1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
|
//===- RemoveDeadValues.cpp - Remove Dead Values --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The goal of this pass is optimization (reducing runtime) by removing
// unnecessary instructions. Unlike other passes that rely on local information
// gathered from patterns to accomplish optimization, this pass uses a full
// analysis of the IR, specifically, liveness analysis, and is thus more
// powerful.
//
// Currently, this pass performs the following optimizations:
// (A) Removes function arguments that are not live,
// (B) Removes function return values that are not live across all callers of
// the function,
// (C) Removes unneccesary operands, results, region arguments, and region
// terminator operands of region branch ops, and,
// (D) Removes simple and region branch ops that have all non-live results and
// don't affect memory in any way,
//
// iff
//
// the IR doesn't have any non-function symbol ops, non-call symbol user ops and
// branch ops.
//
// Here, a "simple op" refers to an op that isn't a symbol op, symbol-user op,
// region branch op, branch op, region branch terminator op, or return-like.
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/DataFlow/DeadCodeAnalysis.h"
#include "mlir/Analysis/DataFlow/LivenessAnalysis.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/OperationSupport.h"
#include "mlir/IR/SymbolTable.h"
#include "mlir/IR/Value.h"
#include "mlir/IR/ValueRange.h"
#include "mlir/IR/Visitors.h"
#include "mlir/Interfaces/CallInterfaces.h"
#include "mlir/Interfaces/ControlFlowInterfaces.h"
#include "mlir/Interfaces/FunctionInterfaces.h"
#include "mlir/Interfaces/SideEffectInterfaces.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Transforms/FoldUtils.h"
#include "mlir/Transforms/Passes.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/DebugLog.h"
#include <cassert>
#include <cstddef>
#include <memory>
#include <optional>
#include <vector>
#define DEBUG_TYPE "remove-dead-values"
namespace mlir {
#define GEN_PASS_DEF_REMOVEDEADVALUES
#include "mlir/Transforms/Passes.h.inc"
} // namespace mlir
using namespace mlir;
using namespace mlir::dataflow;
//===----------------------------------------------------------------------===//
// RemoveDeadValues Pass
//===----------------------------------------------------------------------===//
namespace {
// Set of structures below to be filled with operations and arguments to erase.
// This is done to separate analysis and tree modification phases,
// otherwise analysis is operating on half-deleted tree which is incorrect.
struct FunctionToCleanUp {
FunctionOpInterface funcOp;
BitVector nonLiveArgs;
BitVector nonLiveRets;
};
struct OperationToCleanup {
Operation *op;
BitVector nonLive;
};
struct BlockArgsToCleanup {
Block *b;
BitVector nonLiveArgs;
};
struct SuccessorOperandsToCleanup {
BranchOpInterface branch;
unsigned successorIndex;
BitVector nonLiveOperands;
};
struct RDVFinalCleanupList {
SmallVector<Operation *> operations;
SmallVector<Value> values;
SmallVector<FunctionToCleanUp> functions;
SmallVector<OperationToCleanup> operands;
SmallVector<OperationToCleanup> results;
SmallVector<BlockArgsToCleanup> blocks;
SmallVector<SuccessorOperandsToCleanup> successorOperands;
};
// Some helper functions...
/// Return true iff at least one value in `values` is live, given the liveness
/// information in `la`.
static bool hasLive(ValueRange values, const DenseSet<Value> &nonLiveSet,
RunLivenessAnalysis &la) {
for (Value value : values) {
if (nonLiveSet.contains(value)) {
LDBG() << "Value " << value << " is already marked non-live (dead)";
continue;
}
const Liveness *liveness = la.getLiveness(value);
if (!liveness) {
LDBG() << "Value " << value
<< " has no liveness info, conservatively considered live";
return true;
}
if (liveness->isLive) {
LDBG() << "Value " << value << " is live according to liveness analysis";
return true;
} else {
LDBG() << "Value " << value << " is dead according to liveness analysis";
}
}
return false;
}
/// Return a BitVector of size `values.size()` where its i-th bit is 1 iff the
/// i-th value in `values` is live, given the liveness information in `la`.
static BitVector markLives(ValueRange values, const DenseSet<Value> &nonLiveSet,
RunLivenessAnalysis &la) {
BitVector lives(values.size(), true);
for (auto [index, value] : llvm::enumerate(values)) {
if (nonLiveSet.contains(value)) {
lives.reset(index);
LDBG() << "Value " << value
<< " is already marked non-live (dead) at index " << index;
continue;
}
const Liveness *liveness = la.getLiveness(value);
// It is important to note that when `liveness` is null, we can't tell if
// `value` is live or not. So, the safe option is to consider it live. Also,
// the execution of this pass might create new SSA values when erasing some
// of the results of an op and we know that these new values are live
// (because they weren't erased) and also their liveness is null because
// liveness analysis ran before their creation.
if (!liveness) {
LDBG() << "Value " << value << " at index " << index
<< " has no liveness info, conservatively considered live";
continue;
}
if (!liveness->isLive) {
lives.reset(index);
LDBG() << "Value " << value << " at index " << index
<< " is dead according to liveness analysis";
} else {
LDBG() << "Value " << value << " at index " << index
<< " is live according to liveness analysis";
}
}
return lives;
}
/// Collects values marked as "non-live" in the provided range and inserts them
/// into the nonLiveSet. A value is considered "non-live" if the corresponding
/// index in the `nonLive` bit vector is set.
static void collectNonLiveValues(DenseSet<Value> &nonLiveSet, ValueRange range,
const BitVector &nonLive) {
for (auto [index, result] : llvm::enumerate(range)) {
if (!nonLive[index])
continue;
nonLiveSet.insert(result);
LDBG() << "Marking value " << result << " as non-live (dead) at index "
<< index;
}
}
/// Drop the uses of the i-th result of `op` and then erase it iff toErase[i]
/// is 1.
static void dropUsesAndEraseResults(Operation *op, BitVector toErase) {
assert(op->getNumResults() == toErase.size() &&
"expected the number of results in `op` and the size of `toErase` to "
"be the same");
std::vector<Type> newResultTypes;
for (OpResult result : op->getResults())
if (!toErase[result.getResultNumber()])
newResultTypes.push_back(result.getType());
OpBuilder builder(op);
builder.setInsertionPointAfter(op);
OperationState state(op->getLoc(), op->getName().getStringRef(),
op->getOperands(), newResultTypes, op->getAttrs());
for (unsigned i = 0, e = op->getNumRegions(); i < e; ++i)
state.addRegion();
Operation *newOp = builder.create(state);
for (const auto &[index, region] : llvm::enumerate(op->getRegions())) {
Region &newRegion = newOp->getRegion(index);
// Move all blocks of `region` into `newRegion`.
Block *temp = new Block();
newRegion.push_back(temp);
while (!region.empty())
region.front().moveBefore(temp);
temp->erase();
}
unsigned indexOfNextNewCallOpResultToReplace = 0;
for (auto [index, result] : llvm::enumerate(op->getResults())) {
assert(result && "expected result to be non-null");
if (toErase[index]) {
result.dropAllUses();
} else {
result.replaceAllUsesWith(
newOp->getResult(indexOfNextNewCallOpResultToReplace++));
}
}
op->erase();
}
/// Convert a list of `Operand`s to a list of `OpOperand`s.
static SmallVector<OpOperand *> operandsToOpOperands(OperandRange operands) {
OpOperand *values = operands.getBase();
SmallVector<OpOperand *> opOperands;
for (unsigned i = 0, e = operands.size(); i < e; i++)
opOperands.push_back(&values[i]);
return opOperands;
}
/// Process a simple operation `op` using the liveness analysis `la`.
/// If the operation has no memory effects and none of its results are live:
/// 1. Add the operation to a list for future removal, and
/// 2. Mark all its results as non-live values
///
/// The operation `op` is assumed to be simple. A simple operation is one that
/// is NOT:
/// - Function-like
/// - Call-like
/// - A region branch operation
/// - A branch operation
/// - A region branch terminator
/// - Return-like
static void processSimpleOp(Operation *op, RunLivenessAnalysis &la,
DenseSet<Value> &nonLiveSet,
RDVFinalCleanupList &cl) {
LDBG() << "Processing simple op: " << *op;
if (!isMemoryEffectFree(op) || hasLive(op->getResults(), nonLiveSet, la)) {
LDBG()
<< "Simple op is not memory effect free or has live results, skipping: "
<< *op;
return;
}
LDBG()
<< "Simple op has all dead results and is memory effect free, scheduling "
"for removal: "
<< *op;
cl.operations.push_back(op);
collectNonLiveValues(nonLiveSet, op->getResults(),
BitVector(op->getNumResults(), true));
}
/// Process a function-like operation `funcOp` using the liveness analysis `la`
/// and the IR in `module`. If it is not public or external:
/// (1) Adding its non-live arguments to a list for future removal.
/// (2) Marking their corresponding operands in its callers for removal.
/// (3) Identifying and enqueueing unnecessary terminator operands
/// (return values that are non-live across all callers) for removal.
/// (4) Enqueueing the non-live arguments and return values for removal.
/// (5) Collecting the uses of these return values in its callers for future
/// removal.
/// (6) Marking all its results as non-live values.
static void processFuncOp(FunctionOpInterface funcOp, Operation *module,
RunLivenessAnalysis &la, DenseSet<Value> &nonLiveSet,
RDVFinalCleanupList &cl) {
LDBG() << "Processing function op: " << funcOp.getOperation()->getName();
if (funcOp.isPublic() || funcOp.isExternal()) {
LDBG() << "Function is public or external, skipping: "
<< funcOp.getOperation()->getName();
return;
}
// Get the list of unnecessary (non-live) arguments in `nonLiveArgs`.
SmallVector<Value> arguments(funcOp.getArguments());
BitVector nonLiveArgs = markLives(arguments, nonLiveSet, la);
nonLiveArgs = nonLiveArgs.flip();
// Do (1).
for (auto [index, arg] : llvm::enumerate(arguments))
if (arg && nonLiveArgs[index]) {
cl.values.push_back(arg);
nonLiveSet.insert(arg);
}
// Do (2).
SymbolTable::UseRange uses = *funcOp.getSymbolUses(module);
for (SymbolTable::SymbolUse use : uses) {
Operation *callOp = use.getUser();
assert(isa<CallOpInterface>(callOp) && "expected a call-like user");
// The number of operands in the call op may not match the number of
// arguments in the func op.
BitVector nonLiveCallOperands(callOp->getNumOperands(), false);
SmallVector<OpOperand *> callOpOperands =
operandsToOpOperands(cast<CallOpInterface>(callOp).getArgOperands());
for (int index : nonLiveArgs.set_bits())
nonLiveCallOperands.set(callOpOperands[index]->getOperandNumber());
cl.operands.push_back({callOp, nonLiveCallOperands});
}
// Do (3).
// Get the list of unnecessary terminator operands (return values that are
// non-live across all callers) in `nonLiveRets`. There is a very important
// subtlety here. Unnecessary terminator operands are NOT the operands of the
// terminator that are non-live. Instead, these are the return values of the
// callers such that a given return value is non-live across all callers. Such
// corresponding operands in the terminator could be live. An example to
// demonstrate this:
// func.func private @f(%arg0: memref<i32>) -> (i32, i32) {
// %c0_i32 = arith.constant 0 : i32
// %0 = arith.addi %c0_i32, %c0_i32 : i32
// memref.store %0, %arg0[] : memref<i32>
// return %c0_i32, %0 : i32, i32
// }
// func.func @main(%arg0: i32, %arg1: memref<i32>) -> (i32) {
// %1:2 = call @f(%arg1) : (memref<i32>) -> i32
// return %1#0 : i32
// }
// Here, we can see that %1#1 is never used. It is non-live. Thus, @f doesn't
// need to return %0. But, %0 is live. And, still, we want to stop it from
// being returned, in order to optimize our IR. So, this demonstrates how we
// can make our optimization strong by even removing a live return value (%0),
// since it forwards only to non-live value(s) (%1#1).
Operation *lastReturnOp = funcOp.back().getTerminator();
size_t numReturns = lastReturnOp->getNumOperands();
BitVector nonLiveRets(numReturns, true);
for (SymbolTable::SymbolUse use : uses) {
Operation *callOp = use.getUser();
assert(isa<CallOpInterface>(callOp) && "expected a call-like user");
BitVector liveCallRets = markLives(callOp->getResults(), nonLiveSet, la);
nonLiveRets &= liveCallRets.flip();
}
// Note that in the absence of control flow ops forcing the control to go from
// the entry (first) block to the other blocks, the control never reaches any
// block other than the entry block, because every block has a terminator.
for (Block &block : funcOp.getBlocks()) {
Operation *returnOp = block.getTerminator();
if (returnOp && returnOp->getNumOperands() == numReturns)
cl.operands.push_back({returnOp, nonLiveRets});
}
// Do (4).
cl.functions.push_back({funcOp, nonLiveArgs, nonLiveRets});
// Do (5) and (6).
if (numReturns == 0)
return;
for (SymbolTable::SymbolUse use : uses) {
Operation *callOp = use.getUser();
assert(isa<CallOpInterface>(callOp) && "expected a call-like user");
cl.results.push_back({callOp, nonLiveRets});
collectNonLiveValues(nonLiveSet, callOp->getResults(), nonLiveRets);
}
}
/// Process a region branch operation `regionBranchOp` using the liveness
/// information in `la`. The processing involves two scenarios:
///
/// Scenario 1: If the operation has no memory effects and none of its results
/// are live:
/// (1') Enqueue all its uses for deletion.
/// (2') Enqueue the branch itself for deletion.
///
/// Scenario 2: Otherwise:
/// (1) Collect its unnecessary operands (operands forwarded to unnecessary
/// results or arguments).
/// (2) Process each of its regions.
/// (3) Collect the uses of its unnecessary results (results forwarded from
/// unnecessary operands
/// or terminator operands).
/// (4) Add these results to the deletion list.
///
/// Processing a region includes:
/// (a) Collecting the uses of its unnecessary arguments (arguments forwarded
/// from unnecessary operands
/// or terminator operands).
/// (b) Collecting these unnecessary arguments.
/// (c) Collecting its unnecessary terminator operands (terminator operands
/// forwarded to unnecessary results
/// or arguments).
///
/// Value Flow Note: In this operation, values flow as follows:
/// - From operands and terminator operands (successor operands)
/// - To arguments and results (successor inputs).
static void processRegionBranchOp(RegionBranchOpInterface regionBranchOp,
RunLivenessAnalysis &la,
DenseSet<Value> &nonLiveSet,
RDVFinalCleanupList &cl) {
LDBG() << "Processing region branch op: "
<< OpWithFlags(regionBranchOp, OpPrintingFlags().skipRegions());
// Mark live results of `regionBranchOp` in `liveResults`.
auto markLiveResults = [&](BitVector &liveResults) {
liveResults = markLives(regionBranchOp->getResults(), nonLiveSet, la);
};
// Mark live arguments in the regions of `regionBranchOp` in `liveArgs`.
auto markLiveArgs = [&](DenseMap<Region *, BitVector> &liveArgs) {
for (Region ®ion : regionBranchOp->getRegions()) {
if (region.empty())
continue;
SmallVector<Value> arguments(region.front().getArguments());
BitVector regionLiveArgs = markLives(arguments, nonLiveSet, la);
liveArgs[®ion] = regionLiveArgs;
}
};
// Return the successors of `region` if the latter is not null. Else return
// the successors of `regionBranchOp`.
auto getSuccessors = [&](Region *region = nullptr) {
auto point = region ? region : RegionBranchPoint::parent();
SmallVector<RegionSuccessor> successors;
regionBranchOp.getSuccessorRegions(point, successors);
return successors;
};
// Return the operands of `terminator` that are forwarded to `successor` if
// the former is not null. Else return the operands of `regionBranchOp`
// forwarded to `successor`.
auto getForwardedOpOperands = [&](const RegionSuccessor &successor,
Operation *terminator = nullptr) {
OperandRange operands =
terminator ? cast<RegionBranchTerminatorOpInterface>(terminator)
.getSuccessorOperands(successor)
: regionBranchOp.getEntrySuccessorOperands(successor);
SmallVector<OpOperand *> opOperands = operandsToOpOperands(operands);
return opOperands;
};
// Mark the non-forwarded operands of `regionBranchOp` in
// `nonForwardedOperands`.
auto markNonForwardedOperands = [&](BitVector &nonForwardedOperands) {
nonForwardedOperands.resize(regionBranchOp->getNumOperands(), true);
for (const RegionSuccessor &successor : getSuccessors()) {
for (OpOperand *opOperand : getForwardedOpOperands(successor))
nonForwardedOperands.reset(opOperand->getOperandNumber());
}
};
// Mark the non-forwarded terminator operands of the various regions of
// `regionBranchOp` in `nonForwardedRets`.
auto markNonForwardedReturnValues =
[&](DenseMap<Operation *, BitVector> &nonForwardedRets) {
for (Region ®ion : regionBranchOp->getRegions()) {
if (region.empty())
continue;
Operation *terminator = region.front().getTerminator();
nonForwardedRets[terminator] =
BitVector(terminator->getNumOperands(), true);
for (const RegionSuccessor &successor : getSuccessors(®ion)) {
for (OpOperand *opOperand :
getForwardedOpOperands(successor, terminator))
nonForwardedRets[terminator].reset(opOperand->getOperandNumber());
}
}
};
// Update `valuesToKeep` (which is expected to correspond to operands or
// terminator operands) based on `resultsToKeep` and `argsToKeep`, given
// `region`. When `valuesToKeep` correspond to operands, `region` is null.
// Else, `region` is the parent region of the terminator.
auto updateOperandsOrTerminatorOperandsToKeep =
[&](BitVector &valuesToKeep, BitVector &resultsToKeep,
DenseMap<Region *, BitVector> &argsToKeep, Region *region = nullptr) {
Operation *terminator =
region ? region->front().getTerminator() : nullptr;
for (const RegionSuccessor &successor : getSuccessors(region)) {
Region *successorRegion = successor.getSuccessor();
for (auto [opOperand, input] :
llvm::zip(getForwardedOpOperands(successor, terminator),
successor.getSuccessorInputs())) {
size_t operandNum = opOperand->getOperandNumber();
bool updateBasedOn =
successorRegion
? argsToKeep[successorRegion]
[cast<BlockArgument>(input).getArgNumber()]
: resultsToKeep[cast<OpResult>(input).getResultNumber()];
valuesToKeep[operandNum] = valuesToKeep[operandNum] | updateBasedOn;
}
}
};
// Recompute `resultsToKeep` and `argsToKeep` based on `operandsToKeep` and
// `terminatorOperandsToKeep`. Store true in `resultsOrArgsToKeepChanged` if a
// value is modified, else, false.
auto recomputeResultsAndArgsToKeep =
[&](BitVector &resultsToKeep, DenseMap<Region *, BitVector> &argsToKeep,
BitVector &operandsToKeep,
DenseMap<Operation *, BitVector> &terminatorOperandsToKeep,
bool &resultsOrArgsToKeepChanged) {
resultsOrArgsToKeepChanged = false;
// Recompute `resultsToKeep` and `argsToKeep` based on `operandsToKeep`.
for (const RegionSuccessor &successor : getSuccessors()) {
Region *successorRegion = successor.getSuccessor();
for (auto [opOperand, input] :
llvm::zip(getForwardedOpOperands(successor),
successor.getSuccessorInputs())) {
bool recomputeBasedOn =
operandsToKeep[opOperand->getOperandNumber()];
bool toRecompute =
successorRegion
? argsToKeep[successorRegion]
[cast<BlockArgument>(input).getArgNumber()]
: resultsToKeep[cast<OpResult>(input).getResultNumber()];
if (!toRecompute && recomputeBasedOn)
resultsOrArgsToKeepChanged = true;
if (successorRegion) {
argsToKeep[successorRegion][cast<BlockArgument>(input)
.getArgNumber()] =
argsToKeep[successorRegion]
[cast<BlockArgument>(input).getArgNumber()] |
recomputeBasedOn;
} else {
resultsToKeep[cast<OpResult>(input).getResultNumber()] =
resultsToKeep[cast<OpResult>(input).getResultNumber()] |
recomputeBasedOn;
}
}
}
// Recompute `resultsToKeep` and `argsToKeep` based on
// `terminatorOperandsToKeep`.
for (Region ®ion : regionBranchOp->getRegions()) {
if (region.empty())
continue;
Operation *terminator = region.front().getTerminator();
for (const RegionSuccessor &successor : getSuccessors(®ion)) {
Region *successorRegion = successor.getSuccessor();
for (auto [opOperand, input] :
llvm::zip(getForwardedOpOperands(successor, terminator),
successor.getSuccessorInputs())) {
bool recomputeBasedOn =
terminatorOperandsToKeep[region.back().getTerminator()]
[opOperand->getOperandNumber()];
bool toRecompute =
successorRegion
? argsToKeep[successorRegion]
[cast<BlockArgument>(input).getArgNumber()]
: resultsToKeep[cast<OpResult>(input).getResultNumber()];
if (!toRecompute && recomputeBasedOn)
resultsOrArgsToKeepChanged = true;
if (successorRegion) {
argsToKeep[successorRegion][cast<BlockArgument>(input)
.getArgNumber()] =
argsToKeep[successorRegion]
[cast<BlockArgument>(input).getArgNumber()] |
recomputeBasedOn;
} else {
resultsToKeep[cast<OpResult>(input).getResultNumber()] =
resultsToKeep[cast<OpResult>(input).getResultNumber()] |
recomputeBasedOn;
}
}
}
}
};
// Mark the values that we want to keep in `resultsToKeep`, `argsToKeep`,
// `operandsToKeep`, and `terminatorOperandsToKeep`.
auto markValuesToKeep =
[&](BitVector &resultsToKeep, DenseMap<Region *, BitVector> &argsToKeep,
BitVector &operandsToKeep,
DenseMap<Operation *, BitVector> &terminatorOperandsToKeep) {
bool resultsOrArgsToKeepChanged = true;
// We keep updating and recomputing the values until we reach a point
// where they stop changing.
while (resultsOrArgsToKeepChanged) {
// Update the operands that need to be kept.
updateOperandsOrTerminatorOperandsToKeep(operandsToKeep,
resultsToKeep, argsToKeep);
// Update the terminator operands that need to be kept.
for (Region ®ion : regionBranchOp->getRegions()) {
if (region.empty())
continue;
updateOperandsOrTerminatorOperandsToKeep(
terminatorOperandsToKeep[region.back().getTerminator()],
resultsToKeep, argsToKeep, ®ion);
}
// Recompute the results and arguments that need to be kept.
recomputeResultsAndArgsToKeep(
resultsToKeep, argsToKeep, operandsToKeep,
terminatorOperandsToKeep, resultsOrArgsToKeepChanged);
}
};
// Scenario 1. This is the only case where the entire `regionBranchOp`
// is removed. It will not happen in any other scenario. Note that in this
// case, a non-forwarded operand of `regionBranchOp` could be live/non-live.
// It could never be live because of this op but its liveness could have been
// attributed to something else.
// Do (1') and (2').
if (isMemoryEffectFree(regionBranchOp.getOperation()) &&
!hasLive(regionBranchOp->getResults(), nonLiveSet, la)) {
cl.operations.push_back(regionBranchOp.getOperation());
return;
}
// Scenario 2.
// At this point, we know that every non-forwarded operand of `regionBranchOp`
// is live.
// Stores the results of `regionBranchOp` that we want to keep.
BitVector resultsToKeep;
// Stores the mapping from regions of `regionBranchOp` to their arguments that
// we want to keep.
DenseMap<Region *, BitVector> argsToKeep;
// Stores the operands of `regionBranchOp` that we want to keep.
BitVector operandsToKeep;
// Stores the mapping from region terminators in `regionBranchOp` to their
// operands that we want to keep.
DenseMap<Operation *, BitVector> terminatorOperandsToKeep;
// Initializing the above variables...
// The live results of `regionBranchOp` definitely need to be kept.
markLiveResults(resultsToKeep);
// Similarly, the live arguments of the regions in `regionBranchOp` definitely
// need to be kept.
markLiveArgs(argsToKeep);
// The non-forwarded operands of `regionBranchOp` definitely need to be kept.
// A live forwarded operand can be removed but no non-forwarded operand can be
// removed since it "controls" the flow of data in this control flow op.
markNonForwardedOperands(operandsToKeep);
// Similarly, the non-forwarded terminator operands of the regions in
// `regionBranchOp` definitely need to be kept.
markNonForwardedReturnValues(terminatorOperandsToKeep);
// Mark the values (results, arguments, operands, and terminator operands)
// that we want to keep.
markValuesToKeep(resultsToKeep, argsToKeep, operandsToKeep,
terminatorOperandsToKeep);
// Do (1).
cl.operands.push_back({regionBranchOp, operandsToKeep.flip()});
// Do (2.a) and (2.b).
for (Region ®ion : regionBranchOp->getRegions()) {
if (region.empty())
continue;
BitVector argsToRemove = argsToKeep[®ion].flip();
cl.blocks.push_back({®ion.front(), argsToRemove});
collectNonLiveValues(nonLiveSet, region.front().getArguments(),
argsToRemove);
}
// Do (2.c).
for (Region ®ion : regionBranchOp->getRegions()) {
if (region.empty())
continue;
Operation *terminator = region.front().getTerminator();
cl.operands.push_back(
{terminator, terminatorOperandsToKeep[terminator].flip()});
}
// Do (3) and (4).
BitVector resultsToRemove = resultsToKeep.flip();
collectNonLiveValues(nonLiveSet, regionBranchOp.getOperation()->getResults(),
resultsToRemove);
cl.results.push_back({regionBranchOp.getOperation(), resultsToRemove});
}
/// Steps to process a `BranchOpInterface` operation:
/// Iterate through each successor block of `branchOp`.
/// (1) For each successor block, gather all operands from all successors.
/// (2) Fetch their associated liveness analysis data and collect for future
/// removal.
/// (3) Identify and collect the dead operands from the successor block
/// as well as their corresponding arguments.
static void processBranchOp(BranchOpInterface branchOp, RunLivenessAnalysis &la,
DenseSet<Value> &nonLiveSet,
RDVFinalCleanupList &cl) {
LDBG() << "Processing branch op: " << *branchOp;
unsigned numSuccessors = branchOp->getNumSuccessors();
for (unsigned succIdx = 0; succIdx < numSuccessors; ++succIdx) {
Block *successorBlock = branchOp->getSuccessor(succIdx);
// Do (1)
SuccessorOperands successorOperands =
branchOp.getSuccessorOperands(succIdx);
SmallVector<Value> operandValues;
for (unsigned operandIdx = 0; operandIdx < successorOperands.size();
++operandIdx) {
operandValues.push_back(successorOperands[operandIdx]);
}
// Do (2)
BitVector successorNonLive =
markLives(operandValues, nonLiveSet, la).flip();
collectNonLiveValues(nonLiveSet, successorBlock->getArguments(),
successorNonLive);
// Do (3)
cl.blocks.push_back({successorBlock, successorNonLive});
cl.successorOperands.push_back({branchOp, succIdx, successorNonLive});
}
}
/// Removes dead values collected in RDVFinalCleanupList.
/// To be run once when all dead values have been collected.
static void cleanUpDeadVals(RDVFinalCleanupList &list) {
// 1. Operations
for (auto &op : list.operations) {
op->dropAllUses();
op->erase();
}
// 2. Values
for (auto &v : list.values) {
v.dropAllUses();
}
// 3. Functions
for (auto &f : list.functions) {
// Some functions may not allow erasing arguments or results. These calls
// return failure in such cases without modifying the function, so it's okay
// to proceed.
(void)f.funcOp.eraseArguments(f.nonLiveArgs);
(void)f.funcOp.eraseResults(f.nonLiveRets);
}
// 4. Operands
for (OperationToCleanup &o : list.operands) {
if (o.op->getNumOperands() > 0)
o.op->eraseOperands(o.nonLive);
}
// 5. Results
for (auto &r : list.results) {
dropUsesAndEraseResults(r.op, r.nonLive);
}
// 6. Blocks
for (auto &b : list.blocks) {
// blocks that are accessed via multiple codepaths processed once
if (b.b->getNumArguments() != b.nonLiveArgs.size())
continue;
// it iterates backwards because erase invalidates all successor indexes
for (int i = b.nonLiveArgs.size() - 1; i >= 0; --i) {
if (!b.nonLiveArgs[i])
continue;
b.b->getArgument(i).dropAllUses();
b.b->eraseArgument(i);
}
}
// 7. Successor Operands
for (auto &op : list.successorOperands) {
SuccessorOperands successorOperands =
op.branch.getSuccessorOperands(op.successorIndex);
// blocks that are accessed via multiple codepaths processed once
if (successorOperands.size() != op.nonLiveOperands.size())
continue;
// it iterates backwards because erase invalidates all successor indexes
for (int i = successorOperands.size() - 1; i >= 0; --i) {
if (!op.nonLiveOperands[i])
continue;
successorOperands.erase(i);
}
}
}
struct RemoveDeadValues : public impl::RemoveDeadValuesBase<RemoveDeadValues> {
void runOnOperation() override;
};
} // namespace
void RemoveDeadValues::runOnOperation() {
auto &la = getAnalysis<RunLivenessAnalysis>();
Operation *module = getOperation();
// Tracks values eligible for erasure - complements liveness analysis to
// identify "droppable" values.
DenseSet<Value> deadVals;
// Maintains a list of Ops, values, branches, etc., slated for cleanup at the
// end of this pass.
RDVFinalCleanupList finalCleanupList;
module->walk([&](Operation *op) {
if (auto funcOp = dyn_cast<FunctionOpInterface>(op)) {
processFuncOp(funcOp, module, la, deadVals, finalCleanupList);
} else if (auto regionBranchOp = dyn_cast<RegionBranchOpInterface>(op)) {
processRegionBranchOp(regionBranchOp, la, deadVals, finalCleanupList);
} else if (auto branchOp = dyn_cast<BranchOpInterface>(op)) {
processBranchOp(branchOp, la, deadVals, finalCleanupList);
} else if (op->hasTrait<::mlir::OpTrait::IsTerminator>()) {
// Nothing to do here because this is a terminator op and it should be
// honored with respect to its parent
} else if (isa<CallOpInterface>(op)) {
// Nothing to do because this op is associated with a function op and gets
// cleaned when the latter is cleaned.
} else {
processSimpleOp(op, la, deadVals, finalCleanupList);
}
});
cleanUpDeadVals(finalCleanupList);
}
std::unique_ptr<Pass> mlir::createRemoveDeadValuesPass() {
return std::make_unique<RemoveDeadValues>();
}
|