diff options
author | Francois-Xavier Coudert <fxcoudert@gcc.gnu.org> | 2007-03-23 07:00:56 +0000 |
---|---|---|
committer | François-Xavier Coudert <fxcoudert@gcc.gnu.org> | 2007-03-23 07:00:56 +0000 |
commit | 3c2e80433d69dc6df77a1e916fe35d75a470528f (patch) | |
tree | 2b25f4f47d8b5f4892e7ada924f649bce679673a /gcc/fortran | |
parent | 03c17ccd922a49ed07c89b5c533e86318d225c78 (diff) | |
download | gcc-3c2e80433d69dc6df77a1e916fe35d75a470528f.zip gcc-3c2e80433d69dc6df77a1e916fe35d75a470528f.tar.gz gcc-3c2e80433d69dc6df77a1e916fe35d75a470528f.tar.bz2 |
re PR fortran/30834 (ICE with kind=8 exponentiaton)
PR fortran/30834
* arith.c (complex_pow): Rewrite to handle large power.
(gfc_arith_power): Handle large power in the real and integer
cases.
* gfortran.dg/integer_exponentiation_3.F90: New test.
* gfortran.dg/integer_exponentiation_4.f90: New test.
* gfortran.dg/integer_exponentiation_5.F90: New test.
From-SVN: r123154
Diffstat (limited to 'gcc/fortran')
-rw-r--r-- | gcc/fortran/ChangeLog | 7 | ||||
-rw-r--r-- | gcc/fortran/arith.c | 178 |
2 files changed, 129 insertions, 56 deletions
diff --git a/gcc/fortran/ChangeLog b/gcc/fortran/ChangeLog index 0cee9c8..674b997 100644 --- a/gcc/fortran/ChangeLog +++ b/gcc/fortran/ChangeLog @@ -1,3 +1,10 @@ +2007-03-23 Francois-Xavier Coudert <fxcoudert@gcc.gnu.org> + + PR fortran/30834 + * arith.c (complex_pow): Rewrite to handle large power. + (gfc_arith_power): Handle large power in the real and integer + cases. + 2007-03-22 Francois-Xavier Coudert <coudert@clipper.ens.fr> PR fortran/31262 diff --git a/gcc/fortran/arith.c b/gcc/fortran/arith.c index 39bc4b9..e6c2d0f 100644 --- a/gcc/fortran/arith.c +++ b/gcc/fortran/arith.c @@ -872,42 +872,69 @@ complex_reciprocal (gfc_expr *op) } -/* Raise a complex number to positive power. */ +/* Raise a complex number to positive power (power > 0). + This function will modify the content of power. + + Use Binary Method, which is not an optimal but a simple and reasonable + arithmetic. See section 4.6.3, "Evaluation of Powers" of Donald E. Knuth, + "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming", + 3rd Edition, 1998. */ static void -complex_pow_ui (gfc_expr *base, int power, gfc_expr *result) +complex_pow (gfc_expr *result, gfc_expr *base, mpz_t power) { - mpfr_t re, im, a; + mpfr_t x_r, x_i, tmp, re, im; gfc_set_model (base->value.complex.r); + mpfr_init (x_r); + mpfr_init (x_i); + mpfr_init (tmp); mpfr_init (re); mpfr_init (im); - mpfr_init (a); + /* res = 1 */ mpfr_set_ui (result->value.complex.r, 1, GFC_RND_MODE); mpfr_set_ui (result->value.complex.i, 0, GFC_RND_MODE); - for (; power > 0; power--) + /* x = base */ + mpfr_set (x_r, base->value.complex.r, GFC_RND_MODE); + mpfr_set (x_i, base->value.complex.i, GFC_RND_MODE); + +/* Macro for complex multiplication. We have to take care that + res_r/res_i and a_r/a_i can (and will) be the same variable. */ +#define CMULT(res_r,res_i,a_r,a_i,b_r,b_i) \ + mpfr_mul (re, a_r, b_r, GFC_RND_MODE), \ + mpfr_mul (tmp, a_i, b_i, GFC_RND_MODE), \ + mpfr_sub (re, re, tmp, GFC_RND_MODE), \ + \ + mpfr_mul (im, a_r, b_i, GFC_RND_MODE), \ + mpfr_mul (tmp, a_i, b_r, GFC_RND_MODE), \ + mpfr_add (res_i, im, tmp, GFC_RND_MODE), \ + mpfr_set (res_r, re, GFC_RND_MODE) + +#define res_r result->value.complex.r +#define res_i result->value.complex.i + + /* for (; power > 0; x *= x) */ + for (; mpz_cmp_si (power, 0) > 0; CMULT(x_r,x_i,x_r,x_i,x_r,x_i)) { - mpfr_mul (re, base->value.complex.r, result->value.complex.r, - GFC_RND_MODE); - mpfr_mul (a, base->value.complex.i, result->value.complex.i, - GFC_RND_MODE); - mpfr_sub (re, re, a, GFC_RND_MODE); - - mpfr_mul (im, base->value.complex.r, result->value.complex.i, - GFC_RND_MODE); - mpfr_mul (a, base->value.complex.i, result->value.complex.r, - GFC_RND_MODE); - mpfr_add (im, im, a, GFC_RND_MODE); + /* if (power & 1) res = res * x; */ + if (mpz_congruent_ui_p (power, 1, 2)) + CMULT(res_r,res_i,res_r,res_i,x_r,x_i); - mpfr_set (result->value.complex.r, re, GFC_RND_MODE); - mpfr_set (result->value.complex.i, im, GFC_RND_MODE); + /* power /= 2; */ + mpz_fdiv_q_ui (power, power, 2); } +#undef res_r +#undef res_i +#undef CMULT + + mpfr_clear (x_r); + mpfr_clear (x_i); + mpfr_clear (tmp); mpfr_clear (re); mpfr_clear (im); - mpfr_clear (a); } @@ -916,20 +943,17 @@ complex_pow_ui (gfc_expr *base, int power, gfc_expr *result) static arith gfc_arith_power (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp) { - int power, apower; + int power_sign; gfc_expr *result; - mpz_t unity_z; - mpfr_t unity_f; arith rc; - rc = ARITH_OK; - - if (gfc_extract_int (op2, &power) != NULL) - gfc_internal_error ("gfc_arith_power(): Bad exponent"); + gcc_assert (op2->expr_type == EXPR_CONSTANT && op2->ts.type == BT_INTEGER); + rc = ARITH_OK; result = gfc_constant_result (op1->ts.type, op1->ts.kind, &op1->where); + power_sign = mpz_sgn (op2->value.integer); - if (power == 0) + if (power_sign == 0) { /* Handle something to the zeroth power. Since we're dealing with integral exponents, there is no ambiguity in the @@ -955,44 +979,86 @@ gfc_arith_power (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp) } else { - apower = power; - if (power < 0) - apower = -power; - switch (op1->ts.type) { case BT_INTEGER: - mpz_pow_ui (result->value.integer, op1->value.integer, apower); - - if (power < 0) - { - mpz_init_set_ui (unity_z, 1); - mpz_tdiv_q (result->value.integer, unity_z, - result->value.integer); - mpz_clear (unity_z); - } + { + int power; + + /* First, we simplify the cases of op1 == 1, 0 or -1. */ + if (mpz_cmp_si (op1->value.integer, 1) == 0) + { + /* 1**op2 == 1 */ + mpz_set_si (result->value.integer, 1); + } + else if (mpz_cmp_si (op1->value.integer, 0) == 0) + { + /* 0**op2 == 0, if op2 > 0 + 0**op2 overflow, if op2 < 0 ; in that case, we + set the result to 0 and return ARITH_DIV0. */ + mpz_set_si (result->value.integer, 0); + if (mpz_cmp_si (op2->value.integer, 0) < 0) + rc = ARITH_DIV0; + } + else if (mpz_cmp_si (op1->value.integer, -1) == 0) + { + /* (-1)**op2 == (-1)**(mod(op2,2)) */ + unsigned int odd = mpz_fdiv_ui (op2->value.integer, 2); + if (odd) + mpz_set_si (result->value.integer, -1); + else + mpz_set_si (result->value.integer, 1); + } + /* Then, we take care of op2 < 0. */ + else if (mpz_cmp_si (op2->value.integer, 0) < 0) + { + /* if op2 < 0, op1**op2 == 0 because abs(op1) > 1. */ + mpz_set_si (result->value.integer, 0); + } + else if (gfc_extract_int (op2, &power) != NULL) + { + /* If op2 doesn't fit in an int, the exponentiation will + overflow, because op2 > 0 and abs(op1) > 1. */ + mpz_t max; + int i = gfc_validate_kind (BT_INTEGER, result->ts.kind, false); + + if (gfc_option.flag_range_check) + rc = ARITH_OVERFLOW; + + /* Still, we want to give the same value as the processor. */ + mpz_init (max); + mpz_add_ui (max, gfc_integer_kinds[i].huge, 1); + mpz_mul_ui (max, max, 2); + mpz_powm (result->value.integer, op1->value.integer, + op2->value.integer, max); + mpz_clear (max); + } + else + mpz_pow_ui (result->value.integer, op1->value.integer, power); + } break; case BT_REAL: - mpfr_pow_ui (result->value.real, op1->value.real, apower, - GFC_RND_MODE); - - if (power < 0) - { - gfc_set_model (op1->value.real); - mpfr_init (unity_f); - mpfr_set_ui (unity_f, 1, GFC_RND_MODE); - mpfr_div (result->value.real, unity_f, result->value.real, - GFC_RND_MODE); - mpfr_clear (unity_f); - } + mpfr_pow_z (result->value.real, op1->value.real, op2->value.integer, + GFC_RND_MODE); break; case BT_COMPLEX: - complex_pow_ui (op1, apower, result); - if (power < 0) - complex_reciprocal (result); - break; + { + mpz_t apower; + + /* Compute op1**abs(op2) */ + mpz_init (apower); + mpz_abs (apower, op2->value.integer); + complex_pow (result, op1, apower); + mpz_clear (apower); + + /* If (op2 < 0), compute the inverse. */ + if (power_sign < 0) + complex_reciprocal (result); + + break; + } default: break; |