aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/TargetParser/RISCVTargetParser.cpp
blob: 9957ec0c28d885efcbe500fcd9ee283ec40a0daa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
//===-- RISCVTargetParser.cpp - Parser for target features ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a target parser to recognise hardware features
// for RISC-V CPUs.
//
//===----------------------------------------------------------------------===//

#include "llvm/TargetParser/RISCVTargetParser.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/TargetParser/RISCVISAInfo.h"

namespace llvm {
namespace RISCV {

enum CPUKind : unsigned {
#define PROC(ENUM, NAME, DEFAULT_MARCH, FAST_SCALAR_UNALIGN,                   \
             FAST_VECTOR_UNALIGN, MVENDORID, MARCHID, MIMPID)                  \
  CK_##ENUM,
#define TUNE_PROC(ENUM, NAME) CK_##ENUM,
#include "llvm/TargetParser/RISCVTargetParserDef.inc"
};

constexpr CPUInfo RISCVCPUInfo[] = {
#define PROC(ENUM, NAME, DEFAULT_MARCH, FAST_SCALAR_UNALIGN,                   \
             FAST_VECTOR_UNALIGN, MVENDORID, MARCHID, MIMPID)                  \
  {                                                                            \
      NAME,                                                                    \
      DEFAULT_MARCH,                                                           \
      FAST_SCALAR_UNALIGN,                                                     \
      FAST_VECTOR_UNALIGN,                                                     \
      {MVENDORID, MARCHID, MIMPID},                                            \
  },
#include "llvm/TargetParser/RISCVTargetParserDef.inc"
};

static const CPUInfo *getCPUInfoByName(StringRef CPU) {
  for (auto &C : RISCVCPUInfo)
    if (C.Name == CPU)
      return &C;
  return nullptr;
}

bool hasFastScalarUnalignedAccess(StringRef CPU) {
  const CPUInfo *Info = getCPUInfoByName(CPU);
  return Info && Info->FastScalarUnalignedAccess;
}

bool hasFastVectorUnalignedAccess(StringRef CPU) {
  const CPUInfo *Info = getCPUInfoByName(CPU);
  return Info && Info->FastVectorUnalignedAccess;
}

bool hasValidCPUModel(StringRef CPU) { return getCPUModel(CPU).isValid(); }

CPUModel getCPUModel(StringRef CPU) {
  const CPUInfo *Info = getCPUInfoByName(CPU);
  if (!Info)
    return {0, 0, 0};
  return Info->Model;
}

StringRef getCPUNameFromCPUModel(const CPUModel &Model) {
  if (!Model.isValid())
    return "";

  for (auto &C : RISCVCPUInfo)
    if (C.Model == Model)
      return C.Name;
  return "";
}

bool parseCPU(StringRef CPU, bool IsRV64) {
  const CPUInfo *Info = getCPUInfoByName(CPU);

  if (!Info)
    return false;
  return Info->is64Bit() == IsRV64;
}

bool parseTuneCPU(StringRef TuneCPU, bool IsRV64) {
  std::optional<CPUKind> Kind =
      llvm::StringSwitch<std::optional<CPUKind>>(TuneCPU)
#define TUNE_PROC(ENUM, NAME) .Case(NAME, CK_##ENUM)
  #include "llvm/TargetParser/RISCVTargetParserDef.inc"
      .Default(std::nullopt);

  if (Kind.has_value())
    return true;

  // Fallback to parsing as a CPU.
  return parseCPU(TuneCPU, IsRV64);
}

StringRef getMArchFromMcpu(StringRef CPU) {
  const CPUInfo *Info = getCPUInfoByName(CPU);
  if (!Info)
    return "";
  return Info->DefaultMarch;
}

void fillValidCPUArchList(SmallVectorImpl<StringRef> &Values, bool IsRV64) {
  for (const auto &C : RISCVCPUInfo) {
    if (IsRV64 == C.is64Bit())
      Values.emplace_back(C.Name);
  }
}

void fillValidTuneCPUArchList(SmallVectorImpl<StringRef> &Values, bool IsRV64) {
  for (const auto &C : RISCVCPUInfo) {
    if (IsRV64 == C.is64Bit())
      Values.emplace_back(C.Name);
  }
#define TUNE_PROC(ENUM, NAME) Values.emplace_back(StringRef(NAME));
#include "llvm/TargetParser/RISCVTargetParserDef.inc"
}

// This function is currently used by IREE, so it's not dead code.
void getFeaturesForCPU(StringRef CPU,
                       SmallVectorImpl<std::string> &EnabledFeatures,
                       bool NeedPlus) {
  StringRef MarchFromCPU = llvm::RISCV::getMArchFromMcpu(CPU);
  if (MarchFromCPU == "")
    return;

  EnabledFeatures.clear();
  auto RII = RISCVISAInfo::parseArchString(
      MarchFromCPU, /* EnableExperimentalExtension */ true);

  if (llvm::errorToBool(RII.takeError()))
    return;

  std::vector<std::string> FeatStrings =
      (*RII)->toFeatures(/* AddAllExtensions */ false);
  for (const auto &F : FeatStrings)
    if (NeedPlus)
      EnabledFeatures.push_back(F);
    else
      EnabledFeatures.push_back(F.substr(1));
}

} // namespace RISCV

namespace RISCVVType {
// Encode VTYPE into the binary format used by the the VSETVLI instruction which
// is used by our MC layer representation.
//
// Bits | Name       | Description
// -----+------------+------------------------------------------------
// 7    | vma        | Vector mask agnostic
// 6    | vta        | Vector tail agnostic
// 5:3  | vsew[2:0]  | Standard element width (SEW) setting
// 2:0  | vlmul[2:0] | Vector register group multiplier (LMUL) setting
unsigned encodeVTYPE(VLMUL VLMul, unsigned SEW, bool TailAgnostic,
                     bool MaskAgnostic) {
  assert(isValidSEW(SEW) && "Invalid SEW");
  unsigned VLMulBits = static_cast<unsigned>(VLMul);
  unsigned VSEWBits = encodeSEW(SEW);
  unsigned VTypeI = (VSEWBits << 3) | (VLMulBits & 0x7);
  if (TailAgnostic)
    VTypeI |= 0x40;
  if (MaskAgnostic)
    VTypeI |= 0x80;

  return VTypeI;
}

unsigned encodeXSfmmVType(unsigned SEW, unsigned Widen, bool AltFmt) {
  assert(isValidSEW(SEW) && "Invalid SEW");
  assert((Widen == 1 || Widen == 2 || Widen == 4) && "Invalid Widen");
  unsigned VSEWBits = encodeSEW(SEW);
  unsigned TWiden = Log2_32(Widen) + 1;
  unsigned VTypeI = (VSEWBits << 3) | AltFmt << 8 | TWiden << 9;
  return VTypeI;
}

std::pair<unsigned, bool> decodeVLMUL(VLMUL VLMul) {
  switch (VLMul) {
  default:
    llvm_unreachable("Unexpected LMUL value!");
  case LMUL_1:
  case LMUL_2:
  case LMUL_4:
  case LMUL_8:
    return std::make_pair(1 << static_cast<unsigned>(VLMul), false);
  case LMUL_F2:
  case LMUL_F4:
  case LMUL_F8:
    return std::make_pair(1 << (8 - static_cast<unsigned>(VLMul)), true);
  }
}

void printVType(unsigned VType, raw_ostream &OS) {
  unsigned Sew = getSEW(VType);
  OS << "e" << Sew;

  unsigned LMul;
  bool Fractional;
  std::tie(LMul, Fractional) = decodeVLMUL(getVLMUL(VType));

  if (Fractional)
    OS << ", mf";
  else
    OS << ", m";
  OS << LMul;

  if (isTailAgnostic(VType))
    OS << ", ta";
  else
    OS << ", tu";

  if (isMaskAgnostic(VType))
    OS << ", ma";
  else
    OS << ", mu";
}

unsigned getSEWLMULRatio(unsigned SEW, VLMUL VLMul) {
  unsigned LMul;
  bool Fractional;
  std::tie(LMul, Fractional) = decodeVLMUL(VLMul);

  // Convert LMul to a fixed point value with 3 fractional bits.
  LMul = Fractional ? (8 / LMul) : (LMul * 8);

  assert(SEW >= 8 && "Unexpected SEW value");
  return (SEW * 8) / LMul;
}

std::optional<VLMUL> getSameRatioLMUL(unsigned SEW, VLMUL VLMul, unsigned EEW) {
  unsigned Ratio = RISCVVType::getSEWLMULRatio(SEW, VLMul);
  unsigned EMULFixedPoint = (EEW * 8) / Ratio;
  bool Fractional = EMULFixedPoint < 8;
  unsigned EMUL = Fractional ? 8 / EMULFixedPoint : EMULFixedPoint / 8;
  if (!isValidLMUL(EMUL, Fractional))
    return std::nullopt;
  return RISCVVType::encodeLMUL(EMUL, Fractional);
}

} // namespace RISCVVType

} // namespace llvm