* vec_align_load_cost  */
  1, /* vec_unalign_load_cost  */
  1, /* vec_unalign_store_cost  */
  1, /* vec_store_cost  */
  3, /* cond_taken_branch_cost  */
  1 /* cond_not_taken_branch_cost  */
};

/* ThunderX costs for vector insn classes.  */
static const struct cpu_vector_cost thunderx_vector_cost =
{
  1, /* scalar_int_stmt_cost  */
  1, /* scalar_fp_stmt_cost  */
  3, /* scalar_load_cost  */
  1, /* scalar_store_cost  */
  4, /* vec_int_stmt_cost  */
  1, /* vec_fp_stmt_cost  */
  4, /* vec_permute_cost  */
  2, /* vec_to_scalar_cost  */
  2, /* scalar_to_vec_cost  */
  3, /* vec_align_load_cost  */
  5, /* vec_unalign_load_cost  */
  5, /* vec_unalign_store_cost  */
  1, /* vec_store_cost  */
  3, /* cond_taken_branch_cost  */
  3 /* cond_not_taken_branch_cost  */
};

/* Generic costs for vector insn classes.  */
static const struct cpu_vector_cost cortexa57_vector_cost =
{
  1, /* scalar_int_stmt_cost  */
  1, /* scalar_fp_stmt_cost  */
  4, /* scalar_load_cost  */
  1, /* scalar_store_cost  */
  2, /* vec_int_stmt_cost  */
  2, /* vec_fp_stmt_cost  */
  3, /* vec_permute_cost  */
  8, /* vec_to_scalar_cost  */
  8, /* scalar_to_vec_cost  */
  4, /* vec_align_load_cost  */
  4, /* vec_unalign_load_cost  */
  1, /* vec_unalign_store_cost  */
  1, /* vec_store_cost  */
  1, /* cond_taken_branch_cost  */
  1 /* cond_not_taken_branch_cost  */
};

static const struct cpu_vector_cost exynosm1_vector_cost =
{
  1, /* scalar_int_stmt_cost  */
  1, /* scalar_fp_stmt_cost  */
  5, /* scalar_load_cost  */
  1, /* scalar_store_cost  */
  3, /* vec_int_stmt_cost  */
  3, /* vec_fp_stmt_cost  */
  3, /* vec_permute_cost  */
  3, /* vec_to_scalar_cost  */
  3, /* scalar_to_vec_cost  */
  5, /* vec_align_load_cost  */
  5, /* vec_unalign_load_cost  */
  1, /* vec_unalign_store_cost  */
  1, /* vec_store_cost  */
  1, /* cond_taken_branch_cost  */
  1 /* cond_not_taken_branch_cost  */
};

/* Generic costs for vector insn classes.  */
static const struct cpu_vector_cost xgene1_vector_cost =
{
  1, /* scalar_int_stmt_cost  */
  1, /* scalar_fp_stmt_cost  */
  5, /* scalar_load_cost  */
  1, /* scalar_store_cost  */
  2, /* vec_int_stmt_cost  */
  2, /* vec_fp_stmt_cost  */
  2, /* vec_permute_cost  */
  4, /* vec_to_scalar_cost  */
  4, /* scalar_to_vec_cost  */
  10, /* vec_align_load_cost  */
  10, /* vec_unalign_load_cost  */
  2, /* vec_unalign_store_cost  */
  2, /* vec_store_cost  */
  2, /* cond_taken_branch_cost  */
  1 /* cond_not_taken_branch_cost  */
};

/* Costs for vector insn classes for Vulcan.  */
static const struct cpu_vector_cost thunderx2t99_vector_cost =
{
  1, /* scalar_int_stmt_cost  */
  6, /* scalar_fp_stmt_cost  */
  4, /* scalar_load_cost  */
  1, /* scalar_store_cost  */
  5, /* vec_int_stmt_cost  */
  6, /* vec_fp_stmt_cost  */
  3, /* vec_permute_cost  */
  6, /* vec_to_scalar_cost  */
  5, /* scalar_to_vec_cost  */
  8, /* vec_align_load_cost  */
  8, /* vec_unalign_load_cost  */
  4, /* vec_unalign_store_cost  */
  4, /* vec_store_cost  */
  2, /* cond_taken_branch_cost  */
  1  /* cond_not_taken_branch_cost  */
};

/* Generic costs for branch instructions.  */
static const struct cpu_branch_cost generic_branch_cost =
{
  1,  /* Predictable.  */
  3   /* Unpredictable.  */
};

/* Generic approximation modes.  */
static const cpu_approx_modes generic_approx_modes =
{
  AARCH64_APPROX_NONE,	/* division  */
  AARCH64_APPROX_NONE,	/* sqrt  */
  AARCH64_APPROX_NONE	/* recip_sqrt  */
};

/* Approximation modes for Exynos M1.  */
static const cpu_approx_modes exynosm1_approx_modes =
{
  AARCH64_APPROX_NONE,	/* division  */
  AARCH64_APPROX_ALL,	/* sqrt  */
  AARCH64_APPROX_ALL	/* recip_sqrt  */
};

/* Approximation modes for X-Gene 1.  */
static const cpu_approx_modes xgene1_approx_modes =
{
  AARCH64_APPROX_NONE,	/* division  */
  AARCH64_APPROX_NONE,	/* sqrt  */
  AARCH64_APPROX_ALL	/* recip_sqrt  */
};

/* Generic prefetch settings (which disable prefetch).  */
static const cpu_prefetch_tune generic_prefetch_tune =
{
  0,			/* num_slots  */
  -1,			/* l1_cache_size  */
  -1,			/* l1_cache_line_size  */
  -1,			/* l2_cache_size  */
  -1			/* default_opt_level  */
};

static const cpu_prefetch_tune exynosm1_prefetch_tune =
{
  0,			/* num_slots  */
  -1,			/* l1_cache_size  */
  64,			/* l1_cache_line_size  */
  -1,			/* l2_cache_size  */
  -1			/* default_opt_level  */
};

static const cpu_prefetch_tune qdf24xx_prefetch_tune =
{
  4,			/* num_slots  */
  32,			/* l1_cache_size  */
  64,			/* l1_cache_line_size  */
  1024,			/* l2_cache_size  */
  3			/* default_opt_level  */
};

static const cpu_prefetch_tune thunderxt88_prefetch_tune =
{
  8,			/* num_slots  */
  32,			/* l1_cache_size  */
  128,			/* l1_cache_line_size  */
  16*1024,		/* l2_cache_size  */
  3			/* default_opt_level  */
};

static const cpu_prefetch_tune thunderx_prefetch_tune =
{
  8,			/* num_slots  */
  32,			/* l1_cache_size  */
  128,			/* l1_cache_line_size  */
  -1,			/* l2_cache_size  */
  -1			/* default_opt_level  */
};

static const cpu_prefetch_tune thunderx2t99_prefetch_tune =
{
  8,			/* num_slots  */
  32,			/* l1_cache_size  */
  64,			/* l1_cache_line_size  */
  256,			/* l2_cache_size  */
  -1			/* default_opt_level  */
};

static const struct tune_params generic_tunings =
{
  &cortexa57_extra_costs,
  &generic_addrcost_table,
  &generic_regmove_cost,
  &generic_vector_cost,
  &generic_branch_cost,
  &generic_approx_modes,
  4, /* memmov_cost  */
  2, /* issue_rate  */
  (AARCH64_FUSE_AES_AESMC), /* fusible_ops  */
  8,	/* function_align.  */
  4,	/* jump_align.  */
  8,	/* loop_align.  */
  2,	/* int_reassoc_width.  */
  4,	/* fp_reassoc_width.  */
  1,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  0,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_WEAK,	/* autoprefetcher_model.  */
  (AARCH64_EXTRA_TUNE_NONE),	/* tune_flags.  */
  &generic_prefetch_tune
};

static const struct tune_params cortexa35_tunings =
{
  &cortexa53_extra_costs,
  &generic_addrcost_table,
  &cortexa53_regmove_cost,
  &generic_vector_cost,
  &generic_branch_cost,
  &generic_approx_modes,
  4, /* memmov_cost  */
  1, /* issue_rate  */
  (AARCH64_FUSE_AES_AESMC | AARCH64_FUSE_MOV_MOVK | AARCH64_FUSE_ADRP_ADD
   | AARCH64_FUSE_MOVK_MOVK | AARCH64_FUSE_ADRP_LDR), /* fusible_ops  */
  16,	/* function_align.  */
  4,	/* jump_align.  */
  8,	/* loop_align.  */
  2,	/* int_reassoc_width.  */
  4,	/* fp_reassoc_width.  */
  1,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  0,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_WEAK,	/* autoprefetcher_model.  */
  (AARCH64_EXTRA_TUNE_NONE),	/* tune_flags.  */
  &generic_prefetch_tune
};

static const struct tune_params cortexa53_tunings =
{
  &cortexa53_extra_costs,
  &generic_addrcost_table,
  &cortexa53_regmove_cost,
  &generic_vector_cost,
  &generic_branch_cost,
  &generic_approx_modes,
  4, /* memmov_cost  */
  2, /* issue_rate  */
  (AARCH64_FUSE_AES_AESMC | AARCH64_FUSE_MOV_MOVK | AARCH64_FUSE_ADRP_ADD
   | AARCH64_FUSE_MOVK_MOVK | AARCH64_FUSE_ADRP_LDR), /* fusible_ops  */
  16,	/* function_align.  */
  4,	/* jump_align.  */
  8,	/* loop_align.  */
  2,	/* int_reassoc_width.  */
  4,	/* fp_reassoc_width.  */
  1,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  0,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_WEAK,	/* autoprefetcher_model.  */
  (AARCH64_EXTRA_TUNE_NONE),	/* tune_flags.  */
  &generic_prefetch_tune
};

static const struct tune_params cortexa57_tunings =
{
  &cortexa57_extra_costs,
  &generic_addrcost_table,
  &cortexa57_regmove_cost,
  &cortexa57_vector_cost,
  &generic_branch_cost,
  &generic_approx_modes,
  4, /* memmov_cost  */
  3, /* issue_rate  */
  (AARCH64_FUSE_AES_AESMC | AARCH64_FUSE_MOV_MOVK | AARCH64_FUSE_ADRP_ADD
   | AARCH64_FUSE_MOVK_MOVK), /* fusible_ops  */
  16,	/* function_align.  */
  4,	/* jump_align.  */
  8,	/* loop_align.  */
  2,	/* int_reassoc_width.  */
  4,	/* fp_reassoc_width.  */
  1,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  0,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_WEAK,	/* autoprefetcher_model.  */
  (AARCH64_EXTRA_TUNE_RENAME_FMA_REGS),	/* tune_flags.  */
  &generic_prefetch_tune
};

static const struct tune_params cortexa72_tunings =
{
  &cortexa57_extra_costs,
  &generic_addrcost_table,
  &cortexa57_regmove_cost,
  &cortexa57_vector_cost,
  &generic_branch_cost,
  &generic_approx_modes,
  4, /* memmov_cost  */
  3, /* issue_rate  */
  (AARCH64_FUSE_AES_AESMC | AARCH64_FUSE_MOV_MOVK | AARCH64_FUSE_ADRP_ADD
   | AARCH64_FUSE_MOVK_MOVK), /* fusible_ops  */
  16,	/* function_align.  */
  4,	/* jump_align.  */
  8,	/* loop_align.  */
  2,	/* int_reassoc_width.  */
  4,	/* fp_reassoc_width.  */
  1,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  0,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_WEAK,	/* autoprefetcher_model.  */
  (AARCH64_EXTRA_TUNE_NONE),	/* tune_flags.  */
  &generic_prefetch_tune
};

static const struct tune_params cortexa73_tunings =
{
  &cortexa57_extra_costs,
  &generic_addrcost_table,
  &cortexa57_regmove_cost,
  &cortexa57_vector_cost,
  &generic_branch_cost,
  &generic_approx_modes,
  4, /* memmov_cost.  */
  2, /* issue_rate.  */
  (AARCH64_FUSE_AES_AESMC | AARCH64_FUSE_MOV_MOVK | AARCH64_FUSE_ADRP_ADD
   | AARCH64_FUSE_MOVK_MOVK | AARCH64_FUSE_ADRP_LDR), /* fusible_ops  */
  16,	/* function_align.  */
  4,	/* jump_align.  */
  8,	/* loop_align.  */
  2,	/* int_reassoc_width.  */
  4,	/* fp_reassoc_width.  */
  1,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  0,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_WEAK,	/* autoprefetcher_model.  */
  (AARCH64_EXTRA_TUNE_NONE),	/* tune_flags.  */
  &generic_prefetch_tune
};



static const struct tune_params exynosm1_tunings =
{
  &exynosm1_extra_costs,
  &exynosm1_addrcost_table,
  &exynosm1_regmove_cost,
  &exynosm1_vector_cost,
  &generic_branch_cost,
  &exynosm1_approx_modes,
  4,	/* memmov_cost  */
  3,	/* issue_rate  */
  (AARCH64_FUSE_AES_AESMC), /* fusible_ops  */
  4,	/* function_align.  */
  4,	/* jump_align.  */
  4,	/* loop_align.  */
  2,	/* int_reassoc_width.  */
  4,	/* fp_reassoc_width.  */
  1,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  48,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_WEAK, /* autoprefetcher_model.  */
  (AARCH64_EXTRA_TUNE_NONE), /* tune_flags.  */
  &exynosm1_prefetch_tune
};

static const struct tune_params thunderxt88_tunings =
{
  &thunderx_extra_costs,
  &generic_addrcost_table,
  &thunderx_regmove_cost,
  &thunderx_vector_cost,
  &generic_branch_cost,
  &generic_approx_modes,
  6, /* memmov_cost  */
  2, /* issue_rate  */
  AARCH64_FUSE_CMP_BRANCH, /* fusible_ops  */
  8,	/* function_align.  */
  8,	/* jump_align.  */
  8,	/* loop_align.  */
  2,	/* int_reassoc_width.  */
  4,	/* fp_reassoc_width.  */
  1,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  0,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_OFF,	/* autoprefetcher_model.  */
  (AARCH64_EXTRA_TUNE_SLOW_UNALIGNED_LDPW),	/* tune_flags.  */
  &thunderxt88_prefetch_tune
};

static const struct tune_params thunderx_tunings =
{
  &thunderx_extra_costs,
  &generic_addrcost_table,
  &thunderx_regmove_cost,
  &thunderx_vector_cost,
  &generic_branch_cost,
  &generic_approx_modes,
  6, /* memmov_cost  */
  2, /* issue_rate  */
  AARCH64_FUSE_CMP_BRANCH, /* fusible_ops  */
  8,	/* function_align.  */
  8,	/* jump_align.  */
  8,	/* loop_align.  */
  2,	/* int_reassoc_width.  */
  4,	/* fp_reassoc_width.  */
  1,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  0,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_OFF,	/* autoprefetcher_model.  */
  (AARCH64_EXTRA_TUNE_SLOW_UNALIGNED_LDPW
   | AARCH64_EXTRA_TUNE_CHEAP_SHIFT_EXTEND),	/* tune_flags.  */
  &thunderx_prefetch_tune
};

static const struct tune_params xgene1_tunings =
{
  &xgene1_extra_costs,
  &xgene1_addrcost_table,
  &xgene1_regmove_cost,
  &xgene1_vector_cost,
  &generic_branch_cost,
  &xgene1_approx_modes,
  6, /* memmov_cost  */
  4, /* issue_rate  */
  AARCH64_FUSE_NOTHING, /* fusible_ops  */
  16,	/* function_align.  */
  8,	/* jump_align.  */
  16,	/* loop_align.  */
  2,	/* int_reassoc_width.  */
  4,	/* fp_reassoc_width.  */
  1,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  0,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_OFF,	/* autoprefetcher_model.  */
  (AARCH64_EXTRA_TUNE_NONE),	/* tune_flags.  */
  &generic_prefetch_tune
};

static const struct tune_params qdf24xx_tunings =
{
  &qdf24xx_extra_costs,
  &generic_addrcost_table,
  &qdf24xx_regmove_cost,
  &generic_vector_cost,
  &generic_branch_cost,
  &generic_approx_modes,
  4, /* memmov_cost  */
  4, /* issue_rate  */
  (AARCH64_FUSE_MOV_MOVK | AARCH64_FUSE_ADRP_ADD
   | AARCH64_FUSE_MOVK_MOVK), /* fuseable_ops  */
  16,	/* function_align.  */
  8,	/* jump_align.  */
  16,	/* loop_align.  */
  2,	/* int_reassoc_width.  */
  4,	/* fp_reassoc_width.  */
  1,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  0,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_STRONG,	/* autoprefetcher_model.  */
  (AARCH64_EXTRA_TUNE_NONE),		/* tune_flags.  */
  &qdf24xx_prefetch_tune
};

static const struct tune_params thunderx2t99_tunings =
{
  &thunderx2t99_extra_costs,
  &thunderx2t99_addrcost_table,
  &thunderx2t99_regmove_cost,
  &thunderx2t99_vector_cost,
  &generic_branch_cost,
  &generic_approx_modes,
  4, /* memmov_cost.  */
  4, /* issue_rate.  */
  (AARCH64_FUSE_CMP_BRANCH | AARCH64_FUSE_AES_AESMC
   | AARCH64_FUSE_ALU_BRANCH), /* fusible_ops  */
  16,	/* function_align.  */
  8,	/* jump_align.  */
  16,	/* loop_align.  */
  3,	/* int_reassoc_width.  */
  2,	/* fp_reassoc_width.  */
  2,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  0,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_WEAK,	/* autoprefetcher_model.  */
  (AARCH64_EXTRA_TUNE_NONE),	/* tune_flags.  */
  &thunderx2t99_prefetch_tune
};

/* Support for fine-grained override of the tuning structures.  */
struct aarch64_tuning_override_function
{
  const char* name;
  void (*parse_override)(const char*, struct tune_params*);
};

static void aarch64_parse_fuse_string (const char*, struct tune_params*);
static void aarch64_parse_tune_string (const char*, struct tune_params*);

static const struct aarch64_tuning_override_function
aarch64_tuning_override_functions[] =
{
  { "fuse", aarch64_parse_fuse_string },
  { "tune", aarch64_parse_tune_string },
  { NULL, NULL }
};

/* A processor implementing AArch64.  */
struct processor
{
  const char *const name;
  enum aarch64_processor ident;
  enum aarch64_processor sched_core;
  enum aarch64_arch arch;
  unsigned architecture_version;
  const unsigned long flags;
  const struct tune_params *const tune;
};

/* Architectures implementing AArch64.  */
static const struct processor all_architectures[] =
{
#define AARCH64_ARCH(NAME, CORE, ARCH_IDENT, ARCH_REV, FLAGS) \
  {NAME, CORE, CORE, AARCH64_ARCH_##ARCH_IDENT, ARCH_REV, FLAGS, NULL},
#include "aarch64-arches.def"
  {NULL, aarch64_none, aarch64_none, aarch64_no_arch, 0, 0, NULL}
};

/* Processor cores implementing AArch64.  */
static const struct processor all_cores[] =
{
#define AARCH64_CORE(NAME, IDENT, SCHED, ARCH, FLAGS, COSTS, IMP, PART, VARIANT) \
  {NAME, IDENT, SCHED, AARCH64_ARCH_##ARCH,				\
  all_architectures[AARCH64_ARCH_##ARCH].architecture_version,	\
  FLAGS, &COSTS##_tunings},
#include "aarch64-cores.def"
  {"generic", generic, cortexa53, AARCH64_ARCH_8A, 8,
    AARCH64_FL_FOR_ARCH8, &generic_tunings},
  {NULL, aarch64_none, aarch64_none, aarch64_no_arch, 0, 0, NULL}
};


/* Target specification.  These are populated by the -march, -mtune, -mcpu
   handling code or by target attributes.  */
static const struct processor *selected_arch;
static const struct processor *selected_cpu;
static const struct processor *selected_tune;

/* The current tuning set.  */
struct tune_params aarch64_tune_params = generic_tunings;

#define AARCH64_CPU_DEFAULT_FLAGS ((selected_cpu) ? selected_cpu->flags : 0)

/* An ISA extension in the co-processor and main instruction set space.  */
struct aarch64_option_extension
{
  const char *const name;
  const unsigned long flags_on;
  const unsigned long flags_off;
};

typedef enum aarch64_cond_code
{
  AARCH64_EQ = 0, AARCH64_NE, AARCH64_CS, AARCH64_CC, AARCH64_MI, AARCH64_PL,
  AARCH64_VS, AARCH64_VC, AARCH64_HI, AARCH64_LS, AARCH64_GE, AARCH64_LT,
  AARCH64_GT, AARCH64_LE, AARCH64_AL, AARCH64_NV
}
aarch64_cc;

#define AARCH64_INVERSE_CONDITION_CODE(X) ((aarch64_cc) (((int) X) ^ 1))

/* The condition codes of the processor, and the inverse function.  */
static const char * const aarch64_condition_codes[] =
{
  "eq", "ne", "cs", "cc", "mi", "pl", "vs", "vc",
  "hi", "ls", "ge", "lt", "gt", "le", "al", "nv"
};

/* Generate code to enable conditional branches in functions over 1 MiB.  */
const char *
aarch64_gen_far_branch (rtx * operands, int pos_label, const char * dest,
			const char * branch_format)
{
    rtx_code_label * tmp_label = gen_label_rtx ();
    char label_buf[256];
    char buffer[128];
    ASM_GENERATE_INTERNAL_LABEL (label_buf, dest,
				 CODE_LABEL_NUMBER (tmp_label));
    const char *label_ptr = targetm.strip_name_encoding (label_buf);
    rtx dest_label = operands[pos_label];
    operands[pos_label] = tmp_label;

    snprintf (buffer, sizeof (buffer), "%s%s", branch_format, label_ptr);
    output_asm_insn (buffer, operands);

    snprintf (buffer, sizeof (buffer), "b\t%%l%d\n%s:", pos_label, label_ptr);
    operands[pos_label] = dest_label;
    output_asm_insn (buffer, operands);
    return "";
}

void
aarch64_err_no_fpadvsimd (machine_mode mode, const char *msg)
{
  const char *mc = FLOAT_MODE_P (mode) ? "floating-point" : "vector";
  if (TARGET_GENERAL_REGS_ONLY)
    error ("%qs is incompatible with %s %s", "-mgeneral-regs-only", mc, msg);
  else
    error ("%qs feature modifier is incompatible with %s %s", "+nofp", mc, msg);
}

/* Implement TARGET_IRA_CHANGE_PSEUDO_ALLOCNO_CLASS.
   The register allocator chooses ALL_REGS if FP_REGS and GENERAL_REGS have
   the same cost even if ALL_REGS has a much larger cost.  ALL_REGS is also
   used if the cost of both FP_REGS and GENERAL_REGS is lower than the memory
   cost (in this case the best class is the lowest cost one).  Using ALL_REGS
   irrespectively of its cost results in bad allocations with many redundant
   int<->FP moves which are expensive on various cores.
   To avoid this we don't allow ALL_REGS as the allocno class, but force a
   decision between FP_REGS and GENERAL_REGS.  We use the allocno class if it
   isn't ALL_REGS.  Similarly, use the best class if it isn't ALL_REGS.
   Otherwise set the allocno class depending on the mode.
   The result of this is that it is no longer inefficient to have a higher
   memory move cost than the register move cost.
*/

static reg_class_t
aarch64_ira_change_pseudo_allocno_class (int regno, reg_class_t allocno_class,
					 reg_class_t best_class)
{
  machine_mode mode;

  if (allocno_class != ALL_REGS)
    return allocno_class;

  if (best_class != ALL_REGS)
    return best_class;

  mode = PSEUDO_REGNO_MODE (regno);
  return FLOAT_MODE_P (mode) || VECTOR_MODE_P (mode) ? FP_REGS : GENERAL_REGS;
}

static unsigned int
aarch64_min_divisions_for_recip_mul (machine_mode mode)
{
  if (GET_MODE_UNIT_SIZE (mode) == 4)
    return aarch64_tune_params.min_div_recip_mul_sf;
  return aarch64_tune_params.min_div_recip_mul_df;
}

static int
aarch64_reassociation_width (unsigned opc ATTRIBUTE_UNUSED,
			     machine_mode mode)
{
  if (VECTOR_MODE_P (mode))
    return aarch64_tune_params.vec_reassoc_width;
  if (INTEGRAL_MODE_P (mode))
    return aarch64_tune_params.int_reassoc_width;
  if (FLOAT_MODE_P (mode))
    return aarch64_tune_params.fp_reassoc_width;
  return 1;
}

/* Provide a mapping from gcc register numbers to dwarf register numbers.  */
unsigned
aarch64_dbx_register_number (unsigned regno)
{
   if (GP_REGNUM_P (regno))
     return AARCH64_DWARF_R0 + regno - R0_REGNUM;
   else if (regno == SP_REGNUM)
     return AARCH64_DWARF_SP;
   else if (FP_REGNUM_P (regno))
     return AARCH64_DWARF_V0 + regno - V0_REGNUM;

   /* Return values >= DWARF_FRAME_REGISTERS indicate that there is no
      equivalent DWARF register.  */
   return DWARF_FRAME_REGISTERS;
}

/* Return TRUE if MODE is any of the large INT modes.  */
static bool
aarch64_vect_struct_mode_p (machine_mode mode)
{
  return mode == OImode || mode == CImode || mode == XImode;
}

/* Return TRUE if MODE is any of the vector modes.  */
static bool
aarch64_vector_mode_p (machine_mode mode)
{
  return aarch64_vector_mode_supported_p (mode)
	 || aarch64_vect_struct_mode_p (mode);
}

/* Implement target hook TARGET_ARRAY_MODE_SUPPORTED_P.  */
static bool
aarch64_array_mode_supported_p (machine_mode mode,
				unsigned HOST_WIDE_INT nelems)
{
  if (TARGET_SIMD
      && (AARCH64_VALID_SIMD_QREG_MODE (mode)
	  || AARCH64_VALID_SIMD_DREG_MODE (mode))
      && (nelems >= 2 && nelems <= 4))
    return true;

  return false;
}

/* Implement TARGET_HARD_REGNO_NREGS.  */

static unsigned int
aarch64_hard_regno_nregs (unsigned regno, machine_mode mode)
{
  switch (aarch64_regno_regclass (regno))
    {
    case FP_REGS:
    case FP_LO_REGS:
      return (GET_MODE_SIZE (mode) + UNITS_PER_VREG - 1) / UNITS_PER_VREG;
    default:
      return (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
    }
  gcc_unreachable ();
}

/* Implement TARGET_HARD_REGNO_MODE_OK.  */

static bool
aarch64_hard_regno_mode_ok (unsigned regno, machine_mode mode)
{
  if (GET_MODE_CLASS (mode) == MODE_CC)
    return regno == CC_REGNUM;

  if (regno == SP_REGNUM)
    /* The purpose of comparing with ptr_mode is to support the
       global register variable associated with the stack pointer
       register via the syntax of asm ("wsp") in ILP32.  */
    return mode == Pmode || mode == ptr_mode;

  if (regno == FRAME_POINTER_REGNUM || regno == ARG_POINTER_REGNUM)
    return mode == Pmode;

  if (GP_REGNUM_P (regno) && ! aarch64_vect_struct_mode_p (mode))
    return true;

  if (FP_REGNUM_P (regno))
    {
      if (aarch64_vect_struct_mode_p (mode))
	return end_hard_regno (mode, regno) - 1 <= V31_REGNUM;
      else
	return true;
    }

  return false;
}

/* Implement TARGET_HARD_REGNO_CALL_PART_CLOBBERED.  The callee only saves
   the lower 64 bits of a 128-bit register.  Tell the compiler the callee
   clobbers the top 64 bits when restoring the bottom 64 bits.  */

static bool
aarch64_hard_regno_call_part_clobbered (unsigned int regno, machine_mode mode)
{
  return FP_REGNUM_P (regno) && GET_MODE_SIZE (mode) > 8;
}

/* Implement HARD_REGNO_CALLER_SAVE_MODE.  */
machine_mode
aarch64_hard_regno_caller_save_mode (unsigned regno, unsigned nregs,
				     machine_mode mode)
{
  /* Handle modes that fit within single registers.  */
  if (nregs == 1 && GET_MODE_SIZE (mode) <= 16)
    {
      if (GET_MODE_SIZE (mode) >= 4)
        return mode;
      else
        return SImode;
    }
  /* Fall back to generic for multi-reg and very large modes.  */
  else
    return choose_hard_reg_mode (regno, nregs, false);
}

/* Implement TARGET_CONSTANT_ALIGNMENT.  Make strings word-aligned so
   that strcpy from constants will be faster.  */

static HOST_WIDE_INT
aarch64_constant_alignment (const_tree exp, HOST_WIDE_INT align)
{
  if (TREE_CODE (exp) == STRING_CST && !optimize_size)
    return MAX (align, BITS_PER_WORD);
  return align;
}

/* Return true if calls to DECL should be treated as
   long-calls (ie called via a register).  */
static bool
aarch64_decl_is_long_call_p (const_tree decl ATTRIBUTE_UNUSED)
{
  return false;
}

/* Return true if calls to symbol-ref SYM should be treated as
   long-calls (ie called via a register).  */
bool
aarch64_is_long_call_p (rtx sym)
{
  return aarch64_decl_is_long_call_p (SYMBOL_REF_DECL (sym));
}

/* Return true if calls to symbol-ref SYM should not go through
   plt stubs.  */

bool
aarch64_is_noplt_call_p (rtx sym)
{
  const_tree decl = SYMBOL_REF_DECL (sym);

  if (flag_pic
      && decl
      && (!flag_plt
	  || lookup_attribute ("noplt", DECL_ATTRIBUTES (decl)))
      && !targetm.binds_local_p (decl))
    return true;

  return false;
}

/* Return true if the offsets to a zero/sign-extract operation
   represent an expression that matches an extend operation.  The
   operands represent the paramters from

   (extract:MODE (mult (reg) (MULT_IMM)) (EXTRACT_IMM) (const_int 0)).  */
bool
aarch64_is_extend_from_extract (scalar_int_mode mode, rtx mult_imm,
				rtx extract_imm)
{
  HOST_WIDE_INT mult_val, extract_val;

  if (! CONST_INT_P (mult_imm) || ! CONST_INT_P (extract_imm))
    return false;

  mult_val = INTVAL (mult_imm);
  extract_val = INTVAL (extract_imm);

  if (extract_val > 8
      && extract_val < GET_MODE_BITSIZE (mode)
      && exact_log2 (extract_val & ~7) > 0
      && (extract_val & 7) <= 4
      && mult_val == (1 << (extract_val & 7)))
    return true;

  return false;
}

/* Emit an insn that's a simple single-set.  Both the operands must be
   known to be valid.  */
inline static rtx_insn *
emit_set_insn (rtx x, rtx y)
{
  return emit_insn (gen_rtx_SET (x, y));
}

/* X and Y are two things to compare using CODE.  Emit the compare insn and
   return the rtx for register 0 in the proper mode.  */
rtx
aarch64_gen_compare_reg (RTX_CODE code, rtx x, rtx y)
{
  machine_mode mode = SELECT_CC_MODE (code, x, y);
  rtx cc_reg = gen_rtx_REG (mode, CC_REGNUM);

  emit_set_insn (cc_reg, gen_rtx_COMPARE (mode, x, y));
  return cc_reg;
}

/* Build the SYMBOL_REF for __tls_get_addr.  */

static GTY(()) rtx tls_get_addr_libfunc;

rtx
aarch64_tls_get_addr (void)
{
  if (!tls_get_addr_libfunc)
    tls_get_addr_libfunc = init_one_libfunc ("__tls_get_addr");
  return tls_get_addr_libfunc;
}

/* Return the TLS model to use for ADDR.  */

static enum tls_model
tls_symbolic_operand_type (rtx addr)
{
  enum tls_model tls_kind = TLS_MODEL_NONE;
  rtx sym, addend;

  if (GET_CODE (addr) == CONST)
    {
      split_const (addr, &sym, &addend);
      if (GET_CODE (sym) == SYMBOL_REF)
	tls_kind = SYMBOL_REF_TLS_MODEL (sym);
    }
  else if (GET_CODE (addr) == SYMBOL_REF)
    tls_kind = SYMBOL_REF_TLS_MODEL (addr);

  return tls_kind;
}

/* We'll allow lo_sum's in addresses in our legitimate addresses
   so that combine would take care of combining addresses where
   necessary, but for generation purposes, we'll generate the address
   as :
   RTL                               Absolute
   tmp = hi (symbol_ref);            adrp  x1, foo
   dest = lo_sum (tmp, symbol_ref);  add dest, x1, :lo_12:foo
                                     nop

   PIC                               TLS
   adrp x1, :got:foo                 adrp tmp, :tlsgd:foo
   ldr  x1, [:got_lo12:foo]          add  dest, tmp, :tlsgd_lo12:foo
                                     bl   __tls_get_addr
                                     nop

   Load TLS symbol, depending on TLS mechanism and TLS access model.

   Global Dynamic - Traditional TLS:
   adrp tmp, :tlsgd:imm
   add  dest, tmp, #:tlsgd_lo12:imm
   bl   __tls_get_addr

   Global Dynamic - TLS Descriptors:
   adrp dest, :tlsdesc:imm
   ldr  tmp, [dest, #:tlsdesc_lo12:imm]
   add  dest, dest, #:tlsdesc_lo12:imm
   blr  tmp
   mrs  tp, tpidr_el0
   add  dest, dest, tp

   Initial Exec:
   mrs  tp, tpidr_el0
   adrp tmp, :gottprel:imm
   ldr  dest, [tmp, #:gottprel_lo12:imm]
   add  dest, dest, tp

   Local Exec:
   mrs  tp, tpidr_el0
   add  t0, tp, #:tprel_hi12:imm, lsl #12
   add  t0, t0, #:tprel_lo12_nc:imm
*/

static void
aarch64_load_symref_appropriately (rtx dest, rtx imm,
				   enum aarch64_symbol_type type)
{
  switch (type)
    {
    case SYMBOL_SMALL_ABSOLUTE:
      {
	/* In ILP32, the mode of dest can be either SImode or DImode.  */
	rtx tmp_reg = dest;
	machine_mode mode = GET_MODE (dest);

	gcc_assert (mode == Pmode || mode == ptr_mode);

	if (can_create_pseudo_p ())
	  tmp_reg = gen_reg_rtx (mode);

	emit_move_insn (tmp_reg, gen_rtx_HIGH (mode, imm));
	emit_insn (gen_add_losym (dest, tmp_reg, imm));
	return;
      }

    case SYMBOL_TINY_ABSOLUTE:
      emit_insn (gen_rtx_SET (dest, imm));
      return;

    case SYMBOL_SMALL_GOT_28K:
      {
	machine_mode mode = GET_MODE (dest);
	rtx gp_rtx = pic_offset_table_rtx;
	rtx insn;
	rtx mem;

	/* NOTE: pic_offset_table_rtx can be NULL_RTX, because we can reach
	   here before rtl expand.  Tree IVOPT will generate rtl pattern to
	   decide rtx costs, in which case pic_offset_table_rtx is not
	   initialized.  For that case no need to generate the first adrp
	   instruction as the final cost for global variable access is
	   one instruction.  */
	if (gp_rtx != NULL)
	  {
	    /* -fpic for -mcmodel=small allow 32K GOT table size (but we are
	       using the page base as GOT base, the first page may be wasted,
	       in the worst scenario, there is only 28K space for GOT).

	       The generate instruction sequence for accessing global variable
	       is:

		 ldr reg, [pic_offset_table_rtx, #:gotpage_lo15:sym]

	       Only one instruction needed. But we must initialize
	       pic_offset_table_rtx properly.  We generate initialize insn for
	       every global access, and allow CSE to remove all redundant.

	       The final instruction sequences will look like the following
	       for multiply global variables access.

		 adrp pic_offset_table_rtx, _GLOBAL_OFFSET_TABLE_

		 ldr reg, [pic_offset_table_rtx, #:gotpage_lo15:sym1]
		 ldr reg, [pic_offset_table_rtx, #:gotpage_lo15:sym2]
		 ldr reg, [pic_offset_table_rtx, #:gotpage_lo15:sym3]
		 ...  */

	    rtx s = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_");
	    crtl->uses_pic_offset_table = 1;
	    emit_move_insn (gp_rtx, gen_rtx_HIGH (Pmode, s));

	    if (mode != GET_MODE (gp_rtx))
             gp_rtx = gen_lowpart (mode, gp_rtx);

	  }

	if (mode == ptr_mode)
	  {
	    if (mode == DImode)
	      insn = gen_ldr_got_small_28k_di (dest, gp_rtx, imm);
	    else
	      insn = gen_ldr_got_small_28k_si (dest, gp_rtx, imm);

	    mem = XVECEXP (SET_SRC (insn), 0, 0);
	  }
	else
	  {
	    gcc_assert (mode == Pmode);

	    insn = gen_ldr_got_small_28k_sidi (dest, gp_rtx, imm);
	    mem = XVECEXP (XEXP (SET_SRC (insn), 0), 0, 0);
	  }

	/* The operand is expected to be MEM.  Whenever the related insn
	   pattern changed, above code which calculate mem should be
	   updated.  */
	gcc_assert (GET_CODE (mem) == MEM);
	MEM_READONLY_P (mem) = 1;
	MEM_NOTRAP_P (mem) = 1;
	emit_insn (insn);
	return;
      }

    case SYMBOL_SMALL_GOT_4G:
      {
	/* In ILP32, the mode of dest can be either SImode or DImode,
	   while the got entry is always of SImode size.  The mode of
	   dest depends on how dest is used: if dest is assigned to a
	   pointer (e.g. in the memory), it has SImode; it may have
	   DImode if dest is dereferenced to access the memeory.
	   This is why we have to handle three different ldr_got_small
	   patterns here (two patterns for ILP32).  */

	rtx insn;
	rtx mem;
	rtx tmp_reg = dest;
	machine_mode mode = GET_MODE (dest);

	if (can_create_pseudo_p ())
	  tmp_reg = gen_reg_rtx (mode);

	emit_move_insn (tmp_reg, gen_rtx_HIGH (mode, imm));
	if (mode == ptr_mode)
	  {
	    if (mode == DImode)
	      insn = gen_ldr_got_small_di (dest, tmp_reg, imm);
	    else
	      insn = gen_ldr_got_small_si (dest, tmp_reg, imm);

	    mem = XVECEXP (SET_SRC (insn), 0, 0);
	  }
	else
	  {
	    gcc_assert (mode == Pmode);

	    insn = gen_ldr_got_small_sidi (dest, tmp_reg, imm);
	    mem = XVECEXP (XEXP (SET_SRC (insn), 0), 0, 0);
	  }

	gcc_assert (GET_CODE (mem) == MEM);
	MEM_READONLY_P (mem) = 1;
	MEM_NOTRAP_P (mem) = 1;
	emit_insn (insn);
	return;
      }

    case SYMBOL_SMALL_TLSGD:
      {
	rtx_insn *insns;
	machine_mode mode = GET_MODE (dest);
	rtx result = gen_rtx_REG (mode, R0_REGNUM);

	start_sequence ();
	if (TARGET_ILP32)
	  aarch64_emit_call_insn (gen_tlsgd_small_si (result, imm));
	else
	  aarch64_emit_call_insn (gen_tlsgd_small_di (result, imm));
	insns = get_insns ();
	end_sequence ();

	RTL_CONST_CALL_P (insns) = 1;
	emit_libcall_block (insns, dest, result, imm);
	return;
      }

    case SYMBOL_SMALL_TLSDESC:
      {
	machine_mode mode = GET_MODE (dest);
	rtx x0 = gen_rtx_REG (mode, R0_REGNUM);
	rtx tp;

	gcc_assert (mode == Pmode || mode == ptr_mode);

	/* In ILP32, the got entry is always of SImode size.  Unlike
	   small GOT, the dest is fixed at reg 0.  */
	if (TARGET_ILP32)
	  emit_insn (gen_tlsdesc_small_si (imm));
	else
	  emit_insn (gen_tlsdesc_small_di (imm));
	tp = aarch64_load_tp (NULL);

	if (mode != Pmode)
	  tp = gen_lowpart (mode, tp);

	emit_insn (gen_rtx_SET (dest, gen_rtx_PLUS (mode, tp, x0)));
	set_unique_reg_note (get_last_insn (), REG_EQUIV, imm);
	return;
      }

    case SYMBOL_SMALL_TLSIE:
      {
	/* In ILP32, the mode of dest can be either SImode or DImode,
	   while the got entry is always of SImode size.  The mode of
	   dest depends on how dest is used: if dest is assigned to a
	   pointer (e.g. in the memory), it has SImode; it may have
	   DImode if dest is dereferenced to access the memeory.
	   This is why we have to handle three different tlsie_small
	   patterns here (two patterns for ILP32).  */
	machine_mode mode = GET_MODE (dest);
	rtx tmp_reg = gen_reg_rtx (mode);
	rtx tp = aarch64_load_tp (NULL);

	if (mode == ptr_mode)
	  {
	    if (mode == DImode)
	      emit_insn (gen_tlsie_small_di (tmp_reg, imm));
	    else
	      {
		emit_insn (gen_tlsie_small_si (tmp_reg, imm));
		tp = gen_lowpart (mode, tp);
	      }
	  }
	else
	  {
	    gcc_assert (mode == Pmode);
	    emit_insn (gen_tlsie_small_sidi (tmp_reg, imm));
	  }

	emit_insn (gen_rtx_SET (dest, gen_rtx_PLUS (mode, tp, tmp_reg)));
	set_unique_reg_note (get_last_insn (), REG_EQUIV, imm);
	return;
      }

    case SYMBOL_TLSLE12:
    case SYMBOL_TLSLE24:
    case SYMBOL_TLSLE32:
    case SYMBOL_TLSLE48:
      {
	machine_mode mode = GET_MODE (dest);
	rtx tp = aarch64_load_tp (NULL);

	if (mode != Pmode)
	  tp = gen_lowpart (mode, tp);

	switch (type)
	  {
	  case SYMBOL_TLSLE12:
	    emit_insn ((mode == DImode ? gen_tlsle12_di : gen_tlsle12_si)
			(dest, tp, imm));
	    break;
	  case SYMBOL_TLSLE24:
	    emit_insn ((mode == DImode ? gen_tlsle24_di : gen_tlsle24_si)
			(dest, tp, imm));
	  break;
	  case SYMBOL_TLSLE32:
	    emit_insn ((mode == DImode ? gen_tlsle32_di : gen_tlsle32_si)
			(dest, imm));
	    emit_insn ((mode == DImode ? gen_adddi3 : gen_addsi3)
			(dest, dest, tp));
	  break;
	  case SYMBOL_TLSLE48:
	    emit_insn ((mode == DImode ? gen_tlsle48_di : gen_tlsle48_si)
			(dest, imm));
	    emit_insn ((mode == DImode ? gen_adddi3 : gen_addsi3)
			(dest, dest, tp));
	    break;
	  default:
	    gcc_unreachable ();
	  }

	set_unique_reg_note (get_last_insn (), REG_EQUIV, imm);
	return;
      }

    case SYMBOL_TINY_GOT:
      emit_insn (gen_ldr_got_tiny (dest, imm));
      return;

    case SYMBOL_TINY_TLSIE:
      {
	machine_mode mode = GET_MODE (dest);
	rtx tp = aarch64_load_tp (NULL);

	if (mode == ptr_mode)
	  {
	    if (mode == DImode)
	      emit_insn (gen_tlsie_tiny_di (dest, imm, tp));
	    else
	      {
		tp = gen_lowpart (mode, tp);
		emit_insn (gen_tlsie_tiny_si (dest, imm, tp));
	      }
	  }
	else
	  {
	    gcc_assert (mode == Pmode);
	    emit_insn (gen_tlsie_tiny_sidi (dest, imm, tp));
	  }

	set_unique_reg_note (get_last_insn (), REG_EQUIV, imm);
	return;
      }

    default:
      gcc_unreachable ();
    }
}

/* Emit a move from SRC to DEST.  Assume that the move expanders can
   handle all moves if !can_create_pseudo_p ().  The distinction is
   important because, unlike emit_move_insn, the move expanders know
   how to force Pmode objects into the constant pool even when the
   constant pool address is not itself legitimate.  */
static rtx
aarch64_emit_move (rtx dest, rtx src)
{
  return (can_create_pseudo_p ()
	  ? emit_move_insn (dest, src)
	  : emit_move_insn_1 (dest, src));
}

/* Split a 128-bit move operation into two 64-bit move operations,
   taking care to handle partial overlap of register to register
   copies.  Special cases are needed when moving between GP regs and
   FP regs.  SRC can be a register, constant or memory; DST a register
   or memory.  If either operand is memory it must not have any side
   effects.  */
void
aarch64_split_128bit_move (rtx dst, rtx src)
{
  rtx dst_lo, dst_hi;
  rtx src_lo, src_hi;

  machine_mode mode = GET_MODE (dst);

  gcc_assert (mode == TImode || mode == TFmode);
  gcc_assert (!(side_effects_p (src) || side_effects_p (dst)));
  gcc_assert (mode == GET_MODE (src) || GET_MODE (src) == VOIDmode);

  if (REG_P (dst) && REG_P (src))
    {
      int src_regno = REGNO (src);
      int dst_regno = REGNO (dst);

      /* Handle FP <-> GP regs.  */
      if (FP_REGNUM_P (dst_regno) && GP_REGNUM_P (src_regno))
	{
	  src_lo = gen_lowpart (word_mode, src);
	  src_hi = gen_highpart (word_mode, src);

	  if (mode == TImode)
	    {
	      emit_insn (gen_aarch64_movtilow_di (dst, src_lo));
	      emit_insn (gen_aarch64_movtihigh_di (dst, src_hi));
	    }
	  else
	    {
	      emit_insn (gen_aarch64_movtflow_di (dst, src_lo));
	      emit_insn (gen_aarch64_movtfhigh_di (dst, src_hi));
	    }
	  return;
	}
      else if (GP_REGNUM_P (dst_regno) && FP_REGNUM_P (src_regno))
	{
	  dst_lo = gen_lowpart (word_mode, dst);
	  dst_hi = gen_highpart (word_mode, dst);

	  if (mode == TImode)
	    {
	      emit_insn (gen_aarch64_movdi_tilow (dst_lo, src));
	      emit_insn (gen_aarch64_movdi_tihigh (dst_hi, src));
	    }
	  else
	    {
	      emit_insn (gen_aarch64_movdi_tflow (dst_lo, src));
	      emit_insn (gen_aarch64_movdi_tfhigh (dst_hi, src));
	    }
	  return;
	}
    }

  dst_lo = gen_lowpart (word_mode, dst);
  dst_hi = gen_highpart (word_mode, dst);
  src_lo = gen_lowpart (word_mode, src);
  src_hi = gen_highpart_mode (word_mode, mode, src);

  /* At most one pairing may overlap.  */
  if (reg_overlap_mentioned_p (dst_lo, src_hi))
    {
      aarch64_emit_move (dst_hi, src_hi);
      aarch64_emit_move (dst_lo, src_lo);
    }
  else
    {
      aarch64_emit_move (dst_lo, src_lo);
      aarch64_emit_move (dst_hi, src_hi);
    }
}

bool
aarch64_split_128bit_move_p (rtx dst, rtx src)
{
  return (! REG_P (src)
	  || ! (FP_REGNUM_P (REGNO (dst)) && FP_REGNUM_P (REGNO (src))));
}

/* Split a complex SIMD combine.  */

void
aarch64_split_simd_combine (rtx dst, rtx src1, rtx src2)
{
  machine_mode src_mode = GET_MODE (src1);
  machine_mode dst_mode = GET_MODE (dst);

  gcc_assert (VECTOR_MODE_P (dst_mode));
  gcc_assert (register_operand (dst, dst_mode)
	      && register_operand (src1, src_mode)
	      && register_operand (src2, src_mode));

  rtx (*gen) (rtx, rtx, rtx);

  switch (src_mode)
    {
    case E_V8QImode:
      gen = gen_aarch64_simd_combinev8qi;
      break;
    case E_V4HImode:
      gen = gen_aarch64_simd_combinev4hi;
      break;
    case E_V2SImode:
      gen = gen_aarch64_simd_combinev2si;
      break;
    case E_V4HFmode:
      gen = gen_aarch64_simd_combinev4hf;
      break;
    case E_V2SFmode:
      gen = gen_aarch64_simd_combinev2sf;
      break;
    case E_DImode:
      gen = gen_aarch64_simd_combinedi;
      break;
    case E_DFmode:
      gen = gen_aarch64_simd_combinedf;
      break;
    default:
      gcc_unreachable ();
    }

  emit_insn (gen (dst, src1, src2));
  return;
}

/* Split a complex SIMD move.  */

void
aarch64_split_simd_move (rtx dst, rtx src)
{
  machine_mode src_mode = GET_MODE (src);
  machine_mode dst_mode = GET_MODE (dst);

  gcc_assert (VECTOR_MODE_P (dst_mode));

  if (REG_P (dst) && REG_P (src))
    {
      rtx (*gen) (rtx, rtx);

      gcc_assert (VECTOR_MODE_P (src_mode));

      switch (src_mode)
	{
	case E_V16QImode:
	  gen = gen_aarch64_split_simd_movv16qi;
	  break;
	case E_V8HImode:
	  gen = gen_aarch64_split_simd_movv8hi;
	  break;
	case E_V4SImode:
	  gen = gen_aarch64_split_simd_movv4si;
	  break;
	case E_V2DImode:
	  gen = gen_aarch64_split_simd_movv2di;
	  break;
	case E_V8HFmode:
	  gen = gen_aarch64_split_simd_movv8hf;
	  break;
	case E_V4SFmode:
	  gen = gen_aarch64_split_simd_movv4sf;
	  break;
	case E_V2DFmode:
	  gen = gen_aarch64_split_simd_movv2df;
	  break;
	default:
	  gcc_unreachable ();
	}

      emit_insn (gen (dst, src));
      return;
    }
}

bool
aarch64_zero_extend_const_eq (machine_mode xmode, rtx x,
			      machine_mode ymode, rtx y)
{
  rtx r = simplify_const_unary_operation (ZERO_EXTEND, xmode, y, ymode);
  gcc_assert (r != NULL);
  return rtx_equal_p (x, r);
}
			      

static rtx
aarch64_force_temporary (machine_mode mode, rtx x, rtx value)
{
  if (can_create_pseudo_p ())
    return force_reg (mode, value);
  else
    {
      x = aarch64_emit_move (x, value);
      return x;
    }
}


static rtx
aarch64_add_offset (scalar_int_mode mode, rtx temp, rtx reg,
		    HOST_WIDE_INT offset)
{
  if (!aarch64_plus_immediate (GEN_INT (offset), mode))
    {
      rtx high;
      /* Load the full offset into a register.  This
         might be improvable in the future.  */
      high = GEN_INT (offset);
      offset = 0;
      high = aarch64_force_temporary (mode, temp, high);
      reg = aarch64_force_temporary (mode, temp,
				     gen_rtx_PLUS (mode, high, reg));
    }
  return plus_constant (mode, reg, offset);
}

static int
aarch64_internal_mov_immediate (rtx dest, rtx imm, bool generate,
				scalar_int_mode mode)
{
  int i;
  unsigned HOST_WIDE_INT val, val2, mask;
  int one_match, zero_match;
  int num_insns;

  val = INTVAL (imm);

  if (aarch64_move_imm (val, mode))
    {
      if (generate)
	emit_insn (gen_rtx_SET (dest, imm));
      return 1;
    }

  /* Check to see if the low 32 bits are either 0xffffXXXX or 0xXXXXffff
     (with XXXX non-zero). In that case check to see if the move can be done in
     a smaller mode.  */
  val2 = val & 0xffffffff;
  if (mode == DImode
      && aarch64_move_imm (val2, SImode)
      && (((val >> 32) & 0xffff) == 0 || (val >> 48) == 0))
    {
      if (generate)
	emit_insn (gen_rtx_SET (dest, GEN_INT (val2)));

      /* Check if we have to emit a second instruction by checking to see
         if any of the upper 32 bits of the original DI mode value is set.  */
      if (val == val2)
	return 1;

      i = (val >> 48) ? 48 : 32;

      if (generate)
	 emit_insn (gen_insv_immdi (dest, GEN_INT (i),
				    GEN_INT ((val >> i) & 0xffff)));

      return 2;
    }

  if ((val >> 32) == 0 || mode == SImode)
    {
      if (generate)
	{
	  emit_insn (gen_rtx_SET (dest, GEN_INT (val & 0xffff)));
	  if (mode == SImode)
	    emit_insn (gen_insv_immsi (dest, GEN_INT (16),
				       GEN_INT ((val >> 16) & 0xffff)));
	  else
	    emit_insn (gen_insv_immdi (dest, GEN_INT (16),
				       GEN_INT ((val >> 16) & 0xffff)));
	}
      return 2;
    }

  /* Remaining cases are all for DImode.  */

  mask = 0xffff;
  zero_match = ((val & mask) == 0) + ((val & (mask << 16)) == 0) +
    ((val & (mask << 32)) == 0) + ((val & (mask << 48)) == 0);
  one_match = ((~val & mask) == 0) + ((~val & (mask << 16)) == 0) +
    ((~val & (mask << 32)) == 0) + ((~val & (mask << 48)) == 0);

  if (zero_match != 2 && one_match != 2)
    {
      /* Try emitting a bitmask immediate with a movk replacing 16 bits.
	 For a 64-bit bitmask try whether changing 16 bits to all ones or
	 zeroes creates a valid bitmask.  To check any repeated bitmask,
	 try using 16 bits from the other 32-bit half of val.  */

      for (i = 0; i < 64; i += 16, mask <<= 16)
	{
	  val2 = val & ~mask;
	  if (val2 != val && aarch64_bitmask_imm (val2, mode))
	    break;
	  val2 = val | mask;
	  if (val2 != val && aarch64_bitmask_imm (val2, mode))
	    break;
	  val2 = val2 & ~mask;
	  val2 = val2 | (((val2 >> 32) | (val2 << 32)) & mask);
	  if (val2 != val && aarch64_bitmask_imm (val2, mode))
	    break;
	}
      if (i != 64)
	{
	  if (generate)
	    {
	      emit_insn (gen_rtx_SET (dest, GEN_INT (val2)));
	      emit_insn (gen_insv_immdi (dest, GEN_INT (i),
					 GEN_INT ((val >> i) & 0xffff)));
	    }
	  return 2;
	}
    }

  /* Generate 2-4 instructions, skipping 16 bits of all zeroes or ones which
     are emitted by the initial mov.  If one_match > zero_match, skip set bits,
     otherwise skip zero bits.  */

  num_insns = 1;
  mask = 0xffff;
  val2 = one_match > zero_match ? ~val : val;
  i = (val2 & mask) != 0 ? 0 : (val2 & (mask << 16)) != 0 ? 16 : 32;

  if (generate)
    emit_insn (gen_rtx_SET (dest, GEN_INT (one_match > zero_match
					   ? (val | ~(mask << i))
					   : (val & (mask << i)))));
  for (i += 16; i < 64; i += 16)
    {
      if ((val2 & (mask << i)) == 0)
	continue;
      if (generate)
	emit_insn (gen_insv_immdi (dest, GEN_INT (i),
				   GEN_INT ((val >> i) & 0xffff)));
      num_insns ++;
    }

  return num_insns;
}


void
aarch64_expand_mov_immediate (rtx dest, rtx imm)
{
  machine_mode mode = GET_MODE (dest);

  gcc_assert (mode == SImode || mode == DImode);

  /* Check on what type of symbol it is.  */
  scalar_int_mode int_mode;
  if ((GET_CODE (imm) == SYMBOL_REF
       || GET_CODE (imm) == LABEL_REF
       || GET_CODE (imm) == CONST)
      && is_a <scalar_int_mode> (mode, &int_mode))
    {
      rtx mem, base, offset;
      enum aarch64_symbol_type sty;

      /* If we have (const (plus symbol offset)), separate out the offset
	 before we start classifying the symbol.  */
      split_const (imm, &base, &offset);

      sty = aarch64_classify_symbol (base, offset);
      switch (sty)
	{
	case SYMBOL_FORCE_TO_MEM:
	  if (offset != const0_rtx
	      && targetm.cannot_force_const_mem (int_mode, imm))
	    {
	      gcc_assert (can_create_pseudo_p ());
	      base = aarch64_force_temporary (int_mode, dest, base);
	      base = aarch64_add_offset (int_mode, NULL, base,
					 INTVAL (offset));
	      aarch64_emit_move (dest, base);
	      return;
	    }

	  mem = force_const_mem (ptr_mode, imm);
	  gcc_assert (mem);

	  /* If we aren't generating PC relative literals, then
	     we need to expand the literal pool access carefully.
	     This is something that needs to be done in a number
	     of places, so could well live as a separate function.  */
	  if (!aarch64_pcrelative_literal_loads)
	    {
	      gcc_assert (can_create_pseudo_p ());
	      base = gen_reg_rtx (ptr_mode);
	      aarch64_expand_mov_immediate (base, XEXP (mem, 0));
	      if (ptr_mode != Pmode)
		base = convert_memory_address (Pmode, base);
	      mem = gen_rtx_MEM (ptr_mode, base);
	    }

	  if (int_mode != ptr_mode)
	    mem = gen_rtx_ZERO_EXTEND (int_mode, mem);

	  emit_insn (gen_rtx_SET (dest, mem));

	  return;

        case SYMBOL_SMALL_TLSGD:
        case SYMBOL_SMALL_TLSDESC:
	case SYMBOL_SMALL_TLSIE:
	case SYMBOL_SMALL_GOT_28K:
	case SYMBOL_SMALL_GOT_4G:
	case SYMBOL_TINY_GOT:
	case SYMBOL_TINY_TLSIE:
	  if (offset != const0_rtx)
	    {
	      gcc_assert(can_create_pseudo_p ());
	      base = aarch64_force_temporary (int_mode, dest, base);
	      base = aarch64_add_offset (int_mode, NULL, base,
					 INTVAL (offset));
	      aarch64_emit_move (dest, base);
	      return;
	    }
	  /* FALLTHRU */

	case SYMBOL_SMALL_ABSOLUTE:
	case SYMBOL_TINY_ABSOLUTE:
	case SYMBOL_TLSLE12:
	case SYMBOL_TLSLE24:
	case SYMBOL_TLSLE32:
	case SYMBOL_TLSLE48:
	  aarch64_load_symref_appropriately (dest, imm, sty);
	  return;

	default:
	  gcc_unreachable ();
	}
    }

  if (!CONST_INT_P (imm))
    {
      if (GET_CODE (imm) == HIGH)
	emit_insn (gen_rtx_SET (dest, imm));
      else
        {
	  rtx mem = force_const_mem (mode, imm);
	  gcc_assert (mem);
	  emit_insn (gen_rtx_SET (dest, mem));
	}

      return;
    }

  aarch64_internal_mov_immediate (dest, imm, true,
				  as_a <scalar_int_mode> (mode));
}

/* Add DELTA to REGNUM in mode MODE.  SCRATCHREG can be used to hold a
   temporary value if necessary.  FRAME_RELATED_P should be true if
   the RTX_FRAME_RELATED flag should be set and CFA adjustments added
   to the generated instructions.  If SCRATCHREG is known to hold
   abs (delta), EMIT_MOVE_IMM can be set to false to avoid emitting the
   immediate again.

   Since this function may be used to adjust the stack pointer, we must
   ensure that it cannot cause transient stack deallocation (for example
   by first incrementing SP and then decrementing when adjusting by a
   large immediate).  */

static void
aarch64_add_constant_internal (scalar_int_mode mode, int regnum,
			       int scratchreg, HOST_WIDE_INT delta,
			       bool frame_related_p, bool emit_move_imm)
{
  HOST_WIDE_INT mdelta = abs_hwi (delta);
  rtx this_rtx = gen_rtx_REG (mode, regnum);
  rtx_insn *insn;

  if (!mdelta)
    return;

  /* Single instruction adjustment.  */
  if (aarch64_uimm12_shift (mdelta))
    {
      insn = emit_insn (gen_add2_insn (this_rtx, GEN_INT (delta)));
      RTX_FRAME_RELATED_P (insn) = frame_related_p;
      return;
    }

  /* Emit 2 additions/subtractions if the adjustment is less than 24 bits.
     Only do this if mdelta is not a 16-bit move as adjusting using a move
     is better.  */
  if (mdelta < 0x1000000 && !aarch64_move_imm (mdelta, mode))
    {
      HOST_WIDE_INT low_off = mdelta & 0xfff;

      low_off = delta < 0 ? -low_off : low_off;
      insn = emit_insn (gen_add2_insn (this_rtx, GEN_INT (low_off)));
      RTX_FRAME_RELATED_P (insn) = frame_related_p;
      insn = emit_insn (gen_add2_insn (this_rtx, GEN_INT (delta - low_off)));
      RTX_FRAME_RELATED_P (insn) = frame_related_p;
      return;
    }

  /* Emit a move immediate if required and an addition/subtraction.  */
  rtx scratch_rtx = gen_rtx_REG (mode, scratchreg);
  if (emit_move_imm)
    aarch64_internal_mov_immediate (scratch_rtx, GEN_INT (mdelta), true, mode);
  insn = emit_insn (delta < 0 ? gen_sub2_insn (this_rtx, scratch_rtx)
			      : gen_add2_insn (this_rtx, scratch_rtx));
  if (frame_related_p)
    {
      RTX_FRAME_RELATED_P (insn) = frame_related_p;
      rtx adj = plus_constant (mode, this_rtx, delta);
      add_reg_note (insn , REG_CFA_ADJUST_CFA, gen_rtx_SET (this_rtx, adj));
    }
}

static inline void
aarch64_add_constant (scalar_int_mode mode, int regnum, int scratchreg,
		      HOST_WIDE_INT delta)
{
  aarch64_add_constant_internal (mode, regnum, scratchreg, delta, false, true);
}

static inline void
aarch64_add_sp (int scratchreg, HOST_WIDE_INT delta, bool emit_move_imm)
{
  aarch64_add_constant_internal (Pmode, SP_REGNUM, scratchreg, delta,
				 true, emit_move_imm);
}

static inline void
aarch64_sub_sp (int scratchreg, HOST_WIDE_INT delta, bool frame_related_p)
{
  aarch64_add_constant_internal (Pmode, SP_REGNUM, scratchreg, -delta,
				 frame_related_p, true);
}

static bool
aarch64_function_ok_for_sibcall (tree decl ATTRIBUTE_UNUSED,
				 tree exp ATTRIBUTE_UNUSED)
{
  /* Currently, always true.  */
  return true;
}

/* Implement TARGET_PASS_BY_REFERENCE.  */

static bool
aarch64_pass_by_reference (cumulative_args_t pcum ATTRIBUTE_UNUSED,
			   machine_mode mode,
			   const_tree type,
			   bool named ATTRIBUTE_UNUSED)
{
  HOST_WIDE_INT size;
  machine_mode dummymode;
  int nregs;

  /* GET_MODE_SIZE (BLKmode) is useless since it is 0.  */
  size = (mode == BLKmode && type)
    ? int_size_in_bytes (type) : (int) GET_MODE_SIZE (mode);

  /* Aggregates are passed by reference based on their size.  */
  if (type && AGGREGATE_TYPE_P (type))
    {
      size = int_size_in_bytes (type);
    }

  /* Variable sized arguments are always returned by reference.  */
  if (size < 0)
    return true;

  /* Can this be a candidate to be passed in fp/simd register(s)?  */
  if (aarch64_vfp_is_call_or_return_candidate (mode, type,
					       &dummymode, &nregs,
					       NULL))
    return false;

  /* Arguments which are variable sized or larger than 2 registers are
     passed by reference unless they are a homogenous floating point
     aggregate.  */
  return size > 2 * UNITS_PER_WORD;
}

/* Return TRUE if VALTYPE is padded to its least significant bits.  */
static bool
aarch64_return_in_msb (const_tree valtype)
{
  machine_mode dummy_mode;
  int dummy_int;

  /* Never happens in little-endian mode.  */
  if (!BYTES_BIG_ENDIAN)
    return false;

  /* Only composite types smaller than or equal to 16 bytes can
     be potentially returned in registers.  */
  if (!aarch64_composite_type_p (valtype, TYPE_MODE (valtype))
      || int_size_in_bytes (valtype) <= 0
      || int_size_in_bytes (valtype) > 16)
    return false;

  /* But not a composite that is an HFA (Homogeneous Floating-point Aggregate)
     or an HVA (Homogeneous Short-Vector Aggregate); such a special composite
     is always passed/returned in the least significant bits of fp/simd
     register(s).  */
  if (aarch64_vfp_is_call_or_return_candidate (TYPE_MODE (valtype), valtype,
					       &dummy_mode, &dummy_int, NULL))
    return false;

  return true;
}

/* Implement TARGET_FUNCTION_VALUE.
   Define how to find the value returned by a function.  */

static rtx
aarch64_function_value (const_tree type, const_tree func,
			bool outgoing ATTRIBUTE_UNUSED)
{
  machine_mode mode;
  int unsignedp;
  int count;
  machine_mode ag_mode;

  mode = TYPE_MODE (type);
  if (INTEGRAL_TYPE_P (type))
    mode = promote_function_mode (type, mode, &unsignedp, func, 1);

  if (aarch64_return_in_msb (type))
    {
      HOST_WIDE_INT size = int_size_in_bytes (type);

      if (size % UNITS_PER_WORD != 0)
	{
	  size += UNITS_PER_WORD - size % UNITS_PER_WORD;
	  mode = int_mode_for_size (size * BITS_PER_UNIT, 0).require ();
	}
    }

  if (aarch64_vfp_is_call_or_return_candidate (mode, type,
					       &ag_mode, &count, NULL))
    {
      if (!aarch64_composite_type_p (type, mode))
	{
	  gcc_assert (count == 1 && mode == ag_mode);
	  return gen_rtx_REG (mode, V0_REGNUM);
	}
      else
	{
	  int i;
	  rtx par;

	  par = gen_rtx_PARALLEL (mode, rtvec_alloc (count));
	  for (i = 0; i < count; i++)
	    {
	      rtx tmp = gen_rtx_REG (ag_mode, V0_REGNUM + i);
	      tmp = gen_rtx_EXPR_LIST (VOIDmode, tmp,
				       GEN_INT (i * GET_MODE_SIZE (ag_mode)));
	      XVECEXP (par, 0, i) = tmp;
	    }
	  return par;
	}
    }
  else
    return gen_rtx_REG (mode, R0_REGNUM);
}

/* Implements TARGET_FUNCTION_VALUE_REGNO_P.
   Return true if REGNO is the number of a hard register in which the values
   of called function may come back.  */

static bool
aarch64_function_value_regno_p (const unsigned int regno)
{
  /* Maximum of 16 bytes can be returned in the general registers.  Examples
     of 16-byte return values are: 128-bit integers and 16-byte small
     structures (excluding homogeneous floating-point aggregates).  */
  if (regno == R0_REGNUM || regno == R1_REGNUM)
    return true;

  /* Up to four fp/simd registers can return a function value, e.g. a
     homogeneous floating-point aggregate having four members.  */
  if (regno >= V0_REGNUM && regno < V0_REGNUM + HA_MAX_NUM_FLDS)
    return TARGET_FLOAT;

  return false;
}

/* Implement TARGET_RETURN_IN_MEMORY.

   If the type T of the result of a function is such that
     void func (T arg)
   would require that arg be passed as a value in a register (or set of
   registers) according to the parameter passing rules, then the result
   is returned in the same registers as would be used for such an
   argument.  */

static bool
aarch64_return_in_memory (const_tree type, const_tree fndecl ATTRIBUTE_UNUSED)
{
  HOST_WIDE_INT size;
  machine_mode ag_mode;
  int count;

  if (!AGGREGATE_TYPE_P (type)
      && TREE_CODE (type) != COMPLEX_TYPE
      && TREE_CODE (type) != VECTOR_TYPE)
    /* Simple scalar types always returned in registers.  */
    return false;

  if (aarch64_vfp_is_call_or_return_candidate (TYPE_MODE (type),
					       type,
					       &ag_mode,
					       &count,
					       NULL))
    return false;

  /* Types larger than 2 registers returned in memory.  */
  size = int_size_in_bytes (type);
  return (size < 0 || size > 2 * UNITS_PER_WORD);
}

static bool
aarch64_vfp_is_call_candidate (cumulative_args_t pcum_v, machine_mode mode,
			       const_tree type, int *nregs)
{
  CUMULATIVE_ARGS *pcum = get_cumulative_args (pcum_v);
  return aarch64_vfp_is_call_or_return_candidate (mode,
						  type,
						  &pcum->aapcs_vfp_rmode,
						  nregs,
						  NULL);
}

/* Given MODE and TYPE of a function argument, return the alignment in
   bits.  The idea is to suppress any stronger alignment requested by
   the user and opt for the natural alignment (specified in AAPCS64 \S 4.1).
   This is a helper function for local use only.  */

static unsigned int
aarch64_function_arg_alignment (machine_mode mode, const_tree type)
{
  if (!type)
    return GET_MODE_ALIGNMENT (mode);

  if (integer_zerop (TYPE_SIZE (type)))
    return 0;

  gcc_assert (TYPE_MODE (type) == mode);

  if (!AGGREGATE_TYPE_P (type))
    return TYPE_ALIGN (TYPE_MAIN_VARIANT (type));

  if (TREE_CODE (type) == ARRAY_TYPE)
    return TYPE_ALIGN (TREE_TYPE (type));

  unsigned int alignment = 0;
  for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
    if (TREE_CODE (field) == FIELD_DECL)
      alignment = std::max (alignment, DECL_ALIGN (field));

  return alignment;
}

/* Layout a function argument according to the AAPCS64 rules.  The rule
   numbers refer to the rule numbers in the AAPCS64.  */

static void
aarch64_layout_arg (cumulative_args_t pcum_v, machine_mode mode,
		    const_tree type,
		    bool named ATTRIBUTE_UNUSED)
{
  CUMULATIVE_ARGS *pcum = get_cumulative_args (pcum_v);
  int ncrn, nvrn, nregs;
  bool allocate_ncrn, allocate_nvrn;
  HOST_WIDE_INT size;

  /* We need to do this once per argument.  */
  if (pcum->aapcs_arg_processed)
    return;

  pcum->aapcs_arg_processed = true;

  /* Size in bytes, rounded to the nearest multiple of 8 bytes.  */
  size
    = ROUND_UP (type ? int_size_in_bytes (type) : GET_MODE_SIZE (mode),
		UNITS_PER_WORD);

  allocate_ncrn = (type) ? !(FLOAT_TYPE_P (type)) : !FLOAT_MODE_P (mode);
  allocate_nvrn = aarch64_vfp_is_call_candidate (pcum_v,
						 mode,
						 type,
						 &nregs);

  /* allocate_ncrn may be false-positive, but allocate_nvrn is quite reliable.
     The following code thus handles passing by SIMD/FP registers first.  */

  nvrn = pcum->aapcs_nvrn;

  /* C1 - C5 for floating point, homogenous floating point aggregates (HFA)
     and homogenous short-vector aggregates (HVA).  */
  if (allocate_nvrn)
    {
      if (!TARGET_FLOAT)
	aarch64_err_no_fpadvsimd (mode, "argument");

      if (nvrn + nregs <= NUM_FP_ARG_REGS)
	{
	  pcum->aapcs_nextnvrn = nvrn + nregs;
	  if (!aarch64_composite_type_p (type, mode))
	    {
	      gcc_assert (nregs == 1);
	      pcum->aapcs_reg = gen_rtx_REG (mode, V0_REGNUM + nvrn);
	    }
	  else
	    {
	      rtx par;
	      int i;
	      par = gen_rtx_PARALLEL (mode, rtvec_alloc (nregs));
	      for (i = 0; i < nregs; i++)
		{
		  rtx tmp = gen_rtx_REG (pcum->aapcs_vfp_rmode,
					 V0_REGNUM + nvrn + i);
		  tmp = gen_rtx_EXPR_LIST
		    (VOIDmode, tmp,
		     GEN_INT (i * GET_MODE_SIZE (pcum->aapcs_vfp_rmode)));
		  XVECEXP (par, 0, i) = tmp;
		}
	      pcum->aapcs_reg = par;
	    }
	  return;
	}
      else
	{
	  /* C.3 NSRN is set to 8.  */
	  pcum->aapcs_nextnvrn = NUM_FP_ARG_REGS;
	  goto on_stack;
	}
    }

  ncrn = pcum->aapcs_ncrn;
  nregs = size / UNITS_PER_WORD;

  /* C6 - C9.  though the sign and zero extension semantics are
     handled elsewhere.  This is the case where the argument fits
     entirely general registers.  */
  if (allocate_ncrn && (ncrn + nregs <= NUM_ARG_REGS))
    {

      gcc_assert (nregs == 0 || nregs == 1 || nregs == 2);

      /* C.8 if the argument has an alignment of 16 then the NGRN is
         rounded up to the next even number.  */
      if (nregs == 2
	  && ncrn % 2
	  /* The == 16 * BITS_PER_UNIT instead of >= 16 * BITS_PER_UNIT
	     comparison is there because for > 16 * BITS_PER_UNIT
	     alignment nregs should be > 2 and therefore it should be
	     passed by reference rather than value.  */
	  && aarch64_function_arg_alignment (mode, type) == 16 * BITS_PER_UNIT)
	{
	  ++ncrn;
	  gcc_assert (ncrn + nregs <= NUM_ARG_REGS);
	}

      /* NREGS can be 0 when e.g. an empty structure is to be passed.
         A reg is still generated for it, but the caller should be smart
	 enough not to use it.  */
      if (nregs == 0 || nregs == 1 || GET_MODE_CLASS (mode) == MODE_INT)
	pcum->aapcs_reg = gen_rtx_REG (mode, R0_REGNUM + ncrn);
      else
	{
	  rtx par;
	  int i;

	  par = gen_rtx_PARALLEL (mode, rtvec_alloc (nregs));
	  for (i = 0; i < nregs; i++)
	    {
	      rtx tmp = gen_rtx_REG (word_mode, R0_REGNUM + ncrn + i);
	      tmp = gen_rtx_EXPR_LIST (VOIDmode, tmp,
				       GEN_INT (i * UNITS_PER_WORD));
	      XVECEXP (par, 0, i) = tmp;
	    }
	  pcum->aapcs_reg = par;
	}

      pcum->aapcs_nextncrn = ncrn + nregs;
      return;
    }

  /* C.11  */
  pcum->aapcs_nextncrn = NUM_ARG_REGS;

  /* The argument is passed on stack; record the needed number of words for
     this argument and align the total size if necessary.  */
on_stack:
  pcum->aapcs_stack_words = size / UNITS_PER_WORD;

  if (aarch64_function_arg_alignment (mode, type) == 16 * BITS_PER_UNIT)
    pcum->aapcs_stack_size = ROUND_UP (pcum->aapcs_stack_size,
				       16 / UNITS_PER_WORD);
  return;
}

/* Implement TARGET_FUNCTION_ARG.  */

static rtx
aarch64_function_arg (cumulative_args_t pcum_v, machine_mode mode,
		      const_tree type, bool named)
{
  CUMULATIVE_ARGS *pcum = get_cumulative_args (pcum_v);
  gcc_assert (pcum->pcs_variant == ARM_PCS_AAPCS64);

  if (mode == VOIDmode)
    return NULL_RTX;

  aarch64_layout_arg (pcum_v, mode, type, named);
  return pcum->aapcs_reg;
}

void
aarch64_init_cumulative_args (CUMULATIVE_ARGS *pcum,
			   const_tree fntype ATTRIBUTE_UNUSED,
			   rtx libname ATTRIBUTE_UNUSED,
			   const_tree fndecl ATTRIBUTE_UNUSED,
			   unsigned n_named ATTRIBUTE_UNUSED)
{
  pcum->aapcs_ncrn = 0;
  pcum->aapcs_nvrn = 0;
  pcum->aapcs_nextncrn = 0;
  pcum->aapcs_nextnvrn = 0;
  pcum->pcs_variant = ARM_PCS_AAPCS64;
  pcum->aapcs_reg = NULL_RTX;
  pcum->aapcs_arg_processed = false;
  pcum->aapcs_stack_words = 0;
  pcum->aapcs_stack_size = 0;

  if (!TARGET_FLOAT
      && fndecl && TREE_PUBLIC (fndecl)
      && fntype && fntype != error_mark_node)
    {
      const_tree type = TREE_TYPE (fntype);
      machine_mode mode ATTRIBUTE_UNUSED; /* To pass pointer as argument.  */
      int nregs ATTRIBUTE_UNUSED; /* Likewise.  */
      if (aarch64_vfp_is_call_or_return_candidate (TYPE_MODE (type), type,
						   &mode, &nregs, NULL))
	aarch64_err_no_fpadvsimd (TYPE_MODE (type), "return type");
    }
  return;
}

static void
aarch64_function_arg_advance (cumulative_args_t pcum_v,
			      machine_mode mode,
			      const_tree type,
			      bool named)
{
  CUMULATIVE_ARGS *pcum = get_cumulative_args (pcum_v);
  if (pcum->pcs_variant == ARM_PCS_AAPCS64)
    {
      aarch64_layout_arg (pcum_v, mode, type, named);
      gcc_assert ((pcum->aapcs_reg != NULL_RTX)
		  != (pcum->aapcs_stack_words != 0));
      pcum->aapcs_arg_processed = false;
      pcum->aapcs_ncrn = pcum->aapcs_nextncrn;
      pcum->aapcs_nvrn = pcum->aapcs_nextnvrn;
      pcum->aapcs_stack_size += pcum->aapcs_stack_words;
      pcum->aapcs_stack_words = 0;
      pcum->aapcs_reg = NULL_RTX;
    }
}

bool
aarch64_function_arg_regno_p (unsigned regno)
{
  return ((GP_REGNUM_P (regno) && regno < R0_REGNUM + NUM_ARG_REGS)
	  || (FP_REGNUM_P (regno) && regno < V0_REGNUM + NUM_FP_ARG_REGS));
}

/* Implement FUNCTION_ARG_BOUNDARY.  Every parameter gets at least
   PARM_BOUNDARY bits of alignment, but will be given anything up
   to STACK_BOUNDARY bits if the type requires it.  This makes sure
   that both before and after the layout of each argument, the Next
   Stacked Argument Address (NSAA) will have a minimum alignment of
   8 bytes.  */

static unsigned int
aarch64_function_arg_boundary (machine_mode mode, const_tree type)
{
  unsigned int alignment = aarch64_function_arg_alignment (mode, type);
  return MIN (MAX (alignment, PARM_BOUNDARY), STACK_BOUNDARY);
}

/* Implement TARGET_FUNCTION_ARG_PADDING.

   Small aggregate types are placed in the lowest memory address.

   The related parameter passing rules are B.4, C.3, C.5 and C.14.  */

static pad_direction
aarch64_function_arg_padding (machine_mode mode, const_tree type)
{
  /* On little-endian targets, the least significant byte of every stack
     argument is passed at the lowest byte address of the stack slot.  */
  if (!BYTES_BIG_ENDIAN)
    return PAD_UPWARD;

  /* Otherwise, integral, floating-point and pointer types are padded downward:
     the least significant byte of a stack argument is passed at the highest
     byte address of the stack slot.  */
  if (type
      ? (INTEGRAL_TYPE_P (type) || SCALAR_FLOAT_TYPE_P (type)
	 || POINTER_TYPE_P (type))
      : (SCALAR_INT_MODE_P (mode) || SCALAR_FLOAT_MODE_P (mode)))
    return PAD_DOWNWARD;

  /* Everything else padded upward, i.e. data in first byte of stack slot.  */
  return PAD_UPWARD;
}

/* Similarly, for use by BLOCK_REG_PADDING (MODE, TYPE, FIRST).

   It specifies padding for the last (may also be the only)
   element of a block move between registers and memory.  If
   assuming the block is in the memory, padding upward means that
   the last element is padded after its highest significant byte,
   while in downward padding, the last element is padded at the
   its least significant byte side.

   Small aggregates and small complex types are always padded
   upwards.

   We don't need to worry about homogeneous floating-point or
   short-vector aggregates; their move is not affected by the
   padding direction determined here.  Regardless of endianness,
   each element of such an aggregate is put in the least
   significant bits of a fp/simd register.

   Return !BYTES_BIG_ENDIAN if the least significant byte of the
   register has useful data, and return the opposite if the most
   significant byte does.  */

bool
aarch64_pad_reg_upward (machine_mode mode, const_tree type,
		     bool first ATTRIBUTE_UNUSED)
{

  /* Small composite types are always padded upward.  */
  if (BYTES_BIG_ENDIAN && aarch64_composite_type_p (type, mode))
    {
      HOST_WIDE_INT size = (type ? int_size_in_bytes (type)
			    : GET_MODE_SIZE (mode));
      if (size < 2 * UNITS_PER_WORD)
	return true;
    }

  /* Otherwise, use the default padding.  */
  return !BYTES_BIG_ENDIAN;
}

static scalar_int_mode
aarch64_libgcc_cmp_return_mode (void)
{
  return SImode;
}

#define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)

/* We use the 12-bit shifted immediate arithmetic instructions so values
   must be multiple of (1 << 12), i.e. 4096.  */
#define ARITH_FACTOR 4096

#if (PROBE_INTERVAL % ARITH_FACTOR) != 0
#error Cannot use simple address calculation for stack probing
#endif

/* The pair of scratch registers used for stack probing.  */
#define PROBE_STACK_FIRST_REG  9
#define PROBE_STACK_SECOND_REG 10

/* Emit code to probe a range of stack addresses from FIRST to FIRST+SIZE,
   inclusive.  These are offsets from the current stack pointer.  */

static void
aarch64_emit_probe_stack_range (HOST_WIDE_INT first, HOST_WIDE_INT size)
{
  rtx reg1 = gen_rtx_REG (Pmode, PROBE_STACK_FIRST_REG);

  /* See the same assertion on PROBE_INTERVAL above.  */
  gcc_assert ((first % ARITH_FACTOR) == 0);

  /* See if we have a constant small number of probes to generate.  If so,
     that's the easy case.  */
  if (size <= PROBE_INTERVAL)
    {
      const HOST_WIDE_INT base = ROUND_UP (size, ARITH_FACTOR);

      emit_set_insn (reg1,
		     plus_constant (Pmode,
				    stack_pointer_rtx, -(first + base)));
      emit_stack_probe (plus_constant (Pmode, reg1, base - size));
    }

  /* The run-time loop is made up of 8 insns in the generic case while the
     compile-time loop is made up of 4+2*(n-2) insns for n # of intervals.  */
  else if (size <= 4 * PROBE_INTERVAL)
    {
      HOST_WIDE_INT i, rem;

      emit_set_insn (reg1,
		     plus_constant (Pmode,
				    stack_pointer_rtx,
				    -(first + PROBE_INTERVAL)));
      emit_stack_probe (reg1);

      /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 2 until
	 it exceeds SIZE.  If only two probes are needed, this will not
	 generate any code.  Then probe at FIRST + SIZE.  */
      for (i = 2 * PROBE_INTERVAL; i < size; i += PROBE_INTERVAL)
	{
	  emit_set_insn (reg1,
			 plus_constant (Pmode, reg1, -PROBE_INTERVAL));
	  emit_stack_probe (reg1);
	}

      rem = size - (i - PROBE_INTERVAL);
      if (rem > 256)
	{
	  const HOST_WIDE_INT base = ROUND_UP (rem, ARITH_FACTOR);

	  emit_set_insn (reg1, plus_constant (Pmode, reg1, -base));
	  emit_stack_probe (plus_constant (Pmode, reg1, base - rem));
	}
      else
	emit_stack_probe (plus_constant (Pmode, reg1, -rem));
    }

  /* Otherwise, do the same as above, but in a loop.  Note that we must be
     extra careful with variables wrapping around because we might be at
     the very top (or the very bottom) of the address space and we have
     to be able to handle this case properly; in particular, we use an
     equality test for the loop condition.  */
  else
    {
      rtx reg2 = gen_rtx_REG (Pmode, PROBE_STACK_SECOND_REG);

      /* Step 1: round SIZE to the previous multiple of the interval.  */

      HOST_WIDE_INT rounded_size = size & -PROBE_INTERVAL;


      /* Step 2: compute initial and final value of the loop counter.  */

      /* TEST_ADDR = SP + FIRST.  */
      emit_set_insn (reg1,
		     plus_constant (Pmode, stack_pointer_rtx, -first));

      /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE.  */
      HOST_WIDE_INT adjustment = - (first + rounded_size);
      if (! aarch64_uimm12_shift (adjustment))
	{
	  aarch64_internal_mov_immediate (reg2, GEN_INT (adjustment),
					  true, Pmode);
	  emit_set_insn (reg2, gen_rtx_PLUS (Pmode, stack_pointer_rtx, reg2));
	}
      else
	{
	  emit_set_insn (reg2,
			 plus_constant (Pmode, stack_pointer_rtx, adjustment));
	}
	  	
      /* Step 3: the loop

	 do
	   {
	     TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
	     probe at TEST_ADDR
	   }
	 while (TEST_ADDR != LAST_ADDR)

	 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
	 until it is equal to ROUNDED_SIZE.  */

      emit_insn (gen_probe_stack_range (reg1, reg1, reg2));


      /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
	 that SIZE is equal to ROUNDED_SIZE.  */

      if (size != rounded_size)
	{
	  HOST_WIDE_INT rem = size - rounded_size;

	  if (rem > 256)
	    {
	      const HOST_WIDE_INT base = ROUND_UP (rem, ARITH_FACTOR);

	      emit_set_insn (reg2, plus_constant (Pmode, reg2, -base));
	      emit_stack_probe (plus_constant (Pmode, reg2, base - rem));
	    }
	  else
	    emit_stack_probe (plus_constant (Pmode, reg2, -rem));
	}
    }

  /* Make sure nothing is scheduled before we are done.  */
  emit_insn (gen_blockage ());
}

/* Probe a range of stack addresses from REG1 to REG2 inclusive.  These are
   absolute addresses.  */

const char *
aarch64_output_probe_stack_range (rtx reg1, rtx reg2)
{
  static int labelno = 0;
  char loop_lab[32];
  rtx xops[2];

  ASM_GENERATE_INTERNAL_LABEL (loop_lab, "LPSRL", labelno++);

  /* Loop.  */
  ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, loop_lab);

  /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL.  */
  xops[0] = reg1;
  xops[1] = GEN_INT (PROBE_INTERVAL);
  output_asm_insn ("sub\t%0, %0, %1", xops);

  /* Probe at TEST_ADDR.  */
  output_asm_insn ("str\txzr, [%0]", xops);

  /* Test if TEST_ADDR == LAST_ADDR.  */
  xops[1] = reg2;
  output_asm_insn ("cmp\t%0, %1", xops);

  /* Branch.  */
  fputs ("\tb.ne\t", asm_out_file);
  assemble_name_raw (asm_out_file, loop_lab);
  fputc ('\n', asm_out_file);

  return "";
}

static bool
aarch64_frame_pointer_required (void)
{
  /* In aarch64_override_options_after_change
     flag_omit_leaf_frame_pointer turns off the frame pointer by
     default.  Turn it back on now if we've not got a leaf
     function.  */
  if (flag_omit_leaf_frame_pointer
      && (!crtl->is_leaf || df_regs_ever_live_p (LR_REGNUM)))
    return true;

  /* Force a frame pointer for EH returns so the return address is at FP+8.  */
  if (crtl->calls_eh_return)
    return true;

  return false;
}

/* Mark the registers that need to be saved by the callee and calculate
   the size of the callee-saved registers area and frame record (both FP
   and LR may be omitted).  */
static void
aarch64_layout_frame (void)
{
  HOST_WIDE_INT offset = 0;
  int regno, last_fp_reg = INVALID_REGNUM;

  if (reload_completed && cfun->machine->frame.laid_out)
    return;

#define SLOT_NOT_REQUIRED (-2)
#define SLOT_REQUIRED     (-1)

  cfun->machine->frame.wb_candidate1 = INVALID_REGNUM;
  cfun->machine->frame.wb_candidate2 = INVALID_REGNUM;

  /* First mark all the registers that really need to be saved...  */
  for (regno = R0_REGNUM; regno <= R30_REGNUM; regno++)
    cfun->machine->frame.reg_offset[regno] = SLOT_NOT_REQUIRED;

  for (regno = V0_REGNUM; regno <= V31_REGNUM; regno++)
    cfun->machine->frame.reg_offset[regno] = SLOT_NOT_REQUIRED;

  /* ... that includes the eh data registers (if needed)...  */
  if (crtl->calls_eh_return)
    for (regno = 0; EH_RETURN_DATA_REGNO (regno) != INVALID_REGNUM; regno++)
      cfun->machine->frame.reg_offset[EH_RETURN_DATA_REGNO (regno)]
	= SLOT_REQUIRED;

  /* ... and any callee saved register that dataflow says is live.  */
  for (regno = R0_REGNUM; regno <= R30_REGNUM; regno++)
    if (df_regs_ever_live_p (regno)
	&& (regno == R30_REGNUM
	    || !call_used_regs[regno]))
      cfun->machine->frame.reg_offset[regno] = SLOT_REQUIRED;

  for (regno = V0_REGNUM; regno <= V31_REGNUM; regno++)
    if (df_regs_ever_live_p (regno)
	&& !call_used_regs[regno])
      {
	cfun->machine->frame.reg_offset[regno] = SLOT_REQUIRED;
	last_fp_reg = regno;
      }

  if (frame_pointer_needed)
    {
      /* FP and LR are placed in the linkage record.  */
      cfun->machine->frame.reg_offset[R29_REGNUM] = 0;
      cfun->machine->frame.wb_candidate1 = R29_REGNUM;
      cfun->machine->frame.reg_offset[R30_REGNUM] = UNITS_PER_WORD;
      cfun->machine->frame.wb_candidate2 = R30_REGNUM;
      offset += 2 * UNITS_PER_WORD;
    }

  /* Now assign stack slots for them.  */
  for (regno = R0_REGNUM; regno <= R30_REGNUM; regno++)
    if (cfun->machine->frame.reg_offset[regno] == SLOT_REQUIRED)
      {
	cfun->machine->frame.reg_offset[regno] = offset;
	if (cfun->machine->frame.wb_candidate1 == INVALID_REGNUM)
	  cfun->machine->frame.wb_candidate1 = regno;
	else if (cfun->machine->frame.wb_candidate2 == INVALID_REGNUM)
	  cfun->machine->frame.wb_candidate2 = regno;
	offset += UNITS_PER_WORD;
      }

  HOST_WIDE_INT max_int_offset = offset;
  offset = ROUND_UP (offset, STACK_BOUNDARY / BITS_PER_UNIT);
  bool has_align_gap = offset != max_int_offset;

  for (regno = V0_REGNUM; regno <= V31_REGNUM; regno++)
    if (cfun->machine->frame.reg_offset[regno] == SLOT_REQUIRED)
      {
	/* If there is an alignment gap between integer and fp callee-saves,
	   allocate the last fp register to it if possible.  */
	if (regno == last_fp_reg && has_align_gap && (offset & 8) == 0)
	  {
	    cfun->machine->frame.reg_offset[regno] = max_int_offset;
	    break;
	  }

	cfun->machine->frame.reg_offset[regno] = offset;
	if (cfun->machine->frame.wb_candidate1 == INVALID_REGNUM)
	  cfun->machine->frame.wb_candidate1 = regno;
	else if (cfun->machine->frame.wb_candidate2 == INVALID_REGNUM
		 && cfun->machine->frame.wb_candidate1 >= V0_REGNUM)
	  cfun->machine->frame.wb_candidate2 = regno;
	offset += UNITS_PER_WORD;
      }

  offset = ROUND_UP (offset, STACK_BOUNDARY / BITS_PER_UNIT);

  cfun->machine->frame.saved_regs_size = offset;

  HOST_WIDE_INT varargs_and_saved_regs_size
    = offset + cfun->machine->frame.saved_varargs_size;

  cfun->machine->frame.hard_fp_offset
    = ROUND_UP (varargs_and_saved_regs_size + get_frame_size (),
		STACK_BOUNDARY / BITS_PER_UNIT);

  cfun->machine->frame.frame_size
    = ROUND_UP (cfun->machine->frame.hard_fp_offset
		+ crtl->outgoing_args_size,
		STACK_BOUNDARY / BITS_PER_UNIT);

  cfun->machine->frame.locals_offset = cfun->machine->frame.saved_varargs_size;

  cfun->machine->frame.initial_adjust = 0;
  cfun->machine->frame.final_adjust = 0;
  cfun->machine->frame.callee_adjust = 0;
  cfun->machine->frame.callee_offset = 0;

  HOST_WIDE_INT max_push_offset = 0;
  if (cfun->machine->frame.wb_candidate2 != INVALID_REGNUM)
    max_push_offset = 512;
  else if (cfun->machine->frame.wb_candidate1 != INVALID_REGNUM)
    max_push_offset = 256;

  if (cfun->machine->frame.frame_size < max_push_offset
      && crtl->outgoing_args_size == 0)
    {
      /* Simple, small frame with no outgoing arguments:
	 stp reg1, reg2, [sp, -frame_size]!
	 stp reg3, reg4, [sp, 16]  */
      cfun->machine->frame.callee_adjust = cfun->machine->frame.frame_size;
    }
  else if ((crtl->outgoing_args_size
	    + cfun->machine->frame.saved_regs_size < 512)
	   && !(cfun->calls_alloca
		&& cfun->machine->frame.hard_fp_offset < max_push_offset))
    {
      /* Frame with small outgoing arguments:
	 sub sp, sp, frame_size
	 stp reg1, reg2, [sp, outgoing_args_size]
	 stp reg3, reg4, [sp, outgoing_args_size + 16]  */
      cfun->machine->frame.initial_adjust = cfun->machine->frame.frame_size;
      cfun->machine->frame.callee_offset
	= cfun->machine->frame.frame_size - cfun->machine->frame.hard_fp_offset;
    }
  else if (cfun->machine->frame.hard_fp_offset < max_push_offset)
    {
      /* Frame with large outgoing arguments but a small local area:
	 stp reg1, reg2, [sp, -hard_fp_offset]!
	 stp reg3, reg4, [sp, 16]
	 sub sp, sp, outgoing_args_size  */
      cfun->machine->frame.callee_adjust = cfun->machine->frame.hard_fp_offset;
      cfun->machine->frame.final_adjust
	= cfun->machine->frame.frame_size - cfun->machine->frame.callee_adjust;
    }
  else if (!frame_pointer_needed
	   && varargs_and_saved_regs_size < max_push_offset)
    {
      /* Frame with large local area and outgoing arguments (this pushes the
	 callee-saves first, followed by the locals and outgoing area):
	 stp reg1, reg2, [sp, -varargs_and_saved_regs_size]!
	 stp reg3, reg4, [sp, 16]
	 sub sp, sp, frame_size - varargs_and_saved_regs_size  */
      cfun->machine->frame.callee_adjust = varargs_and_saved_regs_size;
      cfun->machine->frame.final_adjust
	= cfun->machine->frame.frame_size - cfun->machine->frame.callee_adjust;
      cfun->machine->frame.hard_fp_offset = cfun->machine->frame.callee_adjust;
      cfun->machine->frame.locals_offset = cfun->machine->frame.hard_fp_offset;
    }
  else
    {
      /* Frame with large local area and outgoing arguments using frame pointer:
	 sub sp, sp, hard_fp_offset
	 stp x29, x30, [sp, 0]
	 add x29, sp, 0
	 stp reg3, reg4, [sp, 16]
	 sub sp, sp, outgoing_args_size  */
      cfun->machine->frame.initial_adjust = cfun->machine->frame.hard_fp_offset;
      cfun->machine->frame.final_adjust
	= cfun->machine->frame.frame_size - cfun->machine->frame.initial_adjust;
    }

  cfun->machine->frame.laid_out = true;
}

/* Return true if the register REGNO is saved on entry to
   the current function.  */

static bool
aarch64_register_saved_on_entry (int regno)
{
  return cfun->machine->frame.reg_offset[regno] >= 0;
}

/* Return the next register up from REGNO up to LIMIT for the callee
   to save.  */

static unsigned
aarch64_next_callee_save (unsigned regno, unsigned limit)
{
  while (regno <= limit && !aarch64_register_saved_on_entry (regno))
    regno ++;
  return regno;
}

/* Push the register number REGNO of mode MODE to the stack with write-back
   adjusting the stack by ADJUSTMENT.  */

static void
aarch64_pushwb_single_reg (machine_mode mode, unsigned regno,
			   HOST_WIDE_INT adjustment)
 {
  rtx base_rtx = stack_pointer_rtx;
  rtx insn, reg, mem;

  reg = gen_rtx_REG (mode, regno);
  mem = gen_rtx_PRE_MODIFY (Pmode, base_rtx,
			    plus_constant (Pmode, base_rtx, -adjustment));
  mem = gen_frame_mem (mode, mem);

  insn = emit_move_insn (mem, reg);
  RTX_FRAME_RELATED_P (insn) = 1;
}

/* Generate and return an instruction to store the pair of registers
   REG and REG2 of mode MODE to location BASE with write-back adjusting
   the stack location BASE by ADJUSTMENT.  */

static rtx
aarch64_gen_storewb_pair (machine_mode mode, rtx base, rtx reg, rtx reg2,
			  HOST_WIDE_INT adjustment)
{
  switch (mode)
    {
    case E_DImode:
      return gen_storewb_pairdi_di (base, base, reg, reg2,
				    GEN_INT (-adjustment),
				    GEN_INT (UNITS_PER_WORD - adjustment));
    case E_DFmode:
      return gen_storewb_pairdf_di (base, base, reg, reg2,
				    GEN_INT (-adjustment),
				    GEN_INT (UNITS_PER_WORD - adjustment));
    default:
      gcc_unreachable ();
    }
}

/* Push registers numbered REGNO1 and REGNO2 to the stack, adjusting the
   stack pointer by ADJUSTMENT.  */

static void
aarch64_push_regs (unsigned regno1, unsigned regno2, HOST_WIDE_INT adjustment)
{
  rtx_insn *insn;
  machine_mode mode = (regno1 <= R30_REGNUM) ? E_DImode : E_DFmode;

  if (regno2 == INVALID_REGNUM)
    return aarch64_pushwb_single_reg (mode, regno1, adjustment);

  rtx reg1 = gen_rtx_REG (mode, regno1);
  rtx reg2 = gen_rtx_REG (mode, regno2);

  insn = emit_insn (aarch64_gen_storewb_pair (mode, stack_pointer_rtx, reg1,
					      reg2, adjustment));
  RTX_FRAME_RELATED_P (XVECEXP (PATTERN (insn), 0, 2)) = 1;
  RTX_FRAME_RELATED_P (XVECEXP (PATTERN (insn), 0, 1)) = 1;
  RTX_FRAME_RELATED_P (insn) = 1;
}

/* Load the pair of register REG, REG2 of mode MODE from stack location BASE,
   adjusting it by ADJUSTMENT afterwards.  */

static rtx
aarch64_gen_loadwb_pair (machine_mode mode, rtx base, rtx reg, rtx reg2,
			 HOST_WIDE_INT adjustment)
{
  switch (mode)
    {
    case E_DImode:
      return gen_loadwb_pairdi_di (base, base, reg, reg2, GEN_INT (adjustment),
				   GEN_INT (UNITS_PER_WORD));
    case E_DFmode:
      return gen_loadwb_pairdf_di (base, base, reg, reg2, GEN_INT (adjustment),
				   GEN_INT (UNITS_PER_WORD));
    default:
      gcc_unreachable ();
    }
}

/* Pop the two registers numbered REGNO1, REGNO2 from the stack, adjusting it
   afterwards by ADJUSTMENT and writing the appropriate REG_CFA_RESTORE notes
   into CFI_OPS.  */

static void
aarch64_pop_regs (unsigned regno1, unsigned regno2, HOST_WIDE_INT adjustment,
		  rtx *cfi_ops)
{
  machine_mode mode = (regno1 <= R30_REGNUM) ? E_DImode : E_DFmode;
  rtx reg1 = gen_rtx_REG (mode, regno1);

  *cfi_ops = alloc_reg_note (REG_CFA_RESTORE, reg1, *cfi_ops);

  if (regno2 == INVALID_REGNUM)
    {
      rtx mem = plus_constant (Pmode, stack_pointer_rtx, adjustment);
      mem = gen_rtx_POST_MODIFY (Pmode, stack_pointer_rtx, mem);
      emit_move_insn (reg1, gen_frame_mem (mode, mem));
    }
  else
    {
      rtx reg2 = gen_rtx_REG (mode, regno2);
      *cfi_ops = alloc_reg_note (REG_CFA_RESTORE, reg2, *cfi_ops);
      emit_insn (aarch64_gen_loadwb_pair (mode, stack_pointer_rtx, reg1,
					  reg2, adjustment));
    }
}

/* Generate and return a store pair instruction of mode MODE to store
   register REG1 to MEM1 and register REG2 to MEM2.  */

static rtx
aarch64_gen_store_pair (machine_mode mode, rtx mem1, rtx reg1, rtx mem2,
			rtx reg2)
{
  switch (mode)
    {
    case E_DImode:
      return gen_store_pairdi (mem1, reg1, mem2, reg2);

    case E_DFmode:
      return gen_store_pairdf (mem1, reg1, mem2, reg2);

    default:
      gcc_unreachable ();
    }
}

/* Generate and regurn a load pair isntruction of mode MODE to load register
   REG1 from MEM1 and register REG2 from MEM2.  */

static rtx
aarch64_gen_load_pair (machine_mode mode, rtx reg1, rtx mem1, rtx reg2,
		       rtx mem2)
{
  switch (mode)
    {
    case E_DImode:
      return gen_load_pairdi (reg1, mem1, reg2, mem2);

    case E_DFmode:
      return gen_load_pairdf (reg1, mem1, reg2, mem2);

    default:
      gcc_unreachable ();
    }
}

/* Return TRUE if return address signing should be enabled for the current
   function, otherwise return FALSE.  */

bool
aarch64_return_address_signing_enabled (void)
{
  /* This function should only be called after frame laid out.   */
  gcc_assert (cfun->machine->frame.laid_out);

  /* If signing scope is AARCH64_FUNCTION_NON_LEAF, we only sign a leaf function
     if it's LR is pushed onto stack.  */
  return (aarch64_ra_sign_scope == AARCH64_FUNCTION_ALL
	  || (aarch64_ra_sign_scope == AARCH64_FUNCTION_NON_LEAF
	      && cfun->machine->frame.reg_offset[LR_REGNUM] >= 0));
}

/* Emit code to save the callee-saved registers from register number START
   to LIMIT to the stack at the location starting at offset START_OFFSET,
   skipping any write-back candidates if SKIP_WB is true.  */

static void
aarch64_save_callee_saves (machine_mode mode, HOST_WIDE_INT start_offset,
			   unsigned start, unsigned limit, bool skip_wb)
{
  rtx_insn *insn;
  unsigned regno;
  unsigned regno2;

  for (regno = aarch64_next_callee_save (start, limit);
       regno <= limit;
       regno = aarch64_next_callee_save (regno + 1, limit))
    {
      rtx reg, mem;
      HOST_WIDE_INT offset;

      if (skip_wb
	  && (regno == cfun->machine->frame.wb_candidate1
	      || regno == cfun->machine->frame.wb_candidate2))
	continue;

      if (cfun->machine->reg_is_wrapped_separately[regno])
       continue;

      reg = gen_rtx_REG (mode, regno);
      offset = start_offset + cfun->machine->frame.reg_offset[regno];
      mem = gen_frame_mem (mode, plus_constant (Pmode, stack_pointer_rtx,
						offset));

      regno2 = aarch64_next_callee_save (regno + 1, limit);

      if (regno2 <= limit
	  && !cfun->machine->reg_is_wrapped_separately[regno2]
	  && ((cfun->machine->frame.reg_offset[regno] + UNITS_PER_WORD)
	      == cfun->machine->frame.reg_offset[regno2]))

	{
	  rtx reg2 = gen_rtx_REG (mode, regno2);
	  rtx mem2;

	  offset = start_offset + cfun->machine->frame.reg_offset[regno2];
	  mem2 = gen_frame_mem (mode, plus_constant (Pmode, stack_pointer_rtx,
						     offset));
	  insn = emit_insn (aarch64_gen_store_pair (mode, mem, reg, mem2,
						    reg2));

	  /* The first part of a frame-related parallel insn is
	     always assumed to be relevant to the frame
	     calculations; subsequent parts, are only
	     frame-related if explicitly marked.  */
	  RTX_FRAME_RELATED_P (XVECEXP (PATTERN (insn), 0, 1)) = 1;
	  regno = regno2;
	}
      else
	insn = emit_move_insn (mem, reg);

      RTX_FRAME_RELATED_P (insn) = 1;
    }
}

/* Emit code to restore the callee registers of mode MODE from register
   number START up to and including LIMIT.  Restore from the stack offset
   START_OFFSET, skipping any write-back candidates if SKIP_WB is true.
   Write the appropriate REG_CFA_RESTORE notes into CFI_OPS.  */

static void
aarch64_restore_callee_saves (machine_mode mode,
			      HOST_WIDE_INT start_offset, unsigned start,
			      unsigned limit, bool skip_wb, rtx *cfi_ops)
{
  rtx base_rtx = stack_pointer_rtx;
  unsigned regno;
  unsigned regno2;
  HOST_WIDE_INT offset;

  for (regno = aarch64_next_callee_save (start, limit);
       regno <= limit;
       regno = aarch64_next_callee_save (regno + 1, limit))
    {
      if (cfun->machine->reg_is_wrapped_separately[regno])
       continue;

      rtx reg, mem;

      if (skip_wb
	  && (regno == cfun->machine->frame.wb_candidate1
	      || regno == cfun->machine->frame.wb_candidate2))
	continue;

      reg = gen_rtx_REG (mode, regno);
      offset = start_offset + cfun->machine->frame.reg_offset[regno];
      mem = gen_frame_mem (mode, plus_constant (Pmode, base_rtx, offset));

      regno2 = aarch64_next_callee_save (regno + 1, limit);

      if (regno2 <= limit
	  && !cfun->machine->reg_is_wrapped_separately[regno2]
	  && ((cfun->machine->frame.reg_offset[regno] + UNITS_PER_WORD)
	      == cfun->machine->frame.reg_offset[regno2]))
	{
	  rtx reg2 = gen_rtx_REG (mode, regno2);
	  rtx mem2;

	  offset = start_offset + cfun->machine->frame.reg_offset[regno2];
	  mem2 = gen_frame_mem (mode, plus_constant (Pmode, base_rtx, offset));
	  emit_insn (aarch64_gen_load_pair (mode, reg, mem, reg2, mem2));

	  *cfi_ops = alloc_reg_note (REG_CFA_RESTORE, reg2, *cfi_ops);
	  regno = regno2;
	}
      else
	emit_move_insn (reg, mem);
      *cfi_ops = alloc_reg_note (REG_CFA_RESTORE, reg, *cfi_ops);
    }
}

static inline bool
offset_9bit_signed_unscaled_p (machine_mode mode ATTRIBUTE_UNUSED,
			       HOST_WIDE_INT offset)
{
  return offset >= -256 && offset < 256;
}

static inline bool
offset_12bit_unsigned_scaled_p (machine_mode mode, HOST_WIDE_INT offset)
{
  return (offset >= 0
	  && offset < 4096 * GET_MODE_SIZE (mode)
	  && offset % GET_MODE_SIZE (mode) == 0);
}

bool
aarch64_offset_7bit_signed_scaled_p (machine_mode mode, HOST_WIDE_INT offset)
{
  return (offset >= -64 * GET_MODE_SIZE (mode)
	  && offset < 64 * GET_MODE_SIZE (mode)
	  && offset % GET_MODE_SIZE (mode) == 0);
}

/* Implement TARGET_SHRINK_WRAP_GET_SEPARATE_COMPONENTS.  */

static sbitmap
aarch64_get_separate_components (void)
{
  aarch64_layout_frame ();

  sbitmap components = sbitmap_alloc (LAST_SAVED_REGNUM + 1);
  bitmap_clear (components);

  /* The registers we need saved to the frame.  */
  for (unsigned regno = 0; regno <= LAST_SAVED_REGNUM; regno++)
    if (aarch64_register_saved_on_entry (regno))
      {
	HOST_WIDE_INT offset = cfun->machine->frame.reg_offset[regno];
	if (!frame_pointer_needed)
	  offset += cfun->machine->frame.frame_size
		    - cfun->machine->frame.hard_fp_offset;
	/* Check that we can access the stack slot of the register with one
	   direct load with no adjustments needed.  */
	if (offset_12bit_unsigned_scaled_p (DImode, offset))
	  bitmap_set_bit (components, regno);
      }

  /* Don't mess with the hard frame pointer.  */
  if (frame_pointer_needed)
    bitmap_clear_bit (components, HARD_FRAME_POINTER_REGNUM);

  unsigned reg1 = cfun->machine->frame.wb_candidate1;
  unsigned reg2 = cfun->machine->frame.wb_candidate2;
  /* If aarch64_layout_frame has chosen registers to store/restore with
     writeback don't interfere with them to avoid having to output explicit
     stack adjustment instructions.  */
  if (reg2 != INVALID_REGNUM)
    bitmap_clear_bit (components, reg2);
  if (reg1 != INVALID_REGNUM)
    bitmap_clear_bit (components, reg1);

  bitmap_clear_bit (components, LR_REGNUM);
  bitmap_clear_bit (components, SP_REGNUM);

  return components;
}

/* Implement TARGET_SHRINK_WRAP_COMPONENTS_FOR_BB.  */

static sbitmap
aarch64_components_for_bb (basic_block bb)
{
  bitmap in = DF_LIVE_IN (bb);
  bitmap gen = &DF_LIVE_BB_INFO (bb)->gen;
  bitmap kill = &DF_LIVE_BB_INFO (bb)->kill;

  sbitmap components = sbitmap_alloc (LAST_SAVED_REGNUM + 1);
  bitmap_clear (components);

  /* GPRs are used in a bb if they are in the IN, GEN, or KILL sets.  */
  for (unsigned regno = 0; regno <= LAST_SAVED_REGNUM; regno++)
    if ((!call_used_regs[regno])
       && (bitmap_bit_p (in, regno)
	   || bitmap_bit_p (gen, regno)
	   || bitmap_bit_p (kill, regno)))
	  bitmap_set_bit (components, regno);

  return components;
}

/* Implement TARGET_SHRINK_WRAP_DISQUALIFY_COMPONENTS.
   Nothing to do for aarch64.  */

static void
aarch64_disqualify_components (sbitmap, edge, sbitmap, bool)
{
}

/* Return the next set bit in BMP from START onwards.  Return the total number
   of bits in BMP if no set bit is found at or after START.  */

static unsigned int
aarch64_get_next_set_bit (sbitmap bmp, unsigned int start)
{
  unsigned int nbits = SBITMAP_SIZE (bmp);
  if (start == nbits)
    return start;

  gcc_assert (start < nbits);
  for (unsigned int i = start; i < nbits; i++)
    if (bitmap_bit_p (bmp, i))
      return i;

  return nbits;
}

/* Do the work for aarch64_emit_prologue_components and
   aarch64_emit_epilogue_components.  COMPONENTS is the bitmap of registers
   to save/restore, PROLOGUE_P indicates whether to emit the prologue sequence
   for these components or the epilogue sequence.  That is, it determines
   whether we should emit stores or loads and what kind of CFA notes to attach
   to the insns.  Otherwise the logic for the two sequences is very
   similar.  */

static void
aarch64_process_components (sbitmap components, bool prologue_p)
{
  rtx ptr_reg = gen_rtx_REG (Pmode, frame_pointer_needed
			     ? HARD_FRAME_POINTER_REGNUM
			     : STACK_POINTER_REGNUM);

  unsigned last_regno = SBITMAP_SIZE (components);
  unsigned regno = aarch64_get_next_set_bit (components, R0_REGNUM);
  rtx_insn *insn = NULL;

  while (regno != last_regno)
    {
      /* AAPCS64 section 5.1.2 requires only the bottom 64 bits to be saved
	 so DFmode for the vector registers is enough.  */
      machine_mode mode = GP_REGNUM_P (regno) ? E_DImode : E_DFmode;
      rtx reg = gen_rtx_REG (mode, regno);
      HOST_WIDE_INT offset = cfun->machine->frame.reg_offset[regno];
      if (!frame_pointer_needed)
	offset += cfun->machine->frame.frame_size
		  - cfun->machine->frame.hard_fp_offset;
      rtx addr = plus_constant (Pmode, ptr_reg, offset);
      rtx mem = gen_frame_mem (mode, addr);

      rtx set = prologue_p ? gen_rtx_SET (mem, reg) : gen_rtx_SET (reg, mem);
      unsigned regno2 = aarch64_get_next_set_bit (components, regno + 1);
      /* No more registers to handle after REGNO.
	 Emit a single save/restore and exit.  */
      if (regno2 == last_regno)
	{
	  insn = emit_insn (set);
	  RTX_FRAME_RELATED_P (insn) = 1;
	  if (prologue_p)
	    add_reg_note (insn, REG_CFA_OFFSET, copy_rtx (set));
	  else
	    add_reg_note (insn, REG_CFA_RESTORE, reg);
	  break;
	}

      HOST_WIDE_INT offset2 = cfun->machine->frame.reg_offset[regno2];
      /* The next register is not of the same class or its offset is not
	 mergeable with the current one into a pair.  */
      if (!satisfies_constraint_Ump (mem)
	  || GP_REGNUM_P (regno) != GP_REGNUM_P (regno2)
	  || (offset2 - cfun->machine->frame.reg_offset[regno])
		!= GET_MODE_SIZE (mode))
	{
	  insn = emit_insn (set);
	  RTX_FRAME_RELATED_P (insn) = 1;
	  if (prologue_p)
	    add_reg_note (insn, REG_CFA_OFFSET, copy_rtx (set));
	  else
	    add_reg_note (insn, REG_CFA_RESTORE, reg);

	  regno = regno2;
	  continue;
	}

      /* REGNO2 can be saved/restored in a pair with REGNO.  */
      rtx reg2 = gen_rtx_REG (mode, regno2);
      if (!frame_pointer_needed)
	offset2 += cfun->machine->frame.frame_size
		  - cfun->machine->frame.hard_fp_offset;
      rtx addr2 = plus_constant (Pmode, ptr_reg, offset2);
      rtx mem2 = gen_frame_mem (mode, addr2);
      rtx set2 = prologue_p ? gen_rtx_SET (mem2, reg2)
			     : gen_rtx_SET (reg2, mem2);

      if (prologue_p)
	insn = emit_insn (aarch64_gen_store_pair (mode, mem, reg, mem2, reg2));
      else
	insn = emit_insn (aarch64_gen_load_pair (mode, reg, mem, reg2, mem2));

      RTX_FRAME_RELATED_P (insn) = 1;
      if (prologue_p)
	{
	  add_reg_note (insn, REG_CFA_OFFSET, set);
	  add_reg_note (insn, REG_CFA_OFFSET, set2);
	}
      else
	{
	  add_reg_note (insn, REG_CFA_RESTORE, reg);
	  add_reg_note (insn, REG_CFA_RESTORE, reg2);
	}

      regno = aarch64_get_next_set_bit (components, regno2 + 1);
    }
}

/* Implement TARGET_SHRINK_WRAP_EMIT_PROLOGUE_COMPONENTS.  */

static void
aarch64_emit_prologue_components (sbitmap components)
{
  aarch64_process_components (components, true);
}

/* Implement TARGET_SHRINK_WRAP_EMIT_EPILOGUE_COMPONENTS.  */

static void
aarch64_emit_epilogue_components (sbitmap components)
{
  aarch64_process_components (components, false);
}

/* Implement TARGET_SHRINK_WRAP_SET_HANDLED_COMPONENTS.  */

static void
aarch64_set_handled_components (sbitmap components)
{
  for (unsigned regno = 0; regno <= LAST_SAVED_REGNUM; regno++)
    if (bitmap_bit_p (components, regno))
      cfun->machine->reg_is_wrapped_separately[regno] = true;
}

/* AArch64 stack frames generated by this compiler look like:

	+-------------------------------+
	|                               |
	|  incoming stack arguments     |
	|                               |
	+-------------------------------+
	|                               | <-- incoming stack pointer (aligned)
	|  callee-allocated save area   |
	|  for register varargs         |
	|                               |
	+-------------------------------+
	|  local variables              | <-- frame_pointer_rtx
	|                               |
	+-------------------------------+
	|  padding0                     | \
	+-------------------------------+  |
	|  callee-saved registers       |  | frame.saved_regs_size
	+-------------------------------+  |
	|  LR'                          |  |
	+-------------------------------+  |
	|  FP'                          | / <- hard_frame_pointer_rtx (aligned)
        +-------------------------------+
	|  dynamic allocation           |
	+-------------------------------+
	|  padding                      |
	+-------------------------------+
	|  outgoing stack arguments     | <-- arg_pointer
        |                               |
	+-------------------------------+
	|                               | <-- stack_pointer_rtx (aligned)

   Dynamic stack allocations via alloca() decrease stack_pointer_rtx
   but leave frame_pointer_rtx and hard_frame_pointer_rtx
   unchanged.  */

/* Generate the prologue instructions for entry into a function.
   Establish the stack frame by decreasing the stack pointer with a
   properly calculated size and, if necessary, create a frame record
   filled with the values of LR and previous frame pointer.  The
   current FP is also set up if it is in use.  */

void
aarch64_expand_prologue (void)
{
  aarch64_layout_frame ();

  HOST_WIDE_INT frame_size = cfun->machine->frame.frame_size;
  HOST_WIDE_INT initial_adjust = cfun->machine->frame.initial_adjust;
  HOST_WIDE_INT callee_adjust = cfun->machine->frame.callee_adjust;
  HOST_WIDE_INT final_adjust = cfun->machine->frame.final_adjust;
  HOST_WIDE_INT callee_offset = cfun->machine->frame.callee_offset;
  unsigned reg1 = cfun->machine->frame.wb_candidate1;
  unsigned reg2 = cfun->machine->frame.wb_candidate2;
  rtx_insn *insn;

  /* Sign return address for functions.  */
  if (aarch64_return_address_signing_enabled ())
    {
      insn = emit_insn (gen_pacisp ());
      add_reg_note (insn, REG_CFA_TOGGLE_RA_MANGLE, const0_rtx);
      RTX_FRAME_RELATED_P (insn) = 1;
    }

  if (flag_stack_usage_info)
    current_function_static_stack_size = frame_size;

  if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
    {
      if (crtl->is_leaf && !cfun->calls_alloca)
	{
	  if (frame_size > PROBE_INTERVAL
	      && frame_size > get_stack_check_protect ())
	    aarch64_emit_probe_stack_range (get_stack_check_protect (),
					    (frame_size
					     - get_stack_check_protect ()));
	}
      else if (frame_size > 0)
	aarch64_emit_probe_stack_range (get_stack_check_protect (), frame_size);
    }

  aarch64_sub_sp (IP0_REGNUM, initial_adjust, true);

  if (callee_adjust != 0)
    aarch64_push_regs (reg1, reg2, callee_adjust);

  if (frame_pointer_needed)
    {
      if (callee_adjust == 0)
	aarch64_save_callee_saves (DImode, callee_offset, R29_REGNUM,
				   R30_REGNUM, false);
      insn = emit_insn (gen_add3_insn (hard_frame_pointer_rtx,
				       stack_pointer_rtx,
				       GEN_INT (callee_offset)));
      RTX_FRAME_RELATED_P (insn) = 1;
      emit_insn (gen_stack_tie (stack_pointer_rtx, hard_frame_pointer_rtx));
    }

  aarch64_save_callee_saves (DImode, callee_offset, R0_REGNUM, R30_REGNUM,
			     callee_adjust != 0 || frame_pointer_needed);
  aarch64_save_callee_saves (DFmode, callee_offset, V0_REGNUM, V31_REGNUM,
			     callee_adjust != 0 || frame_pointer_needed);
  aarch64_sub_sp (IP1_REGNUM, final_adjust, !frame_pointer_needed);
}

/* Return TRUE if we can use a simple_return insn.

   This function checks whether the callee saved stack is empty, which
   means no restore actions are need. The pro_and_epilogue will use
   this to check whether shrink-wrapping opt is feasible.  */

bool
aarch64_use_return_insn_p (void)
{
  if (!reload_completed)
    return false;

  if (crtl->profile)
    return false;

  aarch64_layout_frame ();

  return cfun->machine->frame.frame_size == 0;
}

/* Generate the epilogue instructions for returning from a function.
   This is almost exactly the reverse of the prolog sequence, except
   that we need to insert barriers to avoid scheduling loads that read
   from a deallocated stack, and we optimize the unwind records by
   emitting them all together if possible.  */
void
aarch64_expand_epilogue (bool for_sibcall)
{
  aarch64_layout_frame ();

  HOST_WIDE_INT initial_adjust = cfun->machine->frame.initial_adjust;
  HOST_WIDE_INT callee_adjust = cfun->machine->frame.callee_adjust;
  HOST_WIDE_INT final_adjust = cfun->machine->frame.final_adjust;
  HOST_WIDE_INT callee_offset = cfun->machine->frame.callee_offset;
  unsigned reg1 = cfun->machine->frame.wb_candidate1;
  unsigned reg2 = cfun->machine->frame.wb_candidate2;
  rtx cfi_ops = NULL;
  rtx_insn *insn;

  /* We need to add memory barrier to prevent read from deallocated stack.  */
  bool need_barrier_p = (get_frame_size ()
			 + cfun->machine->frame.saved_varargs_size) != 0;

  /* Emit a barrier to prevent loads from a deallocated stack.  */
  if (final_adjust > crtl->outgoing_args_size || cfun->calls_alloca
      || crtl->calls_eh_return)
    {
      emit_insn (gen_stack_tie (stack_pointer_rtx, stack_pointer_rtx));
      need_barrier_p = false;
    }

  /* Restore the stack pointer from the frame pointer if it may not
     be the same as the stack pointer.  */
  if (frame_pointer_needed && (final_adjust || cfun->calls_alloca))
    {
      insn = emit_insn (gen_add3_insn (stack_pointer_rtx,
				       hard_frame_pointer_rtx,
				       GEN_INT (-callee_offset)));
      /* If writeback is used when restoring callee-saves, the CFA
	 is restored on the instruction doing the writeback.  */
      RTX_FRAME_RELATED_P (insn) = callee_adjust == 0;
    }
  else
    aarch64_add_sp (IP1_REGNUM, final_adjust, df_regs_ever_live_p (IP1_REGNUM));

  aarch64_restore_callee_saves (DImode, callee_offset, R0_REGNUM, R30_REGNUM,
				callee_adjust != 0, &cfi_ops);
  aarch64_restore_callee_saves (DFmode, callee_offset, V0_REGNUM, V31_REGNUM,
				callee_adjust != 0, &cfi_ops);

  if (need_barrier_p)
    emit_insn (gen_stack_tie (stack_pointer_rtx, stack_pointer_rtx));

  if (callee_adjust != 0)
    aarch64_pop_regs (reg1, reg2, callee_adjust, &cfi_ops);

  if (callee_adjust != 0 || initial_adjust > 65536)
    {
      /* Emit delayed restores and set the CFA to be SP + initial_adjust.  */
      insn = get_last_insn ();
      rtx new_cfa = plus_constant (Pmode, stack_pointer_rtx, initial_adjust);
      REG_NOTES (insn) = alloc_reg_note (REG_CFA_DEF_CFA, new_cfa, cfi_ops);
      RTX_FRAME_RELATED_P (insn) = 1;
      cfi_ops = NULL;
    }

  aarch64_add_sp (IP0_REGNUM, initial_adjust, df_regs_ever_live_p (IP0_REGNUM));

  if (cfi_ops)
    {
      /* Emit delayed restores and reset the CFA to be SP.  */
      insn = get_last_insn ();
      cfi_ops = alloc_reg_note (REG_CFA_DEF_CFA, stack_pointer_rtx, cfi_ops);
      REG_NOTES (insn) = cfi_ops;
      RTX_FRAME_RELATED_P (insn) = 1;
    }

  /* We prefer to emit the combined return/authenticate instruction RETAA,
     however there are three cases in which we must instead emit an explicit
     authentication instruction.

	1) Sibcalls don't return in a normal way, so if we're about to call one
	   we must authenticate.

	2) The RETAA instruction is not available before ARMv8.3-A, so if we are
	   generating code for !TARGET_ARMV8_3 we can't use it and must
	   explicitly authenticate.

	3) On an eh_return path we make extra stack adjustments to update the
	   canonical frame address to be the exception handler's CFA.  We want
	   to authenticate using the CFA of the function which calls eh_return.
    */
  if (aarch64_return_address_signing_enabled ()
      && (for_sibcall || !TARGET_ARMV8_3 || crtl->calls_eh_return))
    {
      insn = emit_insn (gen_autisp ());
      add_reg_note (insn, REG_CFA_TOGGLE_RA_MANGLE, const0_rtx);
      RTX_FRAME_RELATED_P (insn) = 1;
    }

  /* Stack adjustment for exception handler.  */
  if (crtl->calls_eh_return)
    {
      /* We need to unwind the stack by the offset computed by
	 EH_RETURN_STACKADJ_RTX.  We have already reset the CFA
	 to be SP; letting the CFA move during this adjustment
	 is just as correct as retaining the CFA from the body
	 of the function.  Therefore, do nothing special.  */
      emit_insn (gen_add2_insn (stack_pointer_rtx, EH_RETURN_STACKADJ_RTX));
    }

  emit_use (gen_rtx_REG (DImode, LR_REGNUM));
  if (!for_sibcall)
    emit_jump_insn (ret_rtx);
}

/* Implement EH_RETURN_HANDLER_RTX.  EH returns need to either return
   normally or return to a previous frame after unwinding.

   An EH return uses a single shared return sequence.  The epilogue is
   exactly like a normal epilogue except that it has an extra input
   register (EH_RETURN_STACKADJ_RTX) which contains the stack adjustment
   that must be applied after the frame has been destroyed.  An extra label
   is inserted before the epilogue which initializes this register to zero,
   and this is the entry point for a normal return.

   An actual EH return updates the return address, initializes the stack
   adjustment and jumps directly into the epilogue (bypassing the zeroing
   of the adjustment).  Since the return address is typically saved on the
   stack when a function makes a call, the saved LR must be updated outside
   the epilogue.

   This poses problems as the store is generated well before the epilogue,
   so the offset of LR is not known yet.  Also optimizations will remove the
   store as it appears dead, even after the epilogue is generated (as the
   base or offset for loading LR is different in many cases).

   To avoid these problems this implementation forces the frame pointer
   in eh_return functions so that the location of LR is fixed and known early.
   It also marks the store volatile, so no optimization is permitted to
   remove the store.  */
rtx
aarch64_eh_return_handler_rtx (void)
{
  rtx tmp = gen_frame_mem (Pmode,
    plus_constant (Pmode, hard_frame_pointer_rtx, UNITS_PER_WORD));

  /* Mark the store volatile, so no optimization is permitted to remove it.  */
  MEM_VOLATILE_P (tmp) = true;
  return tmp;
}

/* Output code to add DELTA to the first argument, and then jump
   to FUNCTION.  Used for C++ multiple inheritance.  */
static void
aarch64_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED,
			 HOST_WIDE_INT delta,
			 HOST_WIDE_INT vcall_offset,
			 tree function)
{
  /* The this pointer is always in x0.  Note that this differs from
     Arm where the this pointer maybe bumped to r1 if r0 is required
     to return a pointer to an aggregate.  On AArch64 a result value
     pointer will be in x8.  */
  int this_regno = R0_REGNUM;
  rtx this_rtx, temp0, temp1, addr, funexp;
  rtx_insn *insn;

  reload_completed = 1;
  emit_note (NOTE_INSN_PROLOGUE_END);

  if (vcall_offset == 0)
    aarch64_add_constant (Pmode, this_regno, IP1_REGNUM, delta);
  else
    {
      gcc_assert ((vcall_offset & (POINTER_BYTES - 1)) == 0);

      this_rtx = gen_rtx_REG (Pmode, this_regno);
      temp0 = gen_rtx_REG (Pmode, IP0_REGNUM);
      temp1 = gen_rtx_REG (Pmode, IP1_REGNUM);

      addr = this_rtx;
      if (delta != 0)
	{
	  if (delta >= -256 && delta < 256)
	    addr = gen_rtx_PRE_MODIFY (Pmode, this_rtx,
				       plus_constant (Pmode, this_rtx, delta));
	  else
	    aarch64_add_constant (Pmode, this_regno, IP1_REGNUM, delta);
	}

      if (Pmode == ptr_mode)
	aarch64_emit_move (temp0, gen_rtx_MEM (ptr_mode, addr));
      else
	aarch64_emit_move (temp0,
			   gen_rtx_ZERO_EXTEND (Pmode,
						gen_rtx_MEM (ptr_mode, addr)));

      if (vcall_offset >= -256 && vcall_offset < 4096 * POINTER_BYTES)
	  addr = plus_constant (Pmode, temp0, vcall_offset);
      else
	{
	  aarch64_internal_mov_immediate (temp1, GEN_INT (vcall_offset), true,
					  Pmode);
	  addr = gen_rtx_PLUS (Pmode, temp0, temp1);
	}

      if (Pmode == ptr_mode)
	aarch64_emit_move (temp1, gen_rtx_MEM (ptr_mode,addr));
      else
	aarch64_emit_move (temp1,
			   gen_rtx_SIGN_EXTEND (Pmode,
						gen_rtx_MEM (ptr_mode, addr)));

      emit_insn (gen_add2_insn (this_rtx, temp1));
    }

  /* Generate a tail call to the target function.  */
  if (!TREE_USED (function))
    {
      assemble_external (function);
      TREE_USED (function) = 1;
    }
  funexp = XEXP (DECL_RTL (function), 0);
  funexp = gen_rtx_MEM (FUNCTION_MODE, funexp);
  insn = emit_call_insn (gen_sibcall (funexp, const0_rtx, NULL_RTX));
  SIBLING_CALL_P (insn) = 1;

  insn = get_insns ();
  shorten_branches (insn);
  final_start_function (insn, file, 1);
  final (insn, file, 1);
  final_end_function ();

  /* Stop pretending to be a post-reload pass.  */
  reload_completed = 0;
}

static bool
aarch64_tls_referenced_p (rtx x)
{
  if (!TARGET_HAVE_TLS)
    return false;
  subrtx_iterator::array_type array;
  FOR_EACH_SUBRTX (iter, array, x, ALL)
    {
      const_rtx x = *iter;
      if (GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x) != 0)
	return true;
      /* Don't recurse into UNSPEC_TLS looking for TLS symbols; these are
	 TLS offsets, not real symbol references.  */
      if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_TLS)
	iter.skip_subrtxes ();
    }
  return false;
}


/* Return true if val can be encoded as a 12-bit unsigned immediate with
   a left shift of 0 or 12 bits.  */
bool
aarch64_uimm12_shift (HOST_WIDE_INT val)
{
  return ((val & (((HOST_WIDE_INT) 0xfff) << 0)) == val
	  || (val & (((HOST_WIDE_INT) 0xfff) << 12)) == val
	  );
}


/* Return true if val is an immediate that can be loaded into a
   register by a MOVZ instruction.  */
static bool
aarch64_movw_imm (HOST_WIDE_INT val, scalar_int_mode mode)
{
  if (GET_MODE_SIZE (mode) > 4)
    {
      if ((val & (((HOST_WIDE_INT) 0xffff) << 32)) == val
	  || (val & (((HOST_WIDE_INT) 0xffff) << 48)) == val)
	return 1;
    }
  else
    {
      /* Ignore sign extension.  */
      val &= (HOST_WIDE_INT) 0xffffffff;
    }
  return ((val & (((HOST_WIDE_INT) 0xffff) << 0)) == val
	  || (val & (((HOST_WIDE_INT) 0xffff) << 16)) == val);
}

/* Multipliers for repeating bitmasks of width 32, 16, 8, 4, and 2.  */

static const unsigned HOST_WIDE_INT bitmask_imm_mul[] =
  {
    0x0000000100000001ull,
    0x0001000100010001ull,
    0x0101010101010101ull,
    0x1111111111111111ull,
    0x5555555555555555ull,
  };


/* Return true if val is a valid bitmask immediate.  */

bool
aarch64_bitmask_imm (HOST_WIDE_INT val_in, machine_mode mode)
{
  unsigned HOST_WIDE_INT val, tmp, mask, first_one, next_one;
  int bits;

  /* Check for a single sequence of one bits and return quickly if so.
     The special cases of all ones and all zeroes returns false.  */
  val = (unsigned HOST_WIDE_INT) val_in;
  tmp = val + (val & -val);

  if (tmp == (tmp & -tmp))
    return (val + 1) > 1;

  /* Replicate 32-bit immediates so we can treat them as 64-bit.  */
  if (mode == SImode)
    val = (val << 32) | (val & 0xffffffff);

  /* Invert if the immediate doesn't start with a zero bit - this means we
     only need to search for sequences of one bits.  */
  if (val & 1)
    val = ~val;

  /* Find the first set bit and set tmp to val with the first sequence of one
     bits removed.  Return success if there is a single sequence of ones.  */
  first_one = val & -val;
  tmp = val & (val + first_one);

  if (tmp == 0)
    return true;

  /* Find the next set bit and compute the difference in bit position.  */
  next_one = tmp & -tmp;
  bits = clz_hwi (first_one) - clz_hwi (next_one);
  mask = val ^ tmp;

  /* Check the bit position difference is a power of 2, and that the first
     sequence of one bits fits within 'bits' bits.  */
  if ((mask >> bits) != 0 || bits != (bits & -bits))
    return false;

  /* Check the sequence of one bits is repeated 64/bits times.  */
  return val == mask * bitmask_imm_mul[__builtin_clz (bits) - 26];
}

/* Create mask of ones, covering the lowest to highest bits set in VAL_IN.  
   Assumed precondition: VAL_IN Is not zero.  */

unsigned HOST_WIDE_INT
aarch64_and_split_imm1 (HOST_WIDE_INT val_in)
{
  int lowest_bit_set = ctz_hwi (val_in);
  int highest_bit_set = floor_log2 (val_in);
  gcc_assert (val_in != 0);

  return ((HOST_WIDE_INT_UC (2) << highest_bit_set) -
	  (HOST_WIDE_INT_1U << lowest_bit_set));
}

/* Create constant where bits outside of lowest bit set to highest bit set
   are set to 1.  */

unsigned HOST_WIDE_INT
aarch64_and_split_imm2 (HOST_WIDE_INT val_in)
{
  return val_in | ~aarch64_and_split_imm1 (val_in);
}

/* Return true if VAL_IN is a valid 'and' bitmask immediate.  */

bool
aarch64_and_bitmask_imm (unsigned HOST_WIDE_INT val_in, machine_mode mode)
{
  scalar_int_mode int_mode;
  if (!is_a <scalar_int_mode> (mode, &int_mode))
    return false;

  if (aarch64_bitmask_imm (val_in, int_mode))
    return false;

  if (aarch64_move_imm (val_in, int_mode))
    return false;

  unsigned HOST_WIDE_INT imm2 = aarch64_and_split_imm2 (val_in);

  return aarch64_bitmask_imm (imm2, int_mode);
}

/* Return true if val is an immediate that can be loaded into a
   register in a single instruction.  */
bool
aarch64_move_imm (HOST_WIDE_INT val, machine_mode mode)
{
  scalar_int_mode int_mode;
  if (!is_a <scalar_int_mode> (mode, &int_mode))
    return false;

  if (aarch64_movw_imm (val, int_mode) || aarch64_movw_imm (~val, int_mode))
    return 1;
  return aarch64_bitmask_imm (val, int_mode);
}

static bool
aarch64_cannot_force_const_mem (machine_mode mode ATTRIBUTE_UNUSED, rtx x)
{
  rtx base, offset;

  if (GET_CODE (x) == HIGH)
    return true;

  split_const (x, &base, &offset);
  if (GET_CODE (base) == SYMBOL_REF || GET_CODE (base) == LABEL_REF)
    {
      if (aarch64_classify_symbol (base, offset)
	  != SYMBOL_FORCE_TO_MEM)
	return true;
      else
	/* Avoid generating a 64-bit relocation in ILP32; leave
	   to aarch64_expand_mov_immediate to handle it properly.  */
	return mode != ptr_mode;
    }

  return aarch64_tls_referenced_p (x);
}

/* Implement TARGET_CASE_VALUES_THRESHOLD.
   The expansion for a table switch is quite expensive due to the number
   of instructions, the table lookup and hard to predict indirect jump.
   When optimizing for speed, and -O3 enabled, use the per-core tuning if 
   set, otherwise use tables for > 16 cases as a tradeoff between size and
   performance.  When optimizing for size, use the default setting.  */

static unsigned int
aarch64_case_values_threshold (void)
{
  /* Use the specified limit for the number of cases before using jump
     tables at higher optimization levels.  */
  if (optimize > 2
      && selected_cpu->tune->max_case_values != 0)
    return selected_cpu->tune->max_case_values;
  else
    return optimize_size ? default_case_values_threshold () : 17;
}

/* Return true if register REGNO is a valid index register.
   STRICT_P is true if REG_OK_STRICT is in effect.  */

bool
aarch64_regno_ok_for_index_p (int regno, bool strict_p)
{
  if (!HARD_REGISTER_NUM_P (regno))
    {
      if (!strict_p)
	return true;

      if (!reg_renumber)
	return false;

      regno = reg_renumber[regno];
    }
  return GP_REGNUM_P (regno);
}

/* Return true if register REGNO is a valid base register for mode MODE.
   STRICT_P is true if REG_OK_STRICT is in effect.  */

bool
aarch64_regno_ok_for_base_p (int regno, bool strict_p)
{
  if (!HARD_REGISTER_NUM_P (regno))
    {
      if (!strict_p)
	return true;

      if (!reg_renumber)
	return false;

      regno = reg_renumber[regno];
    }

  /* The fake registers will be eliminated to either the stack or
     hard frame pointer, both of which are usually valid base registers.
     Reload deals with the cases where the eliminated form isn't valid.  */
  return (GP_REGNUM_P (regno)
	  || regno == SP_REGNUM
	  || regno == FRAME_POINTER_REGNUM
	  || regno == ARG_POINTER_REGNUM);
}

/* Return true if X is a valid base register for mode MODE.
   STRICT_P is true if REG_OK_STRICT is in effect.  */

static bool
aarch64_base_register_rtx_p (rtx x, bool strict_p)
{
  if (!strict_p
      && GET_CODE (x) == SUBREG
      && contains_reg_of_mode[GENERAL_REGS][GET_MODE (SUBREG_REG (x))])
    x = SUBREG_REG (x);

  return (REG_P (x) && aarch64_regno_ok_for_base_p (REGNO (x), strict_p));
}

/* Return true if address offset is a valid index.  If it is, fill in INFO
   appropriately.  STRICT_P is true if REG_OK_STRICT is in effect.  */

static bool
aarch64_classify_index (struct aarch64_address_info *info, rtx x,
			machine_mode mode, bool strict_p)
{
  enum aarch64_address_type type;
  rtx index;
  int shift;

  /* (reg:P) */
  if ((REG_P (x) || GET_CODE (x) == SUBREG)
      && GET_MODE (x) == Pmode)
    {
      type = ADDRESS_REG_REG;
      index = x;
      shift = 0;
    }
  /* (sign_extend:DI (reg:SI)) */
  else if ((GET_CODE (x) == SIGN_EXTEND
	    || GET_CODE (x) == ZERO_EXTEND)
	   && GET_MODE (x) == DImode
	   && GET_MODE (XEXP (x, 0)) == SImode)
    {
      type = (GET_CODE (x) == SIGN_EXTEND)
	? ADDRESS_REG_SXTW : ADDRESS_REG_UXTW;
      index = XEXP (x, 0);
      shift = 0;
    }
  /* (mult:DI (sign_extend:DI (reg:SI)) (const_int scale)) */
  else if (GET_CODE (x) == MULT
	   && (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
	       || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
	   && GET_MODE (XEXP (x, 0)) == DImode
	   && GET_MODE (XEXP (XEXP (x, 0), 0)) == SImode
	   && CONST_INT_P (XEXP (x, 1)))
    {
      type = (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
	? ADDRESS_REG_SXTW : ADDRESS_REG_UXTW;
      index = XEXP (XEXP (x, 0), 0);
      shift = exact_log2 (INTVAL (XEXP (x, 1)));
    }
  /* (ashift:DI (sign_extend:DI (reg:SI)) (const_int shift)) */
  else if (GET_CODE (x) == ASHIFT
	   && (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
	       || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
	   && GET_MODE (XEXP (x, 0)) == DImode
	   && GET_MODE (XEXP (XEXP (x, 0), 0)) == SImode
	   && CONST_INT_P (XEXP (x, 1)))
    {
      type = (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
	? ADDRESS_REG_SXTW : ADDRESS_REG_UXTW;
      index = XEXP (XEXP (x, 0), 0);
      shift = INTVAL (XEXP (x, 1));
    }
  /* (sign_extract:DI (mult:DI (reg:DI) (const_int scale)) 32+shift 0) */
  else if ((GET_CODE (x) == SIGN_EXTRACT
	    || GET_CODE (x) == ZERO_EXTRACT)
	   && GET_MODE (x) == DImode
	   && GET_CODE (XEXP (x, 0)) == MULT
	   && GET_MODE (XEXP (XEXP (x, 0), 0)) == DImode
	   && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
    {
      type = (GET_CODE (x) == SIGN_EXTRACT)
	? ADDRESS_REG_SXTW : ADDRESS_REG_UXTW;
      index = XEXP (XEXP (x, 0), 0);
      shift = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)));
      if (INTVAL (XEXP (x, 1)) != 32 + shift
	  || INTVAL (XEXP (x, 2)) != 0)
	shift = -1;
    }
  /* (and:DI (mult:DI (reg:DI) (const_int scale))
     (const_int 0xffffffff<<shift)) */
  else if (GET_CODE (x) == AND
	   && GET_MODE (x) == DImode
	   && GET_CODE (XEXP (x, 0)) == MULT
	   && GET_MODE (XEXP (XEXP (x, 0), 0)) == DImode
	   && CONST_INT_P (XEXP (XEXP (x, 0), 1))
	   && CONST_INT_P (XEXP (x, 1)))
    {
      type = ADDRESS_REG_UXTW;
      index = XEXP (XEXP (x, 0), 0);
      shift = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)));
      if (INTVAL (XEXP (x, 1)) != (HOST_WIDE_INT)0xffffffff << shift)
	shift = -1;
    }
  /* (sign_extract:DI (ashift:DI (reg:DI) (const_int shift)) 32+shift 0) */
  else if ((GET_CODE (x) == SIGN_EXTRACT
	    || GET_CODE (x) == ZERO_EXTRACT)
	   && GET_MODE (x) == DImode
	   && GET_CODE (XEXP (x, 0)) == ASHIFT
	   && GET_MODE (XEXP (XEXP (x, 0), 0)) == DImode
	   && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
    {
      type = (GET_CODE (x) == SIGN_EXTRACT)
	? ADDRESS_REG_SXTW : ADDRESS_REG_UXTW;
      index = XEXP (XEXP (x, 0), 0);
      shift = INTVAL (XEXP (XEXP (x, 0), 1));
      if (INTVAL (XEXP (x, 1)) != 32 + shift
	  || INTVAL (XEXP (x, 2)) != 0)
	shift = -1;
    }
  /* (and:DI (ashift:DI (reg:DI) (const_int shift))
     (const_int 0xffffffff<<shift)) */
  else if (GET_CODE (x) == AND
	   && GET_MODE (x) == DImode
	   && GET_CODE (XEXP (x, 0)) == ASHIFT
	   && GET_MODE (XEXP (XEXP (x, 0), 0)) == DImode
	   && CONST_INT_P (XEXP (XEXP (x, 0), 1))
	   && CONST_INT_P (XEXP (x, 1)))
    {
      type = ADDRESS_REG_UXTW;
      index = XEXP (XEXP (x, 0), 0);
      shift = INTVAL (XEXP (XEXP (x, 0), 1));
      if (INTVAL (XEXP (x, 1)) != (HOST_WIDE_INT)0xffffffff << shift)
	shift = -1;
    }
  /* (mult:P (reg:P) (const_int scale)) */
  else if (GET_CODE (x) == MULT
	   && GET_MODE (x) == Pmode
	   && GET_MODE (XEXP (x, 0)) == Pmode
	   && CONST_INT_P (XEXP (x, 1)))
    {
      type = ADDRESS_REG_REG;
      index = XEXP (x, 0);
      shift = exact_log2 (INTVAL (XEXP (x, 1)));
    }
  /* (ashift:P (reg:P) (const_int shift)) */
  else if (GET_CODE (x) == ASHIFT
	   && GET_MODE (x) == Pmode
	   && GET_MODE (XEXP (x, 0)) == Pmode
	   && CONST_INT_P (XEXP (x, 1)))
    {
      type = ADDRESS_REG_REG;
      index = XEXP (x, 0);
      shift = INTVAL (XEXP (x, 1));
    }
  else
    return false;

  if (!strict_p
      && GET_CODE (index) == SUBREG
      && contains_reg_of_mode[GENERAL_REGS][GET_MODE (SUBREG_REG (index))])
    index = SUBREG_REG (index);

  if ((shift == 0 ||
       (shift > 0 && shift <= 3
	&& (1 << shift) == GET_MODE_SIZE (mode)))
      && REG_P (index)
      && aarch64_regno_ok_for_index_p (REGNO (index), strict_p))
    {
      info->type = type;
      info->offset = index;
      info->shift = shift;
      return true;
    }

  return false;
}

/* Return true if MODE is one of the modes for which we
   support LDP/STP operations.  */

static bool
aarch64_mode_valid_for_sched_fusion_p (machine_mode mode)
{
  return mode == SImode || mode == DImode
	 || mode == SFmode || mode == DFmode
	 || (aarch64_vector_mode_supported_p (mode)
	     && GET_MODE_SIZE (mode) == 8);
}

/* Return true if REGNO is a virtual pointer register, or an eliminable
   "soft" frame register.  Like REGNO_PTR_FRAME_P except that we don't
   include stack_pointer or hard_frame_pointer.  */
static bool
virt_or_elim_regno_p (unsigned regno)
{
  return ((regno >= FIRST_VIRTUAL_REGISTER
	   && regno <= LAST_VIRTUAL_POINTER_REGISTER)
	  || regno == FRAME_POINTER_REGNUM
	  || regno == ARG_POINTER_REGNUM);
}

/* Return true if X is a valid address for machine mode MODE.  If it is,
   fill in INFO appropriately.  STRICT_P is true if REG_OK_STRICT is in
   effect.  OUTER_CODE is PARALLEL for a load/store pair.  */

static bool
aarch64_classify_address (struct aarch64_address_info *info,
			  rtx x, machine_mode mode,
			  RTX_CODE outer_code, bool strict_p)
{
  enum rtx_code code = GET_CODE (x);
  rtx op0, op1;

  /* On BE, we use load/store pair for all large int mode load/stores.
     TI/TFmode may also use a load/store pair.  */
  bool load_store_pair_p = (outer_code == PARALLEL
			    || mode == TImode
			    || mode == TFmode
			    || (BYTES_BIG_ENDIAN
				&& aarch64_vect_struct_mode_p (mode)));

  bool allow_reg_index_p =
    !load_store_pair_p
    && (GET_MODE_SIZE (mode) != 16 || aarch64_vector_mode_supported_p (mode))
    && !aarch64_vect_struct_mode_p (mode);

  /* On LE, for AdvSIMD, don't support anything other than POST_INC or
     REG addressing.  */
  if (aarch64_vect_struct_mode_p (mode) && !BYTES_BIG_ENDIAN
      && (code != POST_INC && code != REG))
    return false;

  switch (code)
    {
    case REG:
    case SUBREG:
      info->type = ADDRESS_REG_IMM;
      info->base = x;
      info->offset = const0_rtx;
      return aarch64_base_register_rtx_p (x, strict_p);

    case PLUS:
      op0 = XEXP (x, 0);
      op1 = XEXP (x, 1);

      if (! strict_p
	  && REG_P (op0)
	  && virt_or_elim_regno_p (REGNO (op0))
	  && CONST_INT_P (op1))
	{
	  info->type = ADDRESS_REG_IMM;
	  info->base = op0;
	  info->offset = op1;

	  return true;
	}

      if (GET_MODE_SIZE (mode) != 0
	  && CONST_INT_P (op1)
	  && aarch64_base_register_rtx_p (op0, strict_p))
	{
	  HOST_WIDE_INT offset = INTVAL (op1);

	  info->type = ADDRESS_REG_IMM;
	  info->base = op0;
	  info->offset = op1;

	  /* TImode and TFmode values are allowed in both pairs of X
	     registers and individual Q registers.  The available
	     address modes are:
	     X,X: 7-bit signed scaled offset
	     Q:   9-bit signed offset
	     We conservatively require an offset representable in either mode.
	     When performing the check for pairs of X registers i.e.  LDP/STP
	     pass down DImode since that is the natural size of the LDP/STP
	     instruction memory accesses.  */
	  if (mode == TImode || mode == TFmode)
	    return (aarch64_offset_7bit_signed_scaled_p (DImode, offset)
		    && (offset_9bit_signed_unscaled_p (mode, offset)
			|| offset_12bit_unsigned_scaled_p (mode, offset)));

	  /* A 7bit offset check because OImode will emit a ldp/stp
	     instruction (only big endian will get here).
	     For ldp/stp instructions, the offset is scaled for the size of a
	     single element of the pair.  */
	  if (mode == OImode)
	    return aarch64_offset_7bit_signed_scaled_p (TImode, offset);

	  /* Three 9/12 bit offsets checks because CImode will emit three
	     ldr/str instructions (only big endian will get here).  */
	  if (mode == CImode)
	    return (aarch64_offset_7bit_signed_scaled_p (TImode, offset)
		    && (offset_9bit_signed_unscaled_p (V16QImode, offset + 32)
			|| offset_12bit_unsigned_scaled_p (V16QImode,
							   offset + 32)));

	  /* Two 7bit offsets checks because XImode will emit two ldp/stp
	     instructions (only big endian will get here).  */
	  if (mode == XImode)
	    return (aarch64_offset_7bit_signed_scaled_p (TImode, offset)
		    && aarch64_offset_7bit_signed_scaled_p (TImode,
							    offset + 32));

	  if (load_store_pair_p)
	    return ((GET_MODE_SIZE (mode) == 4 || GET_MODE_SIZE (mode) == 8)
		    && aarch64_offset_7bit_signed_scaled_p (mode, offset));
	  else
	    return (offset_9bit_signed_unscaled_p (mode, offset)
		    || offset_12bit_unsigned_scaled_p (mode, offset));
	}

      if (allow_reg_index_p)
	{
	  /* Look for base + (scaled/extended) index register.  */
	  if (aarch64_base_register_rtx_p (op0, strict_p)
	      && aarch64_classify_index (info, op1, mode, strict_p))
	    {
	      info->base = op0;
	      return true;
	    }
	  if (aarch64_base_register_rtx_p (op1, strict_p)
	      && aarch64_classify_index (info, op0, mode, strict_p))
	    {
	      info->base = op1;
	      return true;
	    }
	}

      return false;

    case POST_INC:
    case POST_DEC:
    case PRE_INC:
    case PRE_DEC:
      info->type = ADDRESS_REG_WB;
      info->base = XEXP (x, 0);
      info->offset = NULL_RTX;
      return aarch64_base_register_rtx_p (info->base, strict_p);

    case POST_MODIFY:
    case PRE_MODIFY:
      info->type = ADDRESS_REG_WB;
      info->base = XEXP (x, 0);
      if (GET_CODE (XEXP (x, 1)) == PLUS
	  && CONST_INT_P (XEXP (XEXP (x, 1), 1))
	  && rtx_equal_p (XEXP (XEXP (x, 1), 0), info->base)
	  && aarch64_base_register_rtx_p (info->base, strict_p))
	{
	  HOST_WIDE_INT offset;
	  info->offset = XEXP (XEXP (x, 1), 1);
	  offset = INTVAL (info->offset);

	  /* TImode and TFmode values are allowed in both pairs of X
	     registers and individual Q registers.  The available
	     address modes are:
	     X,X: 7-bit signed scaled offset
	     Q:   9-bit signed offset
	     We conservatively require an offset representable in either mode.
	   */
	  if (mode == TImode || mode == TFmode)
	    return (aarch64_offset_7bit_signed_scaled_p (mode, offset)
		    && offset_9bit_signed_unscaled_p (mode, offset));

	  if (load_store_pair_p)
	    return ((GET_MODE_SIZE (mode) == 4 || GET_MODE_SIZE (mode) == 8)
		    && aarch64_offset_7bit_signed_scaled_p (mode, offset));
	  else
	    return offset_9bit_signed_unscaled_p (mode, offset);
	}
      return false;

    case CONST:
    case SYMBOL_REF:
    case LABEL_REF:
      /* load literal: pc-relative constant pool entry.  Only supported
         for SI mode or larger.  */
      info->type = ADDRESS_SYMBOLIC;

      if (!load_store_pair_p && GET_MODE_SIZE (mode) >= 4)
	{
	  rtx sym, addend;

	  split_const (x, &sym, &addend);
	  return ((GET_CODE (sym) == LABEL_REF
		   || (GET_CODE (sym) == SYMBOL_REF
		       && CONSTANT_POOL_ADDRESS_P (sym)
		       && aarch64_pcrelative_literal_loads)));
	}
      return false;

    case LO_SUM:
      info->type = ADDRESS_LO_SUM;
      info->base = XEXP (x, 0);
      info->offset = XEXP (x, 1);
      if (allow_reg_index_p
	  && aarch64_base_register_rtx_p (info->base, strict_p))
	{
	  rtx sym, offs;
	  split_const (info->offset, &sym, &offs);
	  if (GET_CODE (sym) == SYMBOL_REF
	      && (aarch64_classify_symbol (sym, offs) == SYMBOL_SMALL_ABSOLUTE))
	    {
	      /* The symbol and offset must be aligned to the access size.  */
	      unsigned int align;
	      unsigned int ref_size;

	      if (CONSTANT_POOL_ADDRESS_P (sym))
		align = GET_MODE_ALIGNMENT (get_pool_mode (sym));
	      else if (TREE_CONSTANT_POOL_ADDRESS_P (sym))
		{
		  tree exp = SYMBOL_REF_DECL (sym);
		  align = TYPE_ALIGN (TREE_TYPE (exp));
		  align = aarch64_constant_alignment (exp, align);
		}
	      else if (SYMBOL_REF_DECL (sym))
		align = DECL_ALIGN (SYMBOL_REF_DECL (sym));
	      else if (SYMBOL_REF_HAS_BLOCK_INFO_P (sym)
		       && SYMBOL_REF_BLOCK (sym) != NULL)
		align = SYMBOL_REF_BLOCK (sym)->alignment;
	      else
		align = BITS_PER_UNIT;

	      ref_size = GET_MODE_SIZE (mode);
	      if (ref_size == 0)
		ref_size = GET_MODE_SIZE (DImode);

	      return ((INTVAL (offs) & (ref_size - 1)) == 0
		      && ((align / BITS_PER_UNIT) & (ref_size - 1)) == 0);
	    }
	}
      return false;

    default:
      return false;
    }
}

/* Return true if the address X is valid for a PRFM instruction.
   STRICT_P is true if we should do strict checking with
   aarch64_classify_address.  */

bool
aarch64_address_valid_for_prefetch_p (rtx x, bool strict_p)
{
  struct aarch64_address_info addr;

  /* PRFM accepts the same addresses as DImode...  */
  bool res = aarch64_classify_address (&addr, x, DImode, MEM, strict_p);
  if (!res)
    return false;

  /* ... except writeback forms.  */
  return addr.type != ADDRESS_REG_WB;
}

bool
aarch64_symbolic_address_p (rtx x)
{
  rtx offset;

  split_const (x, &x, &offset);
  return GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF;
}

/* Classify the base of symbolic expression X.  */

enum aarch64_symbol_type
aarch64_classify_symbolic_expression (rtx x)
{
  rtx offset;

  split_const (x, &x, &offset);
  return aarch64_classify_symbol (x, offset);
}


/* Return TRUE if X is a legitimate address for accessing memory in
   mode MODE.  */
static bool
aarch64_legitimate_address_hook_p (machine_mode mode, rtx x, bool strict_p)
{
  struct aarch64_address_info addr;

  return aarch64_classify_address (&addr, x, mode, MEM, strict_p);
}

/* Return TRUE if X is a legitimate address for accessing memory in
   mode MODE.  OUTER_CODE will be PARALLEL if this is a load/store
   pair operation.  */
bool
aarch64_legitimate_address_p (machine_mode mode, rtx x,
			      RTX_CODE outer_code, bool strict_p)
{
  struct aarch64_address_info addr;

  return aarch64_classify_address (&addr, x, mode, outer_code, strict_p);
}

/* Split an out-of-range address displacement into a base and offset.
   Use 4KB range for 1- and 2-byte accesses and a 16KB range otherwise
   to increase opportunities for sharing the base address of different sizes.
   For unaligned accesses and TI/TF mode use the signed 9-bit range.  */
static bool
aarch64_legitimize_address_displacement (rtx *disp, rtx *off, machine_mode mode)
{
  HOST_WIDE_INT offset = INTVAL (*disp);
  HOST_WIDE_INT base = offset & ~(GET_MODE_SIZE (mode) < 4 ? 0xfff : 0x3ffc);

  if (mode == TImode || mode == TFmode
      || (offset & (GET_MODE_SIZE (mode) - 1)) != 0)
    base = (offset + 0x100) & ~0x1ff;

  *off = GEN_INT (base);
  *disp = GEN_INT (offset - base);
  return true;
}

/* Return the binary representation of floating point constant VALUE in INTVAL.
   If the value cannot be converted, return false without setting INTVAL.
   The conversion is done in the given MODE.  */
bool
aarch64_reinterpret_float_as_int (rtx value, unsigned HOST_WIDE_INT *intval)
{

  /* We make a general exception for 0.  */
  if (aarch64_float_const_zero_rtx_p (value))
    {
      *intval = 0;
      return true;
    }

  machine_mode mode = GET_MODE (value);
  if (GET_CODE (value) != CONST_DOUBLE
      || !SCALAR_FLOAT_MODE_P (mode)
      || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
      /* Only support up to DF mode.  */
      || GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (DFmode))
    return false;

  unsigned HOST_WIDE_INT ival = 0;

  long res[2];
  real_to_target (res,
		  CONST_DOUBLE_REAL_VALUE (value),
		  REAL_MODE_FORMAT (mode));

  if (mode == DFmode)
    {
      int order = BYTES_BIG_ENDIAN ? 1 : 0;
      ival = zext_hwi (res[order], 32);
      ival |= (zext_hwi (res[1 - order], 32) << 32);
    }
  else
      ival = zext_hwi (res[0], 32);

  *intval = ival;
  return true;
}

/* Return TRUE if rtx X is an immediate constant that can be moved using a
   single MOV(+MOVK) followed by an FMOV.  */
bool
aarch64_float_const_rtx_p (rtx x)
{
  machine_mode mode = GET_MODE (x);
  if (mode == VOIDmode)
    return false;

  /* Determine whether it's cheaper to write float constants as
     mov/movk pairs over ldr/adrp pairs.  */
  unsigned HOST_WIDE_INT ival;

  if (GET_CODE (x) == CONST_DOUBLE
      && SCALAR_FLOAT_MODE_P (mode)
      && aarch64_reinterpret_float_as_int (x, &ival))
    {
      scalar_int_mode imode = (mode == HFmode
			       ? SImode
			       : int_mode_for_mode (mode).require ());
      int num_instr = aarch64_internal_mov_immediate
			(NULL_RTX, gen_int_mode (ival, imode), false, imode);
      return num_instr < 3;
    }

  return false;
}

/* Return TRUE if rtx X is immediate constant 0.0 */
bool
aarch64_float_const_zero_rtx_p (rtx x)
{
  if (GET_MODE (x) == VOIDmode)
    return false;

  if (REAL_VALUE_MINUS_ZERO (*CONST_DOUBLE_REAL_VALUE (x)))
    return !HONOR_SIGNED_ZEROS (GET_MODE (x));
  return real_equal (CONST_DOUBLE_REAL_VALUE (x), &dconst0);
}

/* Return TRUE if rtx X is immediate constant that fits in a single
   MOVI immediate operation.  */
bool
aarch64_can_const_movi_rtx_p (rtx x, machine_mode mode)
{
  if (!TARGET_SIMD)
     return false;

  machine_mode vmode;
  scalar_int_mode imode;
  unsigned HOST_WIDE_INT ival;

  if (GET_CODE (x) == CONST_DOUBLE
      && SCALAR_FLOAT_MODE_P (mode))
    {
      if (!aarch64_reinterpret_float_as_int (x, &ival))
	return false;

      /* We make a general exception for 0.  */
      if (aarch64_float_const_zero_rtx_p (x))
	return true;

      imode = int_mode_for_mode (mode).require ();
    }
  else if (GET_CODE (x) == CONST_INT
	   && is_a <scalar_int_mode> (mode, &imode))
    ival = INTVAL (x);
  else
    return false;

   /* use a 64 bit mode for everything except for DI/DF mode, where we use
     a 128 bit vector mode.  */
  int width = GET_MODE_BITSIZE (imode) == 64 ? 128 : 64;

  vmode = aarch64_simd_container_mode (imode, width);
  rtx v_op = aarch64_simd_gen_const_vector_dup (vmode, ival);

  return aarch64_simd_valid_immediate (v_op, vmode, false, NULL);
}


/* Return the fixed registers used for condition codes.  */

static bool
aarch64_fixed_condition_code_regs (unsigned int *p1, unsigned int *p2)
{
  *p1 = CC_REGNUM;
  *p2 = INVALID_REGNUM;
  return true;
}

/* This function is used by the call expanders of the machine description.
   RESULT is the register in which the result is returned.  It's NULL for
   "call" and "sibcall".
   MEM is the location of the function call.
   SIBCALL indicates whether this function call is normal call or sibling call.
   It will generate different pattern accordingly.  */

void
aarch64_expand_call (rtx result, rtx mem, bool sibcall)
{
  rtx call, callee, tmp;
  rtvec vec;
  machine_mode mode;

  gcc_assert (MEM_P (mem));
  callee = XEXP (mem, 0);
  mode = GET_MODE (callee);
  gcc_assert (mode == Pmode);

  /* Decide if we should generate indirect calls by loading the
     address of the callee into a register before performing
     the branch-and-link.  */
  if (SYMBOL_REF_P (callee)
      ? (aarch64_is_long_call_p (callee)
	 || aarch64_is_noplt_call_p (callee))
      : !REG_P (callee))
    XEXP (mem, 0) = force_reg (mode, callee);

  call = gen_rtx_CALL (VOIDmode, mem, const0_rtx);

  if (result != NULL_RTX)
    call = gen_rtx_SET (result, call);

  if (sibcall)
    tmp = ret_rtx;
  else
    tmp = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, LR_REGNUM));

  vec = gen_rtvec (2, call, tmp);
  call = gen_rtx_PARALLEL (VOIDmode, vec);

  aarch64_emit_call_insn (call);
}

/* Emit call insn with PAT and do aarch64-specific handling.  */

void
aarch64_emit_call_insn (rtx pat)
{
  rtx insn = emit_call_insn (pat);

  rtx *fusage = &CALL_INSN_FUNCTION_USAGE (insn);
  clobber_reg (fusage, gen_rtx_REG (word_mode, IP0_REGNUM));
  clobber_reg (fusage, gen_rtx_REG (word_mode, IP1_REGNUM));
}

machine_mode
aarch64_select_cc_mode (RTX_CODE code, rtx x, rtx y)
{
  /* All floating point compares return CCFP if it is an equality
     comparison, and CCFPE otherwise.  */
  if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
    {
      switch (code)
	{
	case EQ:
	case NE:
	case UNORDERED:
	case ORDERED:
	case UNLT:
	case UNLE:
	case UNGT:
	case UNGE:
	case UNEQ:
	case LTGT:
	  return CCFPmode;

	case LT:
	case LE:
	case GT:
	case GE:
	  return CCFPEmode;

	default:
	  gcc_unreachable ();
	}
    }

  /* Equality comparisons of short modes against zero can be performed
     using the TST instruction with the appropriate bitmask.  */
  if (y == const0_rtx && REG_P (x)
      && (code == EQ || code == NE)
      && (GET_MODE (x) == HImode || GET_MODE (x) == QImode))
    return CC_NZmode;

  /* Similarly, comparisons of zero_extends from shorter modes can
     be performed using an ANDS with an immediate mask.  */
  if (y == const0_rtx && GET_CODE (x) == ZERO_EXTEND
      && (GET_MODE (x) == SImode || GET_MODE (x) == DImode)
      && (GET_MODE (XEXP (x, 0)) == HImode || GET_MODE (XEXP (x, 0)) == QImode)
      && (code == EQ || code == NE))
    return CC_NZmode;

  if ((GET_MODE (x) == SImode || GET_MODE (x) == DImode)
      && y == const0_rtx
      && (code == EQ || code == NE || code == LT || code == GE)
      && (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS || GET_CODE (x) == AND
	  || GET_CODE (x) == NEG
	  || (GET_CODE (x) == ZERO_EXTRACT && CONST_INT_P (XEXP (x, 1))
	      && CONST_INT_P (XEXP (x, 2)))))
    return CC_NZmode;

  /* A compare with a shifted operand.  Because of canonicalization,
     the comparison will have to be swapped when we emit the assembly
     code.  */
  if ((GET_MODE (x) == SImode || GET_MODE (x) == DImode)
      && (REG_P (y) || GET_CODE (y) == SUBREG || y == const0_rtx)
      && (GET_CODE (x) == ASHIFT || GET_CODE (x) == ASHIFTRT
	  || GET_CODE (x) == LSHIFTRT
	  || GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND))
    return CC_SWPmode;

  /* Similarly for a negated operand, but we can only do this for
     equalities.  */
  if ((GET_MODE (x) == SImode || GET_MODE (x) == DImode)
      && (REG_P (y) || GET_CODE (y) == SUBREG)
      && (code == EQ || code == NE)
      && GET_CODE (x) == NEG)
    return CC_Zmode;

  /* A test for unsigned overflow.  */
  if ((GET_MODE (x) == DImode || GET_MODE (x) == TImode)
      && code == NE
      && GET_CODE (x) == PLUS
      && GET_CODE (y) == ZERO_EXTEND)
    return CC_Cmode;

  /* For everything else, return CCmode.  */
  return CCmode;
}

static int
aarch64_get_condition_code_1 (machine_mode, enum rtx_code);

int
aarch64_get_condition_code (rtx x)
{
  machine_mode mode = GET_MODE (XEXP (x, 0));
  enum rtx_code comp_code = GET_CODE (x);

  if (GET_MODE_CLASS (mode) != MODE_CC)
    mode = SELECT_CC_MODE (comp_code, XEXP (x, 0), XEXP (x, 1));
  return aarch64_get_condition_code_1 (mode, comp_code);
}

static int
aarch64_get_condition_code_1 (machine_mode mode, enum rtx_code comp_code)
{
  switch (mode)
    {
    case E_CCFPmode:
    case E_CCFPEmode:
      switch (comp_code)
	{
	case GE: return AARCH64_GE;
	case GT: return AARCH64_GT;
	case LE: return AARCH64_LS;
	case LT: return AARCH64_MI;
	case NE: return AARCH64_NE;
	case EQ: return AARCH64_EQ;
	case ORDERED: return AARCH64_VC;
	case UNORDERED: return AARCH64_VS;
	case UNLT: return AARCH64_LT;
	case UNLE: return AARCH64_LE;
	case UNGT: return AARCH64_HI;
	case UNGE: return AARCH64_PL;
	default: return -1;
	}
      break;

    case E_CCmode:
      switch (comp_code)
	{
	case NE: return AARCH64_NE;
	case EQ: return AARCH64_EQ;
	case GE: return AARCH64_GE;
	case GT: return AARCH64_GT;
	case LE: return AARCH64_LE;
	case LT: return AARCH64_LT;
	case GEU: return AARCH64_CS;
	case GTU: return AARCH64_HI;
	case LEU: return AARCH64_LS;
	case LTU: return AARCH64_CC;
	default: return -1;
	}
      break;

    case E_CC_SWPmode:
      switch (comp_code)
	{
	case NE: return AARCH64_NE;
	case EQ: return AARCH64_EQ;
	case GE: return AARCH64_LE;
	case GT: return AARCH64_LT;
	case LE: return AARCH64_GE;
	case LT: return AARCH64_GT;
	case GEU: return AARCH64_LS;
	case GTU: return AARCH64_CC;
	case LEU: return AARCH64_CS;
	case LTU: return AARCH64_HI;
	default: return -1;
	}
      break;

    case E_CC_NZmode:
      switch (comp_code)
	{
	case NE: return AARCH64_NE;
	case EQ: return AARCH64_EQ;
	case GE: return AARCH64_PL;
	case LT: return AARCH64_MI;
	default: return -1;
	}
      break;

    case E_CC_Zmode:
      switch (comp_code)
	{
	case NE: return AARCH64_NE;
	case EQ: return AARCH64_EQ;
	default: return -1;
	}
      break;

    case E_CC_Cmode:
      switch (comp_code)
	{
	case NE: return AARCH64_CS;
	case EQ: return AARCH64_CC;
	default: return -1;
	}
      break;

    default:
      return -1;
    }

  return -1;
}

bool
aarch64_const_vec_all_same_in_range_p (rtx x,
				  HOST_WIDE_INT minval,
				  HOST_WIDE_INT maxval)
{
  HOST_WIDE_INT firstval;
  int count, i;

  if (GET_CODE (x) != CONST_VECTOR
      || GET_MODE_CLASS (GET_MODE (x)) != MODE_VECTOR_INT)
    return false;

  firstval = INTVAL (CONST_VECTOR_ELT (x, 0));
  if (firstval < minval || firstval > maxval)
    return false;

  count = CONST_VECTOR_NUNITS (x);
  for (i = 1; i < count; i++)
    if (INTVAL (CONST_VECTOR_ELT (x, i)) != firstval)
      return false;

  return true;
}

bool
aarch64_const_vec_all_same_int_p (rtx x, HOST_WIDE_INT val)
{
  return aarch64_const_vec_all_same_in_range_p (x, val, val);
}


/* N Z C V.  */
#define AARCH64_CC_V 1
#define AARCH64_CC_C (1 << 1)
#define AARCH64_CC_Z (1 << 2)
#define AARCH64_CC_N (1 << 3)

/* N Z C V flags for ccmp.  Indexed by AARCH64_COND_CODE.  */
static const int aarch64_nzcv_codes[] =
{
  0,		/* EQ, Z == 1.  */
  AARCH64_CC_Z,	/* NE, Z == 0.  */
  0,		/* CS, C == 1.  */
  AARCH64_CC_C,	/* CC, C == 0.  */
  0,		/* MI, N == 1.  */
  AARCH64_CC_N, /* PL, N == 0.  */
  0,		/* VS, V == 1.  */
  AARCH64_CC_V, /* VC, V == 0.  */
  0,		/* HI, C ==1 && Z == 0.  */
  AARCH64_CC_C,	/* LS, !(C == 1 && Z == 0).  */
  AARCH64_CC_V,	/* GE, N == V.  */
  0,		/* LT, N != V.  */
  AARCH64_CC_Z, /* GT, Z == 0 && N == V.  */
  0,		/* LE, !(Z == 0 && N == V).  */
  0,		/* AL, Any.  */
  0		/* NV, Any.  */
};

/* Print operand X to file F in a target specific manner according to CODE.
   The acceptable formatting commands given by CODE are:
     'c':		An integer or symbol address without a preceding #
			sign.
     'e':		Print the sign/zero-extend size as a character 8->b,
			16->h, 32->w.
     'p':		Prints N such that 2^N == X (X must be power of 2 and
			const int).
     'P':		Print the number of non-zero bits in X (a const_int).
     'H':		Print the higher numbered register of a pair (TImode)
			of regs.
     'm':		Print a condition (eq, ne, etc).
     'M':		Same as 'm', but invert condition.
     'b/h/s/d/q':	Print a scalar FP/SIMD register name.
     'S/T/U/V':		Print a FP/SIMD register name for a register list.
			The register printed is the FP/SIMD register name
			of X + 0/1/2/3 for S/T/U/V.
     'R':		Print a scalar FP/SIMD register name + 1.
     'X':		Print bottom 16 bits of integer constant in hex.
     'w/x':		Print a general register name or the zero register
			(32-bit or 64-bit).
     '0':		Print a normal operand, if it's a general register,
			then we assume DImode.
     'k':		Print NZCV for conditional compare instructions.
     'A':		Output address constant representing the first
			argument of X, specifying a relocation offset
			if appropriate.
     'L':		Output constant address specified by X
			with a relocation offset if appropriate.
     'G':		Prints address of X, specifying a PC relative
			relocation mode if appropriate.  */

static void
aarch64_print_operand (FILE *f, rtx x, int code)
{
  switch (code)
    {
    case 'c':
      switch (GET_CODE (x))
	{
	case CONST_INT:
	  fprintf (f, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
	  break;

	case SYMBOL_REF:
	  output_addr_const (f, x);
	  break;

	case CONST:
	  if (GET_CODE (XEXP (x, 0)) == PLUS
	      && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF)
	    {
	      output_addr_const (f, x);
	      break;
	    }
	  /* Fall through.  */

	default:
	  output_operand_lossage ("Unsupported operand for code '%c'", code);
	}
      break;

    case 'e':
      {
	int n;

	if (!CONST_INT_P (x)
	    || (n = exact_log2 (INTVAL (x) & ~7)) <= 0)
	  {
	    output_operand_lossage ("invalid operand for '%%%c'", code);
	    return;
	  }

	switch (n)
	  {
	  case 3:
	    fputc ('b', f);
	    break;
	  case 4:
	    fputc ('h', f);
	    break;
	  case 5:
	    fputc ('w', f);
	    break;
	  default:
	    output_operand_lossage ("invalid operand for '%%%c'", code);
	    return;
	  }
      }
      break;

    case 'p':
      {
	int n;

	if (!CONST_INT_P (x) || (n = exact_log2 (INTVAL (x))) < 0)
	  {
	    output_operand_lossage ("invalid operand for '%%%c'", code);
	    return;
	  }

	asm_fprintf (f, "%d", n);
      }
      break;

    case 'P':
      if (!CONST_INT_P (x))
	{
	  output_operand_lossage ("invalid operand for '%%%c'", code);
	  return;
	}

      asm_fprintf (f, "%u", popcount_hwi (INTVAL (x)));
      break;

    case 'H':
      if (!REG_P (x) || !GP_REGNUM_P (REGNO (x) + 1))
	{
	  output_operand_lossage ("invalid operand for '%%%c'", code);
	  return;
	}

      asm_fprintf (f, "%s", reg_names [REGNO (x) + 1]);
      break;

    case 'M':
    case 'm':
      {
        int cond_code;
	/* CONST_TRUE_RTX means al/nv (al is the default, don't print it).  */
	if (x == const_true_rtx)
	  {
	    if (code == 'M')
	      fputs ("nv", f);
	    return;
	  }

        if (!COMPARISON_P (x))
	  {
	    output_operand_lossage ("invalid operand for '%%%c'", code);
	    return;
	  }

        cond_code = aarch64_get_condition_code (x);
        gcc_assert (cond_code >= 0);
	if (code == 'M')
	  cond_code = AARCH64_INVERSE_CONDITION_CODE (cond_code);
	fputs (aarch64_condition_codes[cond_code], f);
      }
      break;

    case 'b':
    case 'h':
    case 's':
    case 'd':
    case 'q':
      if (!REG_P (x) || !FP_REGNUM_P (REGNO (x)))
	{
	  output_operand_lossage ("incompatible floating point / vector register operand for '%%%c'", code);
	  return;
	}
      asm_fprintf (f, "%c%d", code, REGNO (x) - V0_REGNUM);
      break;

    case 'S':
    case 'T':
    case 'U':
    case 'V':
      if (!REG_P (x) || !FP_REGNUM_P (REGNO (x)))
	{
	  output_operand_lossage ("incompatible floating point / vector register operand for '%%%c'", code);
	  return;
	}
      asm_fprintf (f, "v%d", REGNO (x) - V0_REGNUM + (code - 'S'));
      break;

    case 'R':
      if (!REG_P (x) || !FP_REGNUM_P (REGNO (x)))
	{
	  output_operand_lossage ("incompatible floating point / vector register operand for '%%%c'", code);
	  return;
	}
      asm_fprintf (f, "q%d", REGNO (x) - V0_REGNUM + 1);
      break;

    case 'X':
      if (!CONST_INT_P (x))
	{
	  output_operand_lossage ("invalid operand for '%%%c'", code);
	  return;
	}
      asm_fprintf (f, "0x%wx", UINTVAL (x) & 0xffff);
      break;

    case 'w':
    case 'x':
      if (x == const0_rtx
	  || (CONST_DOUBLE_P (x) && aarch64_float_const_zero_rtx_p (x)))
	{
	  asm_fprintf (f, "%czr", code);
	  break;
	}

      if (REG_P (x) && GP_REGNUM_P (REGNO (x)))
	{
	  asm_fprintf (f, "%c%d", code, REGNO (x) - R0_REGNUM);
	  break;
	}

      if (REG_P (x) && REGNO (x) == SP_REGNUM)
	{
	  asm_fprintf (f, "%ssp", code == 'w' ? "w" : "");
	  break;
	}

      /* Fall through */

    case 0:
      if (x == NULL)
	{
	  output_operand_lossage ("missing operand");
	  return;
	}

      switch (GET_CODE (x))
	{
	case REG:
	  asm_fprintf (f, "%s", reg_names [REGNO (x)]);
	  break;

	case MEM:
	  output_address (GET_MODE (x), XEXP (x, 0));
	  /* Check all memory references are Pmode - even with ILP32.  */
	  gcc_assert (GET_MODE (XEXP (x, 0)) == Pmode);
	  break;

	case CONST:
	case LABEL_REF:
	case SYMBOL_REF:
	  output_addr_const (asm_out_file, x);
	  break;

	case CONST_INT:
	  asm_fprintf (f, "%wd", INTVAL (x));
	  break;

	case CONST_VECTOR:
	  if (GET_MODE_CLASS (GET_MODE (x)) == MODE_VECTOR_INT)
	    {
	      gcc_assert (
		  aarch64_const_vec_all_same_in_range_p (x,
							 HOST_WIDE_INT_MIN,
							 HOST_WIDE_INT_MAX));
	      asm_fprintf (f, "%wd", INTVAL (CONST_VECTOR_ELT (x, 0)));
	    }
	  else if (aarch64_simd_imm_zero_p (x, GET_MODE (x)))
	    {
	      fputc ('0', f);
	    }
	  else
	    gcc_unreachable ();
	  break;

	case CONST_DOUBLE:
	  /* Since we define TARGET_SUPPORTS_WIDE_INT we shouldn't ever
	     be getting CONST_DOUBLEs holding integers.  */
	  gcc_assert (GET_MODE (x) != VOIDmode);
	  if (aarch64_float_const_zero_rtx_p (x))
	    {
	      fputc ('0', f);
	      break;
	    }
	  else if (aarch64_float_const_representable_p (x))
	    {
#define buf_size 20
	      char float_buf[buf_size] = {'\0'};
	      real_to_decimal_for_mode (float_buf,
					CONST_DOUBLE_REAL_VALUE (x),
					buf_size, buf_size,
					1, GET_MODE (x));
	      asm_fprintf (asm_out_file, "%s", float_buf);
	      break;
#undef buf_size
	    }
	  output_operand_lossage ("invalid constant");
	  return;
	default:
	  output_operand_lossage ("invalid operand");
	  return;
	}
      break;

    case 'A':
      if (GET_CODE (x) == HIGH)
	x = XEXP (x, 0);

      switch (aarch64_classify_symbolic_expression (x))
	{
	case SYMBOL_SMALL_GOT_4G:
	  asm_fprintf (asm_out_file, ":got:");
	  break;

	case SYMBOL_SMALL_TLSGD:
	  asm_fprintf (asm_out_file, ":tlsgd:");
	  break;

	case SYMBOL_SMALL_TLSDESC:
	  asm_fprintf (asm_out_file, ":tlsdesc:");
	  break;

	case SYMBOL_SMALL_TLSIE:
	  asm_fprintf (asm_out_file, ":gottprel:");
	  break;

	case SYMBOL_TLSLE24:
	  asm_fprintf (asm_out_file, ":tprel:");
	  break;

	case SYMBOL_TINY_GOT:
	  gcc_unreachable ();
	  break;

	default:
	  break;
	}
      output_addr_const (asm_out_file, x);
      break;

    case 'L':
      switch (aarch64_classify_symbolic_expression (x))
	{
	case SYMBOL_SMALL_GOT_4G:
	  asm_fprintf (asm_out_file, ":lo12:");
	  break;

	case SYMBOL_SMALL_TLSGD:
	  asm_fprintf (asm_out_file, ":tlsgd_lo12:");
	  break;

	case SYMBOL_SMALL_TLSDESC:
	  asm_fprintf (asm_out_file, ":tlsdesc_lo12:");
	  break;

	case SYMBOL_SMALL_TLSIE:
	  asm_fprintf (asm_out_file, ":gottprel_lo12:");
	  break;

	case SYMBOL_TLSLE12:
	  asm_fprintf (asm_out_file, ":tprel_lo12:");
	  break;

	case SYMBOL_TLSLE24:
	  asm_fprintf (asm_out_file, ":tprel_lo12_nc:");
	  break;

	case SYMBOL_TINY_GOT:
	  asm_fprintf (asm_out_file, ":got:");
	  break;

	case SYMBOL_TINY_TLSIE:
	  asm_fprintf (asm_out_file, ":gottprel:");
	  break;

	default:
	  break;
	}
      output_addr_const (asm_out_file, x);
      break;

    case 'G':
      switch (aarch64_classify_symbolic_expression (x))
	{
	case SYMBOL_TLSLE24:
	  asm_fprintf (asm_out_file, ":tprel_hi12:");
	  break;
	default:
	  break;
	}
      output_addr_const (asm_out_file, x);
      break;

    case 'k':
      {
	HOST_WIDE_INT cond_code;

	if (!CONST_INT_P (x))
	  {
	    output_operand_lossage ("invalid operand for '%%%c'", code);
	    return;
	  }

	cond_code = INTVAL (x);
	gcc_assert (cond_code >= 0 && cond_code <= AARCH64_NV);
	asm_fprintf (f, "%d", aarch64_nzcv_codes[cond_code]);
      }
      break;

    default:
      output_operand_lossage ("invalid operand prefix '%%%c'", code);
      return;
    }
}

static void
aarch64_print_operand_address (FILE *f, machine_mode mode, rtx x)
{
  struct aarch64_address_info addr;

  if (aarch64_classify_address (&addr, x, mode, MEM, true))
    switch (addr.type)
      {
      case ADDRESS_REG_IMM:
	if (addr.offset == const0_rtx)
	  asm_fprintf (f, "[%s]", reg_names [REGNO (addr.base)]);
	else
	  asm_fprintf (f, "[%s, %wd]", reg_names [REGNO (addr.base)],
		       INTVAL (addr.offset));
	return;

      case ADDRESS_REG_REG:
	if (addr.shift == 0)
	  asm_fprintf (f, "[%s, %s]", reg_names [REGNO (addr.base)],
		       reg_names [REGNO (addr.offset)]);
	else
	  asm_fprintf (f, "[%s, %s, lsl %u]", reg_names [REGNO (addr.base)],
		       reg_names [REGNO (addr.offset)], addr.shift);
	return;

      case ADDRESS_REG_UXTW:
	if (addr.shift == 0)
	  asm_fprintf (f, "[%s, w%d, uxtw]", reg_names [REGNO (addr.base)],
		       REGNO (addr.offset) - R0_REGNUM);
	else
	  asm_fprintf (f, "[%s, w%d, uxtw %u]", reg_names [REGNO (addr.base)],
		       REGNO (addr.offset) - R0_REGNUM, addr.shift);
	return;

      case ADDRESS_REG_SXTW:
	if (addr.shift == 0)
	  asm_fprintf (f, "[%s, w%d, sxtw]", reg_names [REGNO (addr.base)],
		       REGNO (addr.offset) - R0_REGNUM);
	else
	  asm_fprintf (f, "[%s, w%d, sxtw %u]", reg_names [REGNO (addr.base)],
		       REGNO (addr.offset) - R0_REGNUM, addr.shift);
	return;

      case ADDRESS_REG_WB:
	switch (GET_CODE (x))
	  {
	  case PRE_INC:
	    asm_fprintf (f, "[%s, %d]!", reg_names [REGNO (addr.base)],
			 GET_MODE_SIZE (mode));
	    return;
	  case POST_INC:
	    asm_fprintf (f, "[%s], %d", reg_names [REGNO (addr.base)],
			 GET_MODE_SIZE (mode));
	    return;
	  case PRE_DEC:
	    asm_fprintf (f, "[%s, -%d]!", reg_names [REGNO (addr.base)],
			 GET_MODE_SIZE (mode));
	    return;
	  case POST_DEC:
	    asm_fprintf (f, "[%s], -%d", reg_names [REGNO (addr.base)],
			 GET_MODE_SIZE (mode));
	    return;
	  case PRE_MODIFY:
	    asm_fprintf (f, "[%s, %wd]!", reg_names [REGNO (addr.base)],
			 INTVAL (addr.offset));
	    return;
	  case POST_MODIFY:
	    asm_fprintf (f, "[%s], %wd", reg_names [REGNO (addr.base)],
			 INTVAL (addr.offset));
	    return;
	  default:
	    break;
	  }
	break;

      case ADDRESS_LO_SUM:
	asm_fprintf (f, "[%s, #:lo12:", reg_names [REGNO (addr.base)]);
	output_addr_const (f, addr.offset);
	asm_fprintf (f, "]");
	return;

      case ADDRESS_SYMBOLIC:
	break;
      }

  output_addr_const (f, x);
}

bool
aarch64_label_mentioned_p (rtx x)
{
  const char *fmt;
  int i;

  if (GET_CODE (x) == LABEL_REF)
    return true;

  /* UNSPEC_TLS entries for a symbol include a LABEL_REF for the
     referencing instruction, but they are constant offsets, not
     symbols.  */
  if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_TLS)
    return false;

  fmt = GET_RTX_FORMAT (GET_CODE (x));
  for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'E')
	{
	  int j;

	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	    if (aarch64_label_mentioned_p (XVECEXP (x, i, j)))
	      return 1;
	}
      else if (fmt[i] == 'e' && aarch64_label_mentioned_p (XEXP (x, i)))
	return 1;
    }

  return 0;
}

/* Implement REGNO_REG_CLASS.  */

enum reg_class
aarch64_regno_regclass (unsigned regno)
{
  if (GP_REGNUM_P (regno))
    return GENERAL_REGS;

  if (regno == SP_REGNUM)
    return STACK_REG;

  if (regno == FRAME_POINTER_REGNUM
      || regno == ARG_POINTER_REGNUM)
    return POINTER_REGS;

  if (FP_REGNUM_P (regno))
    return FP_LO_REGNUM_P (regno) ?  FP_LO_REGS : FP_REGS;

  return NO_REGS;
}

static rtx
aarch64_legitimize_address (rtx x, rtx /* orig_x  */, machine_mode mode)
{
  /* Try to split X+CONST into Y=X+(CONST & ~mask), Y+(CONST&mask),
     where mask is selected by alignment and size of the offset.
     We try to pick as large a range for the offset as possible to
     maximize the chance of a CSE.  However, for aligned addresses
     we limit the range to 4k so that structures with different sized
     elements are likely to use the same base.  We need to be careful
     not to split a CONST for some forms of address expression, otherwise
     it will generate sub-optimal code.  */

  if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
    {
      rtx base = XEXP (x, 0);
      rtx offset_rtx = XEXP (x, 1);
      HOST_WIDE_INT offset = INTVAL (offset_rtx);

      if (GET_CODE (base) == PLUS)
	{
	  rtx op0 = XEXP (base, 0);
	  rtx op1 = XEXP (base, 1);

	  /* Force any scaling into a temp for CSE.  */
	  op0 = force_reg (Pmode, op0);
	  op1 = force_reg (Pmode, op1);

	  /* Let the pointer register be in op0.  */
	  if (REG_POINTER (op1))
	    std::swap (op0, op1);

	  /* If the pointer is virtual or frame related, then we know that
	     virtual register instantiation or register elimination is going
	     to apply a second constant.  We want the two constants folded
	     together easily.  Therefore, emit as (OP0 + CONST) + OP1.  */
	  if (virt_or_elim_regno_p (REGNO (op0)))
	    {
	      base = expand_binop (Pmode, add_optab, op0, offset_rtx,
				   NULL_RTX, true, OPTAB_DIRECT);
	      return gen_rtx_PLUS (Pmode, base, op1);
	    }

	  /* Otherwise, in order to encourage CSE (and thence loop strength
	     reduce) scaled addresses, emit as (OP0 + OP1) + CONST.  */
	  base = expand_binop (Pmode, add_optab, op0, op1,
			       NULL_RTX, true, OPTAB_DIRECT);
	  x = gen_rtx_PLUS (Pmode, base, offset_rtx);
	}

      /* Does it look like we'll need a 16-byte load/store-pair operation?  */
      HOST_WIDE_INT base_offset;
      if (GET_MODE_SIZE (mode) > 16)
	base_offset = (offset + 0x400) & ~0x7f0;
      /* For offsets aren't a multiple of the access size, the limit is
	 -256...255.  */
      else if (offset & (GET_MODE_SIZE (mode) - 1))
	{
	  base_offset = (offset + 0x100) & ~0x1ff;

	  /* BLKmode typically uses LDP of X-registers.  */
	  if (mode == BLKmode)
	    base_offset = (offset + 512) & ~0x3ff;
	}
      /* Small negative offsets are supported.  */
      else if (IN_RANGE (offset, -256, 0))
	base_offset = 0;
      else if (mode == TImode || mode == TFmode)
	base_offset = (offset + 0x100) & ~0x1ff;
      /* Use 12-bit offset by access size.  */
      else
	base_offset = offset & (~0xfff * GET_MODE_SIZE (mode));

      if (base_offset != 0)
	{
	  base = plus_constant (Pmode, base, base_offset);
	  base = force_operand (base, NULL_RTX);
	  return plus_constant (Pmode, base, offset - base_offset);
	}
    }

  return x;
}

/* Return the reload icode required for a constant pool in mode.  */
static enum insn_code
aarch64_constant_pool_reload_icode (machine_mode mode)
{
  switch (mode)
    {
    case E_SFmode:
      return CODE_FOR_aarch64_reload_movcpsfdi;

    case E_DFmode:
      return CODE_FOR_aarch64_reload_movcpdfdi;

    case E_TFmode:
      return CODE_FOR_aarch64_reload_movcptfdi;

    case E_V8QImode:
      return CODE_FOR_aarch64_reload_movcpv8qidi;

    case E_V16QImode:
      return CODE_FOR_aarch64_reload_movcpv16qidi;

    case E_V4HImode:
      return CODE_FOR_aarch64_reload_movcpv4hidi;

    case E_V8HImode:
      return CODE_FOR_aarch64_reload_movcpv8hidi;

    case E_V2SImode:
      return CODE_FOR_aarch64_reload_movcpv2sidi;

    case E_V4SImode:
      return CODE_FOR_aarch64_reload_movcpv4sidi;

    case E_V2DImode:
      return CODE_FOR_aarch64_reload_movcpv2didi;

    case E_V2DFmode:
      return CODE_FOR_aarch64_reload_movcpv2dfdi;

    default:
      gcc_unreachable ();
    }

  gcc_unreachable ();
}
static reg_class_t
aarch64_secondary_reload (bool in_p ATTRIBUTE_UNUSED, rtx x,
			  reg_class_t rclass,
			  machine_mode mode,
			  secondary_reload_info *sri)
{

  /* If we have to disable direct literal pool loads and stores because the
     function is too big, then we need a scratch register.  */
  if (MEM_P (x) && GET_CODE (x) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (x)
      && (SCALAR_FLOAT_MODE_P (GET_MODE (x))
	  || targetm.vector_mode_supported_p (GET_MODE (x)))
      && !aarch64_pcrelative_literal_loads)
    {
      sri->icode = aarch64_constant_pool_reload_icode (mode);
      return NO_REGS;
    }

  /* Without the TARGET_SIMD instructions we cannot move a Q register
     to a Q register directly.  We need a scratch.  */
  if (REG_P (x) && (mode == TFmode || mode == TImode) && mode == GET_MODE (x)
      && FP_REGNUM_P (REGNO (x)) && !TARGET_SIMD
      && reg_class_subset_p (rclass, FP_REGS))
    {
      if (mode == TFmode)
        sri->icode = CODE_FOR_aarch64_reload_movtf;
      else if (mode == TImode)
        sri->icode = CODE_FOR_aarch64_reload_movti;
      return NO_REGS;
    }

  /* A TFmode or TImode memory access should be handled via an FP_REGS
     because AArch64 has richer addressing modes for LDR/STR instructions
     than LDP/STP instructions.  */
  if (TARGET_FLOAT && rclass == GENERAL_REGS
      && GET_MODE_SIZE (mode) == 16 && MEM_P (x))
    return FP_REGS;

  if (rclass == FP_REGS && (mode == TImode || mode == TFmode) && CONSTANT_P(x))
      return GENERAL_REGS;

  return NO_REGS;
}

static bool
aarch64_can_eliminate (const int from, const int to)
{
  /* If we need a frame pointer, we must eliminate FRAME_POINTER_REGNUM into
     HARD_FRAME_POINTER_REGNUM and not into STACK_POINTER_REGNUM.  */

  if (frame_pointer_needed)
    {
      if (from == ARG_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
	return true;
      if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
	return false;
      if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM
	  && !cfun->calls_alloca)
	return true;
      if (from == FRAME_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
	return true;

      return false;
    }
  else
    {
      /* If we decided that we didn't need a leaf frame pointer but then used
	 LR in the function, then we'll want a frame pointer after all, so
	 prevent this elimination to ensure a frame pointer is used.  */
      if (to == STACK_POINTER_REGNUM
	  && flag_omit_leaf_frame_pointer
	  && df_regs_ever_live_p (LR_REGNUM))
	return false;
    }

  return true;
}

HOST_WIDE_INT
aarch64_initial_elimination_offset (unsigned from, unsigned to)
{
  aarch64_layout_frame ();

  if (to == HARD_FRAME_POINTER_REGNUM)
    {
      if (from == ARG_POINTER_REGNUM)
	return cfun->machine->frame.hard_fp_offset;

      if (from == FRAME_POINTER_REGNUM)
	return cfun->machine->frame.hard_fp_offset
	       - cfun->machine->frame.locals_offset;
    }

  if (to == STACK_POINTER_REGNUM)
    {
      if (from == FRAME_POINTER_REGNUM)
	  return cfun->machine->frame.frame_size
		 - cfun->machine->frame.locals_offset;
    }

  return cfun->machine->frame.frame_size;
}

/* Implement RETURN_ADDR_RTX.  We do not support moving back to a
   previous frame.  */

rtx
aarch64_return_addr (int count, rtx frame ATTRIBUTE_UNUSED)
{
  if (count != 0)
    return const0_rtx;
  return get_hard_reg_initial_val (Pmode, LR_REGNUM);
}


static void
aarch64_asm_trampoline_template (FILE *f)
{
  if (TARGET_ILP32)
    {
      asm_fprintf (f, "\tldr\tw%d, .+16\n", IP1_REGNUM - R0_REGNUM);
      asm_fprintf (f, "\tldr\tw%d, .+16\n", STATIC_CHAIN_REGNUM - R0_REGNUM);
    }
  else
    {
      asm_fprintf (f, "\tldr\t%s, .+16\n", reg_names [IP1_REGNUM]);
      asm_fprintf (f, "\tldr\t%s, .+20\n", reg_names [STATIC_CHAIN_REGNUM]);
    }
  asm_fprintf (f, "\tbr\t%s\n", reg_names [IP1_REGNUM]);
  assemble_aligned_integer (4, const0_rtx);
  assemble_aligned_integer (POINTER_BYTES, const0_rtx);
  assemble_aligned_integer (POINTER_BYTES, const0_rtx);
}

static void
aarch64_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
{
  rtx fnaddr, mem, a_tramp;
  const int tramp_code_sz = 16;

  /* Don't need to copy the trailing D-words, we fill those in below.  */
  emit_block_move (m_tramp, assemble_trampoline_template (),
		   GEN_INT (tramp_code_sz), BLOCK_OP_NORMAL);
  mem = adjust_address (m_tramp, ptr_mode, tramp_code_sz);
  fnaddr = XEXP (DECL_RTL (fndecl), 0);
  if (GET_MODE (fnaddr) != ptr_mode)
    fnaddr = convert_memory_address (ptr_mode, fnaddr);
  emit_move_insn (mem, fnaddr);

  mem = adjust_address (m_tramp, ptr_mode, tramp_code_sz + POINTER_BYTES);
  emit_move_insn (mem, chain_value);

  /* XXX We should really define a "clear_cache" pattern and use
     gen_clear_cache().  */
  a_tramp = XEXP (m_tramp, 0);
  emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__clear_cache"),
		     LCT_NORMAL, VOIDmode, a_tramp, ptr_mode,
		     plus_constant (ptr_mode, a_tramp, TRAMPOLINE_SIZE),
		     ptr_mode);
}

static unsigned char
aarch64_class_max_nregs (reg_class_t regclass, machine_mode mode)
{
  switch (regclass)
    {
    case CALLER_SAVE_REGS:
    case POINTER_REGS:
    case GENERAL_REGS:
    case ALL_REGS:
    case FP_REGS:
    case FP_LO_REGS:
      return
	aarch64_vector_mode_p (mode)
	  ? (GET_MODE_SIZE (mode) + UNITS_PER_VREG - 1) / UNITS_PER_VREG
	  : (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
    case STACK_REG:
      return 1;

    case NO_REGS:
      return 0;

    default:
      break;
    }
  gcc_unreachable ();
}

static reg_class_t
aarch64_preferred_reload_class (rtx x, reg_class_t regclass)
{
  if (regclass == POINTER_REGS)
    return GENERAL_REGS;

  if (regclass == STACK_REG)
    {
      if (REG_P(x)
	  && reg_class_subset_p (REGNO_REG_CLASS (REGNO (x)), POINTER_REGS))
	  return regclass;

      return NO_REGS;
    }

  /* Register eliminiation can result in a request for
     SP+constant->FP_REGS.  We cannot support such operations which
     use SP as source and an FP_REG as destination, so reject out
     right now.  */
  if (! reg_class_subset_p (regclass, GENERAL_REGS) && GET_CODE (x) == PLUS)
    {
      rtx lhs = XEXP (x, 0);

      /* Look through a possible SUBREG introduced by ILP32.  */
      if (GET_CODE (lhs) == SUBREG)
	lhs = SUBREG_REG (lhs);

      gcc_assert (REG_P (lhs));
      gcc_assert (reg_class_subset_p (REGNO_REG_CLASS (REGNO (lhs)),
				      POINTER_REGS));
      return NO_REGS;
    }

  return regclass;
}

void
aarch64_asm_output_labelref (FILE* f, const char *name)
{
  asm_fprintf (f, "%U%s", name);
}

static void
aarch64_elf_asm_constructor (rtx symbol, int priority)
{
  if (priority == DEFAULT_INIT_PRIORITY)
    default_ctor_section_asm_out_constructor (symbol, priority);
  else
    {
      section *s;
      /* While priority is known to be in range [0, 65535], so 18 bytes
         would be enough, the compiler might not know that.  To avoid
         -Wformat-truncation false positive, use a larger size.  */
      char buf[23];
      snprintf (buf, sizeof (buf), ".init_array.%.5u", priority);
      s = get_section (buf, SECTION_WRITE, NULL);
      switch_to_section (s);
      assemble_align (POINTER_SIZE);
      assemble_aligned_integer (POINTER_BYTES, symbol);
    }
}

static void
aarch64_elf_asm_destructor (rtx symbol, int priority)
{
  if (priority == DEFAULT_INIT_PRIORITY)
    default_dtor_section_asm_out_destructor (symbol, priority);
  else
    {
      section *s;
      /* While priority is known to be in range [0, 65535], so 18 bytes
         would be enough, the compiler might not know that.  To avoid
         -Wformat-truncation false positive, use a larger size.  */
      char buf[23];
      snprintf (buf, sizeof (buf), ".fini_array.%.5u", priority);
      s = get_section (buf, SECTION_WRITE, NULL);
      switch_to_section (s);
      assemble_align (POINTER_SIZE);
      assemble_aligned_integer (POINTER_BYTES, symbol);
    }
}

const char*
aarch64_output_casesi (rtx *operands)
{
  char buf[100];
  char label[100];
  rtx diff_vec = PATTERN (NEXT_INSN (as_a <rtx_insn *> (operands[2])));
  int index;
  static const char *const patterns[4][2] =
  {
    {
      "ldrb\t%w3, [%0,%w1,uxtw]",
      "add\t%3, %4, %w3, sxtb #2"
    },
    {
      "ldrh\t%w3, [%0,%w1,uxtw #1]",
      "add\t%3, %4, %w3, sxth #2"
    },
    {
      "ldr\t%w3, [%0,%w1,uxtw #2]",
      "add\t%3, %4, %w3, sxtw #2"
    },
    /* We assume that DImode is only generated when not optimizing and
       that we don't really need 64-bit address offsets.  That would
       imply an object file with 8GB of code in a single function!  */
    {
      "ldr\t%w3, [%0,%w1,uxtw #2]",
      "add\t%3, %4, %w3, sxtw #2"
    }
  };

  gcc_assert (GET_CODE (diff_vec) == ADDR_DIFF_VEC);

  scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (diff_vec));
  index = exact_log2 (GET_MODE_SIZE (mode));

  gcc_assert (index >= 0 && index <= 3);

  /* Need to implement table size reduction, by chaning the code below.  */
  output_asm_insn (patterns[index][0], operands);
  ASM_GENERATE_INTERNAL_LABEL (label, "Lrtx", CODE_LABEL_NUMBER (operands[2]));
  snprintf (buf, sizeof (buf),
	    "adr\t%%4, %s", targetm.strip_name_encoding (label));
  output_asm_insn (buf, operands);
  output_asm_insn (patterns[index][1], operands);
  output_asm_insn ("br\t%3", operands);
  assemble_label (asm_out_file, label);
  return "";
}


/* Return size in bits of an arithmetic operand which is shifted/scaled and
   masked such that it is suitable for a UXTB, UXTH, or UXTW extend
   operator.  */

int
aarch64_uxt_size (int shift, HOST_WIDE_INT mask)
{
  if (shift >= 0 && shift <= 3)
    {
      int size;
      for (size = 8; size <= 32; size *= 2)
	{
	  HOST_WIDE_INT bits = ((HOST_WIDE_INT)1U << size) - 1;
	  if (mask == bits << shift)
	    return size;
	}
    }
  return 0;
}

/* Constant pools are per function only when PC relative
   literal loads are true or we are in the large memory
   model.  */

static inline bool
aarch64_can_use_per_function_literal_pools_p (void)
{
  return (aarch64_pcrelative_literal_loads
	  || aarch64_cmodel == AARCH64_CMODEL_LARGE);
}

static bool
aarch64_use_blocks_for_constant_p (machine_mode, const_rtx)
{
  /* Fixme:: In an ideal world this would work similar
     to the logic in aarch64_select_rtx_section but this
     breaks bootstrap in gcc go.  For now we workaround
     this by returning false here.  */
  return false;
}

/* Select appropriate section for constants depending
   on where we place literal pools.  */

static section *
aarch64_select_rtx_section (machine_mode mode,
			    rtx x,
			    unsigned HOST_WIDE_INT align)
{
  if (aarch64_can_use_per_function_literal_pools_p ())
    return function_section (current_function_decl);

  return default_elf_select_rtx_section (mode, x, align);
}

/* Implement ASM_OUTPUT_POOL_EPILOGUE.  */
void
aarch64_asm_output_pool_epilogue (FILE *f, const char *, tree,
				  HOST_WIDE_INT offset)
{
  /* When using per-function literal pools, we must ensure that any code
     section is aligned to the minimal instruction length, lest we get
     errors from the assembler re "unaligned instructions".  */
  if ((offset & 3) && aarch64_can_use_per_function_literal_pools_p ())
    ASM_OUTPUT_ALIGN (f, 2);
}

/* Costs.  */

/* Helper function for rtx cost calculation.  Strip a shift expression
   from X.  Returns the inner operand if successful, or the original
   expression on failure.  */
static rtx
aarch64_strip_shift (rtx x)
{
  rtx op = x;

  /* We accept both ROTATERT and ROTATE: since the RHS must be a constant
     we can convert both to ROR during final output.  */
  if ((GET_CODE (op) == ASHIFT
       || GET_CODE (op) == ASHIFTRT
       || GET_CODE (op) == LSHIFTRT
       || GET_CODE (op) == ROTATERT
       || GET_CODE (op) == ROTATE)
      && CONST_INT_P (XEXP (op, 1)))
    return XEXP (op, 0);

  if (GET_CODE (op) == MULT
      && CONST_INT_P (XEXP (op, 1))
      && ((unsigned) exact_log2 (INTVAL (XEXP (op, 1)))) < 64)
    return XEXP (op, 0);

  return x;
}

/* Helper function for rtx cost calculation.  Strip an extend
   expression from X.  Returns the inner operand if successful, or the
   original expression on failure.  We deal with a number of possible
   canonicalization variations here. If STRIP_SHIFT is true, then
   we can strip off a shift also.  */
static rtx
aarch64_strip_extend (rtx x, bool strip_shift)
{
  scalar_int_mode mode;
  rtx op = x;

  if (!is_a <scalar_int_mode> (GET_MODE (op), &mode))
    return op;

  /* Zero and sign extraction of a widened value.  */
  if ((GET_CODE (op) == ZERO_EXTRACT || GET_CODE (op) == SIGN_EXTRACT)
      && XEXP (op, 2) == const0_rtx
      && GET_CODE (XEXP (op, 0)) == MULT
      && aarch64_is_extend_from_extract (mode, XEXP (XEXP (op, 0), 1),
					 XEXP (op, 1)))
    return XEXP (XEXP (op, 0), 0);

  /* It can also be represented (for zero-extend) as an AND with an
     immediate.  */
  if (GET_CODE (op) == AND
      && GET_CODE (XEXP (op, 0)) == MULT
      && CONST_INT_P (XEXP (XEXP (op, 0), 1))
      && CONST_INT_P (XEXP (op, 1))
      && aarch64_uxt_size (exact_log2 (INTVAL (XEXP (XEXP (op, 0), 1))),
			   INTVAL (XEXP (op, 1))) != 0)
    return XEXP (XEXP (op, 0), 0);

  /* Now handle extended register, as this may also have an optional
     left shift by 1..4.  */
  if (strip_shift
      && GET_CODE (op) == ASHIFT
      && CONST_INT_P (XEXP (op, 1))
      && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (op, 1))) <= 4)
    op = XEXP (op, 0);

  if (GET_CODE (op) == ZERO_EXTEND
      || GET_CODE (op) == SIGN_EXTEND)
    op = XEXP (op, 0);

  if (op != x)
    return op;

  return x;
}

/* Return true iff CODE is a shift supported in combination
   with arithmetic instructions.  */

static bool
aarch64_shift_p (enum rtx_code code)
{
  return code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT;
}


/* Return true iff X is a cheap shift without a sign extend. */

static bool
aarch64_cheap_mult_shift_p (rtx x)
{
  rtx op0, op1;

  op0 = XEXP (x, 0);
  op1 = XEXP (x, 1);

  if (!(aarch64_tune_params.extra_tuning_flags
                      & AARCH64_EXTRA_TUNE_CHEAP_SHIFT_EXTEND))
    return false;

  if (GET_CODE (op0) == SIGN_EXTEND)
    return false;

  if (GET_CODE (x) == ASHIFT && CONST_INT_P (op1)
      && UINTVAL (op1) <= 4)
    return true;

  if (GET_CODE (x) != MULT || !CONST_INT_P (op1))
    return false;

  HOST_WIDE_INT l2 = exact_log2 (INTVAL (op1));

  if (l2 > 0 && l2 <= 4)
    return true;

  return false;
}

/* Helper function for rtx cost calculation.  Calculate the cost of
   a MULT or ASHIFT, which may be part of a compound PLUS/MINUS rtx.
   Return the calculated cost of the expression, recursing manually in to
   operands where needed.  */

static int
aarch64_rtx_mult_cost (rtx x, enum rtx_code code, int outer, bool speed)
{
  rtx op0, op1;
  const struct cpu_cost_table *extra_cost
    = aarch64_tune_params.insn_extra_cost;
  int cost = 0;
  bool compound_p = (outer == PLUS || outer == MINUS);
  machine_mode mode = GET_MODE (x);

  gcc_checking_assert (code == MULT);

  op0 = XEXP (x, 0);
  op1 = XEXP (x, 1);

  if (VECTOR_MODE_P (mode))
    mode = GET_MODE_INNER (mode);

  /* Integer multiply/fma.  */
  if (GET_MODE_CLASS (mode) == MODE_INT)
    {
      /* The multiply will be canonicalized as a shift, cost it as such.  */
      if (aarch64_shift_p (GET_CODE (x))
	  || (CONST_INT_P (op1)
	      && exact_log2 (INTVAL (op1)) > 0))
	{
	  bool is_extend = GET_CODE (op0) == ZERO_EXTEND
	                   || GET_CODE (op0) == SIGN_EXTEND;
	  if (speed)
	    {
	      if (compound_p)
	        {
		  /* If the shift is considered cheap,
		     then don't add any cost. */
		  if (aarch64_cheap_mult_shift_p (x))
		    ;
	          else if (REG_P (op1))
		    /* ARITH + shift-by-register.  */
		    cost += extra_cost->alu.arith_shift_reg;
		  else if (is_extend)
		    /* ARITH + extended register.  We don't have a cost field
		       for ARITH+EXTEND+SHIFT, so use extend_arith here.  */
		    cost += extra_cost->alu.extend_arith;
		  else
		    /* ARITH + shift-by-immediate.  */
		    cost += extra_cost->alu.arith_shift;
		}
	      else
		/* LSL (immediate).  */
	        cost += extra_cost->alu.shift;

	    }
	  /* Strip extends as we will have costed them in the case above.  */
	  if (is_extend)
	    op0 = aarch64_strip_extend (op0, true);

	  cost += rtx_cost (op0, VOIDmode, code, 0, speed);

	  return cost;
	}

      /* MNEG or [US]MNEGL.  Extract the NEG operand and indicate that it's a
	 compound and let the below cases handle it.  After all, MNEG is a
	 special-case alias of MSUB.  */
      if (GET_CODE (op0) == NEG)
	{
	  op0 = XEXP (op0, 0);
	  compound_p = true;
	}

      /* Integer multiplies or FMAs have zero/sign extending variants.  */
      if ((GET_CODE (op0) == ZERO_EXTEND
	   && GET_CODE (op1) == ZERO_EXTEND)
	  || (GET_CODE (op0) == SIGN_EXTEND
	      && GET_CODE (op1) == SIGN_EXTEND))
	{
	  cost += rtx_cost (XEXP (op0, 0), VOIDmode, MULT, 0, speed);
	  cost += rtx_cost (XEXP (op1, 0), VOIDmode, MULT, 1, speed);

	  if (speed)
	    {
	      if (compound_p)
		/* SMADDL/UMADDL/UMSUBL/SMSUBL.  */
		cost += extra_cost->mult[0].extend_add;
	      else
		/* MUL/SMULL/UMULL.  */
		cost += extra_cost->mult[0].extend;
	    }

	  return cost;
	}

      /* This is either an integer multiply or a MADD.  In both cases
	 we want to recurse and cost the operands.  */
      cost += rtx_cost (op0, mode, MULT, 0, speed);
      cost += rtx_cost (op1, mode, MULT, 1, speed);

      if (speed)
	{
	  if (compound_p)
	    /* MADD/MSUB.  */
	    cost += extra_cost->mult[mode == DImode].add;
	  else
	    /* MUL.  */
	    cost += extra_cost->mult[mode == DImode].simple;
	}

      return cost;
    }
  else
    {
      if (speed)
	{
	  /* Floating-point FMA/FMUL can also support negations of the
	     operands, unless the rounding mode is upward or downward in
	     which case FNMUL is different than FMUL with operand negation.  */
	  bool neg0 = GET_CODE (op0) == NEG;
	  bool neg1 = GET_CODE (op1) == NEG;
	  if (compound_p || !flag_rounding_math || (neg0 && neg1))
	    {
	      if (neg0)
		op0 = XEXP (op0, 0);
	      if (neg1)
		op1 = XEXP (op1, 0);
	    }

	  if (compound_p)
	    /* FMADD/FNMADD/FNMSUB/FMSUB.  */
	    cost += extra_cost->fp[mode == DFmode].fma;
	  else
	    /* FMUL/FNMUL.  */
	    cost += extra_cost->fp[mode == DFmode].mult;
	}

      cost += rtx_cost (op0, mode, MULT, 0, speed);
      cost += rtx_cost (op1, mode, MULT, 1, speed);
      return cost;
    }
}

static int
aarch64_address_cost (rtx x,
		      machine_mode mode,
		      addr_space_t as ATTRIBUTE_UNUSED,
		      bool speed)
{
  enum rtx_code c = GET_CODE (x);
  const struct cpu_addrcost_table *addr_cost = aarch64_tune_params.addr_cost;
  struct aarch64_address_info info;
  int cost = 0;
  info.shift = 0;

  if (!aarch64_classify_address (&info, x, mode, c, false))
    {
      if (GET_CODE (x) == CONST || GET_CODE (x) == SYMBOL_REF)
	{
	  /* This is a CONST or SYMBOL ref which will be split
	     in a different way depending on the code model in use.
	     Cost it through the generic infrastructure.  */
	  int cost_symbol_ref = rtx_cost (x, Pmode, MEM, 1, speed);
	  /* Divide through by the cost of one instruction to
	     bring it to the same units as the address costs.  */
	  cost_symbol_ref /= COSTS_N_INSNS (1);
	  /* The cost is then the cost of preparing the address,
	     followed by an immediate (possibly 0) offset.  */
	  return cost_symbol_ref + addr_cost->imm_offset;
	}
      else
	{
	  /* This is most likely a jump table from a case
	     statement.  */
	  return addr_cost->register_offset;
	}
    }

  switch (info.type)
    {
      case ADDRESS_LO_SUM:
      case ADDRESS_SYMBOLIC:
      case ADDRESS_REG_IMM:
	cost += addr_cost->imm_offset;
	break;

      case ADDRESS_REG_WB:
	if (c == PRE_INC || c == PRE_DEC || c == PRE_MODIFY)
	  cost += addr_cost->pre_modify;
	else if (c == POST_INC || c == POST_DEC || c == POST_MODIFY)
	  cost += addr_cost->post_modify;
	else
	  gcc_unreachable ();

	break;

      case ADDRESS_REG_REG:
	cost += addr_cost->register_offset;
	break;

      case ADDRESS_REG_SXTW:
	cost += addr_cost->register_sextend;
	break;

      case ADDRESS_REG_UXTW:
	cost += addr_cost->register_zextend;
	break;

      default:
	gcc_unreachable ();
    }


  if (info.shift > 0)
    {
      /* For the sake of calculating the cost of the shifted register
	 component, we can treat same sized modes in the same way.  */
      switch (GET_MODE_BITSIZE (mode))
	{
	  case 16:
	    cost += addr_cost->addr_scale_costs.hi;
	    break;

	  case 32:
	    cost += addr_cost->addr_scale_costs.si;
	    break;

	  case 64:
	    cost += addr_cost->addr_scale_costs.di;
	    break;

	  /* We can't tell, or this is a 128-bit vector.  */
	  default:
	    cost += addr_cost->addr_scale_costs.ti;
	    break;
	}
    }

  return cost;
}

/* Return the cost of a branch.  If SPEED_P is true then the compiler is
   optimizing for speed.  If PREDICTABLE_P is true then the branch is predicted
   to be taken.  */

int
aarch64_branch_cost (bool speed_p, bool predictable_p)
{
  /* When optimizing for speed, use the cost of unpredictable branches.  */
  const struct cpu_branch_cost *branch_costs =
    aarch64_tune_params.branch_costs;

  if (!speed_p || predictable_p)
    return branch_costs->predictable;
  else
    return branch_costs->unpredictable;
}

/* Return true if the RTX X in mode MODE is a zero or sign extract
   usable in an ADD or SUB (extended register) instruction.  */
static bool
aarch64_rtx_arith_op_extract_p (rtx x, scalar_int_mode mode)
{
  /* Catch add with a sign extract.
     This is add_<optab><mode>_multp2.  */
  if (GET_CODE (x) == SIGN_EXTRACT
      || GET_CODE (x) == ZERO_EXTRACT)
    {
      rtx op0 = XEXP (x, 0);
      rtx op1 = XEXP (x, 1);
      rtx op2 = XEXP (x, 2);

      if (GET_CODE (op0) == MULT
	  && CONST_INT_P (op1)
	  && op2 == const0_rtx
	  && CONST_INT_P (XEXP (op0, 1))
	  && aarch64_is_extend_from_extract (mode,
					     XEXP (op0, 1),
					     op1))
	{
	  return true;
	}
    }
  /* The simple case <ARITH>, XD, XN, XM, [us]xt.
     No shift.  */
  else if (GET_CODE (x) == SIGN_EXTEND
	   || GET_CODE (x) == ZERO_EXTEND)
    return REG_P (XEXP (x, 0));

  return false;
}

static bool
aarch64_frint_unspec_p (unsigned int u)
{
  switch (u)
    {
      case UNSPEC_FRINTZ:
      case UNSPEC_FRINTP:
      case UNSPEC_FRINTM:
      case UNSPEC_FRINTA:
      case UNSPEC_FRINTN:
      case UNSPEC_FRINTX:
      case UNSPEC_FRINTI:
        return true;

      default:
        return false;
    }
}

/* Return true iff X is an rtx that will match an extr instruction
   i.e. as described in the *extr<mode>5_insn family of patterns.
   OP0 and OP1 will be set to the operands of the shifts involved
   on success and will be NULL_RTX otherwise.  */

static bool
aarch64_extr_rtx_p (rtx x, rtx *res_op0, rtx *res_op1)
{
  rtx op0, op1;
  scalar_int_mode mode;
  if (!is_a <scalar_int_mode> (GET_MODE (x), &mode))
    return false;

  *res_op0 = NULL_RTX;
  *res_op1 = NULL_RTX;

  if (GET_CODE (x) != IOR)
    return false;

  op0 = XEXP (x, 0);
  op1 = XEXP (x, 1);

  if ((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
      || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
    {
     /* Canonicalise locally to ashift in op0, lshiftrt in op1.  */
      if (GET_CODE (op1) == ASHIFT)
        std::swap (op0, op1);

      if (!CONST_INT_P (XEXP (op0, 1)) || !CONST_INT_P (XEXP (op1, 1)))
        return false;

      unsigned HOST_WIDE_INT shft_amnt_0 = UINTVAL (XEXP (op0, 1));
      unsigned HOST_WIDE_INT shft_amnt_1 = UINTVAL (XEXP (op1, 1));

      if (shft_amnt_0 < GET_MODE_BITSIZE (mode)
          && shft_amnt_0 + shft_amnt_1 == GET_MODE_BITSIZE (mode))
        {
          *res_op0 = XEXP (op0, 0);
          *res_op1 = XEXP (op1, 0);
          return true;
        }
    }

  return false;
}

/* Calculate the cost of calculating (if_then_else (OP0) (OP1) (OP2)),
   storing it in *COST.  Result is true if the total cost of the operation
   has now been calculated.  */
static bool
aarch64_if_then_else_costs (rtx op0, rtx op1, rtx op2, int *cost, bool speed)
{
  rtx inner;
  rtx comparator;
  enum rtx_code cmpcode;

  if (COMPARISON_P (op0))
    {
      inner = XEXP (op0, 0);
      comparator = XEXP (op0, 1);
      cmpcode = GET_CODE (op0);
    }
  else
    {
      inner = op0;
      comparator = const0_rtx;
      cmpcode = NE;
    }

  if (GET_CODE (op1) == PC || GET_CODE (op2) == PC)
    {
      /* Conditional branch.  */
      if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_CC)
	return true;
      else
	{
	  if (cmpcode == NE || cmpcode == EQ)
	    {
	      if (comparator == const0_rtx)
		{
		  /* TBZ/TBNZ/CBZ/CBNZ.  */
		  if (GET_CODE (inner) == ZERO_EXTRACT)
		    /* TBZ/TBNZ.  */
		    *cost += rtx_cost (XEXP (inner, 0), VOIDmode,
				       ZERO_EXTRACT, 0, speed);
		  else
		    /* CBZ/CBNZ.  */
		    *cost += rtx_cost (inner, VOIDmode, cmpcode, 0, speed);

	        return true;
	      }
	    }
	  else if (cmpcode == LT || cmpcode == GE)
	    {
	      /* TBZ/TBNZ.  */
	      if (comparator == const0_rtx)
		return true;
	    }
	}
    }
  else if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_CC)
    {
      /* CCMP.  */
      if (GET_CODE (op1) == COMPARE)
	{
	  /* Increase cost of CCMP reg, 0, imm, CC to prefer CMP reg, 0.  */
	  if (XEXP (op1, 1) == const0_rtx)
	    *cost += 1;
	  if (speed)
	    {
	      machine_mode mode = GET_MODE (XEXP (op1, 0));
	      const struct cpu_cost_table *extra_cost
		= aarch64_tune_params.insn_extra_cost;

	      if (GET_MODE_CLASS (mode) == MODE_INT)
		*cost += extra_cost->alu.arith;
	      else
		*cost += extra_cost->fp[mode == DFmode].compare;
	    }
	  return true;
	}

      /* It's a conditional operation based on the status flags,
	 so it must be some flavor of CSEL.  */

      /* CSNEG, CSINV, and CSINC are handled for free as part of CSEL.  */
      if (GET_CODE (op1) == NEG
          || GET_CODE (op1) == NOT
          || (GET_CODE (op1) == PLUS && XEXP (op1, 1) == const1_rtx))
	op1 = XEXP (op1, 0);
      else if (GET_CODE (op1) == ZERO_EXTEND && GET_CODE (op2) == ZERO_EXTEND)
	{
	  /* CSEL with zero-extension (*cmovdi_insn_uxtw).  */
	  op1 = XEXP (op1, 0);
	  op2 = XEXP (op2, 0);
	}

      *cost += rtx_cost (op1, VOIDmode, IF_THEN_ELSE, 1, speed);
      *cost += rtx_cost (op2, VOIDmode, IF_THEN_ELSE, 2, speed);
      return true;
    }

  /* We don't know what this is, cost all operands.  */
  return false;
}

/* Check whether X is a bitfield operation of the form shift + extend that
   maps down to a UBFIZ/SBFIZ/UBFX/SBFX instruction.  If so, return the
   operand to which the bitfield operation is applied.  Otherwise return
   NULL_RTX.  */

static rtx
aarch64_extend_bitfield_pattern_p (rtx x)
{
  rtx_code outer_code = GET_CODE (x);
  machine_mode outer_mode = GET_MODE (x);

  if (outer_code != ZERO_EXTEND && outer_code != SIGN_EXTEND
      && outer_mode != SImode && outer_mode != DImode)
    return NULL_RTX;

  rtx inner = XEXP (x, 0);
  rtx_code inner_code = GET_CODE (inner);
  machine_mode inner_mode = GET_MODE (inner);
  rtx op = NULL_RTX;

  switch (inner_code)
    {
      case ASHIFT:
	if (CONST_INT_P (XEXP (inner, 1))
	    && (inner_mode == QImode || inner_mode == HImode))
	  op = XEXP (inner, 0);
	break;
      case LSHIFTRT:
	if (outer_code == ZERO_EXTEND && CONST_INT_P (XEXP (inner, 1))
	    && (inner_mode == QImode || inner_mode == HImode))
	  op = XEXP (inner, 0);
	break;
      case ASHIFTRT:
	if (outer_code == SIGN_EXTEND && CONST_INT_P (XEXP (inner, 1))
	    && (inner_mode == QImode || inner_mode == HImode))
	  op = XEXP (inner, 0);
	break;
      default:
	break;
    }

  return op;
}

/* Return true if the mask and a shift amount from an RTX of the form
   (x << SHFT_AMNT) & MASK are valid to combine into a UBFIZ instruction of
   mode MODE.  See the *andim_ashift<mode>_bfiz pattern.  */

bool
aarch64_mask_and_shift_for_ubfiz_p (scalar_int_mode mode, rtx mask,
				    rtx shft_amnt)
{
  return CONST_INT_P (mask) && CONST_INT_P (shft_amnt)
	 && INTVAL (shft_amnt) < GET_MODE_BITSIZE (mode)
	 && exact_log2 ((INTVAL (mask) >> INTVAL (shft_amnt)) + 1) >= 0
	 && (INTVAL (mask) & ((1 << INTVAL (shft_amnt)) - 1)) == 0;
}

/* Calculate the cost of calculating X, storing it in *COST.  Result
   is true if the total cost of the operation has now been calculated.  */
static bool
aarch64_rtx_costs (rtx x, machine_mode mode, int outer ATTRIBUTE_UNUSED,
		   int param ATTRIBUTE_UNUSED, int *cost, bool speed)
{
  rtx op0, op1, op2;
  const struct cpu_cost_table *extra_cost
    = aarch64_tune_params.insn_extra_cost;
  int code = GET_CODE (x);
  scalar_int_mode int_mode;

  /* By default, assume that everything has equivalent cost to the
     cheapest instruction.  Any additional costs are applied as a delta
     above this default.  */
  *cost = COSTS_N_INSNS (1);

  switch (code)
    {
    case SET:
      /* The cost depends entirely on the operands to SET.  */
      *cost = 0;
      op0 = SET_DEST (x);
      op1 = SET_SRC (x);

      switch (GET_CODE (op0))
	{
	case MEM:
	  if (speed)
	    {
	      rtx address = XEXP (op0, 0);
	      if (VECTOR_MODE_P (mode))
		*cost += extra_cost->ldst.storev;
	      else if (GET_MODE_CLASS (mode) == MODE_INT)
		*cost += extra_cost->ldst.store;
	      else if (mode == SFmode)
		*cost += extra_cost->ldst.storef;
	      else if (mode == DFmode)
		*cost += extra_cost->ldst.stored;

	      *cost +=
		COSTS_N_INSNS (aarch64_address_cost (address, mode,
						     0, speed));
	    }

	  *cost += rtx_cost (op1, mode, SET, 1, speed);
	  return true;

	case SUBREG:
	  if (! REG_P (SUBREG_REG (op0)))
	    *cost += rtx_cost (SUBREG_REG (op0), VOIDmode, SET, 0, speed);

	  /* Fall through.  */
	case REG:
	  /* The cost is one per vector-register copied.  */
	  if (VECTOR_MODE_P (GET_MODE (op0)) && REG_P (op1))
	    {
	      int n_minus_1 = (GET_MODE_SIZE (GET_MODE (op0)) - 1)
			      / GET_MODE_SIZE (V4SImode);
	      *cost = COSTS_N_INSNS (n_minus_1 + 1);
	    }
	  /* const0_rtx is in general free, but we will use an
	     instruction to set a register to 0.  */
	  else if (REG_P (op1) || op1 == const0_rtx)
	    {
	      /* The cost is 1 per register copied.  */
	      int n_minus_1 = (GET_MODE_SIZE (GET_MODE (op0)) - 1)
			      / UNITS_PER_WORD;
	      *cost = COSTS_N_INSNS (n_minus_1 + 1);
	    }
          else
	    /* Cost is just the cost of the RHS of the set.  */
	    *cost += rtx_cost (op1, mode, SET, 1, speed);
	  return true;

	case ZERO_EXTRACT:
	case SIGN_EXTRACT:
	  /* Bit-field insertion.  Strip any redundant widening of
	     the RHS to meet the width of the target.  */
	  if (GET_CODE (op1) == SUBREG)
	    op1 = SUBREG_REG (op1);
	  if ((GET_CODE (op1) == ZERO_EXTEND
	       || GET_CODE (op1) == SIGN_EXTEND)
	      && CONST_INT_P (XEXP (op0, 1))
	      && is_a <scalar_int_mode> (GET_MODE (XEXP (op1, 0)), &int_mode)
	      && GET_MODE_BITSIZE (int_mode) >= INTVAL (XEXP (op0, 1)))
	    op1 = XEXP (op1, 0);

          if (CONST_INT_P (op1))
            {
              /* MOV immediate is assumed to always be cheap.  */
              *cost = COSTS_N_INSNS (1);
            }
          else
            {
              /* BFM.  */
	      if (speed)
		*cost += extra_cost->alu.bfi;
	      *cost += rtx_cost (op1, VOIDmode, (enum rtx_code) code, 1, speed);
            }

	  return true;

	default:
	  /* We can't make sense of this, assume default cost.  */
          *cost = COSTS_N_INSNS (1);
	  return false;
	}
      return false;

    case CONST_INT:
      /* If an instruction can incorporate a constant within the
	 instruction, the instruction's expression avoids calling
	 rtx_cost() on the constant.  If rtx_cost() is called on a
	 constant, then it is usually because the constant must be
	 moved into a register by one or more instructions.

	 The exception is constant 0, which can be expressed
	 as XZR/WZR and is therefore free.  The exception to this is
	 if we have (set (reg) (const0_rtx)) in which case we must cost
	 the move.  However, we can catch that when we cost the SET, so
	 we don't need to consider that here.  */
      if (x == const0_rtx)
	*cost = 0;
      else
	{
	  /* To an approximation, building any other constant is
	     proportionally expensive to the number of instructions
	     required to build that constant.  This is true whether we
	     are compiling for SPEED or otherwise.  */
	  if (!is_a <scalar_int_mode> (mode, &int_mode))
	    int_mode = word_mode;
	  *cost = COSTS_N_INSNS (aarch64_internal_mov_immediate
				 (NULL_RTX, x, false, int_mode));
	}
      return true;

    case CONST_DOUBLE:

      /* First determine number of instructions to do the move
	  as an integer constant.  */
      if (!aarch64_float_const_representable_p (x)
	   && !aarch64_can_const_movi_rtx_p (x, mode)
	   && aarch64_float_const_rtx_p (x))
	{
	  unsigned HOST_WIDE_INT ival;
	  bool succeed = aarch64_reinterpret_float_as_int (x, &ival);
	  gcc_assert (succeed);

	  scalar_int_mode imode = (mode == HFmode
				   ? SImode
				   : int_mode_for_mode (mode).require ());
	  int ncost = aarch64_internal_mov_immediate
		(NULL_RTX, gen_int_mode (ival, imode), false, imode);
	  *cost += COSTS_N_INSNS (ncost);
	  return true;
	}

      if (speed)
	{
	  /* mov[df,sf]_aarch64.  */
	  if (aarch64_float_const_representable_p (x))
	    /* FMOV (scalar immediate).  */
	    *cost += extra_cost->fp[mode == DFmode].fpconst;
	  else if (!aarch64_float_const_zero_rtx_p (x))
	    {
	      /* This will be a load from memory.  */
	      if (mode == DFmode)
		*cost += extra_cost->ldst.loadd;
	      else
		*cost += extra_cost->ldst.loadf;
	    }
	  else
	    /* Otherwise this is +0.0.  We get this using MOVI d0, #0
	       or MOV v0.s[0], wzr - neither of which are modeled by the
	       cost tables.  Just use the default cost.  */
	    {
	    }
	}

      return true;

    case MEM:
      if (speed)
	{
	  /* For loads we want the base cost of a load, plus an
	     approximation for the additional cost of the addressing
	     mode.  */
	  rtx address = XEXP (x, 0);
	  if (VECTOR_MODE_P (mode))
	    *cost += extra_cost->ldst.loadv;
	  else if (GET_MODE_CLASS (mode) == MODE_INT)
	    *cost += extra_cost->ldst.load;
	  else if (mode == SFmode)
	    *cost += extra_cost->ldst.loadf;
	  else if (mode == DFmode)
	    *cost += extra_cost->ldst.loadd;

	  *cost +=
		COSTS_N_INSNS (aarch64_address_cost (address, mode,
						     0, speed));
	}

      return true;

    case NEG:
      op0 = XEXP (x, 0);

      if (VECTOR_MODE_P (mode))
	{
	  if (speed)
	    {
	      /* FNEG.  */
	      *cost += extra_cost->vect.alu;
	    }
	  return false;
	}

      if (GET_MODE_CLASS (mode) == MODE_INT)
	{
          if (GET_RTX_CLASS (GET_CODE (op0)) == RTX_COMPARE
              || GET_RTX_CLASS (GET_CODE (op0)) == RTX_COMM_COMPARE)
            {
              /* CSETM.  */
	      *cost += rtx_cost (XEXP (op0, 0), VOIDmode, NEG, 0, speed);
              return true;
            }

	  /* Cost this as SUB wzr, X.  */
          op0 = CONST0_RTX (mode);
          op1 = XEXP (x, 0);
          goto cost_minus;
        }

      if (GET_MODE_CLASS (mode) == MODE_FLOAT)
        {
          /* Support (neg(fma...)) as a single instruction only if
             sign of zeros is unimportant.  This matches the decision
             making in aarch64.md.  */
          if (GET_CODE (op0) == FMA && !HONOR_SIGNED_ZEROS (GET_MODE (op0)))
            {
	      /* FNMADD.  */
	      *cost = rtx_cost (op0, mode, NEG, 0, speed);
              return true;
            }
	  if (GET_CODE (op0) == MULT)
	    {
	      /* FNMUL.  */
	      *cost = rtx_cost (op0, mode, NEG, 0, speed);
	      return true;
	    }
	  if (speed)
	    /* FNEG.  */
	    *cost += extra_cost->fp[mode == DFmode].neg;
          return false;
        }

      return false;

    case CLRSB:
    case CLZ:
      if (speed)
	{
	  if (VECTOR_MODE_P (mode))
	    *cost += extra_cost->vect.alu;
	  else
	    *cost += extra_cost->alu.clz;
	}

      return false;

    case COMPARE:
      op0 = XEXP (x, 0);
      op1 = XEXP (x, 1);

      if (op1 == const0_rtx
	  && GET_CODE (op0) == AND)
	{
	  x = op0;
	  mode = GET_MODE (op0);
	  goto cost_logic;
	}

      if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT)
        {
          /* TODO: A write to the CC flags possibly costs extra, this
	     needs encoding in the cost tables.  */

	  mode = GET_MODE (op0);
          /* ANDS.  */
          if (GET_CODE (op0) == AND)
            {
              x = op0;
              goto cost_logic;
            }

          if (GET_CODE (op0) == PLUS)
            {
	      /* ADDS (and CMN alias).  */
              x = op0;
              goto cost_plus;
            }

          if (GET_CODE (op0) == MINUS)
            {
	      /* SUBS.  */
              x = op0;
              goto cost_minus;
            }

	  if (GET_CODE (op0) == ZERO_EXTRACT && op1 == const0_rtx
	      && GET_MODE (x) == CC_NZmode && CONST_INT_P (XEXP (op0, 1))
	      && CONST_INT_P (XEXP (op0, 2)))
	    {
	      /* COMPARE of ZERO_EXTRACT form of TST-immediate.
		 Handle it here directly rather than going to cost_logic
		 since we know the immediate generated for the TST is valid
		 so we can avoid creating an intermediate rtx for it only
		 for costing purposes.  */
	      if (speed)
		*cost += extra_cost->alu.logical;

	      *cost += rtx_cost (XEXP (op0, 0), GET_MODE (op0),
				 ZERO_EXTRACT, 0, speed);
	      return true;
	    }

          if (GET_CODE (op1) == NEG)
            {
	      /* CMN.  */
	      if (speed)
		*cost += extra_cost->alu.arith;

	      *cost += rtx_cost (op0, mode, COMPARE, 0, speed);
	      *cost += rtx_cost (XEXP (op1, 0), mode, NEG, 1, speed);
              return true;
            }

          /* CMP.

	     Compare can freely swap the order of operands, and
             canonicalization puts the more complex operation first.
             But the integer MINUS logic expects the shift/extend
             operation in op1.  */
          if (! (REG_P (op0)
                 || (GET_CODE (op0) == SUBREG && REG_P (SUBREG_REG (op0)))))
          {
            op0 = XEXP (x, 1);
            op1 = XEXP (x, 0);
          }
          goto cost_minus;
        }

      if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT)
        {
	  /* FCMP.  */
	  if (speed)
	    *cost += extra_cost->fp[mode == DFmode].compare;

          if (CONST_DOUBLE_P (op1) && aarch64_float_const_zero_rtx_p (op1))
            {
	      *cost += rtx_cost (op0, VOIDmode, COMPARE, 0, speed);
              /* FCMP supports constant 0.0 for no extra cost. */
              return true;
            }
          return false;
        }

      if (VECTOR_MODE_P (mode))
	{
	  /* Vector compare.  */
	  if (speed)
	    *cost += extra_cost->vect.alu;

	  if (aarch64_float_const_zero_rtx_p (op1))
	    {
	      /* Vector cm (eq|ge|gt|lt|le) supports constant 0.0 for no extra
		 cost.  */
	      return true;
	    }
	  return false;
	}
      return false;

    case MINUS:
      {
	op0 = XEXP (x, 0);
	op1 = XEXP (x, 1);

cost_minus:
	*cost += rtx_cost (op0, mode, MINUS, 0, speed);

	/* Detect valid immediates.  */
	if ((GET_MODE_CLASS (mode) == MODE_INT
	     || (GET_MODE_CLASS (mode) == MODE_CC
		 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT))
	    && CONST_INT_P (op1)
	    && aarch64_uimm12_shift (INTVAL (op1)))
	  {
	    if (speed)
	      /* SUB(S) (immediate).  */
	      *cost += extra_cost->alu.arith;
	    return true;
	  }

	/* Look for SUB (extended register).  */
	if (is_a <scalar_int_mode> (mode, &int_mode)
	    && aarch64_rtx_arith_op_extract_p (op1, int_mode))
	  {
	    if (speed)
	      *cost += extra_cost->alu.extend_arith;

	    op1 = aarch64_strip_extend (op1, true);
	    *cost += rtx_cost (op1, VOIDmode,
			       (enum rtx_code) GET_CODE (op1), 0, speed);
	    return true;
	  }

	rtx new_op1 = aarch64_strip_extend (op1, false);

	/* Cost this as an FMA-alike operation.  */
	if ((GET_CODE (new_op1) == MULT
	     || aarch64_shift_p (GET_CODE (new_op1)))
	    && code != COMPARE)
	  {
	    *cost += aarch64_rtx_mult_cost (new_op1, MULT,
					    (enum rtx_code) code,
					    speed);
	    return true;
	  }

	*cost += rtx_cost (new_op1, VOIDmode, MINUS, 1, speed);

	if (speed)
	  {
	    if (VECTOR_MODE_P (mode))
	      {
		/* Vector SUB.  */
		*cost += extra_cost->vect.alu;
	      }
	    else if (GET_MODE_CLASS (mode) == MODE_INT)
	      {
		/* SUB(S).  */
		*cost += extra_cost->alu.arith;
	      }
	    else if (GET_MODE_CLASS (mode) == MODE_FLOAT)
	      {
		/* FSUB.  */
		*cost += extra_cost->fp[mode == DFmode].addsub;
	      }
	  }
	return true;
      }

    case PLUS:
      {
	rtx new_op0;

	op0 = XEXP (x, 0);
	op1 = XEXP (x, 1);

cost_plus:
	if (GET_RTX_CLASS (GET_CODE (op0)) == RTX_COMPARE
	    || GET_RTX_CLASS (GET_CODE (op0)) == RTX_COMM_COMPARE)
	  {
	    /* CSINC.  */
	    *cost += rtx_cost (XEXP (op0, 0), mode, PLUS, 0, speed);
	    *cost += rtx_cost (op1, mode, PLUS, 1, speed);
	    return true;
	  }

	if (GET_MODE_CLASS (mode) == MODE_INT
	    && CONST_INT_P (op1)
	    && aarch64_uimm12_shift (INTVAL (op1)))
	  {
	    *cost += rtx_cost (op0, mode, PLUS, 0, speed);

	    if (speed)
	      /* ADD (immediate).  */
	      *cost += extra_cost->alu.arith;
	    return true;
	  }

	*cost += rtx_cost (op1, mode, PLUS, 1, speed);

	/* Look for ADD (extended register).  */
	if (is_a <scalar_int_mode> (mode, &int_mode)
	    && aarch64_rtx_arith_op_extract_p (op0, int_mode))
	  {
	    if (speed)
	      *cost += extra_cost->alu.extend_arith;

	    op0 = aarch64_strip_extend (op0, true);
	    *cost += rtx_cost (op0, VOIDmode,
			       (enum rtx_code) GET_CODE (op0), 0, speed);
	    return true;
	  }

	/* Strip any extend, leave shifts behind as we will
	   cost them through mult_cost.  */
	new_op0 = aarch64_strip_extend (op0, false);

	if (GET_CODE (new_op0) == MULT
	    || aarch64_shift_p (GET_CODE (new_op0)))
	  {
	    *cost += aarch64_rtx_mult_cost (new_op0, MULT, PLUS,
					    speed);
	    return true;
	  }

	*cost += rtx_cost (new_op0, VOIDmode, PLUS, 0, speed);

	if (speed)
	  {
	    if (VECTOR_MODE_P (mode))
	      {
		/* Vector ADD.  */
		*cost += extra_cost->vect.alu;
	      }
	    else if (GET_MODE_CLASS (mode) == MODE_INT)
	      {
		/* ADD.  */
		*cost += extra_cost->alu.arith;
	      }
	    else if (GET_MODE_CLASS (mode) == MODE_FLOAT)
	      {
		/* FADD.  */
		*cost += extra_cost->fp[mode == DFmode].addsub;
	      }
	  }
	return true;
      }

    case BSWAP:
      *cost = COSTS_N_INSNS (1);

      if (speed)
	{
	  if (VECTOR_MODE_P (mode))
	    *cost += extra_cost->vect.alu;
	  else
	    *cost += extra_cost->alu.rev;
	}
      return false;

    case IOR:
      if (aarch_rev16_p (x))
        {
          *cost = COSTS_N_INSNS (1);

	  if (speed)
	    {
	      if (VECTOR_MODE_P (mode))
		*cost += extra_cost->vect.alu;
	      else
		*cost += extra_cost->alu.rev;
	    }
	  return true;
        }

      if (aarch64_extr_rtx_p (x, &op0, &op1))
        {
	  *cost += rtx_cost (op0, mode, IOR, 0, speed);
	  *cost += rtx_cost (op1, mode, IOR, 1, speed);
          if (speed)
            *cost += extra_cost->alu.shift;

          return true;
        }
    /* Fall through.  */
    case XOR:
    case AND:
    cost_logic:
      op0 = XEXP (x, 0);
      op1 = XEXP (x, 1);

      if (VECTOR_MODE_P (mode))
	{
	  if (speed)
	    *cost += extra_cost->vect.alu;
	  return true;
	}

      if (code == AND
          && GET_CODE (op0) == MULT
          && CONST_INT_P (XEXP (op0, 1))
          && CONST_INT_P (op1)
          && aarch64_uxt_size (exact_log2 (INTVAL (XEXP (op0, 1))),
                               INTVAL (op1)) != 0)
        {
          /* This is a UBFM/SBFM.  */
	  *cost += rtx_cost (XEXP (op0, 0), mode, ZERO_EXTRACT, 0, speed);
	  if (speed)
	    *cost += extra_cost->alu.bfx;
          return true;
        }

      if (is_int_mode (mode, &int_mode))
	{
	  if (CONST_INT_P (op1))
	    {
	      /* We have a mask + shift version of a UBFIZ
		 i.e. the *andim_ashift<mode>_bfiz pattern.  */
	      if (GET_CODE (op0) == ASHIFT
		  && aarch64_mask_and_shift_for_ubfiz_p (int_mode, op1,
							 XEXP (op0, 1)))
		{
		  *cost += rtx_cost (XEXP (op0, 0), int_mode,
				     (enum rtx_code) code, 0, speed);
		  if (speed)
		    *cost += extra_cost->alu.bfx;

		  return true;
		}
	      else if (aarch64_bitmask_imm (INTVAL (op1), int_mode))
		{
		/* We possibly get the immediate for free, this is not
		   modelled.  */
		  *cost += rtx_cost (op0, int_mode,
				     (enum rtx_code) code, 0, speed);
		  if (speed)
		    *cost += extra_cost->alu.logical;

		  return true;
		}
	    }
	  else
	    {
	      rtx new_op0 = op0;

	      /* Handle ORN, EON, or BIC.  */
	      if (GET_CODE (op0) == NOT)
		op0 = XEXP (op0, 0);

	      new_op0 = aarch64_strip_shift (op0);

	      /* If we had a shift on op0 then this is a logical-shift-
		 by-register/immediate operation.  Otherwise, this is just
		 a logical operation.  */
	      if (speed)
		{
		  if (new_op0 != op0)
		    {
		      /* Shift by immediate.  */
		      if (CONST_INT_P (XEXP (op0, 1)))
			*cost += extra_cost->alu.log_shift;
		      else
			*cost += extra_cost->alu.log_shift_reg;
		    }
		  else
		    *cost += extra_cost->alu.logical;
		}

	      /* In both cases we want to cost both operands.  */
	      *cost += rtx_cost (new_op0, int_mode, (enum rtx_code) code,
				 0, speed);
	      *cost += rtx_cost (op1, int_mode, (enum rtx_code) code,
				 1, speed);

	      return true;
	    }
	}
      return false;

    case NOT:
      x = XEXP (x, 0);
      op0 = aarch64_strip_shift (x);

      if (VECTOR_MODE_P (mode))
	{
	  /* Vector NOT.  */
	  *cost += extra_cost->vect.alu;
	  return false;
	}

      /* MVN-shifted-reg.  */
      if (op0 != x)
        {
	  *cost += rtx_cost (op0, mode, (enum rtx_code) code, 0, speed);

          if (speed)
            *cost += extra_cost->alu.log_shift;

          return true;
        }
      /* EON can have two forms: (xor (not a) b) but also (not (xor a b)).
         Handle the second form here taking care that 'a' in the above can
         be a shift.  */
      else if (GET_CODE (op0) == XOR)
        {
          rtx newop0 = XEXP (op0, 0);
          rtx newop1 = XEXP (op0, 1);
          rtx op0_stripped = aarch64_strip_shift (newop0);

	  *cost += rtx_cost (newop1, mode, (enum rtx_code) code, 1, speed);
	  *cost += rtx_cost (op0_stripped, mode, XOR, 0, speed);

          if (speed)
            {
              if (op0_stripped != newop0)
                *cost += extra_cost->alu.log_shift;
              else
                *cost += extra_cost->alu.logical;
            }

          return true;
        }
      /* MVN.  */
      if (speed)
	*cost += extra_cost->alu.logical;

      return false;

    case ZERO_EXTEND:

      op0 = XEXP (x, 0);
      /* If a value is written in SI mode, then zero extended to DI
	 mode, the operation will in general be free as a write to
	 a 'w' register implicitly zeroes the upper bits of an 'x'
	 register.  However, if this is

	   (set (reg) (zero_extend (reg)))

	 we must cost the explicit register move.  */
      if (mode == DImode
	  && GET_MODE (op0) == SImode
	  && outer == SET)
	{
	  int op_cost = rtx_cost (op0, VOIDmode, ZERO_EXTEND, 0, speed);

	/* If OP_COST is non-zero, then the cost of the zero extend
	   is effectively the cost of the inner operation.  Otherwise
	   we have a MOV instruction and we take the cost from the MOV
	   itself.  This is true independently of whether we are
	   optimizing for space or time.  */
	  if (op_cost)
	    *cost = op_cost;

	  return true;
	}
      else if (MEM_P (op0))
	{
	  /* All loads can zero extend to any size for free.  */
	  *cost = rtx_cost (op0, VOIDmode, ZERO_EXTEND, param, speed);
	  return true;
	}

      op0 = aarch64_extend_bitfield_pattern_p (x);
      if (op0)
	{
	  *cost += rtx_cost (op0, mode, ZERO_EXTEND, 0, speed);
	  if (speed)
	    *cost += extra_cost->alu.bfx;
	  return true;
	}

      if (speed)
	{
	  if (VECTOR_MODE_P (mode))
	    {
	      /* UMOV.  */
	      *cost += extra_cost->vect.alu;
	    }
	  else
	    {
	      /* We generate an AND instead of UXTB/UXTH.  */
	      *cost += extra_cost->alu.logical;
	    }
	}
      return false;

    case SIGN_EXTEND:
      if (MEM_P (XEXP (x, 0)))
	{
	  /* LDRSH.  */
	  if (speed)
	    {
	      rtx address = XEXP (XEXP (x, 0), 0);
	      *cost += extra_cost->ldst.load_sign_extend;

	      *cost +=
		COSTS_N_INSNS (aarch64_address_cost (address, mode,
						     0, speed));
	    }
	  return true;
	}

      op0 = aarch64_extend_bitfield_pattern_p (x);
      if (op0)
	{
	  *cost += rtx_cost (op0, mode, SIGN_EXTEND, 0, speed);
	  if (speed)
	    *cost += extra_cost->alu.bfx;
	  return true;
	}

      if (speed)
	{
	  if (VECTOR_MODE_P (mode))
	    *cost += extra_cost->vect.alu;
	  else
	    *cost += extra_cost->alu.extend;
	}
      return false;

    case ASHIFT:
      op0 = XEXP (x, 0);
      op1 = XEXP (x, 1);

      if (CONST_INT_P (op1))
        {
	  if (speed)
	    {
	      if (VECTOR_MODE_P (mode))
		{
		  /* Vector shift (immediate).  */
		  *cost += extra_cost->vect.alu;
		}
	      else
		{
		  /* LSL (immediate), UBMF, UBFIZ and friends.  These are all
		     aliases.  */
		  *cost += extra_cost->alu.shift;
		}
	    }

          /* We can incorporate zero/sign extend for free.  */
          if (GET_CODE (op0) == ZERO_EXTEND
              || GET_CODE (op0) == SIGN_EXTEND)
            op0 = XEXP (op0, 0);

	  *cost += rtx_cost (op0, VOIDmode, ASHIFT, 0, speed);
          return true;
        }
      else
        {
	  if (VECTOR_MODE_P (mode))
	    {
	      if (speed)
		/* Vector shift (register).  */
		*cost += extra_cost->vect.alu;
	    }
	  else
	    {
	      if (speed)
		/* LSLV.  */
		*cost += extra_cost->alu.shift_reg;

	      if (GET_CODE (op1) == AND && REG_P (XEXP (op1, 0))
		  && CONST_INT_P (XEXP (op1, 1))
		  && INTVAL (XEXP (op1, 1)) == GET_MODE_BITSIZE (mode) - 1)
		{
		  *cost += rtx_cost (op0, mode, (rtx_code) code, 0, speed);
		  /* We already demanded XEXP (op1, 0) to be REG_P, so
		     don't recurse into it.  */
		  return true;
		}
	    }
	  return false;  /* All arguments need to be in registers.  */
        }

    case ROTATE:
    case ROTATERT:
    case LSHIFTRT:
    case ASHIFTRT:
      op0 = XEXP (x, 0);
      op1 = XEXP (x, 1);

      if (CONST_INT_P (op1))
	{
	  /* ASR (immediate) and friends.  */
	  if (speed)
	    {
	      if (VECTOR_MODE_P (mode))
		*cost += extra_cost->vect.alu;
	      else
		*cost += extra_cost->alu.shift;
	    }

	  *cost += rtx_cost (op0, mode, (enum rtx_code) code, 0, speed);
	  return true;
	}
      else
	{
	  if (VECTOR_MODE_P (mode))
	    {
	      if (speed)
		/* Vector shift (register).  */
		*cost += extra_cost->vect.alu;
	    }
	  else
	    {
	      if (speed)
		/* ASR (register) and friends.  */
		*cost += extra_cost->alu.shift_reg;

	      if (GET_CODE (op1) == AND && REG_P (XEXP (op1, 0))
		  && CONST_INT_P (XEXP (op1, 1))
		  && INTVAL (XEXP (op1, 1)) == GET_MODE_BITSIZE (mode) - 1)
		{
		  *cost += rtx_cost (op0, mode, (rtx_code) code, 0, speed);
		  /* We already demanded XEXP (op1, 0) to be REG_P, so
		     don't recurse into it.  */
		  return true;
		}
	    }
	  return false;  /* All arguments need to be in registers.  */
	}

    case SYMBOL_REF:

      if (aarch64_cmodel == AARCH64_CMODEL_LARGE
	  || aarch64_cmodel == AARCH64_CMODEL_SMALL_SPIC)
	{
	  /* LDR.  */
	  if (speed)
	    *cost += extra_cost->ldst.load;
	}
      else if (aarch64_cmodel == AARCH64_CMODEL_SMALL
	       || aarch64_cmodel == AARCH64_CMODEL_SMALL_PIC)
	{
	  /* ADRP, followed by ADD.  */
	  *cost += COSTS_N_INSNS (1);
	  if (speed)
	    *cost += 2 * extra_cost->alu.arith;
	}
      else if (aarch64_cmodel == AARCH64_CMODEL_TINY
	       || aarch64_cmodel == AARCH64_CMODEL_TINY_PIC)
	{
	  /* ADR.  */
	  if (speed)
	    *cost += extra_cost->alu.arith;
	}

      if (flag_pic)
	{
	  /* One extra load instruction, after accessing the GOT.  */
	  *cost += COSTS_N_INSNS (1);
	  if (speed)
	    *cost += extra_cost->ldst.load;
	}
      return true;

    case HIGH:
    case LO_SUM:
      /* ADRP/ADD (immediate).  */
      if (speed)
	*cost += extra_cost->alu.arith;
      return true;

    case ZERO_EXTRACT:
    case SIGN_EXTRACT:
      /* UBFX/SBFX.  */
      if (speed)
	{
	  if (VECTOR_MODE_P (mode))
	    *cost += extra_cost->vect.alu;
	  else
	    *cost += extra_cost->alu.bfx;
	}

      /* We can trust that the immediates used will be correct (there
	 are no by-register forms), so we need only cost op0.  */
      *cost += rtx_cost (XEXP (x, 0), VOIDmode, (enum rtx_code) code, 0, speed);
      return true;

    case MULT:
      *cost += aarch64_rtx_mult_cost (x, MULT, 0, speed);
      /* aarch64_rtx_mult_cost always handles recursion to its
	 operands.  */
      return true;

    case MOD:
    /* We can expand signed mod by power of 2 using a NEGS, two parallel
       ANDs and a CSNEG.  Assume here that CSNEG is the same as the cost of
       an unconditional negate.  This case should only ever be reached through
       the set_smod_pow2_cheap check in expmed.c.  */
      if (CONST_INT_P (XEXP (x, 1))
	  && exact_log2 (INTVAL (XEXP (x, 1))) > 0
	  && (mode == SImode || mode == DImode))
	{
	  /* We expand to 4 instructions.  Reset the baseline.  */
	  *cost = COSTS_N_INSNS (4);

	  if (speed)
	    *cost += 2 * extra_cost->alu.logical
		     + 2 * extra_cost->alu.arith;

	  return true;
	}

    /* Fall-through.  */
    case UMOD:
      if (speed)
	{
	  /* Slighly prefer UMOD over SMOD.  */
	  if (VECTOR_MODE_P (mode))
	    *cost += extra_cost->vect.alu;
	  else if (GET_MODE_CLASS (mode) == MODE_INT)
	    *cost += (extra_cost->mult[mode == DImode].add
		      + extra_cost->mult[mode == DImode].idiv
		      + (code == MOD ? 1 : 0));
	}
      return false;  /* All arguments need to be in registers.  */

    case DIV:
    case UDIV:
    case SQRT:
      if (speed)
	{
	  if (VECTOR_MODE_P (mode))
	    *cost += extra_cost->vect.alu;
	  else if (GET_MODE_CLASS (mode) == MODE_INT)
	    /* There is no integer SQRT, so only DIV and UDIV can get
	       here.  */
	    *cost += (extra_cost->mult[mode == DImode].idiv
		     /* Slighly prefer UDIV over SDIV.  */
		     + (code == DIV ? 1 : 0));
	  else
	    *cost += extra_cost->fp[mode == DFmode].div;
	}
      return false;  /* All arguments need to be in registers.  */

    case IF_THEN_ELSE:
      return aarch64_if_then_else_costs (XEXP (x, 0), XEXP (x, 1),
					 XEXP (x, 2), cost, speed);

    case EQ:
    case NE:
    case GT:
    case GTU:
    case LT:
    case LTU:
    case GE:
    case GEU:
    case LE:
    case LEU:

      return false; /* All arguments must be in registers.  */

    case FMA:
      op0 = XEXP (x, 0);
      op1 = XEXP (x, 1);
      op2 = XEXP (x, 2);

      if (speed)
	{
	  if (VECTOR_MODE_P (mode))
	    *cost += extra_cost->vect.alu;
	  else
	    *cost += extra_cost->fp[mode == DFmode].fma;
	}

      /* FMSUB, FNMADD, and FNMSUB are free.  */
      if (GET_CODE (op0) == NEG)
        op0 = XEXP (op0, 0);

      if (GET_CODE (op2) == NEG)
        op2 = XEXP (op2, 0);

      /* aarch64_fnma4_elt_to_64v2df has the NEG as operand 1,
	 and the by-element operand as operand 0.  */
      if (GET_CODE (op1) == NEG)
        op1 = XEXP (op1, 0);

      /* Catch vector-by-element operations.  The by-element operand can
	 either be (vec_duplicate (vec_select (x))) or just
	 (vec_select (x)), depending on whether we are multiplying by
	 a vector or a scalar.

	 Canonicalization is not very good in these cases, FMA4 will put the
	 by-element operand as operand 0, FNMA4 will have it as operand 1.  */
      if (GET_CODE (op0) == VEC_DUPLICATE)
	op0 = XEXP (op0, 0);
      else if (GET_CODE (op1) == VEC_DUPLICATE)
	op1 = XEXP (op1, 0);

      if (GET_CODE (op0) == VEC_SELECT)
	op0 = XEXP (op0, 0);
      else if (GET_CODE (op1) == VEC_SELECT)
	op1 = XEXP (op1, 0);

      /* If the remaining parameters are not registers,
         get the cost to put them into registers.  */
      *cost += rtx_cost (op0, mode, FMA, 0, speed);
      *cost += rtx_cost (op1, mode, FMA, 1, speed);
      *cost += rtx_cost (op2, mode, FMA, 2, speed);
      return true;

    case FLOAT:
    case UNSIGNED_FLOAT:
      if (speed)
	*cost += extra_cost->fp[mode == DFmode].fromint;
      return false;

    case FLOAT_EXTEND:
      if (speed)
	{
	  if (VECTOR_MODE_P (mode))
	    {
	      /*Vector truncate.  */
	      *cost += extra_cost->vect.alu;
	    }
	  else
	    *cost += extra_cost->fp[mode == DFmode].widen;
	}
      return false;

    case FLOAT_TRUNCATE:
      if (speed)
	{
	  if (VECTOR_MODE_P (mode))
	    {
	      /*Vector conversion.  */
	      *cost += extra_cost->vect.alu;
	    }
	  else
	    *cost += extra_cost->fp[mode == DFmode].narrow;
	}
      return false;

    case FIX:
    case UNSIGNED_FIX:
      x = XEXP (x, 0);
      /* Strip the rounding part.  They will all be implemented
         by the fcvt* family of instructions anyway.  */
      if (GET_CODE (x) == UNSPEC)
        {
          unsigned int uns_code = XINT (x, 1);

          if (uns_code == UNSPEC_FRINTA
              || uns_code == UNSPEC_FRINTM
              || uns_code == UNSPEC_FRINTN
              || uns_code == UNSPEC_FRINTP
              || uns_code == UNSPEC_FRINTZ)
            x = XVECEXP (x, 0, 0);
        }

      if (speed)
	{
	  if (VECTOR_MODE_P (mode))
	    *cost += extra_cost->vect.alu;
	  else
	    *cost += extra_cost->fp[GET_MODE (x) == DFmode].toint;
	}

      /* We can combine fmul by a power of 2 followed by a fcvt into a single
	 fixed-point fcvt.  */
      if (GET_CODE (x) == MULT
	  && ((VECTOR_MODE_P (mode)
	       && aarch64_vec_fpconst_pow_of_2 (XEXP (x, 1)) > 0)
	      || aarch64_fpconst_pow_of_2 (XEXP (x, 1)) > 0))
	{
	  *cost += rtx_cost (XEXP (x, 0), VOIDmode, (rtx_code) code,
			     0, speed);
	  return true;
	}

      *cost += rtx_cost (x, VOIDmode, (enum rtx_code) code, 0, speed);
      return true;

    case ABS:
      if (VECTOR_MODE_P (mode))
	{
	  /* ABS (vector).  */
	  if (speed)
	    *cost += extra_cost->vect.alu;
	}
      else if (GET_MODE_CLASS (mode) == MODE_FLOAT)
	{
	  op0 = XEXP (x, 0);

	  /* FABD, which is analogous to FADD.  */
	  if (GET_CODE (op0) == MINUS)
	    {
	      *cost += rtx_cost (XEXP (op0, 0), mode, MINUS, 0, speed);
	      *cost += rtx_cost (XEXP (op0, 1), mode, MINUS, 1, speed);
	      if (speed)
		*cost += extra_cost->fp[mode == DFmode].addsub;

	      return true;
	    }
	  /* Simple FABS is analogous to FNEG.  */
	  if (speed)
	    *cost += extra_cost->fp[mode == DFmode].neg;
	}
      else
	{
	  /* Integer ABS will either be split to
	     two arithmetic instructions, or will be an ABS
	     (scalar), which we don't model.  */
	  *cost = COSTS_N_INSNS (2);
	  if (speed)
	    *cost += 2 * extra_cost->alu.arith;
	}
      return false;

    case SMAX:
    case SMIN:
      if (speed)
	{
	  if (VECTOR_MODE_P (mode))
	    *cost += extra_cost->vect.alu;
	  else
	    {
	      /* FMAXNM/FMINNM/FMAX/FMIN.
	         TODO: This may not be accurate for all implementations, but
	         we do not model this in the cost tables.  */
	      *cost += extra_cost->fp[mode == DFmode].addsub;
	    }
	}
      return false;

    case UNSPEC:
      /* The floating point round to integer frint* instructions.  */
      if (aarch64_frint_unspec_p (XINT (x, 1)))
        {
          if (speed)
            *cost += extra_cost->fp[mode == DFmode].roundint;

          return false;
        }

      if (XINT (x, 1) == UNSPEC_RBIT)
        {
          if (speed)
            *cost += extra_cost->alu.rev;

          return false;
        }
      break;

    case TRUNCATE:

      /* Decompose <su>muldi3_highpart.  */
      if (/* (truncate:DI  */
	  mode == DImode
	  /*   (lshiftrt:TI  */
          && GET_MODE (XEXP (x, 0)) == TImode
          && GET_CODE (XEXP (x, 0)) == LSHIFTRT
	  /*      (mult:TI  */
          && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT
	  /*        (ANY_EXTEND:TI (reg:DI))
	            (ANY_EXTEND:TI (reg:DI)))  */
          && ((GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ZERO_EXTEND
               && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == ZERO_EXTEND)
              || (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == SIGN_EXTEND
                  && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == SIGN_EXTEND))
          && GET_MODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0)) == DImode
          && GET_MODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 1), 0)) == DImode
	  /*     (const_int 64)  */
          && CONST_INT_P (XEXP (XEXP (x, 0), 1))
          && UINTVAL (XEXP (XEXP (x, 0), 1)) == 64)
        {
          /* UMULH/SMULH.  */
	  if (speed)
	    *cost += extra_cost->mult[mode == DImode].extend;
	  *cost += rtx_cost (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
			     mode, MULT, 0, speed);
	  *cost += rtx_cost (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 1), 0),
			     mode, MULT, 1, speed);
          return true;
        }

      /* Fall through.  */
    default:
      break;
    }

  if (dump_file
      && flag_aarch64_verbose_cost)
    fprintf (dump_file,
      "\nFailed to cost RTX.  Assuming default cost.\n");

  return true;
}

/* Wrapper around aarch64_rtx_costs, dumps the partial, or total cost
   calculated for X.  This cost is stored in *COST.  Returns true
   if the total cost of X was calculated.  */
static bool
aarch64_rtx_costs_wrapper (rtx x, machine_mode mode, int outer,
		   int param, int *cost, bool speed)
{
  bool result = aarch64_rtx_costs (x, mode, outer, param, cost, speed);

  if (dump_file
      && flag_aarch64_verbose_cost)
    {
      print_rtl_single (dump_file, x);
      fprintf (dump_file, "\n%s cost: %d (%s)\n",
	       speed ? "Hot" : "Cold",
	       *cost, result ? "final" : "partial");
    }

  return result;
}

static int
aarch64_register_move_cost (machine_mode mode,
			    reg_class_t from_i, reg_class_t to_i)
{
  enum reg_class from = (enum reg_class) from_i;
  enum reg_class to = (enum reg_class) to_i;
  const struct cpu_regmove_cost *regmove_cost
    = aarch64_tune_params.regmove_cost;

  /* Caller save and pointer regs are equivalent to GENERAL_REGS.  */
  if (to == CALLER_SAVE_REGS || to == POINTER_REGS)
    to = GENERAL_REGS;

  if (from == CALLER_SAVE_REGS || from == POINTER_REGS)
    from = GENERAL_REGS;

  /* Moving between GPR and stack cost is the same as GP2GP.  */
  if ((from == GENERAL_REGS && to == STACK_REG)
      || (to == GENERAL_REGS && from == STACK_REG))
    return regmove_cost->GP2GP;

  /* To/From the stack register, we move via the gprs.  */
  if (to == STACK_REG || from == STACK_REG)
    return aarch64_register_move_cost (mode, from, GENERAL_REGS)
            + aarch64_register_move_cost (mode, GENERAL_REGS, to);

  if (GET_MODE_SIZE (mode) == 16)
    {
      /* 128-bit operations on general registers require 2 instructions.  */
      if (from == GENERAL_REGS && to == GENERAL_REGS)
	return regmove_cost->GP2GP * 2;
      else if (from == GENERAL_REGS)
	return regmove_cost->GP2FP * 2;
      else if (to == GENERAL_REGS)
	return regmove_cost->FP2GP * 2;

      /* When AdvSIMD instructions are disabled it is not possible to move
	 a 128-bit value directly between Q registers.  This is handled in
	 secondary reload.  A general register is used as a scratch to move
	 the upper DI value and the lower DI value is moved directly,
	 hence the cost is the sum of three moves. */
      if (! TARGET_SIMD)
	return regmove_cost->GP2FP + regmove_cost->FP2GP + regmove_cost->FP2FP;

      return regmove_cost->FP2FP;
    }

  if (from == GENERAL_REGS && to == GENERAL_REGS)
    return regmove_cost->GP2GP;
  else if (from == GENERAL_REGS)
    return regmove_cost->GP2FP;
  else if (to == GENERAL_REGS)
    return regmove_cost->FP2GP;

  return regmove_cost->FP2FP;
}

static int
aarch64_memory_move_cost (machine_mode mode ATTRIBUTE_UNUSED,
			  reg_class_t rclass ATTRIBUTE_UNUSED,
			  bool in ATTRIBUTE_UNUSED)
{
  return aarch64_tune_params.memmov_cost;
}

/* Return true if it is safe and beneficial to use the approximate rsqrt optabs
   to optimize 1.0/sqrt.  */

static bool
use_rsqrt_p (machine_mode mode)
{
  return (!flag_trapping_math
	  && flag_unsafe_math_optimizations
	  && ((aarch64_tune_params.approx_modes->recip_sqrt
	       & AARCH64_APPROX_MODE (mode))
	      || flag_mrecip_low_precision_sqrt));
}

/* Function to decide when to use the approximate reciprocal square root
   builtin.  */

static tree
aarch64_builtin_reciprocal (tree fndecl)
{
  machine_mode mode = TYPE_MODE (TREE_TYPE (fndecl));

  if (!use_rsqrt_p (mode))
    return NULL_TREE;
  return aarch64_builtin_rsqrt (DECL_FUNCTION_CODE (fndecl));
}

typedef rtx (*rsqrte_type) (rtx, rtx);

/* Select reciprocal square root initial estimate insn depending on machine
   mode.  */

static rsqrte_type
get_rsqrte_type (machine_mode mode)
{
  switch (mode)
  {
    case E_DFmode:   return gen_aarch64_rsqrtedf;
    case E_SFmode:   return gen_aarch64_rsqrtesf;
    case E_V2DFmode: return gen_aarch64_rsqrtev2df;
    case E_V2SFmode: return gen_aarch64_rsqrtev2sf;
    case E_V4SFmode: return gen_aarch64_rsqrtev4sf;
    default: gcc_unreachable ();
  }
}

typedef rtx (*rsqrts_type) (rtx, rtx, rtx);

/* Select reciprocal square root series step insn depending on machine mode.  */

static rsqrts_type
get_rsqrts_type (machine_mode mode)
{
  switch (mode)
  {
    case E_DFmode:   return gen_aarch64_rsqrtsdf;
    case E_SFmode:   return gen_aarch64_rsqrtssf;
    case E_V2DFmode: return gen_aarch64_rsqrtsv2df;
    case E_V2SFmode: return gen_aarch64_rsqrtsv2sf;
    case E_V4SFmode: return gen_aarch64_rsqrtsv4sf;
    default: gcc_unreachable ();
  }
}

/* Emit instruction sequence to compute either the approximate square root
   or its approximate reciprocal, depending on the flag RECP, and return
   whether the sequence was emitted or not.  */

bool
aarch64_emit_approx_sqrt (rtx dst, rtx src, bool recp)
{
  machine_mode mode = GET_MODE (dst);

  if (GET_MODE_INNER (mode) == HFmode)
    {
      gcc_assert (!recp);
      return false;
    }

  if (!recp)
    {
      if (!(flag_mlow_precision_sqrt
	    || (aarch64_tune_params.approx_modes->sqrt
		& AARCH64_APPROX_MODE (mode))))
	return false;

      if (flag_finite_math_only
	  || flag_trapping_math
	  || !flag_unsafe_math_optimizations
	  || optimize_function_for_size_p (cfun))
	return false;
    }
  else
    /* Caller assumes we cannot fail.  */
    gcc_assert (use_rsqrt_p (mode));

  machine_mode mmsk = mode_for_int_vector (mode).require ();
  rtx xmsk = gen_reg_rtx (mmsk);
  if (!recp)
    /* When calculating the approximate square root, compare the
       argument with 0.0 and create a mask.  */
    emit_insn (gen_rtx_SET (xmsk,
			    gen_rtx_NEG (mmsk,
					 gen_rtx_EQ (mmsk, src,
						     CONST0_RTX (mode)))));

  /* Estimate the approximate reciprocal square root.  */
  rtx xdst = gen_reg_rtx (mode);
  emit_insn ((*get_rsqrte_type (mode)) (xdst, src));

  /* Iterate over the series twice for SF and thrice for DF.  */
  int iterations = (GET_MODE_INNER (mode) == DFmode) ? 3 : 2;

  /* Optionally iterate over the series once less for faster performance
     while sacrificing the accuracy.  */
  if ((recp && flag_mrecip_low_precision_sqrt)
      || (!recp && flag_mlow_precision_sqrt))
    iterations--;

  /* Iterate over the series to calculate the approximate reciprocal square
     root.  */
  rtx x1 = gen_reg_rtx (mode);
  while (iterations--)
    {
      rtx x2 = gen_reg_rtx (mode);
      emit_set_insn (x2, gen_rtx_MULT (mode, xdst, xdst));

      emit_insn ((*get_rsqrts_type (mode)) (x1, src, x2));

      if (iterations > 0)
	emit_set_insn (xdst, gen_rtx_MULT (mode, xdst, x1));
    }

  if (!recp)
    {
      /* Qualify the approximate reciprocal square root when the argument is
	 0.0 by squashing the intermediary result to 0.0.  */
      rtx xtmp = gen_reg_rtx (mmsk);
      emit_set_insn (xtmp, gen_rtx_AND (mmsk, gen_rtx_NOT (mmsk, xmsk),
					      gen_rtx_SUBREG (mmsk, xdst, 0)));
      emit_move_insn (xdst, gen_rtx_SUBREG (mode, xtmp, 0));

      /* Calculate the approximate square root.  */
      emit_set_insn (xdst, gen_rtx_MULT (mode, xdst, src));
    }

  /* Finalize the approximation.  */
  emit_set_insn (dst, gen_rtx_MULT (mode, xdst, x1));

  return true;
}

typedef rtx (*recpe_type) (rtx, rtx);

/* Select reciprocal initial estimate insn depending on machine mode.  */

static recpe_type
get_recpe_type (machine_mode mode)
{
  switch (mode)
  {
    case E_SFmode:   return (gen_aarch64_frecpesf);
    case E_V2SFmode: return (gen_aarch64_frecpev2sf);
    case E_V4SFmode: return (gen_aarch64_frecpev4sf);
    case E_DFmode:   return (gen_aarch64_frecpedf);
    case E_V2DFmode: return (gen_aarch64_frecpev2df);
    default:         gcc_unreachable ();
  }
}

typedef rtx (*recps_type) (rtx, rtx, rtx);

/* Select reciprocal series step insn depending on machine mode.  */

static recps_type
get_recps_type (machine_mode mode)
{
  switch (mode)
  {
    case E_SFmode:   return (gen_aarch64_frecpssf);
    case E_V2SFmode: return (gen_aarch64_frecpsv2sf);
    case E_V4SFmode: return (gen_aarch64_frecpsv4sf);
    case E_DFmode:   return (gen_aarch64_frecpsdf);
    case E_V2DFmode: return (gen_aarch64_frecpsv2df);
    default:         gcc_unreachable ();
  }
}

/* Emit the instruction sequence to compute the approximation for the division
   of NUM by DEN in QUO and return whether the sequence was emitted or not.  */

bool
aarch64_emit_approx_div (rtx quo, rtx num, rtx den)
{
  machine_mode mode = GET_MODE (quo);

  if (GET_MODE_INNER (mode) == HFmode)
    return false;

  bool use_approx_division_p = (flag_mlow_precision_div
			        || (aarch64_tune_params.approx_modes->division
				    & AARCH64_APPROX_MODE (mode)));

  if (!flag_finite_math_only
      || flag_trapping_math
      || !flag_unsafe_math_optimizations
      || optimize_function_for_size_p (cfun)
      || !use_approx_division_p)
    return false;

  /* Estimate the approximate reciprocal.  */
  rtx xrcp = gen_reg_rtx (mode);
  emit_insn ((*get_recpe_type (mode)) (xrcp, den));

  /* Iterate over the series twice for SF and thrice for DF.  */
  int iterations = (GET_MODE_INNER (mode) == DFmode) ? 3 : 2;

  /* Optionally iterate over the series once less for faster performance,
     while sacrificing the accuracy.  */
  if (flag_mlow_precision_div)
    iterations--;

  /* Iterate over the series to calculate the approximate reciprocal.  */
  rtx xtmp = gen_reg_rtx (mode);
  while (iterations--)
    {
      emit_insn ((*get_recps_type (mode)) (xtmp, xrcp, den));

      if (iterations > 0)
	emit_set_insn (xrcp, gen_rtx_MULT (mode, xrcp, xtmp));
    }

  if (num != CONST1_RTX (mode))
    {
      /* As the approximate reciprocal of DEN is already calculated, only
	 calculate the approximate division when NUM is not 1.0.  */
      rtx xnum = force_reg (mode, num);
      emit_set_insn (xrcp, gen_rtx_MULT (mode, xrcp, xnum));
    }

  /* Finalize the approximation.  */
  emit_set_insn (quo, gen_rtx_MULT (mode, xrcp, xtmp));
  return true;
}

/* Return the number of instructions that can be issued per cycle.  */
static int
aarch64_sched_issue_rate (void)
{
  return aarch64_tune_params.issue_rate;
}

static int
aarch64_sched_first_cycle_multipass_dfa_lookahead (void)
{
  int issue_rate = aarch64_sched_issue_rate ();

  return issue_rate > 1 && !sched_fusion ? issue_rate : 0;
}


/* Implement TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD as
   autopref_multipass_dfa_lookahead_guard from haifa-sched.c.  It only
   has an effect if PARAM_SCHED_AUTOPREF_QUEUE_DEPTH > 0.  */

static int
aarch64_first_cycle_multipass_dfa_lookahead_guard (rtx_insn *insn,
						    int ready_index)
{
  return autopref_multipass_dfa_lookahead_guard (insn, ready_index);
}


/* Vectorizer cost model target hooks.  */

/* Implement targetm.vectorize.builtin_vectorization_cost.  */
static int
aarch64_builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
				    tree vectype,
				    int misalign ATTRIBUTE_UNUSED)
{
  unsigned elements;
  const cpu_vector_cost *costs = aarch64_tune_params.vec_costs;
  bool fp = false;

  if (vectype != NULL)
    fp = FLOAT_TYPE_P (vectype);

  switch (type_of_cost)
    {
      case scalar_stmt:
	return fp ? costs->scalar_fp_stmt_cost : costs->scalar_int_stmt_cost;

      case scalar_load:
	return costs->scalar_load_cost;

      case scalar_store:
	return costs->scalar_store_cost;

      case vector_stmt:
	return fp ? costs->vec_fp_stmt_cost : costs->vec_int_stmt_cost;

      case vector_load:
	return costs->vec_align_load_cost;

      case vector_store:
	return costs->vec_store_cost;

      case vec_to_scalar:
	return costs->vec_to_scalar_cost;

      case scalar_to_vec:
	return costs->scalar_to_vec_cost;

      case unaligned_load:
	return costs->vec_unalign_load_cost;

      case unaligned_store:
	return costs->vec_unalign_store_cost;

      case cond_branch_taken:
	return costs->cond_taken_branch_cost;

      case cond_branch_not_taken:
	return costs->cond_not_taken_branch_cost;

      case vec_perm:
	return costs->vec_permute_cost;

      case vec_promote_demote:
	return fp ? costs->vec_fp_stmt_cost : costs->vec_int_stmt_cost;

      case vec_construct:
        elements = TYPE_VECTOR_SUBPARTS (vectype);
	return elements / 2 + 1;

      default:
	gcc_unreachable ();
    }
}

/* Implement targetm.vectorize.add_stmt_cost.  */
static unsigned
aarch64_add_stmt_cost (void *data, int count, enum vect_cost_for_stmt kind,
		       struct _stmt_vec_info *stmt_info, int misalign,
		       enum vect_cost_model_location where)
{
  unsigned *cost = (unsigned *) data;
  unsigned retval = 0;

  if (flag_vect_cost_model)
    {
      tree vectype = stmt_info ? stmt_vectype (stmt_info) : NULL_TREE;
      int stmt_cost =
	    aarch64_builtin_vectorization_cost (kind, vectype, misalign);

      /* Statements in an inner loop relative to the loop being
	 vectorized are weighted more heavily.  The value here is
	 arbitrary and could potentially be improved with analysis.  */
      if (where == vect_body && stmt_info && stmt_in_inner_loop_p (stmt_info))
	count *= 50; /*  FIXME  */

      retval = (unsigned) (count * stmt_cost);
      cost[where] += retval;
    }

  return retval;
}

static void initialize_aarch64_code_model (struct gcc_options *);

/* Parse the TO_PARSE string and put the architecture struct that it
   selects into RES and the architectural features into ISA_FLAGS.
   Return an aarch64_parse_opt_result describing the parse result.
   If there is an error parsing, RES and ISA_FLAGS are left unchanged.  */

static enum aarch64_parse_opt_result
aarch64_parse_arch (const char *to_parse, const struct processor **res,
		    unsigned long *isa_flags)
{
  char *ext;
  const struct processor *arch;
  char *str = (char *) alloca (strlen (to_parse) + 1);
  size_t len;

  strcpy (str, to_parse);

  ext = strchr (str, '+');

  if (ext != NULL)
    len = ext - str;
  else
    len = strlen (str);

  if (len == 0)
    return AARCH64_PARSE_MISSING_ARG;


  /* Loop through the list of supported ARCHes to find a match.  */
  for (arch = all_architectures; arch->name != NULL; arch++)
    {
      if (strlen (arch->name) == len && strncmp (arch->name, str, len) == 0)
	{
	  unsigned long isa_temp = arch->flags;

	  if (ext != NULL)
	    {
	      /* TO_PARSE string contains at least one extension.  */
	      enum aarch64_parse_opt_result ext_res
		= aarch64_parse_extension (ext, &isa_temp);

	      if (ext_res != AARCH64_PARSE_OK)
		return ext_res;
	    }
	  /* Extension parsing was successful.  Confirm the result
	     arch and ISA flags.  */
	  *res = arch;
	  *isa_flags = isa_temp;
	  return AARCH64_PARSE_OK;
	}
    }

  /* ARCH name not found in list.  */
  return AARCH64_PARSE_INVALID_ARG;
}

/* Parse the TO_PARSE string and put the result tuning in RES and the
   architecture flags in ISA_FLAGS.  Return an aarch64_parse_opt_result
   describing the parse result.  If there is an error parsing, RES and
   ISA_FLAGS are left unchanged.  */

static enum aarch64_parse_opt_result
aarch64_parse_cpu (const char *to_parse, const struct processor **res,
		   unsigned long *isa_flags)
{
  char *ext;
  const struct processor *cpu;
  char *str = (char *) alloca (strlen (to_parse) + 1);
  size_t len;

  strcpy (str, to_parse);

  ext = strchr (str, '+');

  if (ext != NULL)
    len = ext - str;
  else
    len = strlen (str);

  if (len == 0)
    return AARCH64_PARSE_MISSING_ARG;


  /* Loop through the list of supported CPUs to find a match.  */
  for (cpu = all_cores; cpu->name != NULL; cpu++)
    {
      if (strlen (cpu->name) == len && strncmp (cpu->name, str, len) == 0)
	{
	  unsigned long isa_temp = cpu->flags;


	  if (ext != NULL)
	    {
	      /* TO_PARSE string contains at least one extension.  */
	      enum aarch64_parse_opt_result ext_res
		= aarch64_parse_extension (ext, &isa_temp);

	      if (ext_res != AARCH64_PARSE_OK)
		return ext_res;
	    }
	  /* Extension parsing was successfull.  Confirm the result
	     cpu and ISA flags.  */
	  *res = cpu;
	  *isa_flags = isa_temp;
	  return AARCH64_PARSE_OK;
	}
    }

  /* CPU name not found in list.  */
  return AARCH64_PARSE_INVALID_ARG;
}

/* Parse the TO_PARSE string and put the cpu it selects into RES.
   Return an aarch64_parse_opt_result describing the parse result.
   If the parsing fails the RES does not change.  */

static enum aarch64_parse_opt_result
aarch64_parse_tune (const char *to_parse, const struct processor **res)
{
  const struct processor *cpu;
  char *str = (char *) alloca (strlen (to_parse) + 1);

  strcpy (str, to_parse);

  /* Loop through the list of supported CPUs to find a match.  */
  for (cpu = all_cores; cpu->name != NULL; cpu++)
    {
      if (strcmp (cpu->name, str) == 0)
	{
	  *res = cpu;
	  return AARCH64_PARSE_OK;
	}
    }

  /* CPU name not found in list.  */
  return AARCH64_PARSE_INVALID_ARG;
}

/* Parse TOKEN, which has length LENGTH to see if it is an option
   described in FLAG.  If it is, return the index bit for that fusion type.
   If not, error (printing OPTION_NAME) and return zero.  */

static unsigned int
aarch64_parse_one_option_token (const char *token,
				size_t length,
				const struct aarch64_flag_desc *flag,
				const char *option_name)
{
  for (; flag->name != NULL; flag++)
    {
      if (length == strlen (flag->name)
	  && !strncmp (flag->name, token, length))
	return flag->flag;
    }

  error ("unknown flag passed in -moverride=%s (%s)", option_name, token);
  return 0;
}

/* Parse OPTION which is a comma-separated list of flags to enable.
   FLAGS gives the list of flags we understand, INITIAL_STATE gives any
   default state we inherit from the CPU tuning structures.  OPTION_NAME
   gives the top-level option we are parsing in the -moverride string,
   for use in error messages.  */

static unsigned int
aarch64_parse_boolean_options (const char *option,
			       const struct aarch64_flag_desc *flags,
			       unsigned int initial_state,
			       const char *option_name)
{
  const char separator = '.';
  const char* specs = option;
  const char* ntoken = option;
  unsigned int found_flags = initial_state;

  while ((ntoken = strchr (specs, separator)))
    {
      size_t token_length = ntoken - specs;
      unsigned token_ops = aarch64_parse_one_option_token (specs,
							   token_length,
							   flags,
							   option_name);
      /* If we find "none" (or, for simplicity's sake, an error) anywhere
	 in the token stream, reset the supported operations.  So:

	   adrp+add.cmp+branch.none.adrp+add

	   would have the result of turning on only adrp+add fusion.  */
      if (!token_ops)
	found_flags = 0;

      found_flags |= token_ops;
      specs = ++ntoken;
    }

  /* We ended with a comma, print something.  */
  if (!(*specs))
    {
      error ("%s string ill-formed\n", option_name);
      return 0;
    }

  /* We still have one more token to parse.  */
  size_t token_length = strlen (specs);
  unsigned token_ops = aarch64_parse_one_option_token (specs,
						       token_length,
						       flags,
						       option_name);
   if (!token_ops)
     found_flags = 0;

  found_flags |= token_ops;
  return found_flags;
}

/* Support for overriding instruction fusion.  */

static void
aarch64_parse_fuse_string (const char *fuse_string,
			    struct tune_params *tune)
{
  tune->fusible_ops = aarch64_parse_boolean_options (fuse_string,
						     aarch64_fusible_pairs,
						     tune->fusible_ops,
						     "fuse=");
}

/* Support for overriding other tuning flags.  */

static void
aarch64_parse_tune_string (const char *tune_string,
			    struct tune_params *tune)
{
  tune->extra_tuning_flags
    = aarch64_parse_boolean_options (tune_string,
				     aarch64_tuning_flags,
				     tune->extra_tuning_flags,
				     "tune=");
}

/* Parse TOKEN, which has length LENGTH to see if it is a tuning option
   we understand.  If it is, extract the option string and handoff to
   the appropriate function.  */

void
aarch64_parse_one_override_token (const char* token,
				  size_t length,
				  struct tune_params *tune)
{
  const struct aarch64_tuning_override_function *fn
    = aarch64_tuning_override_functions;

  const char *option_part = strchr (token, '=');
  if (!option_part)
    {
      error ("tuning string missing in option (%s)", token);
      return;
    }

  /* Get the length of the option name.  */
  length = option_part - token;
  /* Skip the '=' to get to the option string.  */
  option_part++;

  for (; fn->name != NULL; fn++)
    {
      if (!strncmp (fn->name, token, length))
	{
	  fn->parse_override (option_part, tune);
	  return;
	}
    }

  error ("unknown tuning option (%s)",token);
  return;
}

/* A checking mechanism for the implementation of the tls size.  */

static void
initialize_aarch64_tls_size (struct gcc_options *opts)
{
  if (aarch64_tls_size == 0)
    aarch64_tls_size = 24;

  switch (opts->x_aarch64_cmodel_var)
    {
    case AARCH64_CMODEL_TINY:
      /* Both the default and maximum TLS size allowed under tiny is 1M which
	 needs two instructions to address, so we clamp the size to 24.  */
      if (aarch64_tls_size > 24)
	aarch64_tls_size = 24;
      break;
    case AARCH64_CMODEL_SMALL:
      /* The maximum TLS size allowed under small is 4G.  */
      if (aarch64_tls_size > 32)
	aarch64_tls_size = 32;
      break;
    case AARCH64_CMODEL_LARGE:
      /* The maximum TLS size allowed under large is 16E.
	 FIXME: 16E should be 64bit, we only support 48bit offset now.  */
      if (aarch64_tls_size > 48)
	aarch64_tls_size = 48;
      break;
    default:
      gcc_unreachable ();
    }

  return;
}

/* Parse STRING looking for options in the format:
     string	:: option:string
     option	:: name=substring
     name	:: {a-z}
     substring	:: defined by option.  */

static void
aarch64_parse_override_string (const char* input_string,
			       struct tune_params* tune)
{
  const char separator = ':';
  size_t string_length = strlen (input_string) + 1;
  char *string_root = (char *) xmalloc (sizeof (*string_root) * string_length);
  char *string = string_root;
  strncpy (string, input_string, string_length);
  string[string_length - 1] = '\0';

  char* ntoken = string;

  while ((ntoken = strchr (string, separator)))
    {
      size_t token_length = ntoken - string;
      /* Make this substring look like a string.  */
      *ntoken = '\0';
      aarch64_parse_one_override_token (string, token_length, tune);
      string = ++ntoken;
    }

  /* One last option to parse.  */
  aarch64_parse_one_override_token (string, strlen (string), tune);
  free (string_root);
}


static void
aarch64_override_options_after_change_1 (struct gcc_options *opts)
{
  /* The logic here is that if we are disabling all frame pointer generation
     then we do not need to disable leaf frame pointer generation as a
     separate operation.  But if we are *only* disabling leaf frame pointer
     generation then we set flag_omit_frame_pointer to true, but in
     aarch64_frame_pointer_required we return false only for leaf functions.

     PR 70044: We have to be careful about being called multiple times for the
     same function.  Once we have decided to set flag_omit_frame_pointer just
     so that we can omit leaf frame pointers, we must then not interpret a
     second call as meaning that all frame pointer generation should be
     omitted.  We do this by setting flag_omit_frame_pointer to a special,
     non-zero value.  */
  if (opts->x_flag_omit_frame_pointer == 2)
    opts->x_flag_omit_frame_pointer = 0;

  if (opts->x_flag_omit_frame_pointer)
    opts->x_flag_omit_leaf_frame_pointer = false;
  else if (opts->x_flag_omit_leaf_frame_pointer)
    opts->x_flag_omit_frame_pointer = 2;

  /* If not optimizing for size, set the default
     alignment to what the target wants.  */
  if (!opts->x_optimize_size)
    {
      if (opts->x_align_loops <= 0)
	opts->x_align_loops = aarch64_tune_params.loop_align;
      if (opts->x_align_jumps <= 0)
	opts->x_align_jumps = aarch64_tune_params.jump_align;
      if (opts->x_align_functions <= 0)
	opts->x_align_functions = aarch64_tune_params.function_align;
    }

  /* We default to no pc-relative literal loads.  */

  aarch64_pcrelative_literal_loads = false;

  /* If -mpc-relative-literal-loads is set on the command line, this
     implies that the user asked for PC relative literal loads.  */
  if (opts->x_pcrelative_literal_loads == 1)
    aarch64_pcrelative_literal_loads = true;

  /* In the tiny memory model it makes no sense to disallow PC relative
     literal pool loads.  */
  if (aarch64_cmodel == AARCH64_CMODEL_TINY
      || aarch64_cmodel == AARCH64_CMODEL_TINY_PIC)
    aarch64_pcrelative_literal_loads = true;

  /* When enabling the lower precision Newton series for the square root, also
     enable it for the reciprocal square root, since the latter is an
     intermediary step for the former.  */
  if (flag_mlow_precision_sqrt)
    flag_mrecip_low_precision_sqrt = true;
}

/* 'Unpack' up the internal tuning structs and update the options
    in OPTS.  The caller must have set up selected_tune and selected_arch
    as all the other target-specific codegen decisions are
    derived from them.  */

void
aarch64_override_options_internal (struct gcc_options *opts)
{
  aarch64_tune_flags = selected_tune->flags;
  aarch64_tune = selected_tune->sched_core;
  /* Make a copy of the tuning parameters attached to the core, which
     we may later overwrite.  */
  aarch64_tune_params = *(selected_tune->tune);
  aarch64_architecture_version = selected_arch->architecture_version;

  if (opts->x_aarch64_override_tune_string)
    aarch64_parse_override_string (opts->x_aarch64_override_tune_string,
				  &aarch64_tune_params);

  /* This target defaults to strict volatile bitfields.  */
  if (opts->x_flag_strict_volatile_bitfields < 0 && abi_version_at_least (2))
    opts->x_flag_strict_volatile_bitfields = 1;

  initialize_aarch64_code_model (opts);
  initialize_aarch64_tls_size (opts);

  int queue_depth = 0;
  switch (aarch64_tune_params.autoprefetcher_model)
    {
      case tune_params::AUTOPREFETCHER_OFF:
	queue_depth = -1;
	break;
      case tune_params::AUTOPREFETCHER_WEAK:
	queue_depth = 0;
	break;
      case tune_params::AUTOPREFETCHER_STRONG:
	queue_depth = max_insn_queue_index + 1;
	break;
      default:
	gcc_unreachable ();
    }

  /* We don't mind passing in global_options_set here as we don't use
     the *options_set structs anyway.  */
  maybe_set_param_value (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH,
			 queue_depth,
			 opts->x_param_values,
			 global_options_set.x_param_values);

  /* Set up parameters to be used in prefetching algorithm.  Do not
     override the defaults unless we are tuning for a core we have
     researched values for.  */
  if (aarch64_tune_params.prefetch->num_slots > 0)
    maybe_set_param_value (PARAM_SIMULTANEOUS_PREFETCHES,
			   aarch64_tune_params.prefetch->num_slots,
			   opts->x_param_values,
			   global_options_set.x_param_values);
  if (aarch64_tune_params.prefetch->l1_cache_size >= 0)
    maybe_set_param_value (PARAM_L1_CACHE_SIZE,
			   aarch64_tune_params.prefetch->l1_cache_size,
			   opts->x_param_values,
			   global_options_set.x_param_values);
  if (aarch64_tune_params.prefetch->l1_cache_line_size >= 0)
    maybe_set_param_value (PARAM_L1_CACHE_LINE_SIZE,
			   aarch64_tune_params.prefetch->l1_cache_line_size,
			   opts->x_param_values,
			   global_options_set.x_param_values);
  if (aarch64_tune_params.prefetch->l2_cache_size >= 0)
    maybe_set_param_value (PARAM_L2_CACHE_SIZE,
			   aarch64_tune_params.prefetch->l2_cache_size,
			   opts->x_param_values,
			   global_options_set.x_param_values);

  /* Enable sw prefetching at specified optimization level for
     CPUS that have prefetch.  Lower optimization level threshold by 1
     when profiling is enabled.  */
  if (opts->x_flag_prefetch_loop_arrays < 0
      && !opts->x_optimize_size
      && aarch64_tune_params.prefetch->default_opt_level >= 0
      && opts->x_optimize >= aarch64_tune_params.prefetch->default_opt_level)
    opts->x_flag_prefetch_loop_arrays = 1;

  aarch64_override_options_after_change_1 (opts);
}

/* Print a hint with a suggestion for a core or architecture name that
   most closely resembles what the user passed in STR.  ARCH is true if
   the user is asking for an architecture name.  ARCH is false if the user
   is asking for a core name.  */

static void
aarch64_print_hint_for_core_or_arch (const char *str, bool arch)
{
  auto_vec<const char *> candidates;
  const struct processor *entry = arch ? all_architectures : all_cores;
  for (; entry->name != NULL; entry++)
    candidates.safe_push (entry->name);
  char *s;
  const char *hint = candidates_list_and_hint (str, s, candidates);
  if (hint)
    inform (input_location, "valid arguments are: %s;"
			     " did you mean %qs?", s, hint);
  XDELETEVEC (s);
}

/* Print a hint with a suggestion for a core name that most closely resembles
   what the user passed in STR.  */

inline static void
aarch64_print_hint_for_core (const char *str)
{
  aarch64_print_hint_for_core_or_arch (str, false);
}

/* Print a hint with a suggestion for an architecture name that most closely
   resembles what the user passed in STR.  */

inline static void
aarch64_print_hint_for_arch (const char *str)
{
  aarch64_print_hint_for_core_or_arch (str, true);
}

/* Validate a command-line -mcpu option.  Parse the cpu and extensions (if any)
   specified in STR and throw errors if appropriate.  Put the results if
   they are valid in RES and ISA_FLAGS.  Return whether the option is
   valid.  */

static bool
aarch64_validate_mcpu (const char *str, const struct processor **res,
		       unsigned long *isa_flags)
{
  enum aarch64_parse_opt_result parse_res
    = aarch64_parse_cpu (str, res, isa_flags);

  if (parse_res == AARCH64_PARSE_OK)
    return true;

  switch (parse_res)
    {
      case AARCH64_PARSE_MISSING_ARG:
	error ("missing cpu name in %<-mcpu=%s%>", str);
	break;
      case AARCH64_PARSE_INVALID_ARG:
	error ("unknown value %qs for -mcpu", str);
	aarch64_print_hint_for_core (str);
	break;
      case AARCH64_PARSE_INVALID_FEATURE:
	error ("invalid feature modifier in %<-mcpu=%s%>", str);
	break;
      default:
	gcc_unreachable ();
    }

  return false;
}

/* Validate a command-line -march option.  Parse the arch and extensions
   (if any) specified in STR and throw errors if appropriate.  Put the
   results, if they are valid, in RES and ISA_FLAGS.  Return whether the
   option is valid.  */

static bool
aarch64_validate_march (const char *str, const struct processor **res,
			 unsigned long *isa_flags)
{
  enum aarch64_parse_opt_result parse_res
    = aarch64_parse_arch (str, res, isa_flags);

  if (parse_res == AARCH64_PARSE_OK)
    return true;

  switch (parse_res)
    {
      case AARCH64_PARSE_MISSING_ARG:
	error ("missing arch name in %<-march=%s%>", str);
	break;
      case AARCH64_PARSE_INVALID_ARG:
	error ("unknown value %qs for -march", str);
	aarch64_print_hint_for_arch (str);
	break;
      case AARCH64_PARSE_INVALID_FEATURE:
	error ("invalid feature modifier in %<-march=%s%>", str);
	break;
      default:
	gcc_unreachable ();
    }

  return false;
}

/* Validate a command-line -mtune option.  Parse the cpu
   specified in STR and throw errors if appropriate.  Put the
   result, if it is valid, in RES.  Return whether the option is
   valid.  */

static bool
aarch64_validate_mtune (const char *str, const struct processor **res)
{
  enum aarch64_parse_opt_result parse_res
    = aarch64_parse_tune (str, res);

  if (parse_res == AARCH64_PARSE_OK)
    return true;

  switch (parse_res)
    {
      case AARCH64_PARSE_MISSING_ARG:
	error ("missing cpu name in %<-mtune=%s%>", str);
	break;
      case AARCH64_PARSE_INVALID_ARG:
	error ("unknown value %qs for -mtune", str);
	aarch64_print_hint_for_core (str);
	break;
      default:
	gcc_unreachable ();
    }
  return false;
}

/* Return the CPU corresponding to the enum CPU.
   If it doesn't specify a cpu, return the default.  */

static const struct processor *
aarch64_get_tune_cpu (enum aarch64_processor cpu)
{
  if (cpu != aarch64_none)
    return &all_cores[cpu];

  /* The & 0x3f is to extract the bottom 6 bits that encode the
     default cpu as selected by the --with-cpu GCC configure option
     in config.gcc.
     ???: The whole TARGET_CPU_DEFAULT and AARCH64_CPU_DEFAULT_FLAGS
     flags mechanism should be reworked to make it more sane.  */
  return &all_cores[TARGET_CPU_DEFAULT & 0x3f];
}

/* Return the architecture corresponding to the enum ARCH.
   If it doesn't specify a valid architecture, return the default.  */

static const struct processor *
aarch64_get_arch (enum aarch64_arch arch)
{
  if (arch != aarch64_no_arch)
    return &all_architectures[arch];

  const struct processor *cpu = &all_cores[TARGET_CPU_DEFAULT & 0x3f];

  return &all_architectures[cpu->arch];
}

/* Implement TARGET_OPTION_OVERRIDE.  This is called once in the beginning
   and is used to parse the -m{cpu,tune,arch} strings and setup the initial
   tuning structs.  In particular it must set selected_tune and
   aarch64_isa_flags that define the available ISA features and tuning
   decisions.  It must also set selected_arch as this will be used to
   output the .arch asm tags for each function.  */

static void
aarch64_override_options (void)
{
  unsigned long cpu_isa = 0;
  unsigned long arch_isa = 0;
  aarch64_isa_flags = 0;

  bool valid_cpu = true;
  bool valid_tune = true;
  bool valid_arch = true;

  selected_cpu = NULL;
  selected_arch = NULL;
  selected_tune = NULL;

  /* -mcpu=CPU is shorthand for -march=ARCH_FOR_CPU, -mtune=CPU.
     If either of -march or -mtune is given, they override their
     respective component of -mcpu.  */
  if (aarch64_cpu_string)
    valid_cpu = aarch64_validate_mcpu (aarch64_cpu_string, &selected_cpu,
					&cpu_isa);

  if (aarch64_arch_string)
    valid_arch = aarch64_validate_march (aarch64_arch_string, &selected_arch,
					  &arch_isa);

  if (aarch64_tune_string)
    valid_tune = aarch64_validate_mtune (aarch64_tune_string, &selected_tune);

  /* If the user did not specify a processor, choose the default
     one for them.  This will be the CPU set during configuration using
     --with-cpu, otherwise it is "generic".  */
  if (!selected_cpu)
    {
      if (selected_arch)
	{
	  selected_cpu = &all_cores[selected_arch->ident];
	  aarch64_isa_flags = arch_isa;
	  explicit_arch = selected_arch->arch;
	}
      else
	{
	  /* Get default configure-time CPU.  */
	  selected_cpu = aarch64_get_tune_cpu (aarch64_none);
	  aarch64_isa_flags = TARGET_CPU_DEFAULT >> 6;
	}

      if (selected_tune)
	explicit_tune_core = selected_tune->ident;
    }
  /* If both -mcpu and -march are specified check that they are architecturally
     compatible, warn if they're not and prefer the -march ISA flags.  */
  else if (selected_arch)
    {
      if (selected_arch->arch != selected_cpu->arch)
	{
	  warning (0, "switch -mcpu=%s conflicts with -march=%s switch",
		       all_architectures[selected_cpu->arch].name,
		       selected_arch->name);
	}
      aarch64_isa_flags = arch_isa;
      explicit_arch = selected_arch->arch;
      explicit_tune_core = selected_tune ? selected_tune->ident
					  : selected_cpu->ident;
    }
  else
    {
      /* -mcpu but no -march.  */
      aarch64_isa_flags = cpu_isa;
      explicit_tune_core = selected_tune ? selected_tune->ident
					  : selected_cpu->ident;
      gcc_assert (selected_cpu);
      selected_arch = &all_architectures[selected_cpu->arch];
      explicit_arch = selected_arch->arch;
    }

  /* Set the arch as well as we will need it when outputing
     the .arch directive in assembly.  */
  if (!selected_arch)
    {
      gcc_assert (selected_cpu);
      selected_arch = &all_architectures[selected_cpu->arch];
    }

  if (!selected_tune)
    selected_tune = selected_cpu;

#ifndef HAVE_AS_MABI_OPTION
  /* The compiler may have been configured with 2.23.* binutils, which does
     not have support for ILP32.  */
  if (TARGET_ILP32)
    error ("Assembler does not support -mabi=ilp32");
#endif

  if (aarch64_ra_sign_scope != AARCH64_FUNCTION_NONE && TARGET_ILP32)
    sorry ("Return address signing is only supported for -mabi=lp64");

  /* Make sure we properly set up the explicit options.  */
  if ((aarch64_cpu_string && valid_cpu)
       || (aarch64_tune_string && valid_tune))
    gcc_assert (explicit_tune_core != aarch64_none);

  if ((aarch64_cpu_string && valid_cpu)
       || (aarch64_arch_string && valid_arch))
    gcc_assert (explicit_arch != aarch64_no_arch);

  aarch64_override_options_internal (&global_options);

  /* Save these options as the default ones in case we push and pop them later
     while processing functions with potential target attributes.  */
  target_option_default_node = target_option_current_node
      = build_target_option_node (&global_options);
}

/* Implement targetm.override_options_after_change.  */

static void
aarch64_override_options_after_change (void)
{
  aarch64_override_options_after_change_1 (&global_options);
}

static struct machine_function *
aarch64_init_machine_status (void)
{
  struct machine_function *machine;
  machine = ggc_cleared_alloc<machine_function> ();
  return machine;
}

void
aarch64_init_expanders (void)
{
  init_machine_status = aarch64_init_machine_status;
}

/* A checking mechanism for the implementation of the various code models.  */
static void
initialize_aarch64_code_model (struct gcc_options *opts)
{
   if (opts->x_flag_pic)
     {
       switch (opts->x_aarch64_cmodel_var)
	 {
	 case AARCH64_CMODEL_TINY:
	   aarch64_cmodel = AARCH64_CMODEL_TINY_PIC;
	   break;
	 case AARCH64_CMODEL_SMALL:
#ifdef HAVE_AS_SMALL_PIC_RELOCS
	   aarch64_cmodel = (flag_pic == 2
			     ? AARCH64_CMODEL_SMALL_PIC
			     : AARCH64_CMODEL_SMALL_SPIC);
#else
	   aarch64_cmodel = AARCH64_CMODEL_SMALL_PIC;
#endif
	   break;
	 case AARCH64_CMODEL_LARGE:
	   sorry ("code model %qs with -f%s", "large",
		  opts->x_flag_pic > 1 ? "PIC" : "pic");
	   break;
	 default:
	   gcc_unreachable ();
	 }
     }
   else
     aarch64_cmodel = opts->x_aarch64_cmodel_var;
}

/* Implement TARGET_OPTION_SAVE.  */

static void
aarch64_option_save (struct cl_target_option *ptr, struct gcc_options *opts)
{
  ptr->x_aarch64_override_tune_string = opts->x_aarch64_override_tune_string;
}

/* Implements TARGET_OPTION_RESTORE.  Restore the backend codegen decisions
   using the information saved in PTR.  */

static void
aarch64_option_restore (struct gcc_options *opts, struct cl_target_option *ptr)
{
  opts->x_explicit_tune_core = ptr->x_explicit_tune_core;
  selected_tune = aarch64_get_tune_cpu (ptr->x_explicit_tune_core);
  opts->x_explicit_arch = ptr->x_explicit_arch;
  selected_arch = aarch64_get_arch (ptr->x_explicit_arch);
  opts->x_aarch64_override_tune_string = ptr->x_aarch64_override_tune_string;

  aarch64_override_options_internal (opts);
}

/* Implement TARGET_OPTION_PRINT.  */

static void
aarch64_option_print (FILE *file, int indent, struct cl_target_option *ptr)
{
  const struct processor *cpu
    = aarch64_get_tune_cpu (ptr->x_explicit_tune_core);
  unsigned long isa_flags = ptr->x_aarch64_isa_flags;
  const struct processor *arch = aarch64_get_arch (ptr->x_explicit_arch);
  std::string extension
    = aarch64_get_extension_string_for_isa_flags (isa_flags, arch->flags);

  fprintf (file, "%*sselected tune = %s\n", indent, "", cpu->name);
  fprintf (file, "%*sselected arch = %s%s\n", indent, "",
	   arch->name, extension.c_str ());
}

static GTY(()) tree aarch64_previous_fndecl;

void
aarch64_reset_previous_fndecl (void)
{
  aarch64_previous_fndecl = NULL;
}

/* Restore or save the TREE_TARGET_GLOBALS from or to NEW_TREE.
   Used by aarch64_set_current_function and aarch64_pragma_target_parse to
   make sure optab availability predicates are recomputed when necessary.  */

void
aarch64_save_restore_target_globals (tree new_tree)
{
  if (TREE_TARGET_GLOBALS (new_tree))
    restore_target_globals (TREE_TARGET_GLOBALS (new_tree));
  else if (new_tree == target_option_default_node)
    restore_target_globals (&default_target_globals);
  else
    TREE_TARGET_GLOBALS (new_tree) = save_target_globals_default_opts ();
}

/* Implement TARGET_SET_CURRENT_FUNCTION.  Unpack the codegen decisions
   like tuning and ISA features from the DECL_FUNCTION_SPECIFIC_TARGET
   of the function, if such exists.  This function may be called multiple
   times on a single function so use aarch64_previous_fndecl to avoid
   setting up identical state.  */

static void
aarch64_set_current_function (tree fndecl)
{
  if (!fndecl || fndecl == aarch64_previous_fndecl)
    return;

  tree old_tree = (aarch64_previous_fndecl
		   ? DECL_FUNCTION_SPECIFIC_TARGET (aarch64_previous_fndecl)
		   : NULL_TREE);

  tree new_tree = DECL_FUNCTION_SPECIFIC_TARGET (fndecl);

  /* If current function has no attributes but the previous one did,
     use the default node.  */
  if (!new_tree && old_tree)
    new_tree = target_option_default_node;

  /* If nothing to do, return.  #pragma GCC reset or #pragma GCC pop to
     the default have been handled by aarch64_save_restore_target_globals from
     aarch64_pragma_target_parse.  */
  if (old_tree == new_tree)
    return;

  aarch64_previous_fndecl = fndecl;

  /* First set the target options.  */
  cl_target_option_restore (&global_options, TREE_TARGET_OPTION (new_tree));

  aarch64_save_restore_target_globals (new_tree);
}

/* Enum describing the various ways we can handle attributes.
   In many cases we can reuse the generic option handling machinery.  */

enum aarch64_attr_opt_type
{
  aarch64_attr_mask,	/* Attribute should set a bit in target_flags.  */
  aarch64_attr_bool,	/* Attribute sets or unsets a boolean variable.  */
  aarch64_attr_enum,	/* Attribute sets an enum variable.  */
  aarch64_attr_custom	/* Attribute requires a custom handling function.  */
};

/* All the information needed to handle a target attribute.
   NAME is the name of the attribute.
   ATTR_TYPE specifies the type of behavior of the attribute as described
   in the definition of enum aarch64_attr_opt_type.
   ALLOW_NEG is true if the attribute supports a "no-" form.
   HANDLER is the function that takes the attribute string and whether
   it is a pragma or attribute and handles the option.  It is needed only
   when the ATTR_TYPE is aarch64_attr_custom.
   OPT_NUM is the enum specifying the option that the attribute modifies.
   This is needed for attributes that mirror the behavior of a command-line
   option, that is it has ATTR_TYPE aarch64_attr_mask, aarch64_attr_bool or
   aarch64_attr_enum.  */

struct aarch64_attribute_info
{
  const char *name;
  enum aarch64_attr_opt_type attr_type;
  bool allow_neg;
  bool (*handler) (const char *, const char *);
  enum opt_code opt_num;
};

/* Handle the ARCH_STR argument to the arch= target attribute.
   PRAGMA_OR_ATTR is used in potential error messages.  */

static bool
aarch64_handle_attr_arch (const char *str, const char *pragma_or_attr)
{
  const struct processor *tmp_arch = NULL;
  enum aarch64_parse_opt_result parse_res
    = aarch64_parse_arch (str, &tmp_arch, &aarch64_isa_flags);

  if (parse_res == AARCH64_PARSE_OK)
    {
      gcc_assert (tmp_arch);
      selected_arch = tmp_arch;
      explicit_arch = selected_arch->arch;
      return true;
    }

  switch (parse_res)
    {
      case AARCH64_PARSE_MISSING_ARG:
	error ("missing architecture name in 'arch' target %s", pragma_or_attr);
	break;
      case AARCH64_PARSE_INVALID_ARG:
	error ("unknown value %qs for 'arch' target %s", str, pragma_or_attr);
	aarch64_print_hint_for_arch (str);
	break;
      case AARCH64_PARSE_INVALID_FEATURE:
	error ("invalid feature modifier %qs for 'arch' target %s",
	       str, pragma_or_attr);
	break;
      default:
	gcc_unreachable ();
    }

  return false;
}

/* Handle the argument CPU_STR to the cpu= target attribute.
   PRAGMA_OR_ATTR is used in potential error messages.  */

static bool
aarch64_handle_attr_cpu (const char *str, const char *pragma_or_attr)
{
  const struct processor *tmp_cpu = NULL;
  enum aarch64_parse_opt_result parse_res
    = aarch64_parse_cpu (str, &tmp_cpu, &aarch64_isa_flags);

  if (parse_res == AARCH64_PARSE_OK)
    {
      gcc_assert (tmp_cpu);
      selected_tune = tmp_cpu;
      explicit_tune_core = selected_tune->ident;

      selected_arch = &all_architectures[tmp_cpu->arch];
      explicit_arch = selected_arch->arch;
      return true;
    }

  switch (parse_res)
    {
      case AARCH64_PARSE_MISSING_ARG:
	error ("missing cpu name in 'cpu' target %s", pragma_or_attr);
	break;
      case AARCH64_PARSE_INVALID_ARG:
	error ("unknown value %qs for 'cpu' target %s", str, pragma_or_attr);
	aarch64_print_hint_for_core (str);
	break;
      case AARCH64_PARSE_INVALID_FEATURE:
	error ("invalid feature modifier %qs for 'cpu' target %s",
	       str, pragma_or_attr);
	break;
      default:
	gcc_unreachable ();
    }

  return false;
}

/* Handle the argument STR to the tune= target attribute.
   PRAGMA_OR_ATTR is used in potential error messages.  */

static bool
aarch64_handle_attr_tune (const char *str, const char *pragma_or_attr)
{
  const struct processor *tmp_tune = NULL;
  enum aarch64_parse_opt_result parse_res
    = aarch64_parse_tune (str, &tmp_tune);

  if (parse_res == AARCH64_PARSE_OK)
    {
      gcc_assert (tmp_tune);
      selected_tune = tmp_tune;
      explicit_tune_core = selected_tune->ident;
      return true;
    }

  switch (parse_res)
    {
      case AARCH64_PARSE_INVALID_ARG:
	error ("unknown value %qs for 'tune' target %s", str, pragma_or_attr);
	aarch64_print_hint_for_core (str);
	break;
      default:
	gcc_unreachable ();
    }

  return false;
}

/* Parse an architecture extensions target attribute string specified in STR.
   For example "+fp+nosimd".  Show any errors if needed.  Return TRUE
   if successful.  Update aarch64_isa_flags to reflect the ISA features
   modified.
   PRAGMA_OR_ATTR is used in potential error messages.  */

static bool
aarch64_handle_attr_isa_flags (char *str, const char *pragma_or_attr)
{
  enum aarch64_parse_opt_result parse_res;
  unsigned long isa_flags = aarch64_isa_flags;

  /* We allow "+nothing" in the beginning to clear out all architectural
     features if the user wants to handpick specific features.  */
  if (strncmp ("+nothing", str, 8) == 0)
    {
      isa_flags = 0;
      str += 8;
    }

  parse_res = aarch64_parse_extension (str, &isa_flags);

  if (parse_res == AARCH64_PARSE_OK)
    {
      aarch64_isa_flags = isa_flags;
      return true;
    }

  switch (parse_res)
    {
      case AARCH64_PARSE_MISSING_ARG:
	error ("missing feature modifier in target %s %qs",
	       pragma_or_attr, str);
	break;

      case AARCH64_PARSE_INVALID_FEATURE:
	error ("invalid feature modifier in target %s %qs",
	       pragma_or_attr, str);
	break;

      default:
	gcc_unreachable ();
    }

 return false;
}

/* The target attributes that we support.  On top of these we also support just
   ISA extensions, like  __attribute__ ((target ("+crc"))), but that case is
   handled explicitly in aarch64_process_one_target_attr.  */

static const struct aarch64_attribute_info aarch64_attributes[] =
{
  { "general-regs-only", aarch64_attr_mask, false, NULL,
     OPT_mgeneral_regs_only },
  { "fix-cortex-a53-835769", aarch64_attr_bool, true, NULL,
     OPT_mfix_cortex_a53_835769 },
  { "fix-cortex-a53-843419", aarch64_attr_bool, true, NULL,
     OPT_mfix_cortex_a53_843419 },
  { "cmodel", aarch64_attr_enum, false, NULL, OPT_mcmodel_ },
  { "strict-align", aarch64_attr_mask, false, NULL, OPT_mstrict_align },
  { "omit-leaf-frame-pointer", aarch64_attr_bool, true, NULL,
     OPT_momit_leaf_frame_pointer },
  { "tls-dialect", aarch64_attr_enum, false, NULL, OPT_mtls_dialect_ },
  { "arch", aarch64_attr_custom, false, aarch64_handle_attr_arch,
     OPT_march_ },
  { "cpu", aarch64_attr_custom, false, aarch64_handle_attr_cpu, OPT_mcpu_ },
  { "tune", aarch64_attr_custom, false, aarch64_handle_attr_tune,
     OPT_mtune_ },
  { "sign-return-address", aarch64_attr_enum, false, NULL,
     OPT_msign_return_address_ },
  { NULL, aarch64_attr_custom, false, NULL, OPT____ }
};

/* Parse ARG_STR which contains the definition of one target attribute.
   Show appropriate errors if any or return true if the attribute is valid.
   PRAGMA_OR_ATTR holds the string to use in error messages about whether
   we're processing a target attribute or pragma.  */

static bool
aarch64_process_one_target_attr (char *arg_str, const char* pragma_or_attr)
{
  bool invert = false;

  size_t len = strlen (arg_str);

  if (len == 0)
    {
      error ("malformed target %s", pragma_or_attr);
      return false;
    }

  char *str_to_check = (char *) alloca (len + 1);
  strcpy (str_to_check, arg_str);

  /* Skip leading whitespace.  */
  while (*str_to_check == ' ' || *str_to_check == '\t')
    str_to_check++;

  /* We have something like __attribute__ ((target ("+fp+nosimd"))).
     It is easier to detect and handle it explicitly here rather than going
     through the machinery for the rest of the target attributes in this
     function.  */
  if (*str_to_check == '+')
    return aarch64_handle_attr_isa_flags (str_to_check, pragma_or_attr);

  if (len > 3 && strncmp (str_to_check, "no-", 3) == 0)
    {
      invert = true;
      str_to_check += 3;
    }
  char *arg = strchr (str_to_check, '=');

  /* If we found opt=foo then terminate STR_TO_CHECK at the '='
     and point ARG to "foo".  */
  if (arg)
    {
      *arg = '\0';
      arg++;
    }
  const struct aarch64_attribute_info *p_attr;
  bool found = false;
  for (p_attr = aarch64_attributes; p_attr->name; p_attr++)
    {
      /* If the names don't match up, or the user has given an argument
	 to an attribute that doesn't accept one, or didn't give an argument
	 to an attribute that expects one, fail to match.  */
      if (strcmp (str_to_check, p_attr->name) != 0)
	continue;

      found = true;
      bool attr_need_arg_p = p_attr->attr_type == aarch64_attr_custom
			      || p_attr->attr_type == aarch64_attr_enum;

      if (attr_need_arg_p ^ (arg != NULL))
	{
	  error ("target %s %qs does not accept an argument",
		  pragma_or_attr, str_to_check);
	  return false;
	}

      /* If the name matches but the attribute does not allow "no-" versions
	 then we can't match.  */
      if (invert && !p_attr->allow_neg)
	{
	  error ("target %s %qs does not allow a negated form",
		  pragma_or_attr, str_to_check);
	  return false;
	}

      switch (p_attr->attr_type)
	{
	/* Has a custom handler registered.
	   For example, cpu=, arch=, tune=.  */
	  case aarch64_attr_custom:
	    gcc_assert (p_attr->handler);
	    if (!p_attr->handler (arg, pragma_or_attr))
	      return false;
	    break;

	  /* Either set or unset a boolean option.  */
	  case aarch64_attr_bool:
	    {
	      struct cl_decoded_option decoded;

	      generate_option (p_attr->opt_num, NULL, !invert,
			       CL_TARGET, &decoded);
	      aarch64_handle_option (&global_options, &global_options_set,
				      &decoded, input_location);
	      break;
	    }
	  /* Set or unset a bit in the target_flags.  aarch64_handle_option
	     should know what mask to apply given the option number.  */
	  case aarch64_attr_mask:
	    {
	      struct cl_decoded_option decoded;
	      /* We only need to specify the option number.
		 aarch64_handle_option will know which mask to apply.  */
	      decoded.opt_index = p_attr->opt_num;
	      decoded.value = !invert;
	      aarch64_handle_option (&global_options, &global_options_set,
				      &decoded, input_location);
	      break;
	    }
	  /* Use the option setting machinery to set an option to an enum.  */
	  case aarch64_attr_enum:
	    {
	      gcc_assert (arg);
	      bool valid;
	      int value;
	      valid = opt_enum_arg_to_value (p_attr->opt_num, arg,
					      &value, CL_TARGET);
	      if (valid)
		{
		  set_option (&global_options, NULL, p_attr->opt_num, value,
			      NULL, DK_UNSPECIFIED, input_location,
			      global_dc);
		}
	      else
		{
		  error ("target %s %s=%s is not valid",
			 pragma_or_attr, str_to_check, arg);
		}
	      break;
	    }
	  default:
	    gcc_unreachable ();
	}
    }

  /* If we reached here we either have found an attribute and validated
     it or didn't match any.  If we matched an attribute but its arguments
     were malformed we will have returned false already.  */
  return found;
}

/* Count how many times the character C appears in
   NULL-terminated string STR.  */

static unsigned int
num_occurences_in_str (char c, char *str)
{
  unsigned int res = 0;
  while (*str != '\0')
    {
      if (*str == c)
	res++;

      str++;
    }

  return res;
}

/* Parse the tree in ARGS that contains the target attribute information
   and update the global target options space.  PRAGMA_OR_ATTR is a string
   to be used in error messages, specifying whether this is processing
   a target attribute or a target pragma.  */

bool
aarch64_process_target_attr (tree args, const char* pragma_or_attr)
{
  if (TREE_CODE (args) == TREE_LIST)
    {
      do
	{
	  tree head = TREE_VALUE (args);
	  if (head)
	    {
	      if (!aarch64_process_target_attr (head, pragma_or_attr))
		return false;
	    }
	  args = TREE_CHAIN (args);
	} while (args);

      return true;
    }

  if (TREE_CODE (args) != STRING_CST)
    {
      error ("attribute %<target%> argument not a string");
      return false;
    }

  size_t len = strlen (TREE_STRING_POINTER (args));
  char *str_to_check = (char *) alloca (len + 1);
  strcpy (str_to_check, TREE_STRING_POINTER (args));

  if (len == 0)
    {
      error ("malformed target %s value", pragma_or_attr);
      return false;
    }

  /* Used to catch empty spaces between commas i.e.
     attribute ((target ("attr1,,attr2"))).  */
  unsigned int num_commas = num_occurences_in_str (',', str_to_check);

  /* Handle multiple target attributes separated by ','.  */
  char *token = strtok (str_to_check, ",");

  unsigned int num_attrs = 0;
  while (token)
    {
      num_attrs++;
      if (!aarch64_process_one_target_attr (token, pragma_or_attr))
	{
	  error ("target %s %qs is invalid", pragma_or_attr, token);
	  return false;
	}

      token = strtok (NULL, ",");
    }

  if (num_attrs != num_commas + 1)
    {
      error ("malformed target %s list %qs",
	      pragma_or_attr, TREE_STRING_POINTER (args));
      return false;
    }

  return true;
}

/* Implement TARGET_OPTION_VALID_ATTRIBUTE_P.  This is used to
   process attribute ((target ("..."))).  */

static bool
aarch64_option_valid_attribute_p (tree fndecl, tree, tree args, int)
{
  struct cl_target_option cur_target;
  bool ret;
  tree old_optimize;
  tree new_target, new_optimize;
  tree existing_target = DECL_FUNCTION_SPECIFIC_TARGET (fndecl);

  /* If what we're processing is the current pragma string then the
     target option node is already stored in target_option_current_node
     by aarch64_pragma_target_parse in aarch64-c.c.  Use that to avoid
     having to re-parse the string.  This is especially useful to keep
     arm_neon.h compile times down since that header contains a lot
     of intrinsics enclosed in pragmas.  */
  if (!existing_target && args == current_target_pragma)
    {
      DECL_FUNCTION_SPECIFIC_TARGET (fndecl) = target_option_current_node;
      return true;
    }
  tree func_optimize = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl);

  old_optimize = build_optimization_node (&global_options);
  func_optimize = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl);

  /* If the function changed the optimization levels as well as setting
     target options, start with the optimizations specified.  */
  if (func_optimize && func_optimize != old_optimize)
    cl_optimization_restore (&global_options,
			     TREE_OPTIMIZATION (func_optimize));

  /* Save the current target options to restore at the end.  */
  cl_target_option_save (&cur_target, &global_options);

  /* If fndecl already has some target attributes applied to it, unpack
     them so that we add this attribute on top of them, rather than
     overwriting them.  */
  if (existing_target)
    {
      struct cl_target_option *existing_options
	= TREE_TARGET_OPTION (existing_target);

      if (existing_options)
	cl_target_option_restore (&global_options, existing_options);
    }
  else
    cl_target_option_restore (&global_options,
			TREE_TARGET_OPTION (target_option_current_node));


  ret = aarch64_process_target_attr (args, "attribute");

  /* Set up any additional state.  */
  if (ret)
    {
      aarch64_override_options_internal (&global_options);
      /* Initialize SIMD builtins if we haven't already.
	 Set current_target_pragma to NULL for the duration so that
	 the builtin initialization code doesn't try to tag the functions
	 being built with the attributes specified by any current pragma, thus
	 going into an infinite recursion.  */
      if (TARGET_SIMD)
	{
	  tree saved_current_target_pragma = current_target_pragma;
	  current_target_pragma = NULL;
	  aarch64_init_simd_builtins ();
	  current_target_pragma = saved_current_target_pragma;
	}
      new_target = build_target_option_node (&global_options);
    }
  else
    new_target = NULL;

  new_optimize = build_optimization_node (&global_options);

  if (fndecl && ret)
    {
      DECL_FUNCTION_SPECIFIC_TARGET (fndecl) = new_target;

      if (old_optimize != new_optimize)
	DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl) = new_optimize;
    }

  cl_target_option_restore (&global_options, &cur_target);

  if (old_optimize != new_optimize)
    cl_optimization_restore (&global_options,
			     TREE_OPTIMIZATION (old_optimize));
  return ret;
}

/* Helper for aarch64_can_inline_p.  In the case where CALLER and CALLEE are
   tri-bool options (yes, no, don't care) and the default value is
   DEF, determine whether to reject inlining.  */

static bool
aarch64_tribools_ok_for_inlining_p (int caller, int callee,
				     int dont_care, int def)
{
  /* If the callee doesn't care, always allow inlining.  */
  if (callee == dont_care)
    return true;

  /* If the caller doesn't care, always allow inlining.  */
  if (caller == dont_care)
    return true;

  /* Otherwise, allow inlining if either the callee and caller values
     agree, or if the callee is using the default value.  */
  return (callee == caller || callee == def);
}

/* Implement TARGET_CAN_INLINE_P.  Decide whether it is valid
   to inline CALLEE into CALLER based on target-specific info.
   Make sure that the caller and callee have compatible architectural
   features.  Then go through the other possible target attributes
   and see if they can block inlining.  Try not to reject always_inline
   callees unless they are incompatible architecturally.  */

static bool
aarch64_can_inline_p (tree caller, tree callee)
{
  tree caller_tree = DECL_FUNCTION_SPECIFIC_TARGET (caller);
  tree callee_tree = DECL_FUNCTION_SPECIFIC_TARGET (callee);

  /* If callee has no option attributes, then it is ok to inline.  */
  if (!callee_tree)
    return true;

  struct cl_target_option *caller_opts
	= TREE_TARGET_OPTION (caller_tree ? caller_tree
					   : target_option_default_node);

  struct cl_target_option *callee_opts = TREE_TARGET_OPTION (callee_tree);


  /* Callee's ISA flags should be a subset of the caller's.  */
  if ((caller_opts->x_aarch64_isa_flags & callee_opts->x_aarch64_isa_flags)
       != callee_opts->x_aarch64_isa_flags)
    return false;

  /* Allow non-strict aligned functions inlining into strict
     aligned ones.  */
  if ((TARGET_STRICT_ALIGN_P (caller_opts->x_target_flags)
       != TARGET_STRICT_ALIGN_P (callee_opts->x_target_flags))
      && !(!TARGET_STRICT_ALIGN_P (callee_opts->x_target_flags)
	   && TARGET_STRICT_ALIGN_P (caller_opts->x_target_flags)))
    return false;

  bool always_inline = lookup_attribute ("always_inline",
					  DECL_ATTRIBUTES (callee));

  /* If the architectural features match up and the callee is always_inline
     then the other attributes don't matter.  */
  if (always_inline)
    return true;

  if (caller_opts->x_aarch64_cmodel_var
      != callee_opts->x_aarch64_cmodel_var)
    return false;

  if (caller_opts->x_aarch64_tls_dialect
      != callee_opts->x_aarch64_tls_dialect)
    return false;

  /* Honour explicit requests to workaround errata.  */
  if (!aarch64_tribools_ok_for_inlining_p (
	  caller_opts->x_aarch64_fix_a53_err835769,
	  callee_opts->x_aarch64_fix_a53_err835769,
	  2, TARGET_FIX_ERR_A53_835769_DEFAULT))
    return false;

  if (!aarch64_tribools_ok_for_inlining_p (
	  caller_opts->x_aarch64_fix_a53_err843419,
	  callee_opts->x_aarch64_fix_a53_err843419,
	  2, TARGET_FIX_ERR_A53_843419))
    return false;

  /* If the user explicitly specified -momit-leaf-frame-pointer for the
     caller and calle and they don't match up, reject inlining.  */
  if (!aarch64_tribools_ok_for_inlining_p (
	  caller_opts->x_flag_omit_leaf_frame_pointer,
	  callee_opts->x_flag_omit_leaf_frame_pointer,
	  2, 1))
    return false;

  /* If the callee has specific tuning overrides, respect them.  */
  if (callee_opts->x_aarch64_override_tune_string != NULL
      && caller_opts->x_aarch64_override_tune_string == NULL)
    return false;

  /* If the user specified tuning override strings for the
     caller and callee and they don't match up, reject inlining.
     We just do a string compare here, we don't analyze the meaning
     of the string, as it would be too costly for little gain.  */
  if (callee_opts->x_aarch64_override_tune_string
      && caller_opts->x_aarch64_override_tune_string
      && (strcmp (callee_opts->x_aarch64_override_tune_string,
		  caller_opts->x_aarch64_override_tune_string) != 0))
    return false;

  return true;
}

/* Return true if SYMBOL_REF X binds locally.  */

static bool
aarch64_symbol_binds_local_p (const_rtx x)
{
  return (SYMBOL_REF_DECL (x)
	  ? targetm.binds_local_p (SYMBOL_REF_DECL (x))
	  : SYMBOL_REF_LOCAL_P (x));
}

/* Return true if SYMBOL_REF X is thread local */
static bool
aarch64_tls_symbol_p (rtx x)
{
  if (! TARGET_HAVE_TLS)
    return false;

  if (GET_CODE (x) != SYMBOL_REF)
    return false;

  return SYMBOL_REF_TLS_MODEL (x) != 0;
}

/* Classify a TLS symbol into one of the TLS kinds.  */
enum aarch64_symbol_type
aarch64_classify_tls_symbol (rtx x)
{
  enum tls_model tls_kind = tls_symbolic_operand_type (x);

  switch (tls_kind)
    {
    case TLS_MODEL_GLOBAL_DYNAMIC:
    case TLS_MODEL_LOCAL_DYNAMIC:
      return TARGET_TLS_DESC ? SYMBOL_SMALL_TLSDESC : SYMBOL_SMALL_TLSGD;

    case TLS_MODEL_INITIAL_EXEC:
      switch (aarch64_cmodel)
	{
	case AARCH64_CMODEL_TINY:
	case AARCH64_CMODEL_TINY_PIC:
	  return SYMBOL_TINY_TLSIE;
	default:
	  return SYMBOL_SMALL_TLSIE;
	}

    case TLS_MODEL_LOCAL_EXEC:
      if (aarch64_tls_size == 12)
	return SYMBOL_TLSLE12;
      else if (aarch64_tls_size == 24)
	return SYMBOL_TLSLE24;
      else if (aarch64_tls_size == 32)
	return SYMBOL_TLSLE32;
      else if (aarch64_tls_size == 48)
	return SYMBOL_TLSLE48;
      else
	gcc_unreachable ();

    case TLS_MODEL_EMULATED:
    case TLS_MODEL_NONE:
      return SYMBOL_FORCE_TO_MEM;

    default:
      gcc_unreachable ();
    }
}

/* Return the method that should be used to access SYMBOL_REF or
   LABEL_REF X.  */

enum aarch64_symbol_type
aarch64_classify_symbol (rtx x, rtx offset)
{
  if (GET_CODE (x) == LABEL_REF)
    {
      switch (aarch64_cmodel)
	{
	case AARCH64_CMODEL_LARGE:
	  return SYMBOL_FORCE_TO_MEM;

	case AARCH64_CMODEL_TINY_PIC:
	case AARCH64_CMODEL_TINY:
	  return SYMBOL_TINY_ABSOLUTE;

	case AARCH64_CMODEL_SMALL_SPIC:
	case AARCH64_CMODEL_SMALL_PIC:
	case AARCH64_CMODEL_SMALL:
	  return SYMBOL_SMALL_ABSOLUTE;

	default:
	  gcc_unreachable ();
	}
    }

  if (GET_CODE (x) == SYMBOL_REF)
    {
      if (aarch64_tls_symbol_p (x))
	return aarch64_classify_tls_symbol (x);

      switch (aarch64_cmodel)
	{
	case AARCH64_CMODEL_TINY:
	  /* When we retrieve symbol + offset address, we have to make sure
	     the offset does not cause overflow of the final address.  But
	     we have no way of knowing the address of symbol at compile time
	     so we can't accurately say if the distance between the PC and
	     symbol + offset is outside the addressible range of +/-1M in the
	     TINY code model.  So we rely on images not being greater than
	     1M and cap the offset at 1M and anything beyond 1M will have to
	     be loaded using an alternative mechanism.  Furthermore if the
	     symbol is a weak reference to something that isn't known to
	     resolve to a symbol in this module, then force to memory.  */
	  if ((SYMBOL_REF_WEAK (x)
	       && !aarch64_symbol_binds_local_p (x))
	      || INTVAL (offset) < -1048575 || INTVAL (offset) > 1048575)
	    return SYMBOL_FORCE_TO_MEM;
	  return SYMBOL_TINY_ABSOLUTE;

	case AARCH64_CMODEL_SMALL:
	  /* Same reasoning as the tiny code model, but the offset cap here is
	     4G.  */
	  if ((SYMBOL_REF_WEAK (x)
	       && !aarch64_symbol_binds_local_p (x))
	      || !IN_RANGE (INTVAL (offset), HOST_WIDE_INT_C (-4294967263),
			    HOST_WIDE_INT_C (4294967264)))
	    return SYMBOL_FORCE_TO_MEM;
	  return SYMBOL_SMALL_ABSOLUTE;

	case AARCH64_CMODEL_TINY_PIC:
	  if (!aarch64_symbol_binds_local_p (x))
	    return SYMBOL_TINY_GOT;
	  return SYMBOL_TINY_ABSOLUTE;

	case AARCH64_CMODEL_SMALL_SPIC:
	case AARCH64_CMODEL_SMALL_PIC:
	  if (!aarch64_symbol_binds_local_p (x))
	    return (aarch64_cmodel == AARCH64_CMODEL_SMALL_SPIC
		    ?  SYMBOL_SMALL_GOT_28K : SYMBOL_SMALL_GOT_4G);
	  return SYMBOL_SMALL_ABSOLUTE;

	case AARCH64_CMODEL_LARGE:
	  /* This is alright even in PIC code as the constant
	     pool reference is always PC relative and within
	     the same translation unit.  */
	  if (!aarch64_pcrelative_literal_loads && CONSTANT_POOL_ADDRESS_P (x))
	    return SYMBOL_SMALL_ABSOLUTE;
	  else
	    return SYMBOL_FORCE_TO_MEM;

	default:
	  gcc_unreachable ();
	}
    }

  /* By default push everything into the constant pool.  */
  return SYMBOL_FORCE_TO_MEM;
}

bool
aarch64_constant_address_p (rtx x)
{
  return (CONSTANT_P (x) && memory_address_p (DImode, x));
}

bool
aarch64_legitimate_pic_operand_p (rtx x)
{
  if (GET_CODE (x) == SYMBOL_REF
      || (GET_CODE (x) == CONST
	  && GET_CODE (XEXP (x, 0)) == PLUS
	  && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF))
     return false;

  return true;
}

/* Return true if X holds either a quarter-precision or
     floating-point +0.0 constant.  */
static bool
aarch64_valid_floating_const (rtx x)
{
  if (!CONST_DOUBLE_P (x))
    return false;

  /* This call determines which constants can be used in mov<mode>
     as integer moves instead of constant loads.  */
  if (aarch64_float_const_rtx_p (x))
    return true;

  return aarch64_float_const_representable_p (x);
}

static bool
aarch64_legitimate_constant_p (machine_mode mode, rtx x)
{
  /* Do not allow vector struct mode constants.  We could support
     0 and -1 easily, but they need support in aarch64-simd.md.  */
  if (TARGET_SIMD && aarch64_vect_struct_mode_p (mode))
    return false;

  /* For these cases we never want to use a literal load.
     As such we have to prevent the compiler from forcing these
     to memory.  */
  if ((GET_CODE (x) == CONST_VECTOR
       && aarch64_simd_valid_immediate (x, mode, false, NULL))
      || CONST_INT_P (x)
      || aarch64_valid_floating_const (x)
      || aarch64_can_const_movi_rtx_p (x, mode)
      || aarch64_float_const_rtx_p (x))
	return !targetm.cannot_force_const_mem (mode, x);

  if (GET_CODE (x) == HIGH
      && aarch64_valid_symref (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
    return true;

  /* Treat symbols as constants.  Avoid TLS symbols as they are complex,
     so spilling them is better than rematerialization.  */
  if (SYMBOL_REF_P (x) && !SYMBOL_REF_TLS_MODEL (x))
    return true;

  return aarch64_constant_address_p (x);
}

rtx
aarch64_load_tp (rtx target)
{
  if (!target
      || GET_MODE (target) != Pmode
      || !register_operand (target, Pmode))
    target = gen_reg_rtx (Pmode);

  /* Can return in any reg.  */
  emit_insn (gen_aarch64_load_tp_hard (target));
  return target;
}

/* On AAPCS systems, this is the "struct __va_list".  */
static GTY(()) tree va_list_type;

/* Implement TARGET_BUILD_BUILTIN_VA_LIST.
   Return the type to use as __builtin_va_list.

   AAPCS64 \S 7.1.4 requires that va_list be a typedef for a type defined as:

   struct __va_list
   {
     void *__stack;
     void *__gr_top;
     void *__vr_top;
     int   __gr_offs;
     int   __vr_offs;
   };  */

static tree
aarch64_build_builtin_va_list (void)
{
  tree va_list_name;
  tree f_stack, f_grtop, f_vrtop, f_groff, f_vroff;

  /* Create the type.  */
  va_list_type = lang_hooks.types.make_type (RECORD_TYPE);
  /* Give it the required name.  */
  va_list_name = build_decl (BUILTINS_LOCATION,
			     TYPE_DECL,
			     get_identifier ("__va_list"),
			     va_list_type);
  DECL_ARTIFICIAL (va_list_name) = 1;
  TYPE_NAME (va_list_type) = va_list_name;
  TYPE_STUB_DECL (va_list_type) = va_list_name;

  /* Create the fields.  */
  f_stack = build_decl (BUILTINS_LOCATION,
			FIELD_DECL, get_identifier ("__stack"),
			ptr_type_node);
  f_grtop = build_decl (BUILTINS_LOCATION,
			FIELD_DECL, get_identifier ("__gr_top"),
			ptr_type_node);
  f_vrtop = build_decl (BUILTINS_LOCATION,
			FIELD_DECL, get_identifier ("__vr_top"),
			ptr_type_node);
  f_groff = build_decl (BUILTINS_LOCATION,
			FIELD_DECL, get_identifier ("__gr_offs"),
			integer_type_node);
  f_vroff = build_decl (BUILTINS_LOCATION,
			FIELD_DECL, get_identifier ("__vr_offs"),
			integer_type_node);

  /* Tell tree-stdarg pass about our internal offset fields.
     NOTE: va_list_gpr/fpr_counter_field are only used for tree comparision
     purpose to identify whether the code is updating va_list internal
     offset fields through irregular way.  */
  va_list_gpr_counter_field = f_groff;
  va_list_fpr_counter_field = f_vroff;

  DECL_ARTIFICIAL (f_stack) = 1;
  DECL_ARTIFICIAL (f_grtop) = 1;
  DECL_ARTIFICIAL (f_vrtop) = 1;
  DECL_ARTIFICIAL (f_groff) = 1;
  DECL_ARTIFICIAL (f_vroff) = 1;

  DECL_FIELD_CONTEXT (f_stack) = va_list_type;
  DECL_FIELD_CONTEXT (f_grtop) = va_list_type;
  DECL_FIELD_CONTEXT (f_vrtop) = va_list_type;
  DECL_FIELD_CONTEXT (f_groff) = va_list_type;
  DECL_FIELD_CONTEXT (f_vroff) = va_list_type;

  TYPE_FIELDS (va_list_type) = f_stack;
  DECL_CHAIN (f_stack) = f_grtop;
  DECL_CHAIN (f_grtop) = f_vrtop;
  DECL_CHAIN (f_vrtop) = f_groff;
  DECL_CHAIN (f_groff) = f_vroff;

  /* Compute its layout.  */
  layout_type (va_list_type);

  return va_list_type;
}

/* Implement TARGET_EXPAND_BUILTIN_VA_START.  */
static void
aarch64_expand_builtin_va_start (tree valist, rtx nextarg ATTRIBUTE_UNUSED)
{
  const CUMULATIVE_ARGS *cum;
  tree f_stack, f_grtop, f_vrtop, f_groff, f_vroff;
  tree stack, grtop, vrtop, groff, vroff;
  tree t;
  int gr_save_area_size = cfun->va_list_gpr_size;
  int vr_save_area_size = cfun->va_list_fpr_size;
  int vr_offset;

  cum = &crtl->args.info;
  if (cfun->va_list_gpr_size)
    gr_save_area_size = MIN ((NUM_ARG_REGS - cum->aapcs_ncrn) * UNITS_PER_WORD,
			     cfun->va_list_gpr_size);
  if (cfun->va_list_fpr_size)
    vr_save_area_size = MIN ((NUM_FP_ARG_REGS - cum->aapcs_nvrn)
			     * UNITS_PER_VREG, cfun->va_list_fpr_size);

  if (!TARGET_FLOAT)
    {
      gcc_assert (cum->aapcs_nvrn == 0);
      vr_save_area_size = 0;
    }

  f_stack = TYPE_FIELDS (va_list_type_node);
  f_grtop = DECL_CHAIN (f_stack);
  f_vrtop = DECL_CHAIN (f_grtop);
  f_groff = DECL_CHAIN (f_vrtop);
  f_vroff = DECL_CHAIN (f_groff);

  stack = build3 (COMPONENT_REF, TREE_TYPE (f_stack), valist, f_stack,
		  NULL_TREE);
  grtop = build3 (COMPONENT_REF, TREE_TYPE (f_grtop), valist, f_grtop,
		  NULL_TREE);
  vrtop = build3 (COMPONENT_REF, TREE_TYPE (f_vrtop), valist, f_vrtop,
		  NULL_TREE);
  groff = build3 (COMPONENT_REF, TREE_TYPE (f_groff), valist, f_groff,
		  NULL_TREE);
  vroff = build3 (COMPONENT_REF, TREE_TYPE (f_vroff), valist, f_vroff,
		  NULL_TREE);

  /* Emit code to initialize STACK, which points to the next varargs stack
     argument.  CUM->AAPCS_STACK_SIZE gives the number of stack words used
     by named arguments.  STACK is 8-byte aligned.  */
  t = make_tree (TREE_TYPE (stack), virtual_incoming_args_rtx);
  if (cum->aapcs_stack_size > 0)
    t = fold_build_pointer_plus_hwi (t, cum->aapcs_stack_size * UNITS_PER_WORD);
  t = build2 (MODIFY_EXPR, TREE_TYPE (stack), stack, t);
  expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);

  /* Emit code to initialize GRTOP, the top of the GR save area.
     virtual_incoming_args_rtx should have been 16 byte aligned.  */
  t = make_tree (TREE_TYPE (grtop), virtual_incoming_args_rtx);
  t = build2 (MODIFY_EXPR, TREE_TYPE (grtop), grtop, t);
  expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);

  /* Emit code to initialize VRTOP, the top of the VR save area.
     This address is gr_save_area_bytes below GRTOP, rounded
     down to the next 16-byte boundary.  */
  t = make_tree (TREE_TYPE (vrtop), virtual_incoming_args_rtx);
  vr_offset = ROUND_UP (gr_save_area_size,
			STACK_BOUNDARY / BITS_PER_UNIT);

  if (vr_offset)
    t = fold_build_pointer_plus_hwi (t, -vr_offset);
  t = build2 (MODIFY_EXPR, TREE_TYPE (vrtop), vrtop, t);
  expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);

  /* Emit code to initialize GROFF, the offset from GRTOP of the
     next GPR argument.  */
  t = build2 (MODIFY_EXPR, TREE_TYPE (groff), groff,
	      build_int_cst (TREE_TYPE (groff), -gr_save_area_size));
  expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);

  /* Likewise emit code to initialize VROFF, the offset from FTOP
     of the next VR argument.  */
  t = build2 (MODIFY_EXPR, TREE_TYPE (vroff), vroff,
	      build_int_cst (TREE_TYPE (vroff), -vr_save_area_size));
  expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
}

/* Implement TARGET_GIMPLIFY_VA_ARG_EXPR.  */

static tree
aarch64_gimplify_va_arg_expr (tree valist, tree type, gimple_seq *pre_p,
			      gimple_seq *post_p ATTRIBUTE_UNUSED)
{
  tree addr;
  bool indirect_p;
  bool is_ha;		/* is HFA or HVA.  */
  bool dw_align;	/* double-word align.  */
  machine_mode ag_mode = VOIDmode;
  int nregs;
  machine_mode mode;

  tree f_stack, f_grtop, f_vrtop, f_groff, f_vroff;
  tree stack, f_top, f_off, off, arg, roundup, on_stack;
  HOST_WIDE_INT size, rsize, adjust, align;
  tree t, u, cond1, cond2;

  indirect_p = pass_by_reference (NULL, TYPE_MODE (type), type, false);
  if (indirect_p)
    type = build_pointer_type (type);

  mode = TYPE_MODE (type);

  f_stack = TYPE_FIELDS (va_list_type_node);
  f_grtop = DECL_CHAIN (f_stack);
  f_vrtop = DECL_CHAIN (f_grtop);
  f_groff = DECL_CHAIN (f_vrtop);
  f_vroff = DECL_CHAIN (f_groff);

  stack = build3 (COMPONENT_REF, TREE_TYPE (f_stack), unshare_expr (valist),
		  f_stack, NULL_TREE);
  size = int_size_in_bytes (type);
  align = aarch64_function_arg_alignment (mode, type) / BITS_PER_UNIT;

  dw_align = false;
  adjust = 0;
  if (aarch64_vfp_is_call_or_return_candidate (mode,
					       type,
					       &ag_mode,
					       &nregs,
					       &is_ha))
    {
      /* TYPE passed in fp/simd registers.  */
      if (!TARGET_FLOAT)
	aarch64_err_no_fpadvsimd (mode, "varargs");

      f_top = build3 (COMPONENT_REF, TREE_TYPE (f_vrtop),
		      unshare_expr (valist), f_vrtop, NULL_TREE);
      f_off = build3 (COMPONENT_REF, TREE_TYPE (f_vroff),
		      unshare_expr (valist), f_vroff, NULL_TREE);

      rsize = nregs * UNITS_PER_VREG;

      if (is_ha)
	{
	  if (BYTES_BIG_ENDIAN && GET_MODE_SIZE (ag_mode) < UNITS_PER_VREG)
	    adjust = UNITS_PER_VREG - GET_MODE_SIZE (ag_mode);
	}
      else if (BLOCK_REG_PADDING (mode, type, 1) == PAD_DOWNWARD
	       && size < UNITS_PER_VREG)
	{
	  adjust = UNITS_PER_VREG - size;
	}
    }
  else
    {
      /* TYPE passed in general registers.  */
      f_top = build3 (COMPONENT_REF, TREE_TYPE (f_grtop),
		      unshare_expr (valist), f_grtop, NULL_TREE);
      f_off = build3 (COMPONENT_REF, TREE_TYPE (f_groff),
		      unshare_expr (valist), f_groff, NULL_TREE);
      rsize = ROUND_UP (size, UNITS_PER_WORD);
      nregs = rsize / UNITS_PER_WORD;

      if (align > 8)
	dw_align = true;

      if (BLOCK_REG_PADDING (mode, type, 1) == PAD_DOWNWARD
	  && size < UNITS_PER_WORD)
	{
	  adjust = UNITS_PER_WORD  - size;
	}
    }

  /* Get a local temporary for the field value.  */
  off = get_initialized_tmp_var (f_off, pre_p, NULL);

  /* Emit code to branch if off >= 0.  */
  t = build2 (GE_EXPR, boolean_type_node, off,
	      build_int_cst (TREE_TYPE (off), 0));
  cond1 = build3 (COND_EXPR, ptr_type_node, t, NULL_TREE, NULL_TREE);

  if (dw_align)
    {
      /* Emit: offs = (offs + 15) & -16.  */
      t = build2 (PLUS_EXPR, TREE_TYPE (off), off,
		  build_int_cst (TREE_TYPE (off), 15));
      t = build2 (BIT_AND_EXPR, TREE_TYPE (off), t,
		  build_int_cst (TREE_TYPE (off), -16));
      roundup = build2 (MODIFY_EXPR, TREE_TYPE (off), off, t);
    }
  else
    roundup = NULL;

  /* Update ap.__[g|v]r_offs  */
  t = build2 (PLUS_EXPR, TREE_TYPE (off), off,
	      build_int_cst (TREE_TYPE (off), rsize));
  t = build2 (MODIFY_EXPR, TREE_TYPE (f_off), unshare_expr (f_off), t);

  /* String up.  */
  if (roundup)
    t = build2 (COMPOUND_EXPR, TREE_TYPE (t), roundup, t);

  /* [cond2] if (ap.__[g|v]r_offs > 0)  */
  u = build2 (GT_EXPR, boolean_type_node, unshare_expr (f_off),
	      build_int_cst (TREE_TYPE (f_off), 0));
  cond2 = build3 (COND_EXPR, ptr_type_node, u, NULL_TREE, NULL_TREE);

  /* String up: make sure the assignment happens before the use.  */
  t = build2 (COMPOUND_EXPR, TREE_TYPE (cond2), t, cond2);
  COND_EXPR_ELSE (cond1) = t;

  /* Prepare the trees handling the argument that is passed on the stack;
     the top level node will store in ON_STACK.  */
  arg = get_initialized_tmp_var (stack, pre_p, NULL);
  if (align > 8)
    {
      /* if (alignof(type) > 8) (arg = arg + 15) & -16;  */
      t = fold_convert (intDI_type_node, arg);
      t = build2 (PLUS_EXPR, TREE_TYPE (t), t,
		  build_int_cst (TREE_TYPE (t), 15));
      t = build2 (BIT_AND_EXPR, TREE_TYPE (t), t,
		  build_int_cst (TREE_TYPE (t), -16));
      t = fold_convert (TREE_TYPE (arg), t);
      roundup = build2 (MODIFY_EXPR, TREE_TYPE (arg), arg, t);
    }
  else
    roundup = NULL;
  /* Advance ap.__stack  */
  t = fold_convert (intDI_type_node, arg);
  t = build2 (PLUS_EXPR, TREE_TYPE (t), t,
	      build_int_cst (TREE_TYPE (t), size + 7));
  t = build2 (BIT_AND_EXPR, TREE_TYPE (t), t,
	      build_int_cst (TREE_TYPE (t), -8));
  t = fold_convert (TREE_TYPE (arg), t);
  t = build2 (MODIFY_EXPR, TREE_TYPE (stack), unshare_expr (stack), t);
  /* String up roundup and advance.  */
  if (roundup)
    t = build2 (COMPOUND_EXPR, TREE_TYPE (t), roundup, t);
  /* String up with arg */
  on_stack = build2 (COMPOUND_EXPR, TREE_TYPE (arg), t, arg);
  /* Big-endianness related address adjustment.  */
  if (BLOCK_REG_PADDING (mode, type, 1) == PAD_DOWNWARD
      && size < UNITS_PER_WORD)
  {
    t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (arg), arg,
		size_int (UNITS_PER_WORD - size));
    on_stack = build2 (COMPOUND_EXPR, TREE_TYPE (arg), on_stack, t);
  }

  COND_EXPR_THEN (cond1) = unshare_expr (on_stack);
  COND_EXPR_THEN (cond2) = unshare_expr (on_stack);

  /* Adjustment to OFFSET in the case of BIG_ENDIAN.  */
  t = off;
  if (adjust)
    t = build2 (PREINCREMENT_EXPR, TREE_TYPE (off), off,
		build_int_cst (TREE_TYPE (off), adjust));

  t = fold_convert (sizetype, t);
  t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (f_top), f_top, t);

  if (is_ha)
    {
      /* type ha; // treat as "struct {ftype field[n];}"
         ... [computing offs]
         for (i = 0; i <nregs; ++i, offs += 16)
	   ha.field[i] = *((ftype *)(ap.__vr_top + offs));
	 return ha;  */
      int i;
      tree tmp_ha, field_t, field_ptr_t;

      /* Declare a local variable.  */
      tmp_ha = create_tmp_var_raw (type, "ha");
      gimple_add_tmp_var (tmp_ha);

      /* Establish the base type.  */
      switch (ag_mode)
	{
	case E_SFmode:
	  field_t = float_type_node;
	  field_ptr_t = float_ptr_type_node;
	  break;
	case E_DFmode:
	  field_t = double_type_node;
	  field_ptr_t = double_ptr_type_node;
	  break;
	case E_TFmode:
	  field_t = long_double_type_node;
	  field_ptr_t = long_double_ptr_type_node;
	  break;
	case E_HFmode:
	  field_t = aarch64_fp16_type_node;
	  field_ptr_t = aarch64_fp16_ptr_type_node;
	  break;
	case E_V2SImode:
	case E_V4SImode:
	    {
	      tree innertype = make_signed_type (GET_MODE_PRECISION (SImode));
	      field_t = build_vector_type_for_mode (innertype, ag_mode);
	      field_ptr_t = build_pointer_type (field_t);
	    }
	  break;
	default:
	  gcc_assert (0);
	}

      /* *(field_ptr_t)&ha = *((field_ptr_t)vr_saved_area  */
      tmp_ha = build1 (ADDR_EXPR, field_ptr_t, tmp_ha);
      addr = t;
      t = fold_convert (field_ptr_t, addr);
      t = build2 (MODIFY_EXPR, field_t,
		  build1 (INDIRECT_REF, field_t, tmp_ha),
		  build1 (INDIRECT_REF, field_t, t));

      /* ha.field[i] = *((field_ptr_t)vr_saved_area + i)  */
      for (i = 1; i < nregs; ++i)
	{
	  addr = fold_build_pointer_plus_hwi (addr, UNITS_PER_VREG);
	  u = fold_convert (field_ptr_t, addr);
	  u = build2 (MODIFY_EXPR, field_t,
		      build2 (MEM_REF, field_t, tmp_ha,
			      build_int_cst (field_ptr_t,
					     (i *
					      int_size_in_bytes (field_t)))),
		      build1 (INDIRECT_REF, field_t, u));
	  t = build2 (COMPOUND_EXPR, TREE_TYPE (t), t, u);
	}

      u = fold_convert (TREE_TYPE (f_top), tmp_ha);
      t = build2 (COMPOUND_EXPR, TREE_TYPE (f_top), t, u);
    }

  COND_EXPR_ELSE (cond2) = t;
  addr = fold_convert (build_pointer_type (type), cond1);
  addr = build_va_arg_indirect_ref (addr);

  if (indirect_p)
    addr = build_va_arg_indirect_ref (addr);

  return addr;
}

/* Implement TARGET_SETUP_INCOMING_VARARGS.  */

static void
aarch64_setup_incoming_varargs (cumulative_args_t cum_v, machine_mode mode,
				tree type, int *pretend_size ATTRIBUTE_UNUSED,
				int no_rtl)
{
  CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
  CUMULATIVE_ARGS local_cum;
  int gr_saved = cfun->va_list_gpr_size;
  int vr_saved = cfun->va_list_fpr_size;

  /* The caller has advanced CUM up to, but not beyond, the last named
     argument.  Advance a local copy of CUM past the last "real" named
     argument, to find out how many registers are left over.  */
  local_cum = *cum;
  aarch64_function_arg_advance (pack_cumulative_args(&local_cum), mode, type, true);

  /* Found out how many registers we need to save.
     Honor tree-stdvar analysis results.  */
  if (cfun->va_list_gpr_size)
    gr_saved = MIN (NUM_ARG_REGS - local_cum.aapcs_ncrn,
		    cfun->va_list_gpr_size / UNITS_PER_WORD);
  if (cfun->va_list_fpr_size)
    vr_saved = MIN (NUM_FP_ARG_REGS - local_cum.aapcs_nvrn,
		    cfun->va_list_fpr_size / UNITS_PER_VREG);

  if (!TARGET_FLOAT)
    {
      gcc_assert (local_cum.aapcs_nvrn == 0);
      vr_saved = 0;
    }

  if (!no_rtl)
    {
      if (gr_saved > 0)
	{
	  rtx ptr, mem;

	  /* virtual_incoming_args_rtx should have been 16-byte aligned.  */
	  ptr = plus_constant (Pmode, virtual_incoming_args_rtx,
			       - gr_saved * UNITS_PER_WORD);
	  mem = gen_frame_mem (BLKmode, ptr);
	  set_mem_alias_set (mem, get_varargs_alias_set ());

	  move_block_from_reg (local_cum.aapcs_ncrn + R0_REGNUM,
			       mem, gr_saved);
	}
      if (vr_saved > 0)
	{
	  /* We can't use move_block_from_reg, because it will use
	     the wrong mode, storing D regs only.  */
	  machine_mode mode = TImode;
	  int off, i, vr_start;

	  /* Set OFF to the offset from virtual_incoming_args_rtx of
	     the first vector register.  The VR save area lies below
	     the GR one, and is aligned to 16 bytes.  */
	  off = -ROUND_UP (gr_saved * UNITS_PER_WORD,
			   STACK_BOUNDARY / BITS_PER_UNIT);
	  off -= vr_saved * UNITS_PER_VREG;

	  vr_start = V0_REGNUM + local_cum.aapcs_nvrn;
	  for (i = 0; i < vr_saved; ++i)
	    {
	      rtx ptr, mem;

	      ptr = plus_constant (Pmode, virtual_incoming_args_rtx, off);
	      mem = gen_frame_mem (mode, ptr);
	      set_mem_alias_set (mem, get_varargs_alias_set ());
	      aarch64_emit_move (mem, gen_rtx_REG (mode, vr_start + i));
	      off += UNITS_PER_VREG;
	    }
	}
    }

  /* We don't save the size into *PRETEND_SIZE because we want to avoid
     any complication of having crtl->args.pretend_args_size changed.  */
  cfun->machine->frame.saved_varargs_size
    = (ROUND_UP (gr_saved * UNITS_PER_WORD,
		 STACK_BOUNDARY / BITS_PER_UNIT)
       + vr_saved * UNITS_PER_VREG);
}

static void
aarch64_conditional_register_usage (void)
{
  int i;
  if (!TARGET_FLOAT)
    {
      for (i = V0_REGNUM; i <= V31_REGNUM; i++)
	{
	  fixed_regs[i] = 1;
	  call_used_regs[i] = 1;
	}
    }
}

/* Walk down the type tree of TYPE counting consecutive base elements.
   If *MODEP is VOIDmode, then set it to the first valid floating point
   type.  If a non-floating point type is found, or if a floating point
   type that doesn't match a non-VOIDmode *MODEP is found, then return -1,
   otherwise return the count in the sub-tree.  */
static int
aapcs_vfp_sub_candidate (const_tree type, machine_mode *modep)
{
  machine_mode mode;
  HOST_WIDE_INT size;

  switch (TREE_CODE (type))
    {
    case REAL_TYPE:
      mode = TYPE_MODE (type);
      if (mode != DFmode && mode != SFmode
	  && mode != TFmode && mode != HFmode)
	return -1;

      if (*modep == VOIDmode)
	*modep = mode;

      if (*modep == mode)
	return 1;

      break;

    case COMPLEX_TYPE:
      mode = TYPE_MODE (TREE_TYPE (type));
      if (mode != DFmode && mode != SFmode
	  && mode != TFmode && mode != HFmode)
	return -1;

      if (*modep == VOIDmode)
	*modep = mode;

      if (*modep == mode)
	return 2;

      break;

    case VECTOR_TYPE:
      /* Use V2SImode and V4SImode as representatives of all 64-bit
	 and 128-bit vector types.  */
      size = int_size_in_bytes (type);
      switch (size)
	{
	case 8:
	  mode = V2SImode;
	  break;
	case 16:
	  mode = V4SImode;
	  break;
	default:
	  return -1;
	}

      if (*modep == VOIDmode)
	*modep = mode;

      /* Vector modes are considered to be opaque: two vectors are
	 equivalent for the purposes of being homogeneous aggregates
	 if they are the same size.  */
      if (*modep == mode)
	return 1;

      break;

    case ARRAY_TYPE:
      {
	int count;
	tree index = TYPE_DOMAIN (type);

	/* Can't handle incomplete types nor sizes that are not
	   fixed.  */
	if (!COMPLETE_TYPE_P (type)
	    || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
	  return -1;

	count = aapcs_vfp_sub_candidate (TREE_TYPE (type), modep);
	if (count == -1
	    || !index
	    || !TYPE_MAX_VALUE (index)
	    || !tree_fits_uhwi_p (TYPE_MAX_VALUE (index))
	    || !TYPE_MIN_VALUE (index)
	    || !tree_fits_uhwi_p (TYPE_MIN_VALUE (index))
	    || count < 0)
	  return -1;

	count *= (1 + tree_to_uhwi (TYPE_MAX_VALUE (index))
		      - tree_to_uhwi (TYPE_MIN_VALUE (index)));

	/* There must be no padding.  */
	if (wi::ne_p (TYPE_SIZE (type), count * GET_MODE_BITSIZE (*modep)))
	  return -1;

	return count;
      }

    case RECORD_TYPE:
      {
	int count = 0;
	int sub_count;
	tree field;

	/* Can't handle incomplete types nor sizes that are not
	   fixed.  */
	if (!COMPLETE_TYPE_P (type)
	    || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
	  return -1;

	for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
	  {
	    if (TREE_CODE (field) != FIELD_DECL)
	      continue;

	    sub_count = aapcs_vfp_sub_candidate (TREE_TYPE (field), modep);
	    if (sub_count < 0)
	      return -1;
	    count += sub_count;
	  }

	/* There must be no padding.  */
	if (wi::ne_p (TYPE_SIZE (type), count * GET_MODE_BITSIZE (*modep)))
	  return -1;

	return count;
      }

    case UNION_TYPE:
    case QUAL_UNION_TYPE:
      {
	/* These aren't very interesting except in a degenerate case.  */
	int count = 0;
	int sub_count;
	tree field;

	/* Can't handle incomplete types nor sizes that are not
	   fixed.  */
	if (!COMPLETE_TYPE_P (type)
	    || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
	  return -1;

	for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
	  {
	    if (TREE_CODE (field) != FIELD_DECL)
	      continue;

	    sub_count = aapcs_vfp_sub_candidate (TREE_TYPE (field), modep);
	    if (sub_count < 0)
	      return -1;
	    count = count > sub_count ? count : sub_count;
	  }

	/* There must be no padding.  */
	if (wi::ne_p (TYPE_SIZE (type), count * GET_MODE_BITSIZE (*modep)))
	  return -1;

	return count;
      }

    default:
      break;
    }

  return -1;
}

/* Return TRUE if the type, as described by TYPE and MODE, is a short vector
   type as described in AAPCS64 \S 4.1.2.

   See the comment above aarch64_composite_type_p for the notes on MODE.  */

static bool
aarch64_short_vector_p (const_tree type,
			machine_mode mode)
{
  HOST_WIDE_INT size = -1;

  if (type && TREE_CODE (type) == VECTOR_TYPE)
    size = int_size_in_bytes (type);
  else if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
	    || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
    size = GET_MODE_SIZE (mode);

  return (size == 8 || size == 16);
}

/* Return TRUE if the type, as described by TYPE and MODE, is a composite
   type as described in AAPCS64 \S 4.3.  This includes aggregate, union and
   array types.  The C99 floating-point complex types are also considered
   as composite types, according to AAPCS64 \S 7.1.1.  The complex integer
   types, which are GCC extensions and out of the scope of AAPCS64, are
   treated as composite types here as well.

   Note that MODE itself is not sufficient in determining whether a type
   is such a composite type or not.  This is because
   stor-layout.c:compute_record_mode may have already changed the MODE
   (BLKmode) of a RECORD_TYPE TYPE to some other mode.  For example, a
   structure with only one field may have its MODE set to the mode of the
   field.  Also an integer mode whose size matches the size of the
   RECORD_TYPE type may be used to substitute the original mode
   (i.e. BLKmode) in certain circumstances.  In other words, MODE cannot be
   solely relied on.  */

static bool
aarch64_composite_type_p (const_tree type,
			  machine_mode mode)
{
  if (aarch64_short_vector_p (type, mode))
    return false;

  if (type && (AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE))
    return true;

  if (mode == BLKmode
      || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
      || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT)
    return true;

  return false;
}

/* Return TRUE if an argument, whose type is described by TYPE and MODE,
   shall be passed or returned in simd/fp register(s) (providing these
   parameter passing registers are available).

   Upon successful return, *COUNT returns the number of needed registers,
   *BASE_MODE returns the mode of the individual register and when IS_HAF
   is not NULL, *IS_HA indicates whether or not the argument is a homogeneous
   floating-point aggregate or a homogeneous short-vector aggregate.  */

static bool
aarch64_vfp_is_call_or_return_candidate (machine_mode mode,
					 const_tree type,
					 machine_mode *base_mode,
					 int *count,
					 bool *is_ha)
{
  machine_mode new_mode = VOIDmode;
  bool composite_p = aarch64_composite_type_p (type, mode);

  if (is_ha != NULL) *is_ha = false;

  if ((!composite_p && GET_MODE_CLASS (mode) == MODE_FLOAT)
      || aarch64_short_vector_p (type, mode))
    {
      *count = 1;
      new_mode = mode;
    }
  else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
    {
      if (is_ha != NULL) *is_ha = true;
      *count = 2;
      new_mode = GET_MODE_INNER (mode);
    }
  else if (type && composite_p)
    {
      int ag_count = aapcs_vfp_sub_candidate (type, &new_mode);

      if (ag_count > 0 && ag_count <= HA_MAX_NUM_FLDS)
	{
	  if (is_ha != NULL) *is_ha = true;
	  *count = ag_count;
	}
      else
	return false;
    }
  else
    return false;

  *base_mode = new_mode;
  return true;
}

/* Implement TARGET_STRUCT_VALUE_RTX.  */

static rtx
aarch64_struct_value_rtx (tree fndecl ATTRIBUTE_UNUSED,
			  int incoming ATTRIBUTE_UNUSED)
{
  return gen_rtx_REG (Pmode, AARCH64_STRUCT_VALUE_REGNUM);
}

/* Implements target hook vector_mode_supported_p.  */
static bool
aarch64_vector_mode_supported_p (machine_mode mode)
{
  if (TARGET_SIMD
      && (mode == V4SImode  || mode == V8HImode
	  || mode == V16QImode || mode == V2DImode
	  || mode == V2SImode  || mode == V4HImode
	  || mode == V8QImode || mode == V2SFmode
	  || mode == V4SFmode || mode == V2DFmode
	  || mode == V4HFmode || mode == V8HFmode
	  || mode == V1DFmode))
    return true;

  return false;
}

/* Return appropriate SIMD container
   for MODE within a vector of WIDTH bits.  */
static machine_mode
aarch64_simd_container_mode (scalar_mode mode, unsigned width)
{
  gcc_assert (width == 64 || width == 128);
  if (TARGET_SIMD)
    {
      if (width == 128)
	switch (mode)
	  {
	  case E_DFmode:
	    return V2DFmode;
	  case E_SFmode:
	    return V4SFmode;
	  case E_HFmode:
	    return V8HFmode;
	  case E_SImode:
	    return V4SImode;
	  case E_HImode:
	    return V8HImode;
	  case E_QImode:
	    return V16QImode;
	  case E_DImode:
	    return V2DImode;
	  default:
	    break;
	  }
      else
	switch (mode)
	  {
	  case E_SFmode:
	    return V2SFmode;
	  case E_HFmode:
	    return V4HFmode;
	  case E_SImode:
	    return V2SImode;
	  case E_HImode:
	    return V4HImode;
	  case E_QImode:
	    return V8QImode;
	  default:
	    break;
	  }
    }
  return word_mode;
}

/* Return 128-bit container as the preferred SIMD mode for MODE.  */
static machine_mode
aarch64_preferred_simd_mode (scalar_mode mode)
{
  return aarch64_simd_container_mode (mode, 128);
}

/* Return the bitmask of possible vector sizes for the vectorizer
   to iterate over.  */
static unsigned int
aarch64_autovectorize_vector_sizes (void)
{
  return (16 | 8);
}

/* Implement TARGET_MANGLE_TYPE.  */

static const char *
aarch64_mangle_type (const_tree type)
{
  /* The AArch64 ABI documents say that "__va_list" has to be
     managled as if it is in the "std" namespace.  */
  if (lang_hooks.types_compatible_p (CONST_CAST_TREE (type), va_list_type))
    return "St9__va_list";

  /* Half-precision float.  */
  if (TREE_CODE (type) == REAL_TYPE && TYPE_PRECISION (type) == 16)
    return "Dh";

  /* Mangle AArch64-specific internal types.  TYPE_NAME is non-NULL_TREE for
     builtin types.  */
  if (TYPE_NAME (type) != NULL)
    return aarch64_mangle_builtin_type (type);

  /* Use the default mangling.  */
  return NULL;
}

/* Find the first rtx_insn before insn that will generate an assembly
   instruction.  */

static rtx_insn *
aarch64_prev_real_insn (rtx_insn *insn)
{
  if (!insn)
    return NULL;

  do
    {
      insn = prev_real_insn (insn);
    }
  while (insn && recog_memoized (insn) < 0);

  return insn;
}

static bool
is_madd_op (enum attr_type t1)
{
  unsigned int i;
  /* A number of these may be AArch32 only.  */
  enum attr_type mlatypes[] = {
    TYPE_MLA, TYPE_MLAS, TYPE_SMLAD, TYPE_SMLADX, TYPE_SMLAL, TYPE_SMLALD,
    TYPE_SMLALS, TYPE_SMLALXY, TYPE_SMLAWX, TYPE_SMLAWY, TYPE_SMLAXY,
    TYPE_SMMLA, TYPE_UMLAL, TYPE_UMLALS,TYPE_SMLSD, TYPE_SMLSDX, TYPE_SMLSLD
  };

  for (i = 0; i < sizeof (mlatypes) / sizeof (enum attr_type); i++)
    {
      if (t1 == mlatypes[i])
	return true;
    }

  return false;
}

/* Check if there is a register dependency between a load and the insn
   for which we hold recog_data.  */

static bool
dep_between_memop_and_curr (rtx memop)
{
  rtx load_reg;
  int opno;

  gcc_assert (GET_CODE (memop) == SET);

  if (!REG_P (SET_DEST (memop)))
    return false;

  load_reg = SET_DEST (memop);
  for (opno = 1; opno < recog_data.n_operands; opno++)
    {
      rtx operand = recog_data.operand[opno];
      if (REG_P (operand)
          && reg_overlap_mentioned_p (load_reg, operand))
        return true;

    }
  return false;
}


/* When working around the Cortex-A53 erratum 835769,
   given rtx_insn INSN, return true if it is a 64-bit multiply-accumulate
   instruction and has a preceding memory instruction such that a NOP
   should be inserted between them.  */

bool
aarch64_madd_needs_nop (rtx_insn* insn)
{
  enum attr_type attr_type;
  rtx_insn *prev;
  rtx body;

  if (!TARGET_FIX_ERR_A53_835769)
    return false;

  if (!INSN_P (insn) || recog_memoized (insn) < 0)
    return false;

  attr_type = get_attr_type (insn);
  if (!is_madd_op (attr_type))
    return false;

  prev = aarch64_prev_real_insn (insn);
  /* aarch64_prev_real_insn can call recog_memoized on insns other than INSN.
     Restore recog state to INSN to avoid state corruption.  */
  extract_constrain_insn_cached (insn);

  if (!prev || !contains_mem_rtx_p (PATTERN (prev)))
    return false;

  body = single_set (prev);

  /* If the previous insn is a memory op and there is no dependency between
     it and the DImode madd, emit a NOP between them.  If body is NULL then we
     have a complex memory operation, probably a load/store pair.
     Be conservative for now and emit a NOP.  */
  if (GET_MODE (recog_data.operand[0]) == DImode
      && (!body || !dep_between_memop_and_curr (body)))
    return true;

  return false;

}


/* Implement FINAL_PRESCAN_INSN.  */

void
aarch64_final_prescan_insn (rtx_insn *insn)
{
  if (aarch64_madd_needs_nop (insn))
    fprintf (asm_out_file, "\tnop // between mem op and mult-accumulate\n");
}


/* Return the equivalent letter for size.  */
static char
sizetochar (int size)
{
  switch (size)
    {
    case 64: return 'd';
    case 32: return 's';
    case 16: return 'h';
    case 8 : return 'b';
    default: gcc_unreachable ();
    }
}

/* Return true iff x is a uniform vector of floating-point
   constants, and the constant can be represented in
   quarter-precision form.  Note, as aarch64_float_const_representable
   rejects both +0.0 and -0.0, we will also reject +0.0 and -0.0.  */
static bool
aarch64_vect_float_const_representable_p (rtx x)
{
  rtx elt;
  return (GET_MODE_CLASS (GET_MODE (x)) == MODE_VECTOR_FLOAT
	  && const_vec_duplicate_p (x, &elt)
	  && aarch64_float_const_representable_p (elt));
}

/* Return true for valid and false for invalid.  */
bool
aarch64_simd_valid_immediate (rtx op, machine_mode mode, bool inverse,
			      struct simd_immediate_info *info)
{
#define CHECK(STRIDE, ELSIZE, CLASS, TEST, SHIFT, NEG)	\
  matches = 1;						\
  for (i = 0; i < idx; i += (STRIDE))			\
    if (!(TEST))					\
      matches = 0;					\
  if (matches)						\
    {							\
      immtype = (CLASS);				\
      elsize = (ELSIZE);				\
      eshift = (SHIFT);					\
      emvn = (NEG);					\
      break;						\
    }

  unsigned int i, elsize = 0, idx = 0, n_elts = CONST_VECTOR_NUNITS (op);
  unsigned int innersize = GET_MODE_UNIT_SIZE (mode);
  unsigned char bytes[16];
  int immtype = -1, matches;
  unsigned int invmask = inverse ? 0xff : 0;
  int eshift, emvn;

  if (GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
    {
      if (! (aarch64_simd_imm_zero_p (op, mode)
	     || aarch64_vect_float_const_representable_p (op)))
	return false;

      if (info)
	{
	  rtx elt = CONST_VECTOR_ELT (op, 0);
	  scalar_float_mode elt_mode
	    = as_a <scalar_float_mode> (GET_MODE (elt));

	  info->value = elt;
	  info->element_width = GET_MODE_BITSIZE (elt_mode);
	  info->mvn = false;
	  info->shift = 0;
	}

      return true;
    }

  /* Splat vector constant out into a byte vector.  */
  for (i = 0; i < n_elts; i++)
    {
      /* The vector is provided in gcc endian-neutral fashion.  For aarch64_be,
         it must be laid out in the vector register in reverse order.  */
      rtx el = CONST_VECTOR_ELT (op, BYTES_BIG_ENDIAN ? (n_elts - 1 - i) : i);
      unsigned HOST_WIDE_INT elpart;

      gcc_assert (CONST_INT_P (el));
      elpart = INTVAL (el);

      for (unsigned int byte = 0; byte < innersize; byte++)
	{
	  bytes[idx++] = (elpart & 0xff) ^ invmask;
	  elpart >>= BITS_PER_UNIT;
	}

    }

  /* Sanity check.  */
  gcc_assert (idx == GET_MODE_SIZE (mode));

  do
    {
      CHECK (4, 32, 0, bytes[i] == bytes[0] && bytes[i + 1] == 0
	     && bytes[i + 2] == 0 && bytes[i + 3] == 0, 0, 0);

      CHECK (4, 32, 1, bytes[i] == 0 && bytes[i + 1] == bytes[1]
	     && bytes[i + 2] == 0 && bytes[i + 3] == 0, 8, 0);

      CHECK (4, 32, 2, bytes[i] == 0 && bytes[i + 1] == 0
	     && bytes[i + 2] == bytes[2] && bytes[i + 3] == 0, 16, 0);

      CHECK (4, 32, 3, bytes[i] == 0 && bytes[i + 1] == 0
	     && bytes[i + 2] == 0 && bytes[i + 3] == bytes[3], 24, 0);

      CHECK (2, 16, 4, bytes[i] == bytes[0] && bytes[i + 1] == 0, 0, 0);

      CHECK (2, 16, 5, bytes[i] == 0 && bytes[i + 1] == bytes[1], 8, 0);

      CHECK (4, 32, 6, bytes[i] == bytes[0] && bytes[i + 1] == 0xff
	     && bytes[i + 2] == 0xff && bytes[i + 3] == 0xff, 0, 1);

      CHECK (4, 32, 7, bytes[i] == 0xff && bytes[i + 1] == bytes[1]
	     && bytes[i + 2] == 0xff && bytes[i + 3] == 0xff, 8, 1);

      CHECK (4, 32, 8, bytes[i] == 0xff && bytes[i + 1] == 0xff
	     && bytes[i + 2] == bytes[2] && bytes[i + 3] == 0xff, 16, 1);

      CHECK (4, 32, 9, bytes[i] == 0xff && bytes[i + 1] == 0xff
	     && bytes[i + 2] == 0xff && bytes[i + 3] == bytes[3], 24, 1);

      CHECK (2, 16, 10, bytes[i] == bytes[0] && bytes[i + 1] == 0xff, 0, 1);

      CHECK (2, 16, 11, bytes[i] == 0xff && bytes[i + 1] == bytes[1], 8, 1);

      CHECK (4, 32, 12, bytes[i] == 0xff && bytes[i + 1] == bytes[1]
	     && bytes[i + 2] == 0 && bytes[i + 3] == 0, 8, 0);

      CHECK (4, 32, 13, bytes[i] == 0 && bytes[i + 1] == bytes[1]
	     && bytes[i + 2] == 0xff && bytes[i + 3] == 0xff, 8, 1);

      CHECK (4, 32, 14, bytes[i] == 0xff && bytes[i + 1] == 0xff
	     && bytes[i + 2] == bytes[2] && bytes[i + 3] == 0, 16, 0);

      CHECK (4, 32, 15, bytes[i] == 0 && bytes[i + 1] == 0
	     && bytes[i + 2] == bytes[2] && bytes[i + 3] == 0xff, 16, 1);

      CHECK (1, 8, 16, bytes[i] == bytes[0], 0, 0);

      CHECK (1, 64, 17, (bytes[i] == 0 || bytes[i] == 0xff)
	     && bytes[i] == bytes[(i + 8) % idx], 0, 0);
    }
  while (0);

  if (immtype == -1)
    return false;

  if (info)
    {
      info->element_width = elsize;
      info->mvn = emvn != 0;
      info->shift = eshift;

      unsigned HOST_WIDE_INT imm = 0;

      if (immtype >= 12 && immtype <= 15)
	info->msl = true;

      /* Un-invert bytes of recognized vector, if necessary.  */
      if (invmask != 0)
        for (i = 0; i < idx; i++)
          bytes[i] ^= invmask;

      if (immtype == 17)
        {
          /* FIXME: Broken on 32-bit H_W_I hosts.  */
          gcc_assert (sizeof (HOST_WIDE_INT) == 8);

          for (i = 0; i < 8; i++)
            imm |= (unsigned HOST_WIDE_INT) (bytes[i] ? 0xff : 0)
	      << (i * BITS_PER_UNIT);


	  info->value = GEN_INT (imm);
	}
      else
	{
	  for (i = 0; i < elsize / BITS_PER_UNIT; i++)
	    imm |= (unsigned HOST_WIDE_INT) bytes[i] << (i * BITS_PER_UNIT);

	  /* Construct 'abcdefgh' because the assembler cannot handle
	     generic constants.	 */
	  if (info->mvn)
	    imm = ~imm;
	  imm = (imm >> info->shift) & 0xff;
	  info->value = GEN_INT (imm);
	}
    }

  return true;
#undef CHECK
}

/* Check of immediate shift constants are within range.  */
bool
aarch64_simd_shift_imm_p (rtx x, machine_mode mode, bool left)
{
  int bit_width = GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT;
  if (left)
    return aarch64_const_vec_all_same_in_range_p (x, 0, bit_width - 1);
  else
    return aarch64_const_vec_all_same_in_range_p (x, 1, bit_width);
}

/* Return true if X is a uniform vector where all elements
   are either the floating-point constant 0.0 or the
   integer constant 0.  */
bool
aarch64_simd_imm_zero_p (rtx x, machine_mode mode)
{
  return x == CONST0_RTX (mode);
}


/* Return the bitmask CONST_INT to select the bits required by a zero extract
   operation of width WIDTH at bit position POS.  */

rtx
aarch64_mask_from_zextract_ops (rtx width, rtx pos)
{
  gcc_assert (CONST_INT_P (width));
  gcc_assert (CONST_INT_P (pos));

  unsigned HOST_WIDE_INT mask
    = ((unsigned HOST_WIDE_INT) 1 << UINTVAL (width)) - 1;
  return GEN_INT (mask << UINTVAL (pos));
}

bool
aarch64_mov_operand_p (rtx x, machine_mode mode)
{
  if (GET_CODE (x) == HIGH
      && aarch64_valid_symref (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
    return true;

  if (CONST_INT_P (x))
    return true;

  if (GET_CODE (x) == SYMBOL_REF && mode == DImode && CONSTANT_ADDRESS_P (x))
    return true;

  return aarch64_classify_symbolic_expression (x)
    == SYMBOL_TINY_ABSOLUTE;
}

/* Return a const_int vector of VAL.  */
rtx
aarch64_simd_gen_const_vector_dup (machine_mode mode, HOST_WIDE_INT val)
{
  int nunits = GET_MODE_NUNITS (mode);
  rtvec v = rtvec_alloc (nunits);
  int i;

  rtx cache = GEN_INT (val);

  for (i=0; i < nunits; i++)
    RTVEC_ELT (v, i) = cache;

  return gen_rtx_CONST_VECTOR (mode, v);
}

/* Check OP is a legal scalar immediate for the MOVI instruction.  */

bool
aarch64_simd_scalar_immediate_valid_for_move (rtx op, scalar_int_mode mode)
{
  machine_mode vmode;

  vmode = aarch64_preferred_simd_mode (mode);
  rtx op_v = aarch64_simd_gen_const_vector_dup (vmode, INTVAL (op));
  return aarch64_simd_valid_immediate (op_v, vmode, false, NULL);
}

/* Construct and return a PARALLEL RTX vector with elements numbering the
   lanes of either the high (HIGH == TRUE) or low (HIGH == FALSE) half of
   the vector - from the perspective of the architecture.  This does not
   line up with GCC's perspective on lane numbers, so we end up with
   different masks depending on our target endian-ness.  The diagram
   below may help.  We must draw the distinction when building masks
   which select one half of the vector.  An instruction selecting
   architectural low-lanes for a big-endian target, must be described using
   a mask selecting GCC high-lanes.

                 Big-Endian             Little-Endian

GCC             0   1   2   3           3   2   1   0
              | x | x | x | x |       | x | x | x | x |
Architecture    3   2   1   0           3   2   1   0

Low Mask:         { 2, 3 }                { 0, 1 }
High Mask:        { 0, 1 }                { 2, 3 }
*/

rtx
aarch64_simd_vect_par_cnst_half (machine_mode mode, bool high)
{
  int nunits = GET_MODE_NUNITS (mode);
  rtvec v = rtvec_alloc (nunits / 2);
  int high_base = nunits / 2;
  int low_base = 0;
  int base;
  rtx t1;
  int i;

  if (BYTES_BIG_ENDIAN)
    base = high ? low_base : high_base;
  else
    base = high ? high_base : low_base;

  for (i = 0; i < nunits / 2; i++)
    RTVEC_ELT (v, i) = GEN_INT (base + i);

  t1 = gen_rtx_PARALLEL (mode, v);
  return t1;
}

/* Check OP for validity as a PARALLEL RTX vector with elements
   numbering the lanes of either the high (HIGH == TRUE) or low lanes,
   from the perspective of the architecture.  See the diagram above
   aarch64_simd_vect_par_cnst_half for more details.  */

bool
aarch64_simd_check_vect_par_cnst_half (rtx op, machine_mode mode,
				       bool high)
{
  rtx ideal = aarch64_simd_vect_par_cnst_half (mode, high);
  HOST_WIDE_INT count_op = XVECLEN (op, 0);
  HOST_WIDE_INT count_ideal = XVECLEN (ideal, 0);
  int i = 0;

  if (!VECTOR_MODE_P (mode))
    return false;

  if (count_op != count_ideal)
    return false;

  for (i = 0; i < count_ideal; i++)
    {
      rtx elt_op = XVECEXP (op, 0, i);
      rtx elt_ideal = XVECEXP (ideal, 0, i);

      if (!CONST_INT_P (elt_op)
	  || INTVAL (elt_ideal) != INTVAL (elt_op))
	return false;
    }
  return true;
}

/* Bounds-check lanes.  Ensure OPERAND lies between LOW (inclusive) and
   HIGH (exclusive).  */
void
aarch64_simd_lane_bounds (rtx operand, HOST_WIDE_INT low, HOST_WIDE_INT high,
			  const_tree exp)
{
  HOST_WIDE_INT lane;
  gcc_assert (CONST_INT_P (operand));
  lane = INTVAL (operand);

  if (lane < low || lane >= high)
  {
    if (exp)
      error ("%Klane %wd out of range %wd - %wd", exp, lane, low, high - 1);
    else
      error ("lane %wd out of range %wd - %wd", lane, low, high - 1);
  }
}

/* Return TRUE if OP is a valid vector addressing mode.  */
bool
aarch64_simd_mem_operand_p (rtx op)
{
  return MEM_P (op) && (GET_CODE (XEXP (op, 0)) == POST_INC
			|| REG_P (XEXP (op, 0)));
}

/* Emit a register copy from operand to operand, taking care not to
   early-clobber source registers in the process.

   COUNT is the number of components into which the copy needs to be
   decomposed.  */
void
aarch64_simd_emit_reg_reg_move (rtx *operands, machine_mode mode,
				unsigned int count)
{
  unsigned int i;
  int rdest = REGNO (operands[0]);
  int rsrc = REGNO (operands[1]);

  if (!reg_overlap_mentioned_p (operands[0], operands[1])
      || rdest < rsrc)
    for (i = 0; i < count; i++)
      emit_move_insn (gen_rtx_REG (mode, rdest + i),
		      gen_rtx_REG (mode, rsrc + i));
  else
    for (i = 0; i < count; i++)
      emit_move_insn (gen_rtx_REG (mode, rdest + count - i - 1),
		      gen_rtx_REG (mode, rsrc + count - i - 1));
}

/* Compute and return the length of aarch64_simd_reglist<mode>, where <mode> is
   one of VSTRUCT modes: OI, CI, or XI.  */
int
aarch64_simd_attr_length_rglist (machine_mode mode)
{
  return (GET_MODE_SIZE (mode) / UNITS_PER_VREG) * 4;
}

/* Implement target hook TARGET_VECTOR_ALIGNMENT.  The AAPCS64 sets the maximum
   alignment of a vector to 128 bits.  */
static HOST_WIDE_INT
aarch64_simd_vector_alignment (const_tree type)
{
  HOST_WIDE_INT align = tree_to_shwi (TYPE_SIZE (type));
  return MIN (align, 128);
}

/* Implement target hook TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE.  */
static bool
aarch64_simd_vector_alignment_reachable (const_tree type, bool is_packed)
{
  if (is_packed)
    return false;

  /* We guarantee alignment for vectors up to 128-bits.  */
  if (tree_int_cst_compare (TYPE_SIZE (type),
			    bitsize_int (BIGGEST_ALIGNMENT)) > 0)
    return false;

  /* Vectors whose size is <= BIGGEST_ALIGNMENT are naturally aligned.  */
  return true;
}

/* Return true if the vector misalignment factor is supported by the
   target.  */
static bool
aarch64_builtin_support_vector_misalignment (machine_mode mode,
					     const_tree type, int misalignment,
					     bool is_packed)
{
  if (TARGET_SIMD && STRICT_ALIGNMENT)
    {
      /* Return if movmisalign pattern is not supported for this mode.  */
      if (optab_handler (movmisalign_optab, mode) == CODE_FOR_nothing)
        return false;

      if (misalignment == -1)
	{
	  /* Misalignment factor is unknown at compile time but we know
	     it's word aligned.  */
	  if (aarch64_simd_vector_alignment_reachable (type, is_packed))
            {
              int element_size = TREE_INT_CST_LOW (TYPE_SIZE (type));

              if (element_size != 64)
                return true;
            }
	  return false;
	}
    }
  return default_builtin_support_vector_misalignment (mode, type, misalignment,
						      is_packed);
}

/* If VALS is a vector constant that can be loaded into a register
   using DUP, generate instructions to do so and return an RTX to
   assign to the register.  Otherwise return NULL_RTX.  */
static rtx
aarch64_simd_dup_constant (rtx vals)
{
  machine_mode mode = GET_MODE (vals);
  machine_mode inner_mode = GET_MODE_INNER (mode);
  rtx x;

  if (!const_vec_duplicate_p (vals, &x))
    return NULL_RTX;

  /* We can load this constant by using DUP and a constant in a
     single ARM register.  This will be cheaper than a vector
     load.  */
  x = copy_to_mode_reg (inner_mode, x);
  return gen_rtx_VEC_DUPLICATE (mode, x);
}


/* Generate code to load VALS, which is a PARALLEL containing only
   constants (for vec_init) or CONST_VECTOR, efficiently into a
   register.  Returns an RTX to copy into the register, or NULL_RTX
   for a PARALLEL that can not be converted into a CONST_VECTOR.  */
static rtx
aarch64_simd_make_constant (rtx vals)
{
  machine_mode mode = GET_MODE (vals);
  rtx const_dup;
  rtx const_vec = NULL_RTX;
  int n_elts = GET_MODE_NUNITS (mode);
  int n_const = 0;
  int i;

  if (GET_CODE (vals) == CONST_VECTOR)
    const_vec = vals;
  else if (GET_CODE (vals) == PARALLEL)
    {
      /* A CONST_VECTOR must contain only CONST_INTs and
	 CONST_DOUBLEs, but CONSTANT_P allows more (e.g. SYMBOL_REF).
	 Only store valid constants in a CONST_VECTOR.  */
      for (i = 0; i < n_elts; ++i)
	{
	  rtx x = XVECEXP (vals, 0, i);
	  if (CONST_INT_P (x) || CONST_DOUBLE_P (x))
	    n_const++;
	}
      if (n_const == n_elts)
	const_vec = gen_rtx_CONST_VECTOR (mode, XVEC (vals, 0));
    }
  else
    gcc_unreachable ();

  if (const_vec != NULL_RTX
      && aarch64_simd_valid_immediate (const_vec, mode, false, NULL))
    /* Load using MOVI/MVNI.  */
    return const_vec;
  else if ((const_dup = aarch64_simd_dup_constant (vals)) != NULL_RTX)
    /* Loaded using DUP.  */
    return const_dup;
  else if (const_vec != NULL_RTX)
    /* Load from constant pool. We can not take advantage of single-cycle
       LD1 because we need a PC-relative addressing mode.  */
    return const_vec;
  else
    /* A PARALLEL containing something not valid inside CONST_VECTOR.
       We can not construct an initializer.  */
    return NULL_RTX;
}

/* Expand a vector initialisation sequence, such that TARGET is
   initialised to contain VALS.  */

void
aarch64_expand_vector_init (rtx target, rtx vals)
{
  machine_mode mode = GET_MODE (target);
  scalar_mode inner_mode = GET_MODE_INNER (mode);
  /* The number of vector elements.  */
  int n_elts = GET_MODE_NUNITS (mode);
  /* The number of vector elements which are not constant.  */
  int n_var = 0;
  rtx any_const = NULL_RTX;
  /* The first element of vals.  */
  rtx v0 = XVECEXP (vals, 0, 0);
  bool all_same = true;

  /* Count the number of variable elements to initialise.  */
  for (int i = 0; i < n_elts; ++i)
    {
      rtx x = XVECEXP (vals, 0, i);
      if (!(CONST_INT_P (x) || CONST_DOUBLE_P (x)))
	++n_var;
      else
	any_const = x;

      all_same &= rtx_equal_p (x, v0);
    }

  /* No variable elements, hand off to aarch64_simd_make_constant which knows
     how best to handle this.  */
  if (n_var == 0)
    {
      rtx constant = aarch64_simd_make_constant (vals);
      if (constant != NULL_RTX)
	{
	  emit_move_insn (target, constant);
	  return;
	}
    }

  /* Splat a single non-constant element if we can.  */
  if (all_same)
    {
      rtx x = copy_to_mode_reg (inner_mode, v0);
      aarch64_emit_move (target, gen_rtx_VEC_DUPLICATE (mode, x));
      return;
    }

  enum insn_code icode = optab_handler (vec_set_optab, mode);
  gcc_assert (icode != CODE_FOR_nothing);

  /* If there are only variable elements, try to optimize
     the insertion using dup for the most common element
     followed by insertions.  */

  /* The algorithm will fill matches[*][0] with the earliest matching element,
     and matches[X][1] with the count of duplicate elements (if X is the
     earliest element which has duplicates).  */

  if (n_var == n_elts && n_elts <= 16)
    {
      int matches[16][2] = {0};
      for (int i = 0; i < n_elts; i++)
	{
	  for (int j = 0; j <= i; j++)
	    {
	      if (rtx_equal_p (XVECEXP (vals, 0, i), XVECEXP (vals, 0, j)))
		{
		  matches[i][0] = j;
		  matches[j][1]++;
		  break;
		}
	    }
	}
      int maxelement = 0;
      int maxv = 0;
      for (int i = 0; i < n_elts; i++)
	if (matches[i][1] > maxv)
	  {
	    maxelement = i;
	    maxv = matches[i][1];
	  }

      /* Create a duplicate of the most common element.  */
      rtx x = copy_to_mode_reg (inner_mode, XVECEXP (vals, 0, maxelement));
      aarch64_emit_move (target, gen_rtx_VEC_DUPLICATE (mode, x));

      /* Insert the rest.  */
      for (int i = 0; i < n_elts; i++)
	{
	  rtx x = XVECEXP (vals, 0, i);
	  if (matches[i][0] == maxelement)
	    continue;
	  x = copy_to_mode_reg (inner_mode, x);
	  emit_insn (GEN_FCN (icode) (target, x, GEN_INT (i)));
	}
      return;
    }

  /* Initialise a vector which is part-variable.  We want to first try
     to build those lanes which are constant in the most efficient way we
     can.  */
  if (n_var != n_elts)
    {
      rtx copy = copy_rtx (vals);

      /* Load constant part of vector.  We really don't care what goes into the
	 parts we will overwrite, but we're more likely to be able to load the
	 constant efficiently if it has fewer, larger, repeating parts
	 (see aarch64_simd_valid_immediate).  */
      for (int i = 0; i < n_elts; i++)
	{
	  rtx x = XVECEXP (vals, 0, i);
	  if (CONST_INT_P (x) || CONST_DOUBLE_P (x))
	    continue;
	  rtx subst = any_const;
	  for (int bit = n_elts / 2; bit > 0; bit /= 2)
	    {
	      /* Look in the copied vector, as more elements are const.  */
	      rtx test = XVECEXP (copy, 0, i ^ bit);
	      if (CONST_INT_P (test) || CONST_DOUBLE_P (test))
		{
		  subst = test;
		  break;
		}
	    }
	  XVECEXP (copy, 0, i) = subst;
	}
      aarch64_expand_vector_init (target, copy);
    }

  /* Insert the variable lanes directly.  */
  for (int i = 0; i < n_elts; i++)
    {
      rtx x = XVECEXP (vals, 0, i);
      if (CONST_INT_P (x) || CONST_DOUBLE_P (x))
	continue;
      x = copy_to_mode_reg (inner_mode, x);
      emit_insn (GEN_FCN (icode) (target, x, GEN_INT (i)));
    }
}

static unsigned HOST_WIDE_INT
aarch64_shift_truncation_mask (machine_mode mode)
{
  return
    (!SHIFT_COUNT_TRUNCATED
     || aarch64_vector_mode_supported_p (mode)
     || aarch64_vect_struct_mode_p (mode)) ? 0 : (GET_MODE_BITSIZE (mode) - 1);
}

/* Select a format to encode pointers in exception handling data.  */
int
aarch64_asm_preferred_eh_data_format (int code ATTRIBUTE_UNUSED, int global)
{
   int type;
   switch (aarch64_cmodel)
     {
     case AARCH64_CMODEL_TINY:
     case AARCH64_CMODEL_TINY_PIC:
     case AARCH64_CMODEL_SMALL:
     case AARCH64_CMODEL_SMALL_PIC:
     case AARCH64_CMODEL_SMALL_SPIC:
       /* text+got+data < 4Gb.  4-byte signed relocs are sufficient
	  for everything.  */
       type = DW_EH_PE_sdata4;
       break;
     default:
       /* No assumptions here.  8-byte relocs required.  */
       type = DW_EH_PE_sdata8;
       break;
     }
   return (global ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | type;
}

/* The last .arch and .tune assembly strings that we printed.  */
static std::string aarch64_last_printed_arch_string;
static std::string aarch64_last_printed_tune_string;

/* Implement ASM_DECLARE_FUNCTION_NAME.  Output the ISA features used
   by the function fndecl.  */

void
aarch64_declare_function_name (FILE *stream, const char* name,
				tree fndecl)
{
  tree target_parts = DECL_FUNCTION_SPECIFIC_TARGET (fndecl);

  struct cl_target_option *targ_options;
  if (target_parts)
    targ_options = TREE_TARGET_OPTION (target_parts);
  else
    targ_options = TREE_TARGET_OPTION (target_option_current_node);
  gcc_assert (targ_options);

  const struct processor *this_arch
    = aarch64_get_arch (targ_options->x_explicit_arch);

  unsigned long isa_flags = targ_options->x_aarch64_isa_flags;
  std::string extension
    = aarch64_get_extension_string_for_isa_flags (isa_flags,
						  this_arch->flags);
  /* Only update the assembler .arch string if it is distinct from the last
     such string we printed.  */
  std::string to_print = this_arch->name + extension;
  if (to_print != aarch64_last_printed_arch_string)
    {
      asm_fprintf (asm_out_file, "\t.arch %s\n", to_print.c_str ());
      aarch64_last_printed_arch_string = to_print;
    }

  /* Print the cpu name we're tuning for in the comments, might be
     useful to readers of the generated asm.  Do it only when it changes
     from function to function and verbose assembly is requested.  */
  const struct processor *this_tune
    = aarch64_get_tune_cpu (targ_options->x_explicit_tune_core);

  if (flag_debug_asm && aarch64_last_printed_tune_string != this_tune->name)
    {
      asm_fprintf (asm_out_file, "\t" ASM_COMMENT_START ".tune %s\n",
		   this_tune->name);
      aarch64_last_printed_tune_string = this_tune->name;
    }

  /* Don't forget the type directive for ELF.  */
  ASM_OUTPUT_TYPE_DIRECTIVE (stream, name, "function");
  ASM_OUTPUT_LABEL (stream, name);
}

/* Implements TARGET_ASM_FILE_START.  Output the assembly header.  */

static void
aarch64_start_file (void)
{
  struct cl_target_option *default_options
    = TREE_TARGET_OPTION (target_option_default_node);

  const struct processor *default_arch
    = aarch64_get_arch (default_options->x_explicit_arch);
  unsigned long default_isa_flags = default_options->x_aarch64_isa_flags;
  std::string extension
    = aarch64_get_extension_string_for_isa_flags (default_isa_flags,
						  default_arch->flags);

   aarch64_last_printed_arch_string = default_arch->name + extension;
   aarch64_last_printed_tune_string = "";
   asm_fprintf (asm_out_file, "\t.arch %s\n",
		aarch64_last_printed_arch_string.c_str ());

   default_file_start ();
}

/* Emit load exclusive.  */

static void
aarch64_emit_load_exclusive (machine_mode mode, rtx rval,
			     rtx mem, rtx model_rtx)
{
  rtx (*gen) (rtx, rtx, rtx);

  switch (mode)
    {
    case E_QImode: gen = gen_aarch64_load_exclusiveqi; break;
    case E_HImode: gen = gen_aarch64_load_exclusivehi; break;
    case E_SImode: gen = gen_aarch64_load_exclusivesi; break;
    case E_DImode: gen = gen_aarch64_load_exclusivedi; break;
    default:
      gcc_unreachable ();
    }

  emit_insn (gen (rval, mem, model_rtx));
}

/* Emit store exclusive.  */

static void
aarch64_emit_store_exclusive (machine_mode mode, rtx bval,
			      rtx rval, rtx mem, rtx model_rtx)
{
  rtx (*gen) (rtx, rtx, rtx, rtx);

  switch (mode)
    {
    case E_QImode: gen = gen_aarch64_store_exclusiveqi; break;
    case E_HImode: gen = gen_aarch64_store_exclusivehi; break;
    case E_SImode: gen = gen_aarch64_store_exclusivesi; break;
    case E_DImode: gen = gen_aarch64_store_exclusivedi; break;
    default:
      gcc_unreachable ();
    }

  emit_insn (gen (bval, rval, mem, model_rtx));
}

/* Mark the previous jump instruction as unlikely.  */

static void
aarch64_emit_unlikely_jump (rtx insn)
{
  rtx_insn *jump = emit_jump_insn (insn);
  add_reg_br_prob_note (jump, profile_probability::very_unlikely ());
}

/* Expand a compare and swap pattern.  */

void
aarch64_expand_compare_and_swap (rtx operands[])
{
  rtx bval, rval, mem, oldval, newval, is_weak, mod_s, mod_f, x;
  machine_mode mode, cmp_mode;
  typedef rtx (*gen_cas_fn) (rtx, rtx, rtx, rtx, rtx, rtx, rtx);
  int idx;
  gen_cas_fn gen;
  const gen_cas_fn split_cas[] =
  {
    gen_aarch64_compare_and_swapqi,
    gen_aarch64_compare_and_swaphi,
    gen_aarch64_compare_and_swapsi,
    gen_aarch64_compare_and_swapdi
  };
  const gen_cas_fn atomic_cas[] =
  {
    gen_aarch64_compare_and_swapqi_lse,
    gen_aarch64_compare_and_swaphi_lse,
    gen_aarch64_compare_and_swapsi_lse,
    gen_aarch64_compare_and_swapdi_lse
  };

  bval = operands[0];
  rval = operands[1];
  mem = operands[2];
  oldval = operands[3];
  newval = operands[4];
  is_weak = operands[5];
  mod_s = operands[6];
  mod_f = operands[7];
  mode = GET_MODE (mem);
  cmp_mode = mode;

  /* Normally the succ memory model must be stronger than fail, but in the
     unlikely event of fail being ACQUIRE and succ being RELEASE we need to
     promote succ to ACQ_REL so that we don't lose the acquire semantics.  */

  if (is_mm_acquire (memmodel_from_int (INTVAL (mod_f)))
      && is_mm_release (memmodel_from_int (INTVAL (mod_s))))
    mod_s = GEN_INT (MEMMODEL_ACQ_REL);

  switch (mode)
    {
    case E_QImode:
    case E_HImode:
      /* For short modes, we're going to perform the comparison in SImode,
	 so do the zero-extension now.  */
      cmp_mode = SImode;
      rval = gen_reg_rtx (SImode);
      oldval = convert_modes (SImode, mode, oldval, true);
      /* Fall through.  */

    case E_SImode:
    case E_DImode:
      /* Force the value into a register if needed.  */
      if (!aarch64_plus_operand (oldval, mode))
	oldval = force_reg (cmp_mode, oldval);
      break;

    default:
      gcc_unreachable ();
    }

  switch (mode)
    {
    case E_QImode: idx = 0; break;
    case E_HImode: idx = 1; break;
    case E_SImode: idx = 2; break;
    case E_DImode: idx = 3; break;
    default:
      gcc_unreachable ();
    }
  if (TARGET_LSE)
    gen = atomic_cas[idx];
  else
    gen = split_cas[idx];

  emit_insn (gen (rval, mem, oldval, newval, is_weak, mod_s, mod_f));

  if (mode == QImode || mode == HImode)
    emit_move_insn (operands[1], gen_lowpart (mode, rval));

  x = gen_rtx_REG (CCmode, CC_REGNUM);
  x = gen_rtx_EQ (SImode, x, const0_rtx);
  emit_insn (gen_rtx_SET (bval, x));
}

/* Test whether the target supports using a atomic load-operate instruction.
   CODE is the operation and AFTER is TRUE if the data in memory after the
   operation should be returned and FALSE if the data before the operation
   should be returned.  Returns FALSE if the operation isn't supported by the
   architecture.  */

bool
aarch64_atomic_ldop_supported_p (enum rtx_code code)
{
  if (!TARGET_LSE)
    return false;

  switch (code)
    {
    case SET:
    case AND:
    case IOR:
    case XOR:
    case MINUS:
    case PLUS:
      return true;
    default:
      return false;
    }
}

/* Emit a barrier, that is appropriate for memory model MODEL, at the end of a
   sequence implementing an atomic operation.  */

static void
aarch64_emit_post_barrier (enum memmodel model)
{
  const enum memmodel base_model = memmodel_base (model);

  if (is_mm_sync (model)
      && (base_model == MEMMODEL_ACQUIRE
	  || base_model == MEMMODEL_ACQ_REL
	  || base_model == MEMMODEL_SEQ_CST))
    {
      emit_insn (gen_mem_thread_fence (GEN_INT (MEMMODEL_SEQ_CST)));
    }
}

/* Emit an atomic compare-and-swap operation.  RVAL is the destination register
   for the data in memory.  EXPECTED is the value expected to be in memory.
   DESIRED is the value to store to memory.  MEM is the memory location.  MODEL
   is the memory ordering to use.  */

void
aarch64_gen_atomic_cas (rtx rval, rtx mem,
			rtx expected, rtx desired,
			rtx model)
{
  rtx (*gen) (rtx, rtx, rtx, rtx);
  machine_mode mode;

  mode = GET_MODE (mem);

  switch (mode)
    {
    case E_QImode: gen = gen_aarch64_atomic_casqi; break;
    case E_HImode: gen = gen_aarch64_atomic_cashi; break;
    case E_SImode: gen = gen_aarch64_atomic_cassi; break;
    case E_DImode: gen = gen_aarch64_atomic_casdi; break;
    default:
      gcc_unreachable ();
    }

  /* Move the expected value into the CAS destination register.  */
  emit_insn (gen_rtx_SET (rval, expected));

  /* Emit the CAS.  */
  emit_insn (gen (rval, mem, desired, model));

  /* Compare the expected value with the value loaded by the CAS, to establish
     whether the swap was made.  */
  aarch64_gen_compare_reg (EQ, rval, expected);
}

/* Split a compare and swap pattern.  */

void
aarch64_split_compare_and_swap (rtx operands[])
{
  rtx rval, mem, oldval, newval, scratch;
  machine_mode mode;
  bool is_weak;
  rtx_code_label *label1, *label2;
  rtx x, cond;
  enum memmodel model;
  rtx model_rtx;

  rval = operands[0];
  mem = operands[1];
  oldval = operands[2];
  newval = operands[3];
  is_weak = (operands[4] != const0_rtx);
  model_rtx = operands[5];
  scratch = operands[7];
  mode = GET_MODE (mem);
  model = memmodel_from_int (INTVAL (model_rtx));

  /* When OLDVAL is zero and we want the strong version we can emit a tighter
    loop:
    .label1:
	LD[A]XR	rval, [mem]
	CBNZ	rval, .label2
	ST[L]XR	scratch, newval, [mem]
	CBNZ	scratch, .label1
    .label2:
	CMP	rval, 0.  */
  bool strong_zero_p = !is_weak && oldval == const0_rtx;

  label1 = NULL;
  if (!is_weak)
    {
      label1 = gen_label_rtx ();
      emit_label (label1);
    }
  label2 = gen_label_rtx ();

  /* The initial load can be relaxed for a __sync operation since a final
     barrier will be emitted to stop code hoisting.  */
  if (is_mm_sync (model))
    aarch64_emit_load_exclusive (mode, rval, mem,
				 GEN_INT (MEMMODEL_RELAXED));
  else
    aarch64_emit_load_exclusive (mode, rval, mem, model_rtx);

  if (strong_zero_p)
    {
      x = gen_rtx_NE (VOIDmode, rval, const0_rtx);
      x = gen_rtx_IF_THEN_ELSE (VOIDmode, x,
				gen_rtx_LABEL_REF (Pmode, label2), pc_rtx);
      aarch64_emit_unlikely_jump (gen_rtx_SET (pc_rtx, x));
    }
  else
    {
      cond = aarch64_gen_compare_reg (NE, rval, oldval);
      x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
      x = gen_rtx_IF_THEN_ELSE (VOIDmode, x,
				 gen_rtx_LABEL_REF (Pmode, label2), pc_rtx);
      aarch64_emit_unlikely_jump (gen_rtx_SET (pc_rtx, x));
    }

  aarch64_emit_store_exclusive (mode, scratch, mem, newval, model_rtx);

  if (!is_weak)
    {
      x = gen_rtx_NE (VOIDmode, scratch, const0_rtx);
      x = gen_rtx_IF_THEN_ELSE (VOIDmode, x,
				gen_rtx_LABEL_REF (Pmode, label1), pc_rtx);
      aarch64_emit_unlikely_jump (gen_rtx_SET (pc_rtx, x));
    }
  else
    {
      cond = gen_rtx_REG (CCmode, CC_REGNUM);
      x = gen_rtx_COMPARE (CCmode, scratch, const0_rtx);
      emit_insn (gen_rtx_SET (cond, x));
    }

  emit_label (label2);
  /* If we used a CBNZ in the exchange loop emit an explicit compare with RVAL
     to set the condition flags.  If this is not used it will be removed by
     later passes.  */
  if (strong_zero_p)
    {
      cond = gen_rtx_REG (CCmode, CC_REGNUM);
      x = gen_rtx_COMPARE (CCmode, rval, const0_rtx);
      emit_insn (gen_rtx_SET (cond, x));
    }
  /* Emit any final barrier needed for a __sync operation.  */
  if (is_mm_sync (model))
    aarch64_emit_post_barrier (model);
}

/* Emit a BIC instruction.  */

static void
aarch64_emit_bic (machine_mode mode, rtx dst, rtx s1, rtx s2, int shift)
{
  rtx shift_rtx = GEN_INT (shift);
  rtx (*gen) (rtx, rtx, rtx, rtx);

  switch (mode)
    {
    case E_SImode: gen = gen_and_one_cmpl_lshrsi3; break;
    case E_DImode: gen = gen_and_one_cmpl_lshrdi3; break;
    default:
      gcc_unreachable ();
    }

  emit_insn (gen (dst, s2, shift_rtx, s1));
}

/* Emit an atomic swap.  */

static void
aarch64_emit_atomic_swap (machine_mode mode, rtx dst, rtx value,
			  rtx mem, rtx model)
{
  rtx (*gen) (rtx, rtx, rtx, rtx);

  switch (mode)
    {
    case E_QImode: gen = gen_aarch64_atomic_swpqi; break;
    case E_HImode: gen = gen_aarch64_atomic_swphi; break;
    case E_SImode: gen = gen_aarch64_atomic_swpsi; break;
    case E_DImode: gen = gen_aarch64_atomic_swpdi; break;
    default:
      gcc_unreachable ();
    }

  emit_insn (gen (dst, mem, value, model));
}

/* Operations supported by aarch64_emit_atomic_load_op.  */

enum aarch64_atomic_load_op_code
{
  AARCH64_LDOP_PLUS,	/* A + B  */
  AARCH64_LDOP_XOR,	/* A ^ B  */
  AARCH64_LDOP_OR,	/* A | B  */
  AARCH64_LDOP_BIC	/* A & ~B  */
};

/* Emit an atomic load-operate.  */

static void
aarch64_emit_atomic_load_op (enum aarch64_atomic_load_op_code code,
			     machine_mode mode, rtx dst, rtx src,
			     rtx mem, rtx model)
{
  typedef rtx (*aarch64_atomic_load_op_fn) (rtx, rtx, rtx, rtx);
  const aarch64_atomic_load_op_fn plus[] =
  {
    gen_aarch64_atomic_loadaddqi,
    gen_aarch64_atomic_loadaddhi,
    gen_aarch64_atomic_loadaddsi,
    gen_aarch64_atomic_loadadddi
  };
  const aarch64_atomic_load_op_fn eor[] =
  {
    gen_aarch64_atomic_loadeorqi,
    gen_aarch64_atomic_loadeorhi,
    gen_aarch64_atomic_loadeorsi,
    gen_aarch64_atomic_loadeordi
  };
  const aarch64_atomic_load_op_fn ior[] =
  {
    gen_aarch64_atomic_loadsetqi,
    gen_aarch64_atomic_loadsethi,
    gen_aarch64_atomic_loadsetsi,
    gen_aarch64_atomic_loadsetdi
  };
  const aarch64_atomic_load_op_fn bic[] =
  {
    gen_aarch64_atomic_loadclrqi,
    gen_aarch64_atomic_loadclrhi,
    gen_aarch64_atomic_loadclrsi,
    gen_aarch64_atomic_loadclrdi
  };
  aarch64_atomic_load_op_fn gen;
  int idx = 0;

  switch (mode)
    {
    case E_QImode: idx = 0; break;
    case E_HImode: idx = 1; break;
    case E_SImode: idx = 2; break;
    case E_DImode: idx = 3; break;
    default:
      gcc_unreachable ();
    }

  switch (code)
    {
    case AARCH64_LDOP_PLUS: gen = plus[idx]; break;
    case AARCH64_LDOP_XOR: gen = eor[idx]; break;
    case AARCH64_LDOP_OR: gen = ior[idx]; break;
    case AARCH64_LDOP_BIC: gen = bic[idx]; break;
    default:
      gcc_unreachable ();
    }

  emit_insn (gen (dst, mem, src, model));
}

/* Emit an atomic load+operate.  CODE is the operation.  OUT_DATA is the
   location to store the data read from memory.  OUT_RESULT is the location to
   store the result of the operation.  MEM is the memory location to read and
   modify.  MODEL_RTX is the memory ordering to use.  VALUE is the second
   operand for the operation.  Either OUT_DATA or OUT_RESULT, but not both, can
   be NULL.  */

void
aarch64_gen_atomic_ldop (enum rtx_code code, rtx out_data, rtx out_result,
			 rtx mem, rtx value, rtx model_rtx)
{
  machine_mode mode = GET_MODE (mem);
  machine_mode wmode = (mode == DImode ? DImode : SImode);
  const bool short_mode = (mode < SImode);
  aarch64_atomic_load_op_code ldop_code;
  rtx src;
  rtx x;

  if (out_data)
    out_data = gen_lowpart (mode, out_data);

  if (out_result)
    out_result = gen_lowpart (mode, out_result);

  /* Make sure the value is in a register, putting it into a destination
     register if it needs to be manipulated.  */
  if (!register_operand (value, mode)
      || code == AND || code == MINUS)
    {
      src = out_result ? out_result : out_data;
      emit_move_insn (src, gen_lowpart (mode, value));
    }
  else
    src = value;
  gcc_assert (register_operand (src, mode));

  /* Preprocess the data for the operation as necessary.  If the operation is
     a SET then emit a swap instruction and finish.  */
  switch (code)
    {
    case SET:
      aarch64_emit_atomic_swap (mode, out_data, src, mem, model_rtx);
      return;

    case MINUS:
      /* Negate the value and treat it as a PLUS.  */
      {
	rtx neg_src;

	/* Resize the value if necessary.  */
	if (short_mode)
	  src = gen_lowpart (wmode, src);

	neg_src = gen_rtx_NEG (wmode, src);
	emit_insn (gen_rtx_SET (src, neg_src));

	if (short_mode)
	  src = gen_lowpart (mode, src);
      }
      /* Fall-through.  */
    case PLUS:
      ldop_code = AARCH64_LDOP_PLUS;
      break;

    case IOR:
      ldop_code = AARCH64_LDOP_OR;
      break;

    case XOR:
      ldop_code = AARCH64_LDOP_XOR;
      break;

    case AND:
      {
	rtx not_src;

	/* Resize the value if necessary.  */
	if (short_mode)
	  src = gen_lowpart (wmode, src);

	not_src = gen_rtx_NOT (wmode, src);
	emit_insn (gen_rtx_SET (src, not_src));

	if (short_mode)
	  src = gen_lowpart (mode, src);
      }
      ldop_code = AARCH64_LDOP_BIC;
      break;

    default:
      /* The operation can't be done with atomic instructions.  */
      gcc_unreachable ();
    }

  aarch64_emit_atomic_load_op (ldop_code, mode, out_data, src, mem, model_rtx);

  /* If necessary, calculate the data in memory after the update by redoing the
     operation from values in registers.  */
  if (!out_result)
    return;

  if (short_mode)
    {
      src = gen_lowpart (wmode, src);
      out_data = gen_lowpart (wmode, out_data);
      out_result = gen_lowpart (wmode, out_result);
    }

  x = NULL_RTX;

  switch (code)
    {
    case MINUS:
    case PLUS:
      x = gen_rtx_PLUS (wmode, out_data, src);
      break;
    case IOR:
      x = gen_rtx_IOR (wmode, out_data, src);
      break;
    case XOR:
      x = gen_rtx_XOR (wmode, out_data, src);
      break;
    case AND:
      aarch64_emit_bic (wmode, out_result, out_data, src, 0);
      return;
    default:
      gcc_unreachable ();
    }

  emit_set_insn (out_result, x);

  return;
}

/* Split an atomic operation.  */

void
aarch64_split_atomic_op (enum rtx_code code, rtx old_out, rtx new_out, rtx mem,
			 rtx value, rtx model_rtx, rtx cond)
{
  machine_mode mode = GET_MODE (mem);
  machine_mode wmode = (mode == DImode ? DImode : SImode);
  const enum memmodel model = memmodel_from_int (INTVAL (model_rtx));
  const bool is_sync = is_mm_sync (model);
  rtx_code_label *label;
  rtx x;

  /* Split the atomic operation into a sequence.  */
  label = gen_label_rtx ();
  emit_label (label);

  if (new_out)
    new_out = gen_lowpart (wmode, new_out);
  if (old_out)
    old_out = gen_lowpart (wmode, old_out);
  else
    old_out = new_out;
  value = simplify_gen_subreg (wmode, value, mode, 0);

  /* The initial load can be relaxed for a __sync operation since a final
     barrier will be emitted to stop code hoisting.  */
 if (is_sync)
    aarch64_emit_load_exclusive (mode, old_out, mem,
				 GEN_INT (MEMMODEL_RELAXED));
  else
    aarch64_emit_load_exclusive (mode, old_out, mem, model_rtx);

  switch (code)
    {
    case SET:
      new_out = value;
      break;

    case NOT:
      x = gen_rtx_AND (wmode, old_out, value);
      emit_insn (gen_rtx_SET (new_out, x));
      x = gen_rtx_NOT (wmode, new_out);
      emit_insn (gen_rtx_SET (new_out, x));
      break;

    case MINUS:
      if (CONST_INT_P (value))
	{
	  value = GEN_INT (-INTVAL (value));
	  code = PLUS;
	}
      /* Fall through.  */

    default:
      x = gen_rtx_fmt_ee (code, wmode, old_out, value);
      emit_insn (gen_rtx_SET (new_out, x));
      break;
    }

  aarch64_emit_store_exclusive (mode, cond, mem,
				gen_lowpart (mode, new_out), model_rtx);

  x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
  x = gen_rtx_IF_THEN_ELSE (VOIDmode, x,
			    gen_rtx_LABEL_REF (Pmode, label), pc_rtx);
  aarch64_emit_unlikely_jump (gen_rtx_SET (pc_rtx, x));

  /* Emit any final barrier needed for a __sync operation.  */
  if (is_sync)
    aarch64_emit_post_barrier (model);
}

static void
aarch64_init_libfuncs (void)
{
   /* Half-precision float operations.  The compiler handles all operations
     with NULL libfuncs by converting to SFmode.  */

  /* Conversions.  */
  set_conv_libfunc (trunc_optab, HFmode, SFmode, "__gnu_f2h_ieee");
  set_conv_libfunc (sext_optab, SFmode, HFmode, "__gnu_h2f_ieee");

  /* Arithmetic.  */
  set_optab_libfunc (add_optab, HFmode, NULL);
  set_optab_libfunc (sdiv_optab, HFmode, NULL);
  set_optab_libfunc (smul_optab, HFmode, NULL);
  set_optab_libfunc (neg_optab, HFmode, NULL);
  set_optab_libfunc (sub_optab, HFmode, NULL);

  /* Comparisons.  */
  set_optab_libfunc (eq_optab, HFmode, NULL);
  set_optab_libfunc (ne_optab, HFmode, NULL);
  set_optab_libfunc (lt_optab, HFmode, NULL);
  set_optab_libfunc (le_optab, HFmode, NULL);
  set_optab_libfunc (ge_optab, HFmode, NULL);
  set_optab_libfunc (gt_optab, HFmode, NULL);
  set_optab_libfunc (unord_optab, HFmode, NULL);
}

/* Target hook for c_mode_for_suffix.  */
static machine_mode
aarch64_c_mode_for_suffix (char suffix)
{
  if (suffix == 'q')
    return TFmode;

  return VOIDmode;
}

/* We can only represent floating point constants which will fit in
   "quarter-precision" values.  These values are characterised by
   a sign bit, a 4-bit mantissa and a 3-bit exponent.  And are given
   by:

   (-1)^s * (n/16) * 2^r

   Where:
     's' is the sign bit.
     'n' is an integer in the range 16 <= n <= 31.
     'r' is an integer in the range -3 <= r <= 4.  */

/* Return true iff X can be represented by a quarter-precision
   floating point immediate operand X.  Note, we cannot represent 0.0.  */
bool
aarch64_float_const_representable_p (rtx x)
{
  /* This represents our current view of how many bits
     make up the mantissa.  */
  int point_pos = 2 * HOST_BITS_PER_WIDE_INT - 1;
  int exponent;
  unsigned HOST_WIDE_INT mantissa, mask;
  REAL_VALUE_TYPE r, m;
  bool fail;

  if (!CONST_DOUBLE_P (x))
    return false;

  /* We don't support HFmode constants yet.  */
  if (GET_MODE (x) == VOIDmode || GET_MODE (x) == HFmode)
    return false;

  r = *CONST_DOUBLE_REAL_VALUE (x);

  /* We cannot represent infinities, NaNs or +/-zero.  We won't
     know if we have +zero until we analyse the mantissa, but we
     can reject the other invalid values.  */
  if (REAL_VALUE_ISINF (r) || REAL_VALUE_ISNAN (r)
      || REAL_VALUE_MINUS_ZERO (r))
    return false;

  /* Extract exponent.  */
  r = real_value_abs (&r);
  exponent = REAL_EXP (&r);

  /* For the mantissa, we expand into two HOST_WIDE_INTS, apart from the
     highest (sign) bit, with a fixed binary point at bit point_pos.
     m1 holds the low part of the mantissa, m2 the high part.
     WARNING: If we ever have a representation using more than 2 * H_W_I - 1
     bits for the mantissa, this can fail (low bits will be lost).  */
  real_ldexp (&m, &r, point_pos - exponent);
  wide_int w = real_to_integer (&m, &fail, HOST_BITS_PER_WIDE_INT * 2);

  /* If the low part of the mantissa has bits set we cannot represent
     the value.  */
  if (w.ulow () != 0)
    return false;
  /* We have rejected the lower HOST_WIDE_INT, so update our
     understanding of how many bits lie in the mantissa and
     look only at the high HOST_WIDE_INT.  */
  mantissa = w.elt (1);
  point_pos -= HOST_BITS_PER_WIDE_INT;

  /* We can only represent values with a mantissa of the form 1.xxxx.  */
  mask = ((unsigned HOST_WIDE_INT)1 << (point_pos - 5)) - 1;
  if ((mantissa & mask) != 0)
    return false;

  /* Having filtered unrepresentable values, we may now remove all
     but the highest 5 bits.  */
  mantissa >>= point_pos - 5;

  /* We cannot represent the value 0.0, so reject it.  This is handled
     elsewhere.  */
  if (mantissa == 0)
    return false;

  /* Then, as bit 4 is always set, we can mask it off, leaving
     the mantissa in the range [0, 15].  */
  mantissa &= ~(1 << 4);
  gcc_assert (mantissa <= 15);

  /* GCC internally does not use IEEE754-like encoding (where normalized
     significands are in the range [1, 2).  GCC uses [0.5, 1) (see real.c).
     Our mantissa values are shifted 4 places to the left relative to
     normalized IEEE754 so we must modify the exponent returned by REAL_EXP
     by 5 places to correct for GCC's representation.  */
  exponent = 5 - exponent;

  return (exponent >= 0 && exponent <= 7);
}

char*
aarch64_output_simd_mov_immediate (rtx const_vector,
				   machine_mode mode,
				   unsigned width)
{
  bool is_valid;
  static char templ[40];
  const char *mnemonic;
  const char *shift_op;
  unsigned int lane_count = 0;
  char element_char;

  struct simd_immediate_info info = { NULL_RTX, 0, 0, false, false };

  /* This will return true to show const_vector is legal for use as either
     a AdvSIMD MOVI instruction (or, implicitly, MVNI) immediate.  It will
     also update INFO to show how the immediate should be generated.  */
  is_valid = aarch64_simd_valid_immediate (const_vector, mode, false, &info);
  gcc_assert (is_valid);

  element_char = sizetochar (info.element_width);
  lane_count = width / info.element_width;

  mode = GET_MODE_INNER (mode);
  if (GET_MODE_CLASS (mode) == MODE_FLOAT)
    {
      gcc_assert (info.shift == 0 && ! info.mvn);
      /* For FP zero change it to a CONST_INT 0 and use the integer SIMD
	 move immediate path.  */
      if (aarch64_float_const_zero_rtx_p (info.value))
        info.value = GEN_INT (0);
      else
	{
	  const unsigned int buf_size = 20;
	  char float_buf[buf_size] = {'\0'};
	  real_to_decimal_for_mode (float_buf,
				    CONST_DOUBLE_REAL_VALUE (info.value),
				    buf_size, buf_size, 1, mode);

	  if (lane_count == 1)
	    snprintf (templ, sizeof (templ), "fmov\t%%d0, %s", float_buf);
	  else
	    snprintf (templ, sizeof (templ), "fmov\t%%0.%d%c, %s",
		      lane_count, element_char, float_buf);
	  return templ;
	}
    }

  mnemonic = info.mvn ? "mvni" : "movi";
  shift_op = info.msl ? "msl" : "lsl";

  gcc_assert (CONST_INT_P (info.value));
  if (lane_count == 1)
    snprintf (templ, sizeof (templ), "%s\t%%d0, " HOST_WIDE_INT_PRINT_HEX,
	      mnemonic, UINTVAL (info.value));
  else if (info.shift)
    snprintf (templ, sizeof (templ), "%s\t%%0.%d%c, " HOST_WIDE_INT_PRINT_HEX
	      ", %s %d", mnemonic, lane_count, element_char,
	      UINTVAL (info.value), shift_op, info.shift);
  else
    snprintf (templ, sizeof (templ), "%s\t%%0.%d%c, " HOST_WIDE_INT_PRINT_HEX,
	      mnemonic, lane_count, element_char, UINTVAL (info.value));
  return templ;
}

char*
aarch64_output_scalar_simd_mov_immediate (rtx immediate, scalar_int_mode mode)
{

  /* If a floating point number was passed and we desire to use it in an
     integer mode do the conversion to integer.  */
  if (CONST_DOUBLE_P (immediate) && GET_MODE_CLASS (mode) == MODE_INT)
    {
      unsigned HOST_WIDE_INT ival;
      if (!aarch64_reinterpret_float_as_int (immediate, &ival))
	  gcc_unreachable ();
      immediate = gen_int_mode (ival, mode);
    }

  machine_mode vmode;
  /* use a 64 bit mode for everything except for DI/DF mode, where we use
     a 128 bit vector mode.  */
  int width = GET_MODE_BITSIZE (mode) == 64 ? 128 : 64;

  vmode = aarch64_simd_container_mode (mode, width);
  rtx v_op = aarch64_simd_gen_const_vector_dup (vmode, INTVAL (immediate));
  return aarch64_output_simd_mov_immediate (v_op, vmode, width);
}

/* Split operands into moves from op[1] + op[2] into op[0].  */

void
aarch64_split_combinev16qi (rtx operands[3])
{
  unsigned int dest = REGNO (operands[0]);
  unsigned int src1 = REGNO (operands[1]);
  unsigned int src2 = REGNO (operands[2]);
  machine_mode halfmode = GET_MODE (operands[1]);
  unsigned int halfregs = REG_NREGS (operands[1]);
  rtx destlo, desthi;

  gcc_assert (halfmode == V16QImode);

  if (src1 == dest && src2 == dest + halfregs)
    {
      /* No-op move.  Can't split to nothing; emit something.  */
      emit_note (NOTE_INSN_DELETED);
      return;
    }

  /* Preserve register attributes for variable tracking.  */
  destlo = gen_rtx_REG_offset (operands[0], halfmode, dest, 0);
  desthi = gen_rtx_REG_offset (operands[0], halfmode, dest + halfregs,
			       GET_MODE_SIZE (halfmode));

  /* Special case of reversed high/low parts.  */
  if (reg_overlap_mentioned_p (operands[2], destlo)
      && reg_overlap_mentioned_p (operands[1], desthi))
    {
      emit_insn (gen_xorv16qi3 (operands[1], operands[1], operands[2]));
      emit_insn (gen_xorv16qi3 (operands[2], operands[1], operands[2]));
      emit_insn (gen_xorv16qi3 (operands[1], operands[1], operands[2]));
    }
  else if (!reg_overlap_mentioned_p (operands[2], destlo))
    {
      /* Try to avoid unnecessary moves if part of the result
	 is in the right place already.  */
      if (src1 != dest)
	emit_move_insn (destlo, operands[1]);
      if (src2 != dest + halfregs)
	emit_move_insn (desthi, operands[2]);
    }
  else
    {
      if (src2 != dest + halfregs)
	emit_move_insn (desthi, operands[2]);
      if (src1 != dest)
	emit_move_insn (destlo, operands[1]);
    }
}

/* vec_perm support.  */

#define MAX_VECT_LEN 16

struct expand_vec_perm_d
{
  rtx target, op0, op1;
  auto_vec_perm_indices perm;
  machine_mode vmode;
  bool one_vector_p;
  bool testing_p;
};

/* Generate a variable permutation.  */

static void
aarch64_expand_vec_perm_1 (rtx target, rtx op0, rtx op1, rtx sel)
{
  machine_mode vmode = GET_MODE (target);
  bool one_vector_p = rtx_equal_p (op0, op1);

  gcc_checking_assert (vmode == V8QImode || vmode == V16QImode);
  gcc_checking_assert (GET_MODE (op0) == vmode);
  gcc_checking_assert (GET_MODE (op1) == vmode);
  gcc_checking_assert (GET_MODE (sel) == vmode);
  gcc_checking_assert (TARGET_SIMD);

  if (one_vector_p)
    {
      if (vmode == V8QImode)
	{
	  /* Expand the argument to a V16QI mode by duplicating it.  */
	  rtx pair = gen_reg_rtx (V16QImode);
	  emit_insn (gen_aarch64_combinev8qi (pair, op0, op0));
	  emit_insn (gen_aarch64_tbl1v8qi (target, pair, sel));
	}
      else
	{
	  emit_insn (gen_aarch64_tbl1v16qi (target, op0, sel));
	}
    }
  else
    {
      rtx pair;

      if (vmode == V8QImode)
	{
	  pair = gen_reg_rtx (V16QImode);
	  emit_insn (gen_aarch64_combinev8qi (pair, op0, op1));
	  emit_insn (gen_aarch64_tbl1v8qi (target, pair, sel));
	}
      else
	{
	  pair = gen_reg_rtx (OImode);
	  emit_insn (gen_aarch64_combinev16qi (pair, op0, op1));
	  emit_insn (gen_aarch64_tbl2v16qi (target, pair, sel));
	}
    }
}

void
aarch64_expand_vec_perm (rtx target, rtx op0, rtx op1, rtx sel)
{
  machine_mode vmode = GET_MODE (target);
  unsigned int nelt = GET_MODE_NUNITS (vmode);
  bool one_vector_p = rtx_equal_p (op0, op1);
  rtx mask;

  /* The TBL instruction does not use a modulo index, so we must take care
     of that ourselves.  */
  mask = aarch64_simd_gen_const_vector_dup (vmode,
      one_vector_p ? nelt - 1 : 2 * nelt - 1);
  sel = expand_simple_binop (vmode, AND, sel, mask, NULL, 0, OPTAB_LIB_WIDEN);

  /* For big-endian, we also need to reverse the index within the vector
     (but not which vector).  */
  if (BYTES_BIG_ENDIAN)
    {
      /* If one_vector_p, mask is a vector of (nelt - 1)'s already.  */
      if (!one_vector_p)
        mask = aarch64_simd_gen_const_vector_dup (vmode, nelt - 1);
      sel = expand_simple_binop (vmode, XOR, sel, mask,
				 NULL, 0, OPTAB_LIB_WIDEN);
    }
  aarch64_expand_vec_perm_1 (target, op0, op1, sel);
}

/* Recognize patterns suitable for the TRN instructions.  */
static bool
aarch64_evpc_trn (struct expand_vec_perm_d *d)
{
  unsigned int i, odd, mask, nelt = d->perm.length ();
  rtx out, in0, in1, x;
  rtx (*gen) (rtx, rtx, rtx);
  machine_mode vmode = d->vmode;

  if (GET_MODE_UNIT_SIZE (vmode) > 8)
    return false;

  /* Note that these are little-endian tests.
     We correct for big-endian later.  */
  if (d->perm[0] == 0)
    odd = 0;
  else if (d->perm[0] == 1)
    odd = 1;
  else
    return false;
  mask = (d->one_vector_p ? nelt - 1 : 2 * nelt - 1);

  for (i = 0; i < nelt; i += 2)
    {
      if (d->perm[i] != i + odd)
	return false;
      if (d->perm[i + 1] != ((i + nelt + odd) & mask))
	return false;
    }

  /* Success!  */
  if (d->testing_p)
    return true;

  in0 = d->op0;
  in1 = d->op1;
  if (BYTES_BIG_ENDIAN)
    {
      x = in0, in0 = in1, in1 = x;
      odd = !odd;
    }
  out = d->target;

  if (odd)
    {
      switch (vmode)
	{
	case E_V16QImode: gen = gen_aarch64_trn2v16qi; break;
	case E_V8QImode: gen = gen_aarch64_trn2v8qi; break;
	case E_V8HImode: gen = gen_aarch64_trn2v8hi; break;
	case E_V4HImode: gen = gen_aarch64_trn2v4hi; break;
	case E_V4SImode: gen = gen_aarch64_trn2v4si; break;
	case E_V2SImode: gen = gen_aarch64_trn2v2si; break;
	case E_V2DImode: gen = gen_aarch64_trn2v2di; break;
	case E_V4HFmode: gen = gen_aarch64_trn2v4hf; break;
	case E_V8HFmode: gen = gen_aarch64_trn2v8hf; break;
	case E_V4SFmode: gen = gen_aarch64_trn2v4sf; break;
	case E_V2SFmode: gen = gen_aarch64_trn2v2sf; break;
	case E_V2DFmode: gen = gen_aarch64_trn2v2df; break;
	default:
	  return false;
	}
    }
  else
    {
      switch (vmode)
	{
	case E_V16QImode: gen = gen_aarch64_trn1v16qi; break;
	case E_V8QImode: gen = gen_aarch64_trn1v8qi; break;
	case E_V8HImode: gen = gen_aarch64_trn1v8hi; break;
	case E_V4HImode: gen = gen_aarch64_trn1v4hi; break;
	case E_V4SImode: gen = gen_aarch64_trn1v4si; break;
	case E_V2SImode: gen = gen_aarch64_trn1v2si; break;
	case E_V2DImode: gen = gen_aarch64_trn1v2di; break;
	case E_V4HFmode: gen = gen_aarch64_trn1v4hf; break;
	case E_V8HFmode: gen = gen_aarch64_trn1v8hf; break;
	case E_V4SFmode: gen = gen_aarch64_trn1v4sf; break;
	case E_V2SFmode: gen = gen_aarch64_trn1v2sf; break;
	case E_V2DFmode: gen = gen_aarch64_trn1v2df; break;
	default:
	  return false;
	}
    }

  emit_insn (gen (out, in0, in1));
  return true;
}

/* Recognize patterns suitable for the UZP instructions.  */
static bool
aarch64_evpc_uzp (struct expand_vec_perm_d *d)
{
  unsigned int i, odd, mask, nelt = d->perm.length ();
  rtx out, in0, in1, x;
  rtx (*gen) (rtx, rtx, rtx);
  machine_mode vmode = d->vmode;

  if (GET_MODE_UNIT_SIZE (vmode) > 8)
    return false;

  /* Note that these are little-endian tests.
     We correct for big-endian later.  */
  if (d->perm[0] == 0)
    odd = 0;
  else if (d->perm[0] == 1)
    odd = 1;
  else
    return false;
  mask = (d->one_vector_p ? nelt - 1 : 2 * nelt - 1);

  for (i = 0; i < nelt; i++)
    {
      unsigned elt = (i * 2 + odd) & mask;
      if (d->perm[i] != elt)
	return false;
    }

  /* Success!  */
  if (d->testing_p)
    return true;

  in0 = d->op0;
  in1 = d->op1;
  if (BYTES_BIG_ENDIAN)
    {
      x = in0, in0 = in1, in1 = x;
      odd = !odd;
    }
  out = d->target;

  if (odd)
    {
      switch (vmode)
	{
	case E_V16QImode: gen = gen_aarch64_uzp2v16qi; break;
	case E_V8QImode: gen = gen_aarch64_uzp2v8qi; break;
	case E_V8HImode: gen = gen_aarch64_uzp2v8hi; break;
	case E_V4HImode: gen = gen_aarch64_uzp2v4hi; break;
	case E_V4SImode: gen = gen_aarch64_uzp2v4si; break;
	case E_V2SImode: gen = gen_aarch64_uzp2v2si; break;
	case E_V2DImode: gen = gen_aarch64_uzp2v2di; break;
	case E_V4HFmode: gen = gen_aarch64_uzp2v4hf; break;
	case E_V8HFmode: gen = gen_aarch64_uzp2v8hf; break;
	case E_V4SFmode: gen = gen_aarch64_uzp2v4sf; break;
	case E_V2SFmode: gen = gen_aarch64_uzp2v2sf; break;
	case E_V2DFmode: gen = gen_aarch64_uzp2v2df; break;
	default:
	  return false;
	}
    }
  else
    {
      switch (vmode)
	{
	case E_V16QImode: gen = gen_aarch64_uzp1v16qi; break;
	case E_V8QImode: gen = gen_aarch64_uzp1v8qi; break;
	case E_V8HImode: gen = gen_aarch64_uzp1v8hi; break;
	case E_V4HImode: gen = gen_aarch64_uzp1v4hi; break;
	case E_V4SImode: gen = gen_aarch64_uzp1v4si; break;
	case E_V2SImode: gen = gen_aarch64_uzp1v2si; break;
	case E_V2DImode: gen = gen_aarch64_uzp1v2di; break;
	case E_V4HFmode: gen = gen_aarch64_uzp1v4hf; break;
	case E_V8HFmode: gen = gen_aarch64_uzp1v8hf; break;
	case E_V4SFmode: gen = gen_aarch64_uzp1v4sf; break;
	case E_V2SFmode: gen = gen_aarch64_uzp1v2sf; break;
	case E_V2DFmode: gen = gen_aarch64_uzp1v2df; break;
	default:
	  return false;
	}
    }

  emit_insn (gen (out, in0, in1));
  return true;
}

/* Recognize patterns suitable for the ZIP instructions.  */
static bool
aarch64_evpc_zip (struct expand_vec_perm_d *d)
{
  unsigned int i, high, mask, nelt = d->perm.length ();
  rtx out, in0, in1, x;
  rtx (*gen) (rtx, rtx, rtx);
  machine_mode vmode = d->vmode;

  if (GET_MODE_UNIT_SIZE (vmode) > 8)
    return false;

  /* Note that these are little-endian tests.
     We correct for big-endian later.  */
  high = nelt / 2;
  if (d->perm[0] == high)
    /* Do Nothing.  */
    ;
  else if (d->perm[0] == 0)
    high = 0;
  else
    return false;
  mask = (d->one_vector_p ? nelt - 1 : 2 * nelt - 1);

  for (i = 0; i < nelt / 2; i++)
    {
      unsigned elt = (i + high) & mask;
      if (d->perm[i * 2] != elt)
	return false;
      elt = (elt + nelt) & mask;
      if (d->perm[i * 2 + 1] != elt)
	return false;
    }

  /* Success!  */
  if (d->testing_p)
    return true;

  in0 = d->op0;
  in1 = d->op1;
  if (BYTES_BIG_ENDIAN)
    {
      x = in0, in0 = in1, in1 = x;
      high = !high;
    }
  out = d->target;

  if (high)
    {
      switch (vmode)
	{
	case E_V16QImode: gen = gen_aarch64_zip2v16qi; break;
	case E_V8QImode: gen = gen_aarch64_zip2v8qi; break;
	case E_V8HImode: gen = gen_aarch64_zip2v8hi; break;
	case E_V4HImode: gen = gen_aarch64_zip2v4hi; break;
	case E_V4SImode: gen = gen_aarch64_zip2v4si; break;
	case E_V2SImode: gen = gen_aarch64_zip2v2si; break;
	case E_V2DImode: gen = gen_aarch64_zip2v2di; break;
	case E_V4HFmode: gen = gen_aarch64_zip2v4hf; break;
	case E_V8HFmode: gen = gen_aarch64_zip2v8hf; break;
	case E_V4SFmode: gen = gen_aarch64_zip2v4sf; break;
	case E_V2SFmode: gen = gen_aarch64_zip2v2sf; break;
	case E_V2DFmode: gen = gen_aarch64_zip2v2df; break;
	default:
	  return false;
	}
    }
  else
    {
      switch (vmode)
	{
	case E_V16QImode: gen = gen_aarch64_zip1v16qi; break;
	case E_V8QImode: gen = gen_aarch64_zip1v8qi; break;
	case E_V8HImode: gen = gen_aarch64_zip1v8hi; break;
	case E_V4HImode: gen = gen_aarch64_zip1v4hi; break;
	case E_V4SImode: gen = gen_aarch64_zip1v4si; break;
	case E_V2SImode: gen = gen_aarch64_zip1v2si; break;
	case E_V2DImode: gen = gen_aarch64_zip1v2di; break;
	case E_V4HFmode: gen = gen_aarch64_zip1v4hf; break;
	case E_V8HFmode: gen = gen_aarch64_zip1v8hf; break;
	case E_V4SFmode: gen = gen_aarch64_zip1v4sf; break;
	case E_V2SFmode: gen = gen_aarch64_zip1v2sf; break;
	case E_V2DFmode: gen = gen_aarch64_zip1v2df; break;
	default:
	  return false;
	}
    }

  emit_insn (gen (out, in0, in1));
  return true;
}

/* Recognize patterns for the EXT insn.  */

static bool
aarch64_evpc_ext (struct expand_vec_perm_d *d)
{
  unsigned int i, nelt = d->perm.length ();
  rtx (*gen) (rtx, rtx, rtx, rtx);
  rtx offset;

  unsigned int location = d->perm[0]; /* Always < nelt.  */

  /* Check if the extracted indices are increasing by one.  */
  for (i = 1; i < nelt; i++)
    {
      unsigned int required = location + i;
      if (d->one_vector_p)
        {
          /* We'll pass the same vector in twice, so allow indices to wrap.  */
	  required &= (nelt - 1);
	}
      if (d->perm[i] != required)
        return false;
    }

  switch (d->vmode)
    {
    case E_V16QImode: gen = gen_aarch64_extv16qi; break;
    case E_V8QImode: gen = gen_aarch64_extv8qi; break;
    case E_V4HImode: gen = gen_aarch64_extv4hi; break;
    case E_V8HImode: gen = gen_aarch64_extv8hi; break;
    case E_V2SImode: gen = gen_aarch64_extv2si; break;
    case E_V4SImode: gen = gen_aarch64_extv4si; break;
    case E_V4HFmode: gen = gen_aarch64_extv4hf; break;
    case E_V8HFmode: gen = gen_aarch64_extv8hf; break;
    case E_V2SFmode: gen = gen_aarch64_extv2sf; break;
    case E_V4SFmode: gen = gen_aarch64_extv4sf; break;
    case E_V2DImode: gen = gen_aarch64_extv2di; break;
    case E_V2DFmode: gen = gen_aarch64_extv2df; break;
    default:
      return false;
    }

  /* Success! */
  if (d->testing_p)
    return true;

  /* The case where (location == 0) is a no-op for both big- and little-endian,
     and is removed by the mid-end at optimization levels -O1 and higher.  */

  if (BYTES_BIG_ENDIAN && (location != 0))
    {
      /* After setup, we want the high elements of the first vector (stored
         at the LSB end of the register), and the low elements of the second
         vector (stored at the MSB end of the register). So swap.  */
      std::swap (d->op0, d->op1);
      /* location != 0 (above), so safe to assume (nelt - location) < nelt.  */
      location = nelt - location;
    }

  offset = GEN_INT (location);
  emit_insn (gen (d->target, d->op0, d->op1, offset));
  return true;
}

/* Recognize patterns for the REV insns.  */

static bool
aarch64_evpc_rev (struct expand_vec_perm_d *d)
{
  unsigned int i, j, diff, nelt = d->perm.length ();
  rtx (*gen) (rtx, rtx);

  if (!d->one_vector_p)
    return false;

  diff = d->perm[0];
  switch (diff)
    {
    case 7:
      switch (d->vmode)
	{
	case E_V16QImode: gen = gen_aarch64_rev64v16qi; break;
	case E_V8QImode: gen = gen_aarch64_rev64v8qi;  break;
	default:
	  return false;
	}
      break;
    case 3:
      switch (d->vmode)
	{
	case E_V16QImode: gen = gen_aarch64_rev32v16qi; break;
	case E_V8QImode: gen = gen_aarch64_rev32v8qi;  break;
	case E_V8HImode: gen = gen_aarch64_rev64v8hi;  break;
	case E_V4HImode: gen = gen_aarch64_rev64v4hi;  break;
	default:
	  return false;
	}
      break;
    case 1:
      switch (d->vmode)
	{
	case E_V16QImode: gen = gen_aarch64_rev16v16qi; break;
	case E_V8QImode: gen = gen_aarch64_rev16v8qi;  break;
	case E_V8HImode: gen = gen_aarch64_rev32v8hi;  break;
	case E_V4HImode: gen = gen_aarch64_rev32v4hi;  break;
	case E_V4SImode: gen = gen_aarch64_rev64v4si;  break;
	case E_V2SImode: gen = gen_aarch64_rev64v2si;  break;
	case E_V4SFmode: gen = gen_aarch64_rev64v4sf;  break;
	case E_V2SFmode: gen = gen_aarch64_rev64v2sf;  break;
	case E_V8HFmode: gen = gen_aarch64_rev64v8hf;  break;
	case E_V4HFmode: gen = gen_aarch64_rev64v4hf;  break;
	default:
	  return false;
	}
      break;
    default:
      return false;
    }

  for (i = 0; i < nelt ; i += diff + 1)
    for (j = 0; j <= diff; j += 1)
      {
	/* This is guaranteed to be true as the value of diff
	   is 7, 3, 1 and we should have enough elements in the
	   queue to generate this.  Getting a vector mask with a
	   value of diff other than these values implies that
	   something is wrong by the time we get here.  */
	gcc_assert (i + j < nelt);
	if (d->perm[i + j] != i + diff - j)
	  return false;
      }

  /* Success! */
  if (d->testing_p)
    return true;

  emit_insn (gen (d->target, d->op0));
  return true;
}

static bool
aarch64_evpc_dup (struct expand_vec_perm_d *d)
{
  rtx (*gen) (rtx, rtx, rtx);
  rtx out = d->target;
  rtx in0;
  machine_mode vmode = d->vmode;
  unsigned int i, elt, nelt = d->perm.length ();
  rtx lane;

  elt = d->perm[0];
  for (i = 1; i < nelt; i++)
    {
      if (elt != d->perm[i])
	return false;
    }

  /* The generic preparation in aarch64_expand_vec_perm_const_1
     swaps the operand order and the permute indices if it finds
     d->perm[0] to be in the second operand.  Thus, we can always
     use d->op0 and need not do any extra arithmetic to get the
     correct lane number.  */
  in0 = d->op0;
  lane = GEN_INT (elt); /* The pattern corrects for big-endian.  */

  switch (vmode)
    {
    case E_V16QImode: gen = gen_aarch64_dup_lanev16qi; break;
    case E_V8QImode: gen = gen_aarch64_dup_lanev8qi; break;
    case E_V8HImode: gen = gen_aarch64_dup_lanev8hi; break;
    case E_V4HImode: gen = gen_aarch64_dup_lanev4hi; break;
    case E_V4SImode: gen = gen_aarch64_dup_lanev4si; break;
    case E_V2SImode: gen = gen_aarch64_dup_lanev2si; break;
    case E_V2DImode: gen = gen_aarch64_dup_lanev2di; break;
    case E_V8HFmode: gen = gen_aarch64_dup_lanev8hf; break;
    case E_V4HFmode: gen = gen_aarch64_dup_lanev4hf; break;
    case E_V4SFmode: gen = gen_aarch64_dup_lanev4sf; break;
    case E_V2SFmode: gen = gen_aarch64_dup_lanev2sf; break;
    case E_V2DFmode: gen = gen_aarch64_dup_lanev2df; break;
    default:
      return false;
    }

  emit_insn (gen (out, in0, lane));
  return true;
}

static bool
aarch64_evpc_tbl (struct expand_vec_perm_d *d)
{
  rtx rperm[MAX_VECT_LEN], sel;
  machine_mode vmode = d->vmode;
  unsigned int i, nelt = d->perm.length ();

  if (d->testing_p)
    return true;

  /* Generic code will try constant permutation twice.  Once with the
     original mode and again with the elements lowered to QImode.
     So wait and don't do the selector expansion ourselves.  */
  if (vmode != V8QImode && vmode != V16QImode)
    return false;

  for (i = 0; i < nelt; ++i)
    {
      int nunits = GET_MODE_NUNITS (vmode);

      /* If big-endian and two vectors we end up with a weird mixed-endian
	 mode on NEON.  Reverse the index within each word but not the word
	 itself.  */
      rperm[i] = GEN_INT (BYTES_BIG_ENDIAN ? d->perm[i] ^ (nunits - 1)
					   : d->perm[i]);
    }
  sel = gen_rtx_CONST_VECTOR (vmode, gen_rtvec_v (nelt, rperm));
  sel = force_reg (vmode, sel);

  aarch64_expand_vec_perm_1 (d->target, d->op0, d->op1, sel);
  return true;
}

static bool
aarch64_expand_vec_perm_const_1 (struct expand_vec_perm_d *d)
{
  /* The pattern matching functions above are written to look for a small
     number to begin the sequence (0, 1, N/2).  If we begin with an index
     from the second operand, we can swap the operands.  */
  unsigned int nelt = d->perm.length ();
  if (d->perm[0] >= nelt)
    {
      gcc_assert (nelt == (nelt & -nelt));
      for (unsigned int i = 0; i < nelt; ++i)
	d->perm[i] ^= nelt; /* Keep the same index, but in the other vector.  */

      std::swap (d->op0, d->op1);
    }

  if (TARGET_SIMD)
    {
      if (aarch64_evpc_rev (d))
	return true;
      else if (aarch64_evpc_ext (d))
	return true;
      else if (aarch64_evpc_dup (d))
	return true;
      else if (aarch64_evpc_zip (d))
	return true;
      else if (aarch64_evpc_uzp (d))
	return true;
      else if (aarch64_evpc_trn (d))
	return true;
      return aarch64_evpc_tbl (d);
    }
  return false;
}

/* Expand a vec_perm_const pattern.  */

bool
aarch64_expand_vec_perm_const (rtx target, rtx op0, rtx op1, rtx sel)
{
  struct expand_vec_perm_d d;
  int i, nelt, which;

  d.target = target;
  d.op0 = op0;
  d.op1 = op1;

  d.vmode = GET_MODE (target);
  gcc_assert (VECTOR_MODE_P (d.vmode));
  d.testing_p = false;

  nelt = GET_MODE_NUNITS (d.vmode);
  d.perm.reserve (nelt);
  for (i = which = 0; i < nelt; ++i)
    {
      rtx e = XVECEXP (sel, 0, i);
      int ei = INTVAL (e) & (2 * nelt - 1);
      which |= (ei < nelt ? 1 : 2);
      d.perm.quick_push (ei);
    }

  switch (which)
    {
    default:
      gcc_unreachable ();

    case 3:
      d.one_vector_p = false;
      if (!rtx_equal_p (op0, op1))
	break;

      /* The elements of PERM do not suggest that only the first operand
	 is used, but both operands are identical.  Allow easier matching
	 of the permutation by folding the permutation into the single
	 input vector.  */
      /* Fall Through.  */
    case 2:
      for (i = 0; i < nelt; ++i)
	d.perm[i] &= nelt - 1;
      d.op0 = op1;
      d.one_vector_p = true;
      break;

    case 1:
      d.op1 = op0;
      d.one_vector_p = true;
      break;
    }

  return aarch64_expand_vec_perm_const_1 (&d);
}

static bool
aarch64_vectorize_vec_perm_const_ok (machine_mode vmode, vec_perm_indices sel)
{
  struct expand_vec_perm_d d;
  unsigned int i, nelt, which;
  bool ret;

  d.vmode = vmode;
  d.testing_p = true;
  d.perm.safe_splice (sel);

  /* Calculate whether all elements are in one vector.  */
  nelt = sel.length ();
  for (i = which = 0; i < nelt; ++i)
    {
      unsigned int e = d.perm[i];
      gcc_assert (e < 2 * nelt);
      which |= (e < nelt ? 1 : 2);
    }

  /* If all elements are from the second vector, reindex as if from the
     first vector.  */
  if (which == 2)
    for (i = 0; i < nelt; ++i)
      d.perm[i] -= nelt;

  /* Check whether the mask can be applied to a single vector.  */
  d.one_vector_p = (which != 3);

  d.target = gen_raw_REG (d.vmode, LAST_VIRTUAL_REGISTER + 1);
  d.op1 = d.op0 = gen_raw_REG (d.vmode, LAST_VIRTUAL_REGISTER + 2);
  if (!d.one_vector_p)
    d.op1 = gen_raw_REG (d.vmode, LAST_VIRTUAL_REGISTER + 3);

  start_sequence ();
  ret = aarch64_expand_vec_perm_const_1 (&d);
  end_sequence ();

  return ret;
}

rtx
aarch64_reverse_mask (machine_mode mode)
{
  /* We have to reverse each vector because we dont have
     a permuted load that can reverse-load according to ABI rules.  */
  rtx mask;
  rtvec v = rtvec_alloc (16);
  int i, j;
  int nunits = GET_MODE_NUNITS (mode);
  int usize = GET_MODE_UNIT_SIZE (mode);

  gcc_assert (BYTES_BIG_ENDIAN);
  gcc_assert (AARCH64_VALID_SIMD_QREG_MODE (mode));

  for (i = 0; i < nunits; i++)
    for (j = 0; j < usize; j++)
      RTVEC_ELT (v, i * usize + j) = GEN_INT ((i + 1) * usize - 1 - j);
  mask = gen_rtx_CONST_VECTOR (V16QImode, v);
  return force_reg (V16QImode, mask);
}

/* Implement TARGET_MODES_TIEABLE_P.  In principle we should always return
   true.  However due to issues with register allocation it is preferable
   to avoid tieing integer scalar and FP scalar modes.  Executing integer
   operations in general registers is better than treating them as scalar
   vector operations.  This reduces latency and avoids redundant int<->FP
   moves.  So tie modes if they are either the same class, or vector modes
   with other vector modes, vector structs or any scalar mode.  */

static bool
aarch64_modes_tieable_p (machine_mode mode1, machine_mode mode2)
{
  if (GET_MODE_CLASS (mode1) == GET_MODE_CLASS (mode2))
    return true;

  /* We specifically want to allow elements of "structure" modes to
     be tieable to the structure.  This more general condition allows
     other rarer situations too.  */
  if (aarch64_vector_mode_p (mode1) && aarch64_vector_mode_p (mode2))
    return true;

  /* Also allow any scalar modes with vectors.  */
  if (aarch64_vector_mode_supported_p (mode1)
      || aarch64_vector_mode_supported_p (mode2))
    return true;

  return false;
}

/* Return a new RTX holding the result of moving POINTER forward by
   AMOUNT bytes.  */

static rtx
aarch64_move_pointer (rtx pointer, int amount)
{
  rtx next = plus_constant (Pmode, XEXP (pointer, 0), amount);

  return adjust_automodify_address (pointer, GET_MODE (pointer),
				    next, amount);
}

/* Return a new RTX holding the result of moving POINTER forward by the
   size of the mode it points to.  */

static rtx
aarch64_progress_pointer (rtx pointer)
{
  HOST_WIDE_INT amount = GET_MODE_SIZE (GET_MODE (pointer));

  return aarch64_move_pointer (pointer, amount);
}

/* Copy one MODE sized block from SRC to DST, then progress SRC and DST by
   MODE bytes.  */

static void
aarch64_copy_one_block_and_progress_pointers (rtx *src, rtx *dst,
					      machine_mode mode)
{
  rtx reg = gen_reg_rtx (mode);

  /* "Cast" the pointers to the correct mode.  */
  *src = adjust_address (*src, mode, 0);
  *dst = adjust_address (*dst, mode, 0);
  /* Emit the memcpy.  */
  emit_move_insn (reg, *src);
  emit_move_insn (*dst, reg);
  /* Move the pointers forward.  */
  *src = aarch64_progress_pointer (*src);
  *dst = aarch64_progress_pointer (*dst);
}

/* Expand movmem, as if from a __builtin_memcpy.  Return true if
   we succeed, otherwise return false.  */

bool
aarch64_expand_movmem (rtx *operands)
{
  unsigned int n;
  rtx dst = operands[0];
  rtx src = operands[1];
  rtx base;
  bool speed_p = !optimize_function_for_size_p (cfun);

  /* When optimizing for size, give a better estimate of the length of a
     memcpy call, but use the default otherwise.  */
  unsigned int max_instructions = (speed_p ? 15 : AARCH64_CALL_RATIO) / 2;

  /* We can't do anything smart if the amount to copy is not constant.  */
  if (!CONST_INT_P (operands[2]))
    return false;

  n = UINTVAL (operands[2]);

  /* Try to keep the number of instructions low.  For cases below 16 bytes we
     need to make at most two moves.  For cases above 16 bytes it will be one
     move for each 16 byte chunk, then at most two additional moves.  */
  if (((n / 16) + (n % 16 ? 2 : 0)) > max_instructions)
    return false;

  base = copy_to_mode_reg (Pmode, XEXP (dst, 0));
  dst = adjust_automodify_address (dst, VOIDmode, base, 0);

  base = copy_to_mode_reg (Pmode, XEXP (src, 0));
  src = adjust_automodify_address (src, VOIDmode, base, 0);

  /* Simple cases.  Copy 0-3 bytes, as (if applicable) a 2-byte, then a
     1-byte chunk.  */
  if (n < 4)
    {
      if (n >= 2)
	{
	  aarch64_copy_one_block_and_progress_pointers (&src, &dst, HImode);
	  n -= 2;
	}

      if (n == 1)
	aarch64_copy_one_block_and_progress_pointers (&src, &dst, QImode);

      return true;
    }

  /* Copy 4-8 bytes.  First a 4-byte chunk, then (if applicable) a second
     4-byte chunk, partially overlapping with the previously copied chunk.  */
  if (n < 8)
    {
      aarch64_copy_one_block_and_progress_pointers (&src, &dst, SImode);
      n -= 4;
      if (n > 0)
	{
	  int move = n - 4;

	  src = aarch64_move_pointer (src, move);
	  dst = aarch64_move_pointer (dst, move);
	  aarch64_copy_one_block_and_progress_pointers (&src, &dst, SImode);
	}
      return true;
    }

  /* Copy more than 8 bytes.  Copy chunks of 16 bytes until we run out of
     them, then (if applicable) an 8-byte chunk.  */
  while (n >= 8)
    {
      if (n / 16)
	{
	  aarch64_copy_one_block_and_progress_pointers (&src, &dst, TImode);
	  n -= 16;
	}
      else
	{
	  aarch64_copy_one_block_and_progress_pointers (&src, &dst, DImode);
	  n -= 8;
	}
    }

  /* Finish the final bytes of the copy.  We can always do this in one
     instruction.  We either copy the exact amount we need, or partially
     overlap with the previous chunk we copied and copy 8-bytes.  */
  if (n == 0)
    return true;
  else if (n == 1)
    aarch64_copy_one_block_and_progress_pointers (&src, &dst, QImode);
  else if (n == 2)
    aarch64_copy_one_block_and_progress_pointers (&src, &dst, HImode);
  else if (n == 4)
    aarch64_copy_one_block_and_progress_pointers (&src, &dst, SImode);
  else
    {
      if (n == 3)
	{
	  src = aarch64_move_pointer (src, -1);
	  dst = aarch64_move_pointer (dst, -1);
	  aarch64_copy_one_block_and_progress_pointers (&src, &dst, SImode);
	}
      else
	{
	  int move = n - 8;

	  src = aarch64_move_pointer (src, move);
	  dst = aarch64_move_pointer (dst, move);
	  aarch64_copy_one_block_and_progress_pointers (&src, &dst, DImode);
	}
    }

  return true;
}

/* Split a DImode store of a CONST_INT SRC to MEM DST as two
   SImode stores.  Handle the case when the constant has identical
   bottom and top halves.  This is beneficial when the two stores can be
   merged into an STP and we avoid synthesising potentially expensive
   immediates twice.  Return true if such a split is possible.  */

bool
aarch64_split_dimode_const_store (rtx dst, rtx src)
{
  rtx lo = gen_lowpart (SImode, src);
  rtx hi = gen_highpart_mode (SImode, DImode, src);

  bool size_p = optimize_function_for_size_p (cfun);

  if (!rtx_equal_p (lo, hi))
    return false;

  unsigned int orig_cost
    = aarch64_internal_mov_immediate (NULL_RTX, src, false, DImode);
  unsigned int lo_cost
    = aarch64_internal_mov_immediate (NULL_RTX, lo, false, SImode);

  /* We want to transform:
     MOV	x1, 49370
     MOVK	x1, 0x140, lsl 16
     MOVK	x1, 0xc0da, lsl 32
     MOVK	x1, 0x140, lsl 48
     STR	x1, [x0]
   into:
     MOV	w1, 49370
     MOVK	w1, 0x140, lsl 16
     STP	w1, w1, [x0]
   So we want to perform this only when we save two instructions
   or more.  When optimizing for size, however, accept any code size
   savings we can.  */
  if (size_p && orig_cost <= lo_cost)
    return false;

  if (!size_p
      && (orig_cost <= lo_cost + 1))
    return false;

  rtx mem_lo = adjust_address (dst, SImode, 0);
  if (!aarch64_mem_pair_operand (mem_lo, SImode))
    return false;

  rtx tmp_reg = gen_reg_rtx (SImode);
  aarch64_expand_mov_immediate (tmp_reg, lo);
  rtx mem_hi = aarch64_move_pointer (mem_lo, GET_MODE_SIZE (SImode));
  /* Don't emit an explicit store pair as this may not be always profitable.
     Let the sched-fusion logic decide whether to merge them.  */
  emit_move_insn (mem_lo, tmp_reg);
  emit_move_insn (mem_hi, tmp_reg);

  return true;
}

/* Implement the TARGET_ASAN_SHADOW_OFFSET hook.  */

static unsigned HOST_WIDE_INT
aarch64_asan_shadow_offset (void)
{
  return (HOST_WIDE_INT_1 << 36);
}

static bool
aarch64_use_by_pieces_infrastructure_p (unsigned HOST_WIDE_INT size,
					unsigned int align,
					enum by_pieces_operation op,
					bool speed_p)
{
  /* STORE_BY_PIECES can be used when copying a constant string, but
     in that case each 64-bit chunk takes 5 insns instead of 2 (LDR/STR).
     For now we always fail this and let the move_by_pieces code copy
     the string from read-only memory.  */
  if (op == STORE_BY_PIECES)
    return false;

  return default_use_by_pieces_infrastructure_p (size, align, op, speed_p);
}

static rtx
aarch64_gen_ccmp_first (rtx_insn **prep_seq, rtx_insn **gen_seq,
			int code, tree treeop0, tree treeop1)
{
  machine_mode op_mode, cmp_mode, cc_mode = CCmode;
  rtx op0, op1;
  int unsignedp = TYPE_UNSIGNED (TREE_TYPE (treeop0));
  insn_code icode;
  struct expand_operand ops[4];

  start_sequence ();
  expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);

  op_mode = GET_MODE (op0);
  if (op_mode == VOIDmode)
    op_mode = GET_MODE (op1);

  switch (op_mode)
    {
    case E_QImode:
    case E_HImode:
    case E_SImode:
      cmp_mode = SImode;
      icode = CODE_FOR_cmpsi;
      break;

    case E_DImode:
      cmp_mode = DImode;
      icode = CODE_FOR_cmpdi;
      break;

    case E_SFmode:
      cmp_mode = SFmode;
      cc_mode = aarch64_select_cc_mode ((rtx_code) code, op0, op1);
      icode = cc_mode == CCFPEmode ? CODE_FOR_fcmpesf : CODE_FOR_fcmpsf;
      break;

    case E_DFmode:
      cmp_mode = DFmode;
      cc_mode = aarch64_select_cc_mode ((rtx_code) code, op0, op1);
      icode = cc_mode == CCFPEmode ? CODE_FOR_fcmpedf : CODE_FOR_fcmpdf;
      break;

    default:
      end_sequence ();
      return NULL_RTX;
    }

  op0 = prepare_operand (icode, op0, 0, op_mode, cmp_mode, unsignedp);
  op1 = prepare_operand (icode, op1, 1, op_mode, cmp_mode, unsignedp);
  if (!op0 || !op1)
    {
      end_sequence ();
      return NULL_RTX;
    }
  *prep_seq = get_insns ();
  end_sequence ();

  create_fixed_operand (&ops[0], op0);
  create_fixed_operand (&ops[1], op1);

  start_sequence ();
  if (!maybe_expand_insn (icode, 2, ops))
    {
      end_sequence ();
      return NULL_RTX;
    }
  *gen_seq = get_insns ();
  end_sequence ();

  return gen_rtx_fmt_ee ((rtx_code) code, cc_mode,
			 gen_rtx_REG (cc_mode, CC_REGNUM), const0_rtx);
}

static rtx
aarch64_gen_ccmp_next (rtx_insn **prep_seq, rtx_insn **gen_seq, rtx prev,
		       int cmp_code, tree treeop0, tree treeop1, int bit_code)
{
  rtx op0, op1, target;
  machine_mode op_mode, cmp_mode, cc_mode = CCmode;
  int unsignedp = TYPE_UNSIGNED (TREE_TYPE (treeop0));
  insn_code icode;
  struct expand_operand ops[6];
  int aarch64_cond;

  push_to_sequence (*prep_seq);
  expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);

  op_mode = GET_MODE (op0);
  if (op_mode == VOIDmode)
    op_mode = GET_MODE (op1);

  switch (op_mode)
    {
    case E_QImode:
    case E_HImode:
    case E_SImode:
      cmp_mode = SImode;
      icode = CODE_FOR_ccmpsi;
      break;

    case E_DImode:
      cmp_mode = DImode;
      icode = CODE_FOR_ccmpdi;
      break;

    case E_SFmode:
      cmp_mode = SFmode;
      cc_mode = aarch64_select_cc_mode ((rtx_code) cmp_code, op0, op1);
      icode = cc_mode == CCFPEmode ? CODE_FOR_fccmpesf : CODE_FOR_fccmpsf;
      break;

    case E_DFmode:
      cmp_mode = DFmode;
      cc_mode = aarch64_select_cc_mode ((rtx_code) cmp_code, op0, op1);
      icode = cc_mode == CCFPEmode ? CODE_FOR_fccmpedf : CODE_FOR_fccmpdf;
      break;

    default:
      end_sequence ();
      return NULL_RTX;
    }

  op0 = prepare_operand (icode, op0, 2, op_mode, cmp_mode, unsignedp);
  op1 = prepare_operand (icode, op1, 3, op_mode, cmp_mode, unsignedp);
  if (!op0 || !op1)
    {
      end_sequence ();
      return NULL_RTX;
    }
  *prep_seq = get_insns ();
  end_sequence ();

  target = gen_rtx_REG (cc_mode, CC_REGNUM);
  aarch64_cond = aarch64_get_condition_code_1 (cc_mode, (rtx_code) cmp_code);

  if (bit_code != AND)
    {
      prev = gen_rtx_fmt_ee (REVERSE_CONDITION (GET_CODE (prev),
						GET_MODE (XEXP (prev, 0))),
			     VOIDmode, XEXP (prev, 0), const0_rtx);
      aarch64_cond = AARCH64_INVERSE_CONDITION_CODE (aarch64_cond);
    }

  create_fixed_operand (&ops[0], XEXP (prev, 0));
  create_fixed_operand (&ops[1], target);
  create_fixed_operand (&ops[2], op0);
  create_fixed_operand (&ops[3], op1);
  create_fixed_operand (&ops[4], prev);
  create_fixed_operand (&ops[5], GEN_INT (aarch64_cond));

  push_to_sequence (*gen_seq);
  if (!maybe_expand_insn (icode, 6, ops))
    {
      end_sequence ();
      return NULL_RTX;
    }

  *gen_seq = get_insns ();
  end_sequence ();

  return gen_rtx_fmt_ee ((rtx_code) cmp_code, VOIDmode, target, const0_rtx);
}

#undef TARGET_GEN_CCMP_FIRST
#define TARGET_GEN_CCMP_FIRST aarch64_gen_ccmp_first

#undef TARGET_GEN_CCMP_NEXT
#define TARGET_GEN_CCMP_NEXT aarch64_gen_ccmp_next

/* Implement TARGET_SCHED_MACRO_FUSION_P.  Return true if target supports
   instruction fusion of some sort.  */

static bool
aarch64_macro_fusion_p (void)
{
  return aarch64_tune_params.fusible_ops != AARCH64_FUSE_NOTHING;
}


/* Implement TARGET_SCHED_MACRO_FUSION_PAIR_P.  Return true if PREV and CURR
   should be kept together during scheduling.  */

static bool
aarch_macro_fusion_pair_p (rtx_insn *prev, rtx_insn *curr)
{
  rtx set_dest;
  rtx prev_set = single_set (prev);
  rtx curr_set = single_set (curr);
  /* prev and curr are simple SET insns i.e. no flag setting or branching.  */
  bool simple_sets_p = prev_set && curr_set && !any_condjump_p (curr);

  if (!aarch64_macro_fusion_p ())
    return false;

  if (simple_sets_p && aarch64_fusion_enabled_p (AARCH64_FUSE_MOV_MOVK))
    {
      /* We are trying to match:
         prev (mov)  == (set (reg r0) (const_int imm16))
         curr (movk) == (set (zero_extract (reg r0)
                                           (const_int 16)
                                           (const_int 16))
                             (const_int imm16_1))  */

      set_dest = SET_DEST (curr_set);

      if (GET_CODE (set_dest) == ZERO_EXTRACT
          && CONST_INT_P (SET_SRC (curr_set))
          && CONST_INT_P (SET_SRC (prev_set))
          && CONST_INT_P (XEXP (set_dest, 2))
          && INTVAL (XEXP (set_dest, 2)) == 16
          && REG_P (XEXP (set_dest, 0))
          && REG_P (SET_DEST (prev_set))
          && REGNO (XEXP (set_dest, 0)) == REGNO (SET_DEST (prev_set)))
        {
          return true;
        }
    }

  if (simple_sets_p && aarch64_fusion_enabled_p (AARCH64_FUSE_ADRP_ADD))
    {

      /*  We're trying to match:
          prev (adrp) == (set (reg r1)
                              (high (symbol_ref ("SYM"))))
          curr (add) == (set (reg r0)
                             (lo_sum (reg r1)
                                     (symbol_ref ("SYM"))))
          Note that r0 need not necessarily be the same as r1, especially
          during pre-regalloc scheduling.  */

      if (satisfies_constraint_Ush (SET_SRC (prev_set))
          && REG_P (SET_DEST (prev_set)) && REG_P (SET_DEST (curr_set)))
        {
          if (GET_CODE (SET_SRC (curr_set)) == LO_SUM
              && REG_P (XEXP (SET_SRC (curr_set), 0))
              && REGNO (XEXP (SET_SRC (curr_set), 0))
                 == REGNO (SET_DEST (prev_set))
              && rtx_equal_p (XEXP (SET_SRC (prev_set), 0),
                              XEXP (SET_SRC (curr_set), 1)))
            return true;
        }
    }

  if (simple_sets_p && aarch64_fusion_enabled_p (AARCH64_FUSE_MOVK_MOVK))
    {

      /* We're trying to match:
         prev (movk) == (set (zero_extract (reg r0)
                                           (const_int 16)
                                           (const_int 32))
                             (const_int imm16_1))
         curr (movk) == (set (zero_extract (reg r0)
                                           (const_int 16)
                                           (const_int 48))
                             (const_int imm16_2))  */

      if (GET_CODE (SET_DEST (prev_set)) == ZERO_EXTRACT
          && GET_CODE (SET_DEST (curr_set)) == ZERO_EXTRACT
          && REG_P (XEXP (SET_DEST (prev_set), 0))
          && REG_P (XEXP (SET_DEST (curr_set), 0))
          && REGNO (XEXP (SET_DEST (prev_set), 0))
             == REGNO (XEXP (SET_DEST (curr_set), 0))
          && CONST_INT_P (XEXP (SET_DEST (prev_set), 2))
          && CONST_INT_P (XEXP (SET_DEST (curr_set), 2))
          && INTVAL (XEXP (SET_DEST (prev_set), 2)) == 32
          && INTVAL (XEXP (SET_DEST (curr_set), 2)) == 48
          && CONST_INT_P (SET_SRC (prev_set))
          && CONST_INT_P (SET_SRC (curr_set)))
        return true;

    }
  if (simple_sets_p && aarch64_fusion_enabled_p (AARCH64_FUSE_ADRP_LDR))
    {
      /* We're trying to match:
          prev (adrp) == (set (reg r0)
                              (high (symbol_ref ("SYM"))))
          curr (ldr) == (set (reg r1)
                             (mem (lo_sum (reg r0)
                                             (symbol_ref ("SYM")))))
                 or
          curr (ldr) == (set (reg r1)
                             (zero_extend (mem
                                           (lo_sum (reg r0)
                                                   (symbol_ref ("SYM"))))))  */
      if (satisfies_constraint_Ush (SET_SRC (prev_set))
          && REG_P (SET_DEST (prev_set)) && REG_P (SET_DEST (curr_set)))
        {
          rtx curr_src = SET_SRC (curr_set);

          if (GET_CODE (curr_src) == ZERO_EXTEND)
            curr_src = XEXP (curr_src, 0);

          if (MEM_P (curr_src) && GET_CODE (XEXP (curr_src, 0)) == LO_SUM
              && REG_P (XEXP (XEXP (curr_src, 0), 0))
              && REGNO (XEXP (XEXP (curr_src, 0), 0))
                 == REGNO (SET_DEST (prev_set))
              && rtx_equal_p (XEXP (XEXP (curr_src, 0), 1),
                              XEXP (SET_SRC (prev_set), 0)))
              return true;
        }
    }

  if (aarch64_fusion_enabled_p (AARCH64_FUSE_AES_AESMC)
       && aarch_crypto_can_dual_issue (prev, curr))
    return true;

  if (aarch64_fusion_enabled_p (AARCH64_FUSE_CMP_BRANCH)
      && any_condjump_p (curr))
    {
      enum attr_type prev_type = get_attr_type (prev);

      unsigned int condreg1, condreg2;
      rtx cc_reg_1;
      aarch64_fixed_condition_code_regs (&condreg1, &condreg2);
      cc_reg_1 = gen_rtx_REG (CCmode, condreg1);

      if (reg_referenced_p (cc_reg_1, PATTERN (curr))
	  && prev
	  && modified_in_p (cc_reg_1, prev))
	{
	  /* FIXME: this misses some which is considered simple arthematic
	     instructions for ThunderX.  Simple shifts are missed here.  */
	  if (prev_type == TYPE_ALUS_SREG
	      || prev_type == TYPE_ALUS_IMM
	      || prev_type == TYPE_LOGICS_REG
	      || prev_type == TYPE_LOGICS_IMM)
	    return true;
	}
    }

  if (prev_set
      && curr_set
      && aarch64_fusion_enabled_p (AARCH64_FUSE_ALU_BRANCH)
      && any_condjump_p (curr))
    {
      /* We're trying to match:
	  prev (alu_insn) == (set (r0) plus ((r0) (r1/imm)))
	  curr (cbz) ==  (set (pc) (if_then_else (eq/ne) (r0)
							 (const_int 0))
						 (label_ref ("SYM"))
						 (pc))  */
      if (SET_DEST (curr_set) == (pc_rtx)
	  && GET_CODE (SET_SRC (curr_set)) == IF_THEN_ELSE
	  && REG_P (XEXP (XEXP (SET_SRC (curr_set), 0), 0))
	  && REG_P (SET_DEST (prev_set))
	  && REGNO (SET_DEST (prev_set))
	     == REGNO (XEXP (XEXP (SET_SRC (curr_set), 0), 0)))
	{
	  /* Fuse ALU operations followed by conditional branch instruction.  */
	  switch (get_attr_type (prev))
	    {
	    case TYPE_ALU_IMM:
	    case TYPE_ALU_SREG:
	    case TYPE_ADC_REG:
	    case TYPE_ADC_IMM:
	    case TYPE_ADCS_REG:
	    case TYPE_ADCS_IMM:
	    case TYPE_LOGIC_REG:
	    case TYPE_LOGIC_IMM:
	    case TYPE_CSEL:
	    case TYPE_ADR:
	    case TYPE_MOV_IMM:
	    case TYPE_SHIFT_REG:
	    case TYPE_SHIFT_IMM:
	    case TYPE_BFM:
	    case TYPE_RBIT:
	    case TYPE_REV:
	    case TYPE_EXTEND:
	      return true;

	    default:;
	    }
	}
    }

  return false;
}

/* Return true iff the instruction fusion described by OP is enabled.  */

bool
aarch64_fusion_enabled_p (enum aarch64_fusion_pairs op)
{
  return (aarch64_tune_params.fusible_ops & op) != 0;
}

/* If MEM is in the form of [base+offset], extract the two parts
   of address and set to BASE and OFFSET, otherwise return false
   after clearing BASE and OFFSET.  */

bool
extract_base_offset_in_addr (rtx mem, rtx *base, rtx *offset)
{
  rtx addr;

  gcc_assert (MEM_P (mem));

  addr = XEXP (mem, 0);

  if (REG_P (addr))
    {
      *base = addr;
      *offset = const0_rtx;
      return true;
    }

  if (GET_CODE (addr) == PLUS
      && REG_P (XEXP (addr, 0)) && CONST_INT_P (XEXP (addr, 1)))
    {
      *base = XEXP (addr, 0);
      *offset = XEXP (addr, 1);
      return true;
    }

  *base = NULL_RTX;
  *offset = NULL_RTX;

  return false;
}

/* Types for scheduling fusion.  */
enum sched_fusion_type
{
  SCHED_FUSION_NONE = 0,
  SCHED_FUSION_LD_SIGN_EXTEND,
  SCHED_FUSION_LD_ZERO_EXTEND,
  SCHED_FUSION_LD,
  SCHED_FUSION_ST,
  SCHED_FUSION_NUM
};

/* If INSN is a load or store of address in the form of [base+offset],
   extract the two parts and set to BASE and OFFSET.  Return scheduling
   fusion type this INSN is.  */

static enum sched_fusion_type
fusion_load_store (rtx_insn *insn, rtx *base, rtx *offset)
{
  rtx x, dest, src;
  enum sched_fusion_type fusion = SCHED_FUSION_LD;

  gcc_assert (INSN_P (insn));
  x = PATTERN (insn);
  if (GET_CODE (x) != SET)
    return SCHED_FUSION_NONE;

  src = SET_SRC (x);
  dest = SET_DEST (x);

  machine_mode dest_mode = GET_MODE (dest);

  if (!aarch64_mode_valid_for_sched_fusion_p (dest_mode))
    return SCHED_FUSION_NONE;

  if (GET_CODE (src) == SIGN_EXTEND)
    {
      fusion = SCHED_FUSION_LD_SIGN_EXTEND;
      src = XEXP (src, 0);
      if (GET_CODE (src) != MEM || GET_MODE (src) != SImode)
	return SCHED_FUSION_NONE;
    }
  else if (GET_CODE (src) == ZERO_EXTEND)
    {
      fusion = SCHED_FUSION_LD_ZERO_EXTEND;
      src = XEXP (src, 0);
      if (GET_CODE (src) != MEM || GET_MODE (src) != SImode)
	return SCHED_FUSION_NONE;
    }

  if (GET_CODE (src) == MEM && REG_P (dest))
    extract_base_offset_in_addr (src, base, offset);
  else if (GET_CODE (dest) == MEM && (REG_P (src) || src == const0_rtx))
    {
      fusion = SCHED_FUSION_ST;
      extract_base_offset_in_addr (dest, base, offset);
    }
  else
    return SCHED_FUSION_NONE;

  if (*base == NULL_RTX || *offset == NULL_RTX)
    fusion = SCHED_FUSION_NONE;

  return fusion;
}

/* Implement the TARGET_SCHED_FUSION_PRIORITY hook.

   Currently we only support to fuse ldr or str instructions, so FUSION_PRI
   and PRI are only calculated for these instructions.  For other instruction,
   FUSION_PRI and PRI are simply set to MAX_PRI - 1.  In the future, other
   type instruction fusion can be added by returning different priorities.

   It's important that irrelevant instructions get the largest FUSION_PRI.  */

static void
aarch64_sched_fusion_priority (rtx_insn *insn, int max_pri,
			       int *fusion_pri, int *pri)
{
  int tmp, off_val;
  rtx base, offset;
  enum sched_fusion_type fusion;

  gcc_assert (INSN_P (insn));

  tmp = max_pri - 1;
  fusion = fusion_load_store (insn, &base, &offset);
  if (fusion == SCHED_FUSION_NONE)
    {
      *pri = tmp;
      *fusion_pri = tmp;
      return;
    }

  /* Set FUSION_PRI according to fusion type and base register.  */
  *fusion_pri = tmp - fusion * FIRST_PSEUDO_REGISTER - REGNO (base);

  /* Calculate PRI.  */
  tmp /= 2;

  /* INSN with smaller offset goes first.  */
  off_val = (int)(INTVAL (offset));
  if (off_val >= 0)
    tmp -= (off_val & 0xfffff);
  else
    tmp += ((- off_val) & 0xfffff);

  *pri = tmp;
  return;
}

/* Implement the TARGET_SCHED_ADJUST_PRIORITY hook.
   Adjust priority of sha1h instructions so they are scheduled before
   other SHA1 instructions.  */

static int
aarch64_sched_adjust_priority (rtx_insn *insn, int priority)
{
  rtx x = PATTERN (insn);

  if (GET_CODE (x) == SET)
    {
      x = SET_SRC (x);

      if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_SHA1H)
	return priority + 10;
    }

  return priority;
}

/* Given OPERANDS of consecutive load/store, check if we can merge
   them into ldp/stp.  LOAD is true if they are load instructions.
   MODE is the mode of memory operands.  */

bool
aarch64_operands_ok_for_ldpstp (rtx *operands, bool load,
				machine_mode mode)
{
  HOST_WIDE_INT offval_1, offval_2, msize;
  enum reg_class rclass_1, rclass_2;
  rtx mem_1, mem_2, reg_1, reg_2, base_1, base_2, offset_1, offset_2;

  if (load)
    {
      mem_1 = operands[1];
      mem_2 = operands[3];
      reg_1 = operands[0];
      reg_2 = operands[2];
      gcc_assert (REG_P (reg_1) && REG_P (reg_2));
      if (REGNO (reg_1) == REGNO (reg_2))
	return false;
    }
  else
    {
      mem_1 = operands[0];
      mem_2 = operands[2];
      reg_1 = operands[1];
      reg_2 = operands[3];
    }

  /* The mems cannot be volatile.  */
  if (MEM_VOLATILE_P (mem_1) || MEM_VOLATILE_P (mem_2))
    return false;

  /* If we have SImode and slow unaligned ldp,
     check the alignment to be at least 8 byte. */
  if (mode == SImode
      && (aarch64_tune_params.extra_tuning_flags
          & AARCH64_EXTRA_TUNE_SLOW_UNALIGNED_LDPW)
      && !optimize_size
      && MEM_ALIGN (mem_1) < 8 * BITS_PER_UNIT)
    return false;

  /* Check if the addresses are in the form of [base+offset].  */
  extract_base_offset_in_addr (mem_1, &base_1, &offset_1);
  if (base_1 == NULL_RTX || offset_1 == NULL_RTX)
    return false;
  extract_base_offset_in_addr (mem_2, &base_2, &offset_2);
  if (base_2 == NULL_RTX || offset_2 == NULL_RTX)
    return false;

  /* Check if the bases are same.  */
  if (!rtx_equal_p (base_1, base_2))
    return false;

  offval_1 = INTVAL (offset_1);
  offval_2 = INTVAL (offset_2);
  msize = GET_MODE_SIZE (mode);
  /* Check if the offsets are consecutive.  */
  if (offval_1 != (offval_2 + msize) && offval_2 != (offval_1 + msize))
    return false;

  /* Check if the addresses are clobbered by load.  */
  if (load)
    {
      if (reg_mentioned_p (reg_1, mem_1))
	return false;

      /* In increasing order, the last load can clobber the address.  */
      if (offval_1 > offval_2 && reg_mentioned_p (reg_2, mem_2))
      return false;
    }

  if (REG_P (reg_1) && FP_REGNUM_P (REGNO (reg_1)))
    rclass_1 = FP_REGS;
  else
    rclass_1 = GENERAL_REGS;

  if (REG_P (reg_2) && FP_REGNUM_P (REGNO (reg_2)))
    rclass_2 = FP_REGS;
  else
    rclass_2 = GENERAL_REGS;

  /* Check if the registers are of same class.  */
  if (rclass_1 != rclass_2)
    return false;

  return true;
}

/* Given OPERANDS of consecutive load/store, check if we can merge
   them into ldp/stp by adjusting the offset.  LOAD is true if they
   are load instructions.  MODE is the mode of memory operands.

   Given below consecutive stores:

     str  w1, [xb, 0x100]
     str  w1, [xb, 0x104]
     str  w1, [xb, 0x108]
     str  w1, [xb, 0x10c]

   Though the offsets are out of the range supported by stp, we can
   still pair them after adjusting the offset, like:

     add  scratch, xb, 0x100
     stp  w1, w1, [scratch]
     stp  w1, w1, [scratch, 0x8]

   The peephole patterns detecting this opportunity should guarantee
   the scratch register is avaliable.  */

bool
aarch64_operands_adjust_ok_for_ldpstp (rtx *operands, bool load,
				       scalar_mode mode)
{
  enum reg_class rclass_1, rclass_2, rclass_3, rclass_4;
  HOST_WIDE_INT offval_1, offval_2, offval_3, offval_4, msize;
  rtx mem_1, mem_2, mem_3, mem_4, reg_1, reg_2, reg_3, reg_4;
  rtx base_1, base_2, base_3, base_4, offset_1, offset_2, offset_3, offset_4;

  if (load)
    {
      reg_1 = operands[0];
      mem_1 = operands[1];
      reg_2 = operands[2];
      mem_2 = operands[3];
      reg_3 = operands[4];
      mem_3 = operands[5];
      reg_4 = operands[6];
      mem_4 = operands[7];
      gcc_assert (REG_P (reg_1) && REG_P (reg_2)
		  && REG_P (reg_3) && REG_P (reg_4));
      if (REGNO (reg_1) == REGNO (reg_2) || REGNO (reg_3) == REGNO (reg_4))
	return false;
    }
  else
    {
      mem_1 = operands[0];
      reg_1 = operands[1];
      mem_2 = operands[2];
      reg_2 = operands[3];
      mem_3 = operands[4];
      reg_3 = operands[5];
      mem_4 = operands[6];
      reg_4 = operands[7];
    }
  /* Skip if memory operand is by itslef valid for ldp/stp.  */
  if (!MEM_P (mem_1) || aarch64_mem_pair_operand (mem_1, mode))
    return false;

  /* The mems cannot be volatile.  */
  if (MEM_VOLATILE_P (mem_1) || MEM_VOLATILE_P (mem_2)
      || MEM_VOLATILE_P (mem_3) ||MEM_VOLATILE_P (mem_4))
    return false;

  /* Check if the addresses are in the form of [base+offset].  */
  extract_base_offset_in_addr (mem_1, &base_1, &offset_1);
  if (base_1 == NULL_RTX || offset_1 == NULL_RTX)
    return false;
  extract_base_offset_in_addr (mem_2, &base_2, &offset_2);
  if (base_2 == NULL_RTX || offset_2 == NULL_RTX)
    return false;
  extract_base_offset_in_addr (mem_3, &base_3, &offset_3);
  if (base_3 == NULL_RTX || offset_3 == NULL_RTX)
    return false;
  extract_base_offset_in_addr (mem_4, &base_4, &offset_4);
  if (base_4 == NULL_RTX || offset_4 == NULL_RTX)
    return false;

  /* Check if the bases are same.  */
  if (!rtx_equal_p (base_1, base_2)
      || !rtx_equal_p (base_2, base_3)
      || !rtx_equal_p (base_3, base_4))
    return false;

  offval_1 = INTVAL (offset_1);
  offval_2 = INTVAL (offset_2);
  offval_3 = INTVAL (offset_3);
  offval_4 = INTVAL (offset_4);
  msize = GET_MODE_SIZE (mode);
  /* Check if the offsets are consecutive.  */
  if ((offval_1 != (offval_2 + msize)
       || offval_1 != (offval_3 + msize * 2)
       || offval_1 != (offval_4 + msize * 3))
      && (offval_4 != (offval_3 + msize)
	  || offval_4 != (offval_2 + msize * 2)
	  || offval_4 != (offval_1 + msize * 3)))
    return false;

  /* Check if the addresses are clobbered by load.  */
  if (load)
    {
      if (reg_mentioned_p (reg_1, mem_1)
	  || reg_mentioned_p (reg_2, mem_2)
	  || reg_mentioned_p (reg_3, mem_3))
	return false;

      /* In increasing order, the last load can clobber the address.  */
      if (offval_1 > offval_2 && reg_mentioned_p (reg_4, mem_4))
	return false;
    }

  /* If we have SImode and slow unaligned ldp,
     check the alignment to be at least 8 byte. */
  if (mode == SImode
      && (aarch64_tune_params.extra_tuning_flags
          & AARCH64_EXTRA_TUNE_SLOW_UNALIGNED_LDPW)
      && !optimize_size
      && MEM_ALIGN (mem_1) < 8 * BITS_PER_UNIT)
    return false;

  if (REG_P (reg_1) && FP_REGNUM_P (REGNO (reg_1)))
    rclass_1 = FP_REGS;
  else
    rclass_1 = GENERAL_REGS;

  if (REG_P (reg_2) && FP_REGNUM_P (REGNO (reg_2)))
    rclass_2 = FP_REGS;
  else
    rclass_2 = GENERAL_REGS;

  if (REG_P (reg_3) && FP_REGNUM_P (REGNO (reg_3)))
    rclass_3 = FP_REGS;
  else
    rclass_3 = GENERAL_REGS;

  if (REG_P (reg_4) && FP_REGNUM_P (REGNO (reg_4)))
    rclass_4 = FP_REGS;
  else
    rclass_4 = GENERAL_REGS;

  /* Check if the registers are of same class.  */
  if (rclass_1 != rclass_2 || rclass_2 != rclass_3 || rclass_3 != rclass_4)
    return false;

  return true;
}

/* Given OPERANDS of consecutive load/store, this function pairs them
   into ldp/stp after adjusting the offset.  It depends on the fact
   that addresses of load/store instructions are in increasing order.
   MODE is the mode of memory operands.  CODE is the rtl operator
   which should be applied to all memory operands, it's SIGN_EXTEND,
   ZERO_EXTEND or UNKNOWN.  */

bool
aarch64_gen_adjusted_ldpstp (rtx *operands, bool load,
			     scalar_mode mode, RTX_CODE code)
{
  rtx base, offset, t1, t2;
  rtx mem_1, mem_2, mem_3, mem_4;
  HOST_WIDE_INT off_val, abs_off, adj_off, new_off, stp_off_limit, msize;

  if (load)
    {
      mem_1 = operands[1];
      mem_2 = operands[3];
      mem_3 = operands[5];
      mem_4 = operands[7];
    }
  else
    {
      mem_1 = operands[0];
      mem_2 = operands[2];
      mem_3 = operands[4];
      mem_4 = operands[6];
      gcc_assert (code == UNKNOWN);
    }

  extract_base_offset_in_addr (mem_1, &base, &offset);
  gcc_assert (base != NULL_RTX && offset != NULL_RTX);

  /* Adjust offset thus it can fit in ldp/stp instruction.  */
  msize = GET_MODE_SIZE (mode);
  stp_off_limit = msize * 0x40;
  off_val = INTVAL (offset);
  abs_off = (off_val < 0) ? -off_val : off_val;
  new_off = abs_off % stp_off_limit;
  adj_off = abs_off - new_off;

  /* Further adjust to make sure all offsets are OK.  */
  if ((new_off + msize * 2) >= stp_off_limit)
    {
      adj_off += stp_off_limit;
      new_off -= stp_off_limit;
    }

  /* Make sure the adjustment can be done with ADD/SUB instructions.  */
  if (adj_off >= 0x1000)
    return false;

  if (off_val < 0)
    {
      adj_off = -adj_off;
      new_off = -new_off;
    }

  /* Create new memory references.  */
  mem_1 = change_address (mem_1, VOIDmode,
			  plus_constant (DImode, operands[8], new_off));

  /* Check if the adjusted address is OK for ldp/stp.  */
  if (!aarch64_mem_pair_operand (mem_1, mode))
    return false;

  msize = GET_MODE_SIZE (mode);
  mem_2 = change_address (mem_2, VOIDmode,
			  plus_constant (DImode,
					 operands[8],
					 new_off + msize));
  mem_3 = change_address (mem_3, VOIDmode,
			  plus_constant (DImode,
					 operands[8],
					 new_off + msize * 2));
  mem_4 = change_address (mem_4, VOIDmode,
			  plus_constant (DImode,
					 operands[8],
					 new_off + msize * 3));

  if (code == ZERO_EXTEND)
    {
      mem_1 = gen_rtx_ZERO_EXTEND (DImode, mem_1);
      mem_2 = gen_rtx_ZERO_EXTEND (DImode, mem_2);
      mem_3 = gen_rtx_ZERO_EXTEND (DImode, mem_3);
      mem_4 = gen_rtx_ZERO_EXTEND (DImode, mem_4);
    }
  else if (code == SIGN_EXTEND)
    {
      mem_1 = gen_rtx_SIGN_EXTEND (DImode, mem_1);
      mem_2 = gen_rtx_SIGN_EXTEND (DImode, mem_2);
      mem_3 = gen_rtx_SIGN_EXTEND (DImode, mem_3);
      mem_4 = gen_rtx_SIGN_EXTEND (DImode, mem_4);
    }

  if (load)
    {
      operands[1] = mem_1;
      operands[3] = mem_2;
      operands[5] = mem_3;
      operands[7] = mem_4;
    }
  else
    {
      operands[0] = mem_1;
      operands[2] = mem_2;
      operands[4] = mem_3;
      operands[6] = mem_4;
    }

  /* Emit adjusting instruction.  */
  emit_insn (gen_rtx_SET (operands[8], plus_constant (DImode, base, adj_off)));
  /* Emit ldp/stp instructions.  */
  t1 = gen_rtx_SET (operands[0], operands[1]);
  t2 = gen_rtx_SET (operands[2], operands[3]);
  emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, t1, t2)));
  t1 = gen_rtx_SET (operands[4], operands[5]);
  t2 = gen_rtx_SET (operands[6], operands[7]);
  emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, t1, t2)));
  return true;
}

/* Return 1 if pseudo register should be created and used to hold
   GOT address for PIC code.  */

bool
aarch64_use_pseudo_pic_reg (void)
{
  return aarch64_cmodel == AARCH64_CMODEL_SMALL_SPIC;
}

/* Implement TARGET_UNSPEC_MAY_TRAP_P.  */

static int
aarch64_unspec_may_trap_p (const_rtx x, unsigned flags)
{
  switch (XINT (x, 1))
    {
    case UNSPEC_GOTSMALLPIC:
    case UNSPEC_GOTSMALLPIC28K:
    case UNSPEC_GOTTINYPIC:
      return 0;
    default:
      break;
    }

  return default_unspec_may_trap_p (x, flags);
}


/* If X is a positive CONST_DOUBLE with a value that is a power of 2
   return the log2 of that value.  Otherwise return -1.  */

int
aarch64_fpconst_pow_of_2 (rtx x)
{
  const REAL_VALUE_TYPE *r;

  if (!CONST_DOUBLE_P (x))
    return -1;

  r = CONST_DOUBLE_REAL_VALUE (x);

  if (REAL_VALUE_NEGATIVE (*r)
      || REAL_VALUE_ISNAN (*r)
      || REAL_VALUE_ISINF (*r)
      || !real_isinteger (r, DFmode))
    return -1;

  return exact_log2 (real_to_integer (r));
}

/* If X is a vector of equal CONST_DOUBLE values and that value is
   Y, return the aarch64_fpconst_pow_of_2 of Y.  Otherwise return -1.  */

int
aarch64_vec_fpconst_pow_of_2 (rtx x)
{
  if (GET_CODE (x) != CONST_VECTOR)
    return -1;

  if (GET_MODE_CLASS (GET_MODE (x)) != MODE_VECTOR_FLOAT)
    return -1;

  int firstval = aarch64_fpconst_pow_of_2 (CONST_VECTOR_ELT (x, 0));
  if (firstval <= 0)
    return -1;

  for (int i = 1; i < CONST_VECTOR_NUNITS (x); i++)
    if (aarch64_fpconst_pow_of_2 (CONST_VECTOR_ELT (x, i)) != firstval)
      return -1;

  return firstval;
}

/* Implement TARGET_PROMOTED_TYPE to promote 16-bit floating point types
   to float.

   __fp16 always promotes through this hook.
   _Float16 may promote if TARGET_FLT_EVAL_METHOD is 16, but we do that
   through the generic excess precision logic rather than here.  */

static tree
aarch64_promoted_type (const_tree t)
{
  if (SCALAR_FLOAT_TYPE_P (t)
      && TYPE_MAIN_VARIANT (t) == aarch64_fp16_type_node)
    return float_type_node;

  return NULL_TREE;
}

/* Implement the TARGET_OPTAB_SUPPORTED_P hook.  */

static bool
aarch64_optab_supported_p (int op, machine_mode mode1, machine_mode,
			   optimization_type opt_type)
{
  switch (op)
    {
    case rsqrt_optab:
      return opt_type == OPTIMIZE_FOR_SPEED && use_rsqrt_p (mode1);

    default:
      return true;
    }
}

/* Implement TARGET_LIBGCC_FLOATING_POINT_MODE_SUPPORTED_P - return TRUE
   if MODE is HFmode, and punt to the generic implementation otherwise.  */

static bool
aarch64_libgcc_floating_mode_supported_p (scalar_float_mode mode)
{
  return (mode == HFmode
	  ? true
	  : default_libgcc_floating_mode_supported_p (mode));
}

/* Implement TARGET_SCALAR_MODE_SUPPORTED_P - return TRUE
   if MODE is HFmode, and punt to the generic implementation otherwise.  */

static bool
aarch64_scalar_mode_supported_p (scalar_mode mode)
{
  return (mode == HFmode
	  ? true
	  : default_scalar_mode_supported_p (mode));
}

/* Set the value of FLT_EVAL_METHOD.
   ISO/IEC TS 18661-3 defines two values that we'd like to make use of:

    0: evaluate all operations and constants, whose semantic type has at
       most the range and precision of type float, to the range and
       precision of float; evaluate all other operations and constants to
       the range and precision of the semantic type;

    N, where _FloatN is a supported interchange floating type
       evaluate all operations and constants, whose semantic type has at
       most the range and precision of _FloatN type, to the range and
       precision of the _FloatN type; evaluate all other operations and
       constants to the range and precision of the semantic type;

   If we have the ARMv8.2-A extensions then we support _Float16 in native
   precision, so we should set this to 16.  Otherwise, we support the type,
   but want to evaluate expressions in float precision, so set this to
   0.  */

static enum flt_eval_method
aarch64_excess_precision (enum excess_precision_type type)
{
  switch (type)
    {
      case EXCESS_PRECISION_TYPE_FAST:
      case EXCESS_PRECISION_TYPE_STANDARD:
	/* We can calculate either in 16-bit range and precision or
	   32-bit range and precision.  Make that decision based on whether
	   we have native support for the ARMv8.2-A 16-bit floating-point
	   instructions or not.  */
	return (TARGET_FP_F16INST
		? FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16
		: FLT_EVAL_METHOD_PROMOTE_TO_FLOAT);
      case EXCESS_PRECISION_TYPE_IMPLICIT:
	return FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16;
      default:
	gcc_unreachable ();
    }
  return FLT_EVAL_METHOD_UNPREDICTABLE;
}

/* Implement TARGET_SCHED_CAN_SPECULATE_INSN.  Return true if INSN can be
   scheduled for speculative execution.  Reject the long-running division
   and square-root instructions.  */

static bool
aarch64_sched_can_speculate_insn (rtx_insn *insn)
{
  switch (get_attr_type (insn))
    {
      case TYPE_SDIV:
      case TYPE_UDIV:
      case TYPE_FDIVS:
      case TYPE_FDIVD:
      case TYPE_FSQRTS:
      case TYPE_FSQRTD:
      case TYPE_NEON_FP_SQRT_S:
      case TYPE_NEON_FP_SQRT_D:
      case TYPE_NEON_FP_SQRT_S_Q:
      case TYPE_NEON_FP_SQRT_D_Q:
      case TYPE_NEON_FP_DIV_S:
      case TYPE_NEON_FP_DIV_D:
      case TYPE_NEON_FP_DIV_S_Q:
      case TYPE_NEON_FP_DIV_D_Q:
	return false;
      default:
	return true;
    }
}

/* Target-specific selftests.  */

#if CHECKING_P

namespace selftest {

/* Selftest for the RTL loader.
   Verify that the RTL loader copes with a dump from
   print_rtx_function.  This is essentially just a test that class
   function_reader can handle a real dump, but it also verifies
   that lookup_reg_by_dump_name correctly handles hard regs.
   The presence of hard reg names in the dump means that the test is
   target-specific, hence it is in this file.  */

static void
aarch64_test_loading_full_dump ()
{
  rtl_dump_test t (SELFTEST_LOCATION, locate_file ("aarch64/times-two.rtl"));

  ASSERT_STREQ ("times_two", IDENTIFIER_POINTER (DECL_NAME (cfun->decl)));

  rtx_insn *insn_1 = get_insn_by_uid (1);
  ASSERT_EQ (NOTE, GET_CODE (insn_1));

  rtx_insn *insn_15 = get_insn_by_uid (15);
  ASSERT_EQ (INSN, GET_CODE (insn_15));
  ASSERT_EQ (USE, GET_CODE (PATTERN (insn_15)));

  /* Verify crtl->return_rtx.  */
  ASSERT_EQ (REG, GET_CODE (crtl->return_rtx));
  ASSERT_EQ (0, REGNO (crtl->return_rtx));
  ASSERT_EQ (SImode, GET_MODE (crtl->return_rtx));
}

/* Run all target-specific selftests.  */

static void
aarch64_run_selftests (void)
{
  aarch64_test_loading_full_dump ();
}

} // namespace selftest

#endif /* #if CHECKING_P */

#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST aarch64_address_cost

/* This hook will determines whether unnamed bitfields affect the alignment
   of the containing structure.  The hook returns true if the structure
   should inherit the alignment requirements of an unnamed bitfield's
   type.  */
#undef TARGET_ALIGN_ANON_BITFIELD
#define TARGET_ALIGN_ANON_BITFIELD hook_bool_void_true

#undef TARGET_ASM_ALIGNED_DI_OP
#define TARGET_ASM_ALIGNED_DI_OP "\t.xword\t"

#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP "\t.hword\t"

#undef TARGET_ASM_ALIGNED_SI_OP
#define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"

#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK \
  hook_bool_const_tree_hwi_hwi_const_tree_true

#undef TARGET_ASM_FILE_START
#define TARGET_ASM_FILE_START aarch64_start_file

#undef TARGET_ASM_OUTPUT_MI_THUNK
#define TARGET_ASM_OUTPUT_MI_THUNK aarch64_output_mi_thunk

#undef TARGET_ASM_SELECT_RTX_SECTION
#define TARGET_ASM_SELECT_RTX_SECTION aarch64_select_rtx_section

#undef TARGET_ASM_TRAMPOLINE_TEMPLATE
#define TARGET_ASM_TRAMPOLINE_TEMPLATE aarch64_asm_trampoline_template

#undef TARGET_BUILD_BUILTIN_VA_LIST
#define TARGET_BUILD_BUILTIN_VA_LIST aarch64_build_builtin_va_list

#undef TARGET_CALLEE_COPIES
#define TARGET_CALLEE_COPIES hook_bool_CUMULATIVE_ARGS_mode_tree_bool_false

#undef TARGET_CAN_ELIMINATE
#define TARGET_CAN_ELIMINATE aarch64_can_eliminate

#undef TARGET_CAN_INLINE_P
#define TARGET_CAN_INLINE_P aarch64_can_inline_p

#undef TARGET_CANNOT_FORCE_CONST_MEM
#define TARGET_CANNOT_FORCE_CONST_MEM aarch64_cannot_force_const_mem

#undef TARGET_CASE_VALUES_THRESHOLD
#define TARGET_CASE_VALUES_THRESHOLD aarch64_case_values_threshold

#undef TARGET_CONDITIONAL_REGISTER_USAGE
#define TARGET_CONDITIONAL_REGISTER_USAGE aarch64_conditional_register_usage

/* Only the least significant bit is used for initialization guard
   variables.  */
#undef TARGET_CXX_GUARD_MASK_BIT
#define TARGET_CXX_GUARD_MASK_BIT hook_bool_void_true

#undef TARGET_C_MODE_FOR_SUFFIX
#define TARGET_C_MODE_FOR_SUFFIX aarch64_c_mode_for_suffix

#ifdef TARGET_BIG_ENDIAN_DEFAULT
#undef  TARGET_DEFAULT_TARGET_FLAGS
#define TARGET_DEFAULT_TARGET_FLAGS (MASK_BIG_END)
#endif

#undef TARGET_CLASS_MAX_NREGS
#define TARGET_CLASS_MAX_NREGS aarch64_class_max_nregs

#undef TARGET_BUILTIN_DECL
#define TARGET_BUILTIN_DECL aarch64_builtin_decl

#undef TARGET_BUILTIN_RECIPROCAL
#define TARGET_BUILTIN_RECIPROCAL aarch64_builtin_reciprocal

#undef TARGET_C_EXCESS_PRECISION
#define TARGET_C_EXCESS_PRECISION aarch64_excess_precision

#undef  TARGET_EXPAND_BUILTIN
#define TARGET_EXPAND_BUILTIN aarch64_expand_builtin

#undef TARGET_EXPAND_BUILTIN_VA_START
#define TARGET_EXPAND_BUILTIN_VA_START aarch64_expand_builtin_va_start

#undef TARGET_FOLD_BUILTIN
#define TARGET_FOLD_BUILTIN aarch64_fold_builtin

#undef TARGET_FUNCTION_ARG
#define TARGET_FUNCTION_ARG aarch64_function_arg

#undef TARGET_FUNCTION_ARG_ADVANCE
#define TARGET_FUNCTION_ARG_ADVANCE aarch64_function_arg_advance

#undef TARGET_FUNCTION_ARG_BOUNDARY
#define TARGET_FUNCTION_ARG_BOUNDARY aarch64_function_arg_boundary

#undef TARGET_FUNCTION_ARG_PADDING
#define TARGET_FUNCTION_ARG_PADDING aarch64_function_arg_padding

#undef TARGET_FUNCTION_OK_FOR_SIBCALL
#define TARGET_FUNCTION_OK_FOR_SIBCALL aarch64_function_ok_for_sibcall

#undef TARGET_FUNCTION_VALUE
#define TARGET_FUNCTION_VALUE aarch64_function_value

#undef TARGET_FUNCTION_VALUE_REGNO_P
#define TARGET_FUNCTION_VALUE_REGNO_P aarch64_function_value_regno_p

#undef TARGET_FRAME_POINTER_REQUIRED
#define TARGET_FRAME_POINTER_REQUIRED aarch64_frame_pointer_required

#undef TARGET_GIMPLE_FOLD_BUILTIN
#define TARGET_GIMPLE_FOLD_BUILTIN aarch64_gimple_fold_builtin

#undef TARGET_GIMPLIFY_VA_ARG_EXPR
#define TARGET_GIMPLIFY_VA_ARG_EXPR aarch64_gimplify_va_arg_expr

#undef  TARGET_INIT_BUILTINS
#define TARGET_INIT_BUILTINS  aarch64_init_builtins

#undef TARGET_IRA_CHANGE_PSEUDO_ALLOCNO_CLASS
#define TARGET_IRA_CHANGE_PSEUDO_ALLOCNO_CLASS \
  aarch64_ira_change_pseudo_allocno_class

#undef TARGET_LEGITIMATE_ADDRESS_P
#define TARGET_LEGITIMATE_ADDRESS_P aarch64_legitimate_address_hook_p

#undef TARGET_LEGITIMATE_CONSTANT_P
#define TARGET_LEGITIMATE_CONSTANT_P aarch64_legitimate_constant_p

#undef TARGET_LEGITIMIZE_ADDRESS_DISPLACEMENT
#define TARGET_LEGITIMIZE_ADDRESS_DISPLACEMENT \
  aarch64_legitimize_address_displacement

#undef TARGET_LIBGCC_CMP_RETURN_MODE
#define TARGET_LIBGCC_CMP_RETURN_MODE aarch64_libgcc_cmp_return_mode

#undef TARGET_LIBGCC_FLOATING_MODE_SUPPORTED_P
#define TARGET_LIBGCC_FLOATING_MODE_SUPPORTED_P \
aarch64_libgcc_floating_mode_supported_p

#undef TARGET_MANGLE_TYPE
#define TARGET_MANGLE_TYPE aarch64_mangle_type

#undef TARGET_MEMORY_MOVE_COST
#define TARGET_MEMORY_MOVE_COST aarch64_memory_move_cost

#undef TARGET_MIN_DIVISIONS_FOR_RECIP_MUL
#define TARGET_MIN_DIVISIONS_FOR_RECIP_MUL aarch64_min_divisions_for_recip_mul

#undef TARGET_MUST_PASS_IN_STACK
#define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size

/* This target hook should return true if accesses to volatile bitfields
   should use the narrowest mode possible.  It should return false if these
   accesses should use the bitfield container type.  */
#undef TARGET_NARROW_VOLATILE_BITFIELD
#define TARGET_NARROW_VOLATILE_BITFIELD hook_bool_void_false

#undef  TARGET_OPTION_OVERRIDE
#define TARGET_OPTION_OVERRIDE aarch64_override_options

#undef TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE
#define TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE \
  aarch64_override_options_after_change

#undef TARGET_OPTION_SAVE
#define TARGET_OPTION_SAVE aarch64_option_save

#undef TARGET_OPTION_RESTORE
#define TARGET_OPTION_RESTORE aarch64_option_restore

#undef TARGET_OPTION_PRINT
#define TARGET_OPTION_PRINT aarch64_option_print

#undef TARGET_OPTION_VALID_ATTRIBUTE_P
#define TARGET_OPTION_VALID_ATTRIBUTE_P aarch64_option_valid_attribute_p

#undef TARGET_SET_CURRENT_FUNCTION
#define TARGET_SET_CURRENT_FUNCTION aarch64_set_current_function

#undef TARGET_PASS_BY_REFERENCE
#define TARGET_PASS_BY_REFERENCE aarch64_pass_by_reference

#undef TARGET_PREFERRED_RELOAD_CLASS
#define TARGET_PREFERRED_RELOAD_CLASS aarch64_preferred_reload_class

#undef TARGET_SCHED_REASSOCIATION_WIDTH
#define TARGET_SCHED_REASSOCIATION_WIDTH aarch64_reassociation_width

#undef TARGET_PROMOTED_TYPE
#define TARGET_PROMOTED_TYPE aarch64_promoted_type

#undef TARGET_SECONDARY_RELOAD
#define TARGET_SECONDARY_RELOAD aarch64_secondary_reload

#undef TARGET_SHIFT_TRUNCATION_MASK
#define TARGET_SHIFT_TRUNCATION_MASK aarch64_shift_truncation_mask

#undef TARGET_SETUP_INCOMING_VARARGS
#define TARGET_SETUP_INCOMING_VARARGS aarch64_setup_incoming_varargs

#undef TARGET_STRUCT_VALUE_RTX
#define TARGET_STRUCT_VALUE_RTX   aarch64_struct_value_rtx

#undef TARGET_REGISTER_MOVE_COST
#define TARGET_REGISTER_MOVE_COST aarch64_register_move_cost

#undef TARGET_RETURN_IN_MEMORY
#define TARGET_RETURN_IN_MEMORY aarch64_return_in_memory

#undef TARGET_RETURN_IN_MSB
#define TARGET_RETURN_IN_MSB aarch64_return_in_msb

#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS aarch64_rtx_costs_wrapper

#undef TARGET_SCALAR_MODE_SUPPORTED_P
#define TARGET_SCALAR_MODE_SUPPORTED_P aarch64_scalar_mode_supported_p

#undef TARGET_SCHED_ISSUE_RATE
#define TARGET_SCHED_ISSUE_RATE aarch64_sched_issue_rate

#undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
#define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \
  aarch64_sched_first_cycle_multipass_dfa_lookahead

#undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD
#define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD \
  aarch64_first_cycle_multipass_dfa_lookahead_guard

#undef TARGET_SHRINK_WRAP_GET_SEPARATE_COMPONENTS
#define TARGET_SHRINK_WRAP_GET_SEPARATE_COMPONENTS \
  aarch64_get_separate_components

#undef TARGET_SHRINK_WRAP_COMPONENTS_FOR_BB
#define TARGET_SHRINK_WRAP_COMPONENTS_FOR_BB \
  aarch64_components_for_bb

#undef TARGET_SHRINK_WRAP_DISQUALIFY_COMPONENTS
#define TARGET_SHRINK_WRAP_DISQUALIFY_COMPONENTS \
  aarch64_disqualify_components

#undef TARGET_SHRINK_WRAP_EMIT_PROLOGUE_COMPONENTS
#define TARGET_SHRINK_WRAP_EMIT_PROLOGUE_COMPONENTS \
  aarch64_emit_prologue_components

#undef TARGET_SHRINK_WRAP_EMIT_EPILOGUE_COMPONENTS
#define TARGET_SHRINK_WRAP_EMIT_EPILOGUE_COMPONENTS \
  aarch64_emit_epilogue_components

#undef TARGET_SHRINK_WRAP_SET_HANDLED_COMPONENTS
#define TARGET_SHRINK_WRAP_SET_HANDLED_COMPONENTS \
  aarch64_set_handled_components

#undef TARGET_TRAMPOLINE_INIT
#define TARGET_TRAMPOLINE_INIT aarch64_trampoline_init

#undef TARGET_USE_BLOCKS_FOR_CONSTANT_P
#define TARGET_USE_BLOCKS_FOR_CONSTANT_P aarch64_use_blocks_for_constant_p

#undef TARGET_VECTOR_MODE_SUPPORTED_P
#define TARGET_VECTOR_MODE_SUPPORTED_P aarch64_vector_mode_supported_p

#undef TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT
#define TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT \
  aarch64_builtin_support_vector_misalignment

#undef TARGET_ARRAY_MODE_SUPPORTED_P
#define TARGET_ARRAY_MODE_SUPPORTED_P aarch64_array_mode_supported_p

#undef TARGET_VECTORIZE_ADD_STMT_COST
#define TARGET_VECTORIZE_ADD_STMT_COST aarch64_add_stmt_cost

#undef TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST
#define TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST \
  aarch64_builtin_vectorization_cost

#undef TARGET_VECTORIZE_PREFERRED_SIMD_MODE
#define TARGET_VECTORIZE_PREFERRED_SIMD_MODE aarch64_preferred_simd_mode

#undef TARGET_VECTORIZE_BUILTINS
#define TARGET_VECTORIZE_BUILTINS

#undef TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION
#define TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION \
  aarch64_builtin_vectorized_function

#undef TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_SIZES
#define TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_SIZES \
  aarch64_autovectorize_vector_sizes

#undef TARGET_ATOMIC_ASSIGN_EXPAND_FENV
#define TARGET_ATOMIC_ASSIGN_EXPAND_FENV \
  aarch64_atomic_assign_expand_fenv

/* Section anchor support.  */

#undef TARGET_MIN_ANCHOR_OFFSET
#define TARGET_MIN_ANCHOR_OFFSET -256

/* Limit the maximum anchor offset to 4k-1, since that's the limit for a
   byte offset; we can do much more for larger data types, but have no way
   to determine the size of the access.  We assume accesses are aligned.  */
#undef TARGET_MAX_ANCHOR_OFFSET
#define TARGET_MAX_ANCHOR_OFFSET 4095

#undef TARGET_VECTOR_ALIGNMENT
#define TARGET_VECTOR_ALIGNMENT aarch64_simd_vector_alignment

#undef TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE
#define TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE \
  aarch64_simd_vector_alignment_reachable

/* vec_perm support.  */

#undef TARGET_VECTORIZE_VEC_PERM_CONST_OK
#define TARGET_VECTORIZE_VEC_PERM_CONST_OK \
  aarch64_vectorize_vec_perm_const_ok

#undef TARGET_INIT_LIBFUNCS
#define TARGET_INIT_LIBFUNCS aarch64_init_libfuncs

#undef TARGET_FIXED_CONDITION_CODE_REGS
#define TARGET_FIXED_CONDITION_CODE_REGS aarch64_fixed_condition_code_regs

#undef TARGET_FLAGS_REGNUM
#define TARGET_FLAGS_REGNUM CC_REGNUM

#undef TARGET_CALL_FUSAGE_CONTAINS_NON_CALLEE_CLOBBERS
#define TARGET_CALL_FUSAGE_CONTAINS_NON_CALLEE_CLOBBERS true

#undef TARGET_ASAN_SHADOW_OFFSET
#define TARGET_ASAN_SHADOW_OFFSET aarch64_asan_shadow_offset

#undef TARGET_LEGITIMIZE_ADDRESS
#define TARGET_LEGITIMIZE_ADDRESS aarch64_legitimize_address

#undef TARGET_USE_BY_PIECES_INFRASTRUCTURE_P
#define TARGET_USE_BY_PIECES_INFRASTRUCTURE_P \
  aarch64_use_by_pieces_infrastructure_p

#undef TARGET_SCHED_CAN_SPECULATE_INSN
#define TARGET_SCHED_CAN_SPECULATE_INSN aarch64_sched_can_speculate_insn

#undef TARGET_CAN_USE_DOLOOP_P
#define TARGET_CAN_USE_DOLOOP_P can_use_doloop_if_innermost

#undef TARGET_SCHED_ADJUST_PRIORITY
#define TARGET_SCHED_ADJUST_PRIORITY aarch64_sched_adjust_priority

#undef TARGET_SCHED_MACRO_FUSION_P
#define TARGET_SCHED_MACRO_FUSION_P aarch64_macro_fusion_p

#undef TARGET_SCHED_MACRO_FUSION_PAIR_P
#define TARGET_SCHED_MACRO_FUSION_PAIR_P aarch_macro_fusion_pair_p

#undef TARGET_SCHED_FUSION_PRIORITY
#define TARGET_SCHED_FUSION_PRIORITY aarch64_sched_fusion_priority

#undef TARGET_UNSPEC_MAY_TRAP_P
#define TARGET_UNSPEC_MAY_TRAP_P aarch64_unspec_may_trap_p

#undef TARGET_USE_PSEUDO_PIC_REG
#define TARGET_USE_PSEUDO_PIC_REG aarch64_use_pseudo_pic_reg

#undef TARGET_PRINT_OPERAND
#define TARGET_PRINT_OPERAND aarch64_print_operand

#undef TARGET_PRINT_OPERAND_ADDRESS
#define TARGET_PRINT_OPERAND_ADDRESS aarch64_print_operand_address

#undef TARGET_OPTAB_SUPPORTED_P
#define TARGET_OPTAB_SUPPORTED_P aarch64_optab_supported_p

#undef TARGET_OMIT_STRUCT_RETURN_REG
#define TARGET_OMIT_STRUCT_RETURN_REG true

/* The architecture reserves bits 0 and 1 so use bit 2 for descriptors.  */
#undef TARGET_CUSTOM_FUNCTION_DESCRIPTORS
#define TARGET_CUSTOM_FUNCTION_DESCRIPTORS 4

#undef TARGET_HARD_REGNO_NREGS
#define TARGET_HARD_REGNO_NREGS aarch64_hard_regno_nregs
#undef TARGET_HARD_REGNO_MODE_OK
#define TARGET_HARD_REGNO_MODE_OK aarch64_hard_regno_mode_ok

#undef TARGET_MODES_TIEABLE_P
#define TARGET_MODES_TIEABLE_P aarch64_modes_tieable_p

#undef TARGET_HARD_REGNO_CALL_PART_CLOBBERED
#define TARGET_HARD_REGNO_CALL_PART_CLOBBERED \
  aarch64_hard_regno_call_part_clobbered

#undef TARGET_CONSTANT_ALIGNMENT
#define TARGET_CONSTANT_ALIGNMENT aarch64_constant_alignment

#if CHECKING_P
#undef TARGET_RUN_TARGET_SELFTESTS
#define TARGET_RUN_TARGET_SELFTESTS selftest::aarch64_run_selftests
#endif /* #if CHECKING_P */

struct gcc_target targetm = TARGET_INITIALIZER;

#include "gt-aarch64.h"