//===-- RISCVTargetParser.cpp - Parser for target features ------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements a target parser to recognise hardware features // for RISC-V CPUs. // //===----------------------------------------------------------------------===// #include "llvm/TargetParser/RISCVTargetParser.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/TargetParser/RISCVISAInfo.h" namespace llvm { namespace RISCV { enum CPUKind : unsigned { #define PROC(ENUM, NAME, DEFAULT_MARCH, FAST_SCALAR_UNALIGN, \ FAST_VECTOR_UNALIGN, MVENDORID, MARCHID, MIMPID) \ CK_##ENUM, #define TUNE_PROC(ENUM, NAME) CK_##ENUM, #include "llvm/TargetParser/RISCVTargetParserDef.inc" }; constexpr CPUInfo RISCVCPUInfo[] = { #define PROC(ENUM, NAME, DEFAULT_MARCH, FAST_SCALAR_UNALIGN, \ FAST_VECTOR_UNALIGN, MVENDORID, MARCHID, MIMPID) \ { \ NAME, \ DEFAULT_MARCH, \ FAST_SCALAR_UNALIGN, \ FAST_VECTOR_UNALIGN, \ {MVENDORID, MARCHID, MIMPID}, \ }, #include "llvm/TargetParser/RISCVTargetParserDef.inc" }; static const CPUInfo *getCPUInfoByName(StringRef CPU) { for (auto &C : RISCVCPUInfo) if (C.Name == CPU) return &C; return nullptr; } bool hasFastScalarUnalignedAccess(StringRef CPU) { const CPUInfo *Info = getCPUInfoByName(CPU); return Info && Info->FastScalarUnalignedAccess; } bool hasFastVectorUnalignedAccess(StringRef CPU) { const CPUInfo *Info = getCPUInfoByName(CPU); return Info && Info->FastVectorUnalignedAccess; } bool hasValidCPUModel(StringRef CPU) { return getCPUModel(CPU).isValid(); } CPUModel getCPUModel(StringRef CPU) { const CPUInfo *Info = getCPUInfoByName(CPU); if (!Info) return {0, 0, 0}; return Info->Model; } StringRef getCPUNameFromCPUModel(const CPUModel &Model) { if (!Model.isValid()) return ""; for (auto &C : RISCVCPUInfo) if (C.Model == Model) return C.Name; return ""; } bool parseCPU(StringRef CPU, bool IsRV64) { const CPUInfo *Info = getCPUInfoByName(CPU); if (!Info) return false; return Info->is64Bit() == IsRV64; } bool parseTuneCPU(StringRef TuneCPU, bool IsRV64) { std::optional Kind = llvm::StringSwitch>(TuneCPU) #define TUNE_PROC(ENUM, NAME) .Case(NAME, CK_##ENUM) #include "llvm/TargetParser/RISCVTargetParserDef.inc" .Default(std::nullopt); if (Kind.has_value()) return true; // Fallback to parsing as a CPU. return parseCPU(TuneCPU, IsRV64); } StringRef getMArchFromMcpu(StringRef CPU) { const CPUInfo *Info = getCPUInfoByName(CPU); if (!Info) return ""; return Info->DefaultMarch; } void fillValidCPUArchList(SmallVectorImpl &Values, bool IsRV64) { for (const auto &C : RISCVCPUInfo) { if (IsRV64 == C.is64Bit()) Values.emplace_back(C.Name); } } void fillValidTuneCPUArchList(SmallVectorImpl &Values, bool IsRV64) { for (const auto &C : RISCVCPUInfo) { if (IsRV64 == C.is64Bit()) Values.emplace_back(C.Name); } #define TUNE_PROC(ENUM, NAME) Values.emplace_back(StringRef(NAME)); #include "llvm/TargetParser/RISCVTargetParserDef.inc" } // This function is currently used by IREE, so it's not dead code. void getFeaturesForCPU(StringRef CPU, SmallVectorImpl &EnabledFeatures, bool NeedPlus) { StringRef MarchFromCPU = llvm::RISCV::getMArchFromMcpu(CPU); if (MarchFromCPU == "") return; EnabledFeatures.clear(); auto RII = RISCVISAInfo::parseArchString( MarchFromCPU, /* EnableExperimentalExtension */ true); if (llvm::errorToBool(RII.takeError())) return; std::vector FeatStrings = (*RII)->toFeatures(/* AddAllExtensions */ false); for (const auto &F : FeatStrings) if (NeedPlus) EnabledFeatures.push_back(F); else EnabledFeatures.push_back(F.substr(1)); } } // namespace RISCV namespace RISCVVType { // Encode VTYPE into the binary format used by the the VSETVLI instruction which // is used by our MC layer representation. // // Bits | Name | Description // -----+------------+------------------------------------------------ // 7 | vma | Vector mask agnostic // 6 | vta | Vector tail agnostic // 5:3 | vsew[2:0] | Standard element width (SEW) setting // 2:0 | vlmul[2:0] | Vector register group multiplier (LMUL) setting unsigned encodeVTYPE(VLMUL VLMul, unsigned SEW, bool TailAgnostic, bool MaskAgnostic) { assert(isValidSEW(SEW) && "Invalid SEW"); unsigned VLMulBits = static_cast(VLMul); unsigned VSEWBits = encodeSEW(SEW); unsigned VTypeI = (VSEWBits << 3) | (VLMulBits & 0x7); if (TailAgnostic) VTypeI |= 0x40; if (MaskAgnostic) VTypeI |= 0x80; return VTypeI; } unsigned encodeXSfmmVType(unsigned SEW, unsigned Widen, bool AltFmt) { assert(isValidSEW(SEW) && "Invalid SEW"); assert((Widen == 1 || Widen == 2 || Widen == 4) && "Invalid Widen"); unsigned VSEWBits = encodeSEW(SEW); unsigned TWiden = Log2_32(Widen) + 1; unsigned VTypeI = (VSEWBits << 3) | AltFmt << 8 | TWiden << 9; return VTypeI; } std::pair decodeVLMUL(VLMUL VLMul) { switch (VLMul) { default: llvm_unreachable("Unexpected LMUL value!"); case LMUL_1: case LMUL_2: case LMUL_4: case LMUL_8: return std::make_pair(1 << static_cast(VLMul), false); case LMUL_F2: case LMUL_F4: case LMUL_F8: return std::make_pair(1 << (8 - static_cast(VLMul)), true); } } void printVType(unsigned VType, raw_ostream &OS) { unsigned Sew = getSEW(VType); OS << "e" << Sew; unsigned LMul; bool Fractional; std::tie(LMul, Fractional) = decodeVLMUL(getVLMUL(VType)); if (Fractional) OS << ", mf"; else OS << ", m"; OS << LMul; if (isTailAgnostic(VType)) OS << ", ta"; else OS << ", tu"; if (isMaskAgnostic(VType)) OS << ", ma"; else OS << ", mu"; } unsigned getSEWLMULRatio(unsigned SEW, VLMUL VLMul) { unsigned LMul; bool Fractional; std::tie(LMul, Fractional) = decodeVLMUL(VLMul); // Convert LMul to a fixed point value with 3 fractional bits. LMul = Fractional ? (8 / LMul) : (LMul * 8); assert(SEW >= 8 && "Unexpected SEW value"); return (SEW * 8) / LMul; } std::optional getSameRatioLMUL(unsigned SEW, VLMUL VLMul, unsigned EEW) { unsigned Ratio = RISCVVType::getSEWLMULRatio(SEW, VLMul); unsigned EMULFixedPoint = (EEW * 8) / Ratio; bool Fractional = EMULFixedPoint < 8; unsigned EMUL = Fractional ? 8 / EMULFixedPoint : EMULFixedPoint / 8; if (!isValidLMUL(EMUL, Fractional)) return std::nullopt; return RISCVVType::encodeLMUL(EMUL, Fractional); } } // namespace RISCVVType } // namespace llvm