//===- RemoveDeadValues.cpp - Remove Dead Values --------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // The goal of this pass is optimization (reducing runtime) by removing // unnecessary instructions. Unlike other passes that rely on local information // gathered from patterns to accomplish optimization, this pass uses a full // analysis of the IR, specifically, liveness analysis, and is thus more // powerful. // // Currently, this pass performs the following optimizations: // (A) Removes function arguments that are not live, // (B) Removes function return values that are not live across all callers of // the function, // (C) Removes unneccesary operands, results, region arguments, and region // terminator operands of region branch ops, and, // (D) Removes simple and region branch ops that have all non-live results and // don't affect memory in any way, // // iff // // the IR doesn't have any non-function symbol ops, non-call symbol user ops and // branch ops. // // Here, a "simple op" refers to an op that isn't a symbol op, symbol-user op, // region branch op, branch op, region branch terminator op, or return-like. // //===----------------------------------------------------------------------===// #include "mlir/Analysis/DataFlow/DeadCodeAnalysis.h" #include "mlir/Analysis/DataFlow/LivenessAnalysis.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/Dialect.h" #include "mlir/IR/IRMapping.h" #include "mlir/IR/OperationSupport.h" #include "mlir/IR/SymbolTable.h" #include "mlir/IR/Value.h" #include "mlir/IR/ValueRange.h" #include "mlir/IR/Visitors.h" #include "mlir/Interfaces/CallInterfaces.h" #include "mlir/Interfaces/ControlFlowInterfaces.h" #include "mlir/Interfaces/FunctionInterfaces.h" #include "mlir/Interfaces/SideEffectInterfaces.h" #include "mlir/Pass/Pass.h" #include "mlir/Support/LLVM.h" #include "mlir/Transforms/FoldUtils.h" #include "mlir/Transforms/Passes.h" #include "llvm/ADT/STLExtras.h" #include #include #include #include #include namespace mlir { #define GEN_PASS_DEF_REMOVEDEADVALUES #include "mlir/Transforms/Passes.h.inc" } // namespace mlir using namespace mlir; using namespace mlir::dataflow; //===----------------------------------------------------------------------===// // RemoveDeadValues Pass //===----------------------------------------------------------------------===// namespace { // Some helper functions... /// Return true iff at least one value in `values` is live, given the liveness /// information in `la`. static bool hasLive(ValueRange values, RunLivenessAnalysis &la) { for (Value value : values) { // If there is a null value, it implies that it was dropped during the // execution of this pass, implying that it was non-live. if (!value) continue; const Liveness *liveness = la.getLiveness(value); if (!liveness || liveness->isLive) return true; } return false; } /// Return a BitVector of size `values.size()` where its i-th bit is 1 iff the /// i-th value in `values` is live, given the liveness information in `la`. static BitVector markLives(ValueRange values, RunLivenessAnalysis &la) { BitVector lives(values.size(), true); for (auto [index, value] : llvm::enumerate(values)) { if (!value) { lives.reset(index); continue; } const Liveness *liveness = la.getLiveness(value); // It is important to note that when `liveness` is null, we can't tell if // `value` is live or not. So, the safe option is to consider it live. Also, // the execution of this pass might create new SSA values when erasing some // of the results of an op and we know that these new values are live // (because they weren't erased) and also their liveness is null because // liveness analysis ran before their creation. if (liveness && !liveness->isLive) lives.reset(index); } return lives; } /// Drop the uses of the i-th result of `op` and then erase it iff toErase[i] /// is 1. static void dropUsesAndEraseResults(Operation *op, BitVector toErase) { assert(op->getNumResults() == toErase.size() && "expected the number of results in `op` and the size of `toErase` to " "be the same"); std::vector newResultTypes; for (OpResult result : op->getResults()) if (!toErase[result.getResultNumber()]) newResultTypes.push_back(result.getType()); OpBuilder builder(op); builder.setInsertionPointAfter(op); OperationState state(op->getLoc(), op->getName().getStringRef(), op->getOperands(), newResultTypes, op->getAttrs()); for (unsigned i = 0, e = op->getNumRegions(); i < e; ++i) state.addRegion(); Operation *newOp = builder.create(state); for (const auto &[index, region] : llvm::enumerate(op->getRegions())) { Region &newRegion = newOp->getRegion(index); // Move all blocks of `region` into `newRegion`. Block *temp = new Block(); newRegion.push_back(temp); while (!region.empty()) region.front().moveBefore(temp); temp->erase(); } unsigned indexOfNextNewCallOpResultToReplace = 0; for (auto [index, result] : llvm::enumerate(op->getResults())) { assert(result && "expected result to be non-null"); if (toErase[index]) { result.dropAllUses(); } else { result.replaceAllUsesWith( newOp->getResult(indexOfNextNewCallOpResultToReplace++)); } } op->erase(); } /// Convert a list of `Operand`s to a list of `OpOperand`s. static SmallVector operandsToOpOperands(OperandRange operands) { OpOperand *values = operands.getBase(); SmallVector opOperands; for (unsigned i = 0, e = operands.size(); i < e; i++) opOperands.push_back(&values[i]); return opOperands; } /// Clean a simple op `op`, given the liveness analysis information in `la`. /// Here, cleaning means: /// (1) Dropping all its uses, AND /// (2) Erasing it /// iff it has no memory effects and none of its results are live. /// /// It is assumed that `op` is simple. Here, a simple op is one which isn't a /// symbol op, a symbol-user op, a region branch op, a branch op, a region /// branch terminator op, or return-like. static void cleanSimpleOp(Operation *op, RunLivenessAnalysis &la) { if (!isMemoryEffectFree(op) || hasLive(op->getResults(), la)) return; op->dropAllUses(); op->erase(); } /// Clean a function-like op `funcOp`, given the liveness information in `la` /// and the IR in `module`. Here, cleaning means: /// (1) Dropping the uses of its unnecessary (non-live) arguments, /// (2) Erasing these arguments, /// (3) Erasing their corresponding operands from its callers, /// (4) Erasing its unnecessary terminator operands (return values that are /// non-live across all callers), /// (5) Dropping the uses of these return values from its callers, AND /// (6) Erasing these return values /// iff it is not public or declaration. static void cleanFuncOp(FunctionOpInterface funcOp, Operation *module, RunLivenessAnalysis &la) { if (funcOp.isPublic() || funcOp.isDeclaration()) return; // Get the list of unnecessary (non-live) arguments in `nonLiveArgs`. SmallVector arguments(funcOp.getArguments()); BitVector nonLiveArgs = markLives(arguments, la); nonLiveArgs = nonLiveArgs.flip(); // Do (1). for (auto [index, arg] : llvm::enumerate(arguments)) if (arg && nonLiveArgs[index]) arg.dropAllUses(); // Do (2). funcOp.eraseArguments(nonLiveArgs); // Do (3). SymbolTable::UseRange uses = *funcOp.getSymbolUses(module); for (SymbolTable::SymbolUse use : uses) { Operation *callOp = use.getUser(); assert(isa(callOp) && "expected a call-like user"); // The number of operands in the call op may not match the number of // arguments in the func op. BitVector nonLiveCallOperands(callOp->getNumOperands(), false); SmallVector callOpOperands = operandsToOpOperands(cast(callOp).getArgOperands()); for (int index : nonLiveArgs.set_bits()) nonLiveCallOperands.set(callOpOperands[index]->getOperandNumber()); callOp->eraseOperands(nonLiveCallOperands); } // Get the list of unnecessary terminator operands (return values that are // non-live across all callers) in `nonLiveRets`. There is a very important // subtlety here. Unnecessary terminator operands are NOT the operands of the // terminator that are non-live. Instead, these are the return values of the // callers such that a given return value is non-live across all callers. Such // corresponding operands in the terminator could be live. An example to // demonstrate this: // func.func private @f(%arg0: memref) -> (i32, i32) { // %c0_i32 = arith.constant 0 : i32 // %0 = arith.addi %c0_i32, %c0_i32 : i32 // memref.store %0, %arg0[] : memref // return %c0_i32, %0 : i32, i32 // } // func.func @main(%arg0: i32, %arg1: memref) -> (i32) { // %1:2 = call @f(%arg1) : (memref) -> i32 // return %1#0 : i32 // } // Here, we can see that %1#1 is never used. It is non-live. Thus, @f doesn't // need to return %0. But, %0 is live. And, still, we want to stop it from // being returned, in order to optimize our IR. So, this demonstrates how we // can make our optimization strong by even removing a live return value (%0), // since it forwards only to non-live value(s) (%1#1). Operation *lastReturnOp = funcOp.back().getTerminator(); size_t numReturns = lastReturnOp->getNumOperands(); BitVector nonLiveRets(numReturns, true); for (SymbolTable::SymbolUse use : uses) { Operation *callOp = use.getUser(); assert(isa(callOp) && "expected a call-like user"); BitVector liveCallRets = markLives(callOp->getResults(), la); nonLiveRets &= liveCallRets.flip(); } // Do (4). // Note that in the absence of control flow ops forcing the control to go from // the entry (first) block to the other blocks, the control never reaches any // block other than the entry block, because every block has a terminator. for (Block &block : funcOp.getBlocks()) { Operation *returnOp = block.getTerminator(); if (returnOp && returnOp->getNumOperands() == numReturns) returnOp->eraseOperands(nonLiveRets); } funcOp.eraseResults(nonLiveRets); // Do (5) and (6). for (SymbolTable::SymbolUse use : uses) { Operation *callOp = use.getUser(); assert(isa(callOp) && "expected a call-like user"); dropUsesAndEraseResults(callOp, nonLiveRets); } } /// Clean a region branch op `regionBranchOp`, given the liveness information in /// `la`. Here, cleaning means: /// (1') Dropping all its uses, AND /// (2') Erasing it /// if it has no memory effects and none of its results are live, AND /// (1) Erasing its unnecessary operands (operands that are forwarded to /// unneccesary results and arguments), /// (2) Cleaning each of its regions, /// (3) Dropping the uses of its unnecessary results (results that are /// forwarded from unnecessary operands and terminator operands), AND /// (4) Erasing these results /// otherwise. /// Note that here, cleaning a region means: /// (2.a) Dropping the uses of its unnecessary arguments (arguments that are /// forwarded from unneccesary operands and terminator operands), /// (2.b) Erasing these arguments, AND /// (2.c) Erasing its unnecessary terminator operands (terminator operands /// that are forwarded to unneccesary results and arguments). /// It is important to note that values in this op flow from operands and /// terminator operands (successor operands) to arguments and results (successor /// inputs). static void cleanRegionBranchOp(RegionBranchOpInterface regionBranchOp, RunLivenessAnalysis &la) { // Mark live results of `regionBranchOp` in `liveResults`. auto markLiveResults = [&](BitVector &liveResults) { liveResults = markLives(regionBranchOp->getResults(), la); }; // Mark live arguments in the regions of `regionBranchOp` in `liveArgs`. auto markLiveArgs = [&](DenseMap &liveArgs) { for (Region ®ion : regionBranchOp->getRegions()) { SmallVector arguments(region.front().getArguments()); BitVector regionLiveArgs = markLives(arguments, la); liveArgs[®ion] = regionLiveArgs; } }; // Return the successors of `region` if the latter is not null. Else return // the successors of `regionBranchOp`. auto getSuccessors = [&](Region *region = nullptr) { auto point = region ? region : RegionBranchPoint::parent(); SmallVector operandAttributes(regionBranchOp->getNumOperands(), nullptr); SmallVector successors; regionBranchOp.getSuccessorRegions(point, successors); return successors; }; // Return the operands of `terminator` that are forwarded to `successor` if // the former is not null. Else return the operands of `regionBranchOp` // forwarded to `successor`. auto getForwardedOpOperands = [&](const RegionSuccessor &successor, Operation *terminator = nullptr) { OperandRange operands = terminator ? cast(terminator) .getSuccessorOperands(successor) : regionBranchOp.getEntrySuccessorOperands(successor); SmallVector opOperands = operandsToOpOperands(operands); return opOperands; }; // Mark the non-forwarded operands of `regionBranchOp` in // `nonForwardedOperands`. auto markNonForwardedOperands = [&](BitVector &nonForwardedOperands) { nonForwardedOperands.resize(regionBranchOp->getNumOperands(), true); for (const RegionSuccessor &successor : getSuccessors()) { for (OpOperand *opOperand : getForwardedOpOperands(successor)) nonForwardedOperands.reset(opOperand->getOperandNumber()); } }; // Mark the non-forwarded terminator operands of the various regions of // `regionBranchOp` in `nonForwardedRets`. auto markNonForwardedReturnValues = [&](DenseMap &nonForwardedRets) { for (Region ®ion : regionBranchOp->getRegions()) { Operation *terminator = region.front().getTerminator(); nonForwardedRets[terminator] = BitVector(terminator->getNumOperands(), true); for (const RegionSuccessor &successor : getSuccessors(®ion)) { for (OpOperand *opOperand : getForwardedOpOperands(successor, terminator)) nonForwardedRets[terminator].reset(opOperand->getOperandNumber()); } } }; // Update `valuesToKeep` (which is expected to correspond to operands or // terminator operands) based on `resultsToKeep` and `argsToKeep`, given // `region`. When `valuesToKeep` correspond to operands, `region` is null. // Else, `region` is the parent region of the terminator. auto updateOperandsOrTerminatorOperandsToKeep = [&](BitVector &valuesToKeep, BitVector &resultsToKeep, DenseMap &argsToKeep, Region *region = nullptr) { Operation *terminator = region ? region->front().getTerminator() : nullptr; for (const RegionSuccessor &successor : getSuccessors(region)) { Region *successorRegion = successor.getSuccessor(); for (auto [opOperand, input] : llvm::zip(getForwardedOpOperands(successor, terminator), successor.getSuccessorInputs())) { size_t operandNum = opOperand->getOperandNumber(); bool updateBasedOn = successorRegion ? argsToKeep[successorRegion] [cast(input).getArgNumber()] : resultsToKeep[cast(input).getResultNumber()]; valuesToKeep[operandNum] = valuesToKeep[operandNum] | updateBasedOn; } } }; // Recompute `resultsToKeep` and `argsToKeep` based on `operandsToKeep` and // `terminatorOperandsToKeep`. Store true in `resultsOrArgsToKeepChanged` if a // value is modified, else, false. auto recomputeResultsAndArgsToKeep = [&](BitVector &resultsToKeep, DenseMap &argsToKeep, BitVector &operandsToKeep, DenseMap &terminatorOperandsToKeep, bool &resultsOrArgsToKeepChanged) { resultsOrArgsToKeepChanged = false; // Recompute `resultsToKeep` and `argsToKeep` based on `operandsToKeep`. for (const RegionSuccessor &successor : getSuccessors()) { Region *successorRegion = successor.getSuccessor(); for (auto [opOperand, input] : llvm::zip(getForwardedOpOperands(successor), successor.getSuccessorInputs())) { bool recomputeBasedOn = operandsToKeep[opOperand->getOperandNumber()]; bool toRecompute = successorRegion ? argsToKeep[successorRegion] [cast(input).getArgNumber()] : resultsToKeep[cast(input).getResultNumber()]; if (!toRecompute && recomputeBasedOn) resultsOrArgsToKeepChanged = true; if (successorRegion) { argsToKeep[successorRegion][cast(input) .getArgNumber()] = argsToKeep[successorRegion] [cast(input).getArgNumber()] | recomputeBasedOn; } else { resultsToKeep[cast(input).getResultNumber()] = resultsToKeep[cast(input).getResultNumber()] | recomputeBasedOn; } } } // Recompute `resultsToKeep` and `argsToKeep` based on // `terminatorOperandsToKeep`. for (Region ®ion : regionBranchOp->getRegions()) { Operation *terminator = region.front().getTerminator(); for (const RegionSuccessor &successor : getSuccessors(®ion)) { Region *successorRegion = successor.getSuccessor(); for (auto [opOperand, input] : llvm::zip(getForwardedOpOperands(successor, terminator), successor.getSuccessorInputs())) { bool recomputeBasedOn = terminatorOperandsToKeep[region.back().getTerminator()] [opOperand->getOperandNumber()]; bool toRecompute = successorRegion ? argsToKeep[successorRegion] [cast(input).getArgNumber()] : resultsToKeep[cast(input).getResultNumber()]; if (!toRecompute && recomputeBasedOn) resultsOrArgsToKeepChanged = true; if (successorRegion) { argsToKeep[successorRegion][cast(input) .getArgNumber()] = argsToKeep[successorRegion] [cast(input).getArgNumber()] | recomputeBasedOn; } else { resultsToKeep[cast(input).getResultNumber()] = resultsToKeep[cast(input).getResultNumber()] | recomputeBasedOn; } } } } }; // Mark the values that we want to keep in `resultsToKeep`, `argsToKeep`, // `operandsToKeep`, and `terminatorOperandsToKeep`. auto markValuesToKeep = [&](BitVector &resultsToKeep, DenseMap &argsToKeep, BitVector &operandsToKeep, DenseMap &terminatorOperandsToKeep) { bool resultsOrArgsToKeepChanged = true; // We keep updating and recomputing the values until we reach a point // where they stop changing. while (resultsOrArgsToKeepChanged) { // Update the operands that need to be kept. updateOperandsOrTerminatorOperandsToKeep(operandsToKeep, resultsToKeep, argsToKeep); // Update the terminator operands that need to be kept. for (Region ®ion : regionBranchOp->getRegions()) { updateOperandsOrTerminatorOperandsToKeep( terminatorOperandsToKeep[region.back().getTerminator()], resultsToKeep, argsToKeep, ®ion); } // Recompute the results and arguments that need to be kept. recomputeResultsAndArgsToKeep( resultsToKeep, argsToKeep, operandsToKeep, terminatorOperandsToKeep, resultsOrArgsToKeepChanged); } }; // Do (1') and (2'). This is the only case where the entire `regionBranchOp` // is removed. It will not happen in any other scenario. Note that in this // case, a non-forwarded operand of `regionBranchOp` could be live/non-live. // It could never be live because of this op but its liveness could have been // attributed to something else. if (isMemoryEffectFree(regionBranchOp.getOperation()) && !hasLive(regionBranchOp->getResults(), la)) { regionBranchOp->dropAllUses(); regionBranchOp->erase(); return; } // At this point, we know that every non-forwarded operand of `regionBranchOp` // is live. // Stores the results of `regionBranchOp` that we want to keep. BitVector resultsToKeep; // Stores the mapping from regions of `regionBranchOp` to their arguments that // we want to keep. DenseMap argsToKeep; // Stores the operands of `regionBranchOp` that we want to keep. BitVector operandsToKeep; // Stores the mapping from region terminators in `regionBranchOp` to their // operands that we want to keep. DenseMap terminatorOperandsToKeep; // Initializing the above variables... // The live results of `regionBranchOp` definitely need to be kept. markLiveResults(resultsToKeep); // Similarly, the live arguments of the regions in `regionBranchOp` definitely // need to be kept. markLiveArgs(argsToKeep); // The non-forwarded operands of `regionBranchOp` definitely need to be kept. // A live forwarded operand can be removed but no non-forwarded operand can be // removed since it "controls" the flow of data in this control flow op. markNonForwardedOperands(operandsToKeep); // Similarly, the non-forwarded terminator operands of the regions in // `regionBranchOp` definitely need to be kept. markNonForwardedReturnValues(terminatorOperandsToKeep); // Mark the values (results, arguments, operands, and terminator operands) // that we want to keep. markValuesToKeep(resultsToKeep, argsToKeep, operandsToKeep, terminatorOperandsToKeep); // Do (1). regionBranchOp->eraseOperands(operandsToKeep.flip()); // Do (2.a) and (2.b). for (Region ®ion : regionBranchOp->getRegions()) { assert(!region.empty() && "expected a non-empty region in an op " "implementing `RegionBranchOpInterface`"); for (auto [index, arg] : llvm::enumerate(region.front().getArguments())) { if (argsToKeep[®ion][index]) continue; if (arg) arg.dropAllUses(); } region.front().eraseArguments(argsToKeep[®ion].flip()); } // Do (2.c). for (Region ®ion : regionBranchOp->getRegions()) { Operation *terminator = region.front().getTerminator(); terminator->eraseOperands(terminatorOperandsToKeep[terminator].flip()); } // Do (3) and (4). dropUsesAndEraseResults(regionBranchOp.getOperation(), resultsToKeep.flip()); } struct RemoveDeadValues : public impl::RemoveDeadValuesBase { void runOnOperation() override; }; } // namespace void RemoveDeadValues::runOnOperation() { auto &la = getAnalysis(); Operation *module = getOperation(); // The removal of non-live values is performed iff there are no branch ops, // all symbol ops present in the IR are function-like, and all symbol user ops // present in the IR are call-like. WalkResult acceptableIR = module->walk([&](Operation *op) { if (isa(op) || (isa(op) && !isa(op)) || (isa(op) && !isa(op))) { op->emitError() << "cannot optimize an IR with non-function symbol ops, " "non-call symbol user ops or branch ops\n"; return WalkResult::interrupt(); } return WalkResult::advance(); }); if (acceptableIR.wasInterrupted()) return; module->walk([&](Operation *op) { if (auto funcOp = dyn_cast(op)) { cleanFuncOp(funcOp, module, la); } else if (auto regionBranchOp = dyn_cast(op)) { cleanRegionBranchOp(regionBranchOp, la); } else if (op->hasTrait<::mlir::OpTrait::IsTerminator>()) { // Nothing to do here because this is a terminator op and it should be // honored with respect to its parent } else if (isa(op)) { // Nothing to do because this op is associated with a function op and gets // cleaned when the latter is cleaned. } else { cleanSimpleOp(op, la); } }); } std::unique_ptr mlir::createRemoveDeadValuesPass() { return std::make_unique(); }