aboutsummaryrefslogtreecommitdiff
path: root/riscv/sim.cc
blob: cb1ed7149908cea1240670384b113e730bbf13d6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
// See LICENSE for license details.

#include "sim.h"
#include "mmu.h"
#include "gdbserver.h"
#include <map>
#include <iostream>
#include <sstream>
#include <climits>
#include <cstdlib>
#include <cassert>
#include <signal.h>
#include <unistd.h>
#include <sys/wait.h>
#include <sys/types.h>

volatile bool ctrlc_pressed = false;
static void handle_signal(int sig)
{
  if (ctrlc_pressed)
    exit(-1);
  ctrlc_pressed = true;
  signal(sig, &handle_signal);
}

sim_t::sim_t(const char* isa, size_t nprocs, size_t mem_mb, bool halted,
             const std::vector<std::string>& args)
  : htif_t(args), procs(std::max(nprocs, size_t(1))),
    current_step(0), current_proc(0), debug(false), gdbserver(NULL)
{
  signal(SIGINT, &handle_signal);
  // allocate target machine's memory, shrinking it as necessary
  // until the allocation succeeds
  size_t memsz0 = (size_t)mem_mb << 20;
  size_t quantum = 1L << 20;
  if (memsz0 == 0)
    memsz0 = (size_t)2048 << 20;

  memsz = memsz0;
  while ((mem = (char*)calloc(1, memsz)) == NULL)
    memsz = (size_t)(memsz*0.9)/quantum*quantum;

  if (memsz != memsz0)
    fprintf(stderr, "warning: only got %zu bytes of target mem (wanted %zu)\n",
            memsz, memsz0);

  bus.add_device(DEBUG_START, &debug_module);

  debug_mmu = new mmu_t(this, NULL);

  for (size_t i = 0; i < procs.size(); i++) {
    procs[i] = new processor_t(isa, this, i, halted);
  }

  clint.reset(new clint_t(procs));
  bus.add_device(CLINT_BASE, clint.get());

  make_dtb();
}

sim_t::~sim_t()
{
  for (size_t i = 0; i < procs.size(); i++)
    delete procs[i];
  delete debug_mmu;
  free(mem);
}

void sim_thread_main(void* arg)
{
  ((sim_t*)arg)->main();
}

void sim_t::main()
{
  if (!debug && log)
    set_procs_debug(true);

  while (!done())
  {
    if (debug || ctrlc_pressed)
      interactive();
    else
      step(INTERLEAVE);
    if (gdbserver) {
      gdbserver->handle();
    }
  }
}

int sim_t::run()
{
  host = context_t::current();
  target.init(sim_thread_main, this);
  return htif_t::run();
}

void sim_t::step(size_t n)
{
  for (size_t i = 0, steps = 0; i < n; i += steps)
  {
    steps = std::min(n - i, INTERLEAVE - current_step);
    procs[current_proc]->step(steps);

    current_step += steps;
    if (current_step == INTERLEAVE)
    {
      current_step = 0;
      procs[current_proc]->yield_load_reservation();
      if (++current_proc == procs.size()) {
        current_proc = 0;
        clint->increment(INTERLEAVE / INSNS_PER_RTC_TICK);
      }

      host->switch_to();
    }
  }
}

void sim_t::set_debug(bool value)
{
  debug = value;
}

void sim_t::set_log(bool value)
{
  log = value;
}

void sim_t::set_histogram(bool value)
{
  histogram_enabled = value;
  for (size_t i = 0; i < procs.size(); i++) {
    procs[i]->set_histogram(histogram_enabled);
  }
}

void sim_t::set_procs_debug(bool value)
{
  for (size_t i=0; i< procs.size(); i++)
    procs[i]->set_debug(value);
}

bool sim_t::mmio_load(reg_t addr, size_t len, uint8_t* bytes)
{
  if (addr + len < addr)
    return false;
  return bus.load(addr, len, bytes);
}

bool sim_t::mmio_store(reg_t addr, size_t len, const uint8_t* bytes)
{
  if (addr + len < addr)
    return false;
  return bus.store(addr, len, bytes);
}

static std::string dts_compile(const std::string& dts)
{
  // Convert the DTS to DTB
  int dts_pipe[2];
  pid_t dts_pid;

  if (pipe(dts_pipe) != 0 || (dts_pid = fork()) < 0) {
    std::cerr << "Failed to fork dts child: " << strerror(errno) << std::endl;
    exit(1);
  }

  // Child process to output dts
  if (dts_pid == 0) {
    close(dts_pipe[0]);
    int step, len = dts.length();
    const char *buf = dts.c_str();
    for (int done = 0; done < len; done += step) {
      step = write(dts_pipe[1], buf+done, len-done);
      if (step == -1) {
        std::cerr << "Failed to write dts: " << strerror(errno) << std::endl;
        exit(1);
      }
    }
    close(dts_pipe[1]);
    exit(0);
  }

  pid_t dtb_pid;
  int dtb_pipe[2];
  if (pipe(dtb_pipe) != 0 || (dtb_pid = fork()) < 0) {
    std::cerr << "Failed to fork dtb child: " << strerror(errno) << std::endl;
    exit(1);
  }

  // Child process to output dtb
  if (dtb_pid == 0) {
    dup2(dts_pipe[0], 0);
    dup2(dtb_pipe[1], 1);
    close(dts_pipe[0]);
    close(dts_pipe[1]);
    close(dtb_pipe[0]);
    close(dtb_pipe[1]);
    execl(DTC, DTC, "-O", "dtb", 0);
    std::cerr << "Failed to run " DTC ": " << strerror(errno) << std::endl;
    exit(1);
  }

  close(dts_pipe[1]);
  close(dts_pipe[0]);
  close(dtb_pipe[1]);

  // Read-out dtb
  std::stringstream dtb;

  int got;
  char buf[4096];
  while ((got = read(dtb_pipe[0], buf, sizeof(buf))) > 0) {
    dtb.write(buf, got);
  }
  if (got == -1) {
    std::cerr << "Failed to read dtb: " << strerror(errno) << std::endl;
    exit(1);
  }
  close(dtb_pipe[0]);

  // Reap children
  int status;
  waitpid(dts_pid, &status, 0);
  if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) {
    std::cerr << "Child dts process failed" << std::endl;
    exit(1);
  }
  waitpid(dtb_pid, &status, 0);
  if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) {
    std::cerr << "Child dtb process failed" << std::endl;
    exit(1);
  }

  return dtb.str();
}

void sim_t::make_dtb()
{
  uint32_t reset_vec[] = {
    0x297 + DRAM_BASE - DEFAULT_RSTVEC, // auipc t0, DRAM_BASE
    0x597,                              // auipc a1, 0
    0x58593,                            // addi a1, a1, 0
    0xf1402573,				// csrr a0,mhartid
    0x00028067                          // jalr zero, t0, 0 (jump straight to DRAM_BASE)
  };
  reset_vec[2] += (sizeof(reset_vec) - 4) << 20; // addi a1, a1, sizeof(reset_vec) - 4 = DTB start

  std::vector<char> rom((char*)reset_vec, (char*)reset_vec + sizeof(reset_vec));

  std::stringstream s;
  s << std::dec <<
         "/dts-v1/;\n"
         "\n"
         "/ {\n"
         "  #address-cells = <2>;\n"
         "  #size-cells = <2>;\n"
         "  compatible = \"ucbbar,spike-bare-dev\";\n"
         "  model = \"ucbbar,spike-bare\";\n"
         "  cpus {\n"
         "    #address-cells = <1>;\n"
         "    #size-cells = <0>;\n"
         "    timebase-frequency = <" << (CPU_HZ/INSNS_PER_RTC_TICK) << ">;\n";
  for (size_t i = 0; i < procs.size(); i++) {
    s << "    CPU" << i << ": cpu@" << i << " {\n"
         "      device_type = \"cpu\";\n"
         "      reg = <" << i << ">;\n"
         "      status = \"okay\";\n"
         "      compatible = \"riscv\";\n"
         "      riscv,isa = \"" << procs[i]->isa_string << "\";\n"
         "      mmu-type = \"riscv," << (procs[i]->max_xlen <= 32 ? "sv32" : "sv48") << "\";\n"
         "      clock-frequency = <" << CPU_HZ << ">;\n"
         "      interrupt-controller;\n"
         "      #interrupt-cells = <1>;\n"
         "    };\n";
  }
  reg_t membs = DRAM_BASE;
  s << std::hex <<
         "  };\n"
         "  memory@" << DRAM_BASE << " {\n"
         "    device_type = \"memory\";\n"
         "    reg = <0x" << (membs >> 32) << " 0x" << (membs & (uint32_t)-1) <<
                   " 0x" << (memsz >> 32) << " 0x" << (memsz & (uint32_t)-1) << ">;\n"
         "  };\n"
         "  soc {\n"
         "    #address-cells = <2>;\n"
         "    #size-cells = <2>;\n"
         "    compatible = \"ucbbar,spike-bare-soc\";\n"
         "    ranges;\n"
         "    clint@" << CLINT_BASE << " {\n"
         "      compatible = \"riscv,clint0\";\n"
         "      interrupts-extended = <" << std::dec;
  for (size_t i = 0; i < procs.size(); i++)
    s << "&CPU" << i << " 3 &CPU" << i << " 7 ";
  reg_t clintbs = CLINT_BASE;
  reg_t clintsz = CLINT_SIZE;
  s << std::hex << ">;\n"
         "      reg = <0x" << (clintbs >> 32) << " 0x" << (clintbs & (uint32_t)-1) <<
                     " 0x" << (clintsz >> 32) << " 0x" << (clintsz & (uint32_t)-1) << ">;\n"
         "    };\n"
         "  };\n"
         "};\n";

  dts = s.str();
  std::string dtb = dts_compile(dts);

  rom.insert(rom.end(), dtb.begin(), dtb.end());
  const int align = 0x1000;
  rom.resize((rom.size() + align - 1) / align * align);

  boot_rom.reset(new rom_device_t(rom));
  bus.add_device(DEFAULT_RSTVEC, boot_rom.get());
}

// htif

void sim_t::idle()
{
  target.switch_to();
}

void sim_t::read_chunk(addr_t taddr, size_t len, void* dst)
{
  assert(len == 8);
  auto data = debug_mmu->load_uint64(taddr);
  memcpy(dst, &data, sizeof data);
}

void sim_t::write_chunk(addr_t taddr, size_t len, const void* src)
{
  assert(len == 8);
  uint64_t data;
  memcpy(&data, src, sizeof data);
  debug_mmu->store_uint64(taddr, data);
}