1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
|
// See LICENSE for license details.
#include "config.h"
#include "sim.h"
#include "mmu.h"
#include "dts.h"
#include "remote_bitbang.h"
#include "byteorder.h"
#include "platform.h"
#include "libfdt.h"
#include "socketif.h"
#include <fstream>
#include <map>
#include <iostream>
#include <sstream>
#include <climits>
#include <cstdlib>
#include <cassert>
#include <signal.h>
#include <unistd.h>
#include <sys/wait.h>
#include <sys/types.h>
volatile bool ctrlc_pressed = false;
static void handle_signal(int sig)
{
if (ctrlc_pressed)
exit(-1);
ctrlc_pressed = true;
signal(sig, &handle_signal);
}
const size_t sim_t::INTERLEAVE;
extern device_factory_t* clint_factory;
extern device_factory_t* plic_factory;
extern device_factory_t* ns16550_factory;
sim_t::sim_t(const cfg_t *cfg, bool halted,
std::vector<std::pair<reg_t, abstract_mem_t*>> mems,
const std::vector<device_factory_sargs_t>& plugin_device_factories,
const std::vector<std::string>& args,
const debug_module_config_t &dm_config,
const char *log_path,
bool dtb_enabled, const char *dtb_file,
bool socket_enabled,
FILE *cmd_file) // needed for command line option --cmd
: htif_t(args),
cfg(cfg),
mems(mems),
dtb_enabled(dtb_enabled),
log_file(log_path),
cmd_file(cmd_file),
sout_(nullptr),
current_step(0),
current_proc(0),
debug(false),
histogram_enabled(false),
log(false),
remote_bitbang(NULL),
debug_module(this, dm_config)
{
signal(SIGINT, &handle_signal);
sout_.rdbuf(std::cerr.rdbuf()); // debug output goes to stderr by default
for (auto& x : mems)
bus.add_device(x.first, x.second);
bus.add_device(DEBUG_START, &debug_module);
socketif = NULL;
#ifdef HAVE_BOOST_ASIO
if (socket_enabled) {
socketif = new socketif_t();
}
#else
if (socket_enabled) {
fputs("Socket support requires compilation with boost asio; "
"please rebuild the riscv-isa-sim project using "
"\"configure --with-boost-asio\".\n",
stderr);
abort();
}
#endif
#ifndef RISCV_ENABLE_DUAL_ENDIAN
if (cfg->endianness != endianness_little) {
fputs("Big-endian support has not been prroperly enabled; "
"please rebuild the riscv-isa-sim project using "
"\"configure --enable-dual-endian\".\n",
stderr);
abort();
}
#endif
debug_mmu = new mmu_t(this, cfg->endianness, NULL);
// When running without using a dtb, skip the fdt-based configuration steps
if (!dtb_enabled) {
for (size_t i = 0; i < cfg->nprocs(); i++) {
procs.push_back(new processor_t(cfg->isa, cfg->priv,
cfg, this, cfg->hartids[i], halted,
log_file.get(), sout_));
harts[cfg->hartids[i]] = procs[i];
}
return;
} // otherwise, generate the procs by parsing the DTS
// Only make a CLINT (Core-Local INTerrupt controller) and PLIC (Platform-
// Level-Interrupt-Controller) if they are specified in the device tree
// configuration.
//
// This isn't *quite* as general as we could get (because you might have one
// that's not bus-accessible), but it should handle the normal use cases. In
// particular, the default device tree configuration that you get without
// setting the dtb_file argument has one.
std::vector<device_factory_sargs_t> device_factories = {
{clint_factory, {}}, // clint must be element 0
{plic_factory, {}}, // plic must be element 1
{ns16550_factory, {}}};
device_factories.insert(device_factories.end(),
plugin_device_factories.begin(),
plugin_device_factories.end());
// Load dtb_file if provided, otherwise self-generate a dts/dtb
if (dtb_file) {
std::ifstream fin(dtb_file, std::ios::binary);
if (!fin.good()) {
std::cerr << "can't find dtb file: " << dtb_file << std::endl;
exit(-1);
}
std::stringstream strstream;
strstream << fin.rdbuf();
dtb = strstream.str();
dts = dtb_to_dts(dtb);
} else {
std::pair<reg_t, reg_t> initrd_bounds = cfg->initrd_bounds;
std::string device_nodes;
for (const device_factory_sargs_t& factory_sargs: device_factories) {
const device_factory_t* factory = factory_sargs.first;
const std::vector<std::string>& sargs = factory_sargs.second;
device_nodes.append(factory->generate_dts(this, sargs));
}
dts = make_dts(INSNS_PER_RTC_TICK, CPU_HZ, cfg, mems, device_nodes);
dtb = dts_to_dtb(dts);
}
int fdt_code = fdt_check_header(dtb.c_str());
if (fdt_code) {
std::cerr << "Failed to read DTB from ";
if (!dtb_file) {
std::cerr << "auto-generated DTS string";
} else {
std::cerr << "`" << dtb_file << "'";
}
std::cerr << ": " << fdt_strerror(fdt_code) << ".\n";
exit(-1);
}
void *fdt = (void *)dtb.c_str();
// per core attribute
int cpu_offset = 0, cpu_map_offset, rc;
size_t cpu_idx = 0;
cpu_offset = fdt_get_offset(fdt, "/cpus");
cpu_map_offset = fdt_get_offset(fdt, "/cpus/cpu-map");
if (cpu_offset < 0)
return;
for (cpu_offset = fdt_get_first_subnode(fdt, cpu_offset); cpu_offset >= 0;
cpu_offset = fdt_get_next_subnode(fdt, cpu_offset)) {
if (!(cpu_map_offset < 0) && cpu_offset == cpu_map_offset)
continue;
if (cpu_idx != procs.size()) {
std::cerr << "Spike only supports contiguous CPU IDs in the DTS" << std::endl;
exit(1);
}
// handle isa string
const char* isa_str;
rc = fdt_parse_isa(fdt, cpu_offset, &isa_str);
if (rc != 0) {
std::cerr << "core (" << cpu_idx << ") has an invalid or missing 'riscv,isa'\n";
exit(1);
}
// handle hartid
uint32_t hartid;
rc = fdt_parse_hartid(fdt, cpu_offset, &hartid);
if (rc != 0) {
std::cerr << "core (" << cpu_idx << ") has an invalid or missing `reg` (hartid)\n";
exit(1);
}
procs.push_back(new processor_t(isa_str, cfg->priv,
cfg, this, hartid, halted,
log_file.get(), sout_));
harts[hartid] = procs[cpu_idx];
// handle pmp
reg_t pmp_num, pmp_granularity;
if (fdt_parse_pmp_num(fdt, cpu_offset, &pmp_num) != 0)
pmp_num = 0;
procs[cpu_idx]->set_pmp_num(pmp_num);
if (fdt_parse_pmp_alignment(fdt, cpu_offset, &pmp_granularity) == 0) {
procs[cpu_idx]->set_pmp_granularity(pmp_granularity);
}
// handle mmu-type
const char *mmu_type;
rc = fdt_parse_mmu_type(fdt, cpu_offset, &mmu_type);
if (rc == 0) {
procs[cpu_idx]->set_mmu_capability(IMPL_MMU_SBARE);
if (strncmp(mmu_type, "riscv,sv32", strlen("riscv,sv32")) == 0) {
procs[cpu_idx]->set_mmu_capability(IMPL_MMU_SV32);
} else if (strncmp(mmu_type, "riscv,sv39", strlen("riscv,sv39")) == 0) {
procs[cpu_idx]->set_mmu_capability(IMPL_MMU_SV39);
} else if (strncmp(mmu_type, "riscv,sv48", strlen("riscv,sv48")) == 0) {
procs[cpu_idx]->set_mmu_capability(IMPL_MMU_SV48);
} else if (strncmp(mmu_type, "riscv,sv57", strlen("riscv,sv57")) == 0) {
procs[cpu_idx]->set_mmu_capability(IMPL_MMU_SV57);
} else if (strncmp(mmu_type, "riscv,sbare", strlen("riscv,sbare")) == 0) {
// has been set in the beginning
} else {
std::cerr << "core ("
<< cpu_idx
<< ") has an invalid 'mmu-type': "
<< mmu_type << ").\n";
exit(1);
}
} else {
procs[cpu_idx]->set_mmu_capability(IMPL_MMU_SBARE);
}
cpu_idx++;
}
// must be located after procs/harts are set (devices might use sim_t get_* member functions)
for (size_t i = 0; i < device_factories.size(); i++) {
const device_factory_t* factory = device_factories[i].first;
const std::vector<std::string>& sargs = device_factories[i].second;
reg_t device_base = 0;
abstract_device_t* device = factory->parse_from_fdt(fdt, this, &device_base, sargs);
if (device) {
assert(device_base);
std::shared_ptr<abstract_device_t> dev_ptr(device);
add_device(device_base, dev_ptr);
if (i == 0) // clint_factory
clint = std::static_pointer_cast<clint_t>(dev_ptr);
else if (i == 1) // plic_factory
plic = std::static_pointer_cast<plic_t>(dev_ptr);
}
}
}
sim_t::~sim_t()
{
for (size_t i = 0; i < procs.size(); i++)
delete procs[i];
delete debug_mmu;
}
int sim_t::run()
{
if (!debug && log)
set_procs_debug(true);
htif_t::set_expected_xlen(harts[0]->get_isa().get_max_xlen());
// htif_t::run() will repeatedly call back into sim_t::idle(), each
// invocation of which will advance target time
return htif_t::run();
}
void sim_t::step(size_t n)
{
for (size_t i = 0, steps = 0; i < n; i += steps)
{
steps = std::min(n - i, INTERLEAVE - current_step);
procs[current_proc]->step(steps);
current_step += steps;
if (current_step == INTERLEAVE)
{
current_step = 0;
procs[current_proc]->get_mmu()->yield_load_reservation();
if (++current_proc == procs.size()) {
current_proc = 0;
reg_t rtc_ticks = INTERLEAVE / INSNS_PER_RTC_TICK;
for (auto &dev : devices) dev->tick(rtc_ticks);
}
}
}
}
void sim_t::add_device(reg_t addr, std::shared_ptr<abstract_device_t> dev) {
bus.add_device(addr, dev.get());
devices.push_back(dev);
}
void sim_t::set_debug(bool value)
{
debug = value;
}
void sim_t::set_histogram(bool value)
{
histogram_enabled = value;
for (size_t i = 0; i < procs.size(); i++) {
procs[i]->set_histogram(histogram_enabled);
}
}
void sim_t::configure_log(bool enable_log, bool enable_commitlog)
{
log = enable_log;
if (!enable_commitlog)
return;
for (processor_t *proc : procs) {
proc->enable_log_commits();
}
}
void sim_t::set_procs_debug(bool value)
{
for (size_t i=0; i< procs.size(); i++)
procs[i]->set_debug(value);
}
static bool paddr_ok(reg_t addr)
{
static_assert(MAX_PADDR_BITS == 8 * sizeof(addr));
return true;
}
bool sim_t::mmio_load(reg_t paddr, size_t len, uint8_t* bytes)
{
if (paddr + len < paddr || !paddr_ok(paddr + len - 1))
return false;
return bus.load(paddr, len, bytes);
}
bool sim_t::mmio_store(reg_t paddr, size_t len, const uint8_t* bytes)
{
if (paddr + len < paddr || !paddr_ok(paddr + len - 1))
return false;
return bus.store(paddr, len, bytes);
}
void sim_t::set_rom()
{
const int reset_vec_size = 8;
reg_t start_pc = cfg->start_pc.value_or(get_entry_point());
uint32_t reset_vec[reset_vec_size] = {
0x297, // auipc t0,0x0
0x28593 + (reset_vec_size * 4 << 20), // addi a1, t0, &dtb
0xf1402573, // csrr a0, mhartid
get_core(0)->get_xlen() == 32 ?
0x0182a283u : // lw t0,24(t0)
0x0182b283u, // ld t0,24(t0)
0x28067, // jr t0
0,
(uint32_t) (start_pc & 0xffffffff),
(uint32_t) (start_pc >> 32)
};
if (get_target_endianness() == endianness_big) {
int i;
// Instuctions are little endian
for (i = 0; reset_vec[i] != 0; i++)
reset_vec[i] = to_le(reset_vec[i]);
// Data is big endian
for (; i < reset_vec_size; i++)
reset_vec[i] = to_be(reset_vec[i]);
// Correct the high/low order of 64-bit start PC
if (get_core(0)->get_xlen() != 32)
std::swap(reset_vec[reset_vec_size-2], reset_vec[reset_vec_size-1]);
} else {
for (int i = 0; i < reset_vec_size; i++)
reset_vec[i] = to_le(reset_vec[i]);
}
std::vector<char> rom((char*)reset_vec, (char*)reset_vec + sizeof(reset_vec));
rom.insert(rom.end(), dtb.begin(), dtb.end());
const int align = 0x1000;
rom.resize((rom.size() + align - 1) / align * align);
std::shared_ptr<rom_device_t> boot_rom(new rom_device_t(rom));
add_device(DEFAULT_RSTVEC, boot_rom);
}
char* sim_t::addr_to_mem(reg_t paddr) {
if (!paddr_ok(paddr))
return NULL;
auto desc = bus.find_device(paddr);
if (auto mem = dynamic_cast<abstract_mem_t*>(desc.second))
if (paddr - desc.first < mem->size())
return mem->contents(paddr - desc.first);
return NULL;
}
const char* sim_t::get_symbol(uint64_t paddr)
{
return htif_t::get_symbol(paddr);
}
// htif
void sim_t::reset()
{
if (dtb_enabled)
set_rom();
}
void sim_t::idle()
{
if (done())
return;
if (debug || ctrlc_pressed)
interactive();
else
step(INTERLEAVE);
if (remote_bitbang)
remote_bitbang->tick();
}
void sim_t::read_chunk(addr_t taddr, size_t len, void* dst)
{
assert(len == 8);
auto data = debug_mmu->to_target(debug_mmu->load<uint64_t>(taddr));
memcpy(dst, &data, sizeof data);
}
void sim_t::write_chunk(addr_t taddr, size_t len, const void* src)
{
assert(len == 8);
target_endian<uint64_t> data;
memcpy(&data, src, sizeof data);
debug_mmu->store<uint64_t>(taddr, debug_mmu->from_target(data));
}
endianness_t sim_t::get_target_endianness() const
{
return debug_mmu->is_target_big_endian()? endianness_big : endianness_little;
}
void sim_t::proc_reset(unsigned id)
{
debug_module.proc_reset(id);
}
|