1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
|
//===------ LeonPasses.cpp - Define passes specific to LEON ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//
//===----------------------------------------------------------------------===//
#include "LeonPasses.h"
#include "SparcSubtarget.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
char ErrataWorkaround::ID = 0;
ErrataWorkaround::ErrataWorkaround() : MachineFunctionPass(ID) {
initializeErrataWorkaroundPass(*PassRegistry::getPassRegistry());
}
INITIALIZE_PASS(ErrataWorkaround, "errata-workaround", "Errata workaround pass",
false, false)
// Move iterator to the next instruction in the function, ignoring
// meta instructions and inline assembly. Returns false when reaching
// the end of the function.
bool ErrataWorkaround::moveNext(MachineBasicBlock::iterator &I) {
MachineBasicBlock *MBB = I->getParent();
do {
I++;
while (I == MBB->end()) {
if (MBB->getFallThrough() == nullptr)
return false;
MBB = MBB->getFallThrough();
I = MBB->begin();
}
} while (I->isMetaInstruction() || I->isInlineAsm());
return true;
}
void ErrataWorkaround::insertNop(MachineBasicBlock::iterator I) {
BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(SP::NOP));
}
bool ErrataWorkaround::isFloat(MachineBasicBlock::iterator I) {
if (I->getNumOperands() == 0)
return false;
if (!I->getOperand(0).isReg())
return false;
unsigned reg = I->getOperand(0).getReg();
if (!SP::FPRegsRegClass.contains(reg) && !SP::DFPRegsRegClass.contains(reg))
return false;
return true;
}
bool ErrataWorkaround::isDivSqrt(MachineBasicBlock::iterator I) {
switch (I->getOpcode()) {
case SP::FDIVS:
case SP::FDIVD:
case SP::FSQRTS:
case SP::FSQRTD:
return true;
}
return false;
}
// Prevents the following code sequence from being generated:
// (stb/sth/st/stf) -> (single non-store/load instruction) -> (any store)
// If the sequence is detected a NOP instruction is inserted after
// the first store instruction.
bool ErrataWorkaround::checkSeqTN0009A(MachineBasicBlock::iterator I) {
switch (I->getOpcode()) {
case SP::STrr:
case SP::STri:
case SP::STBrr:
case SP::STBri:
case SP::STHrr:
case SP::STHri:
case SP::STFrr:
case SP::STFri:
break;
default:
return false;
}
MachineBasicBlock::iterator MI = I;
if (!moveNext(MI))
return false;
if (MI->mayStore() || MI->mayLoad())
return false;
MachineBasicBlock::iterator PatchHere = MI;
if (!moveNext(MI))
return false;
if (!MI->mayStore())
return false;
insertNop(PatchHere);
return true;
}
// Prevents the following code sequence from being generated:
// (std/stdf) -> (any store)
// If the sequence is detected a NOP instruction is inserted after
// the first store instruction.
bool ErrataWorkaround::checkSeqTN0009B(MachineBasicBlock::iterator I) {
switch (I->getOpcode()) {
case SP::STDrr:
case SP::STDri:
case SP::STDFrr:
case SP::STDFri:
break;
default:
return false;
}
MachineBasicBlock::iterator MI = I;
if (!moveNext(MI))
return false;
if (!MI->mayStore())
return false;
insertNop(MI);
return true;
}
// Insert a NOP at branch target if load in delay slot and atomic
// instruction at branch target. Also insert a NOP between load
// instruction and atomic instruction (swap or casa).
bool ErrataWorkaround::checkSeqTN0010(MachineBasicBlock::iterator I) {
// Check for load instruction or branch bundled with load instruction
if (!I->mayLoad())
return false;
// Check for branch to atomic instruction with load in delay slot
if (I->isBranch()) {
MachineBasicBlock *TargetMBB = I->getOperand(0).getMBB();
MachineBasicBlock::iterator MI = TargetMBB->begin();
while (MI != TargetMBB->end() && MI->isMetaInstruction())
MI++;
if (MI == TargetMBB->end())
return false;
switch (MI->getOpcode()) {
case SP::SWAPrr:
case SP::SWAPri:
case SP::CASArr:
insertNop(MI);
break;
default:
break;
}
}
// Check for load followed by atomic instruction
MachineBasicBlock::iterator MI = I;
if (!moveNext(MI))
return false;
switch (MI->getOpcode()) {
case SP::SWAPrr:
case SP::SWAPri:
case SP::CASArr:
break;
default:
return false;
}
insertNop(MI);
return true;
}
// Do not allow functions to begin with an atomic instruction
bool ErrataWorkaround::checkSeqTN0010First(MachineBasicBlock &MBB) {
MachineBasicBlock::iterator I = MBB.begin();
while (I != MBB.end() && I->isMetaInstruction())
I++;
switch (I->getOpcode()) {
case SP::SWAPrr:
case SP::SWAPri:
case SP::CASArr:
break;
default:
return false;
}
insertNop(I);
return true;
}
// Inserts a NOP instruction at the target of an integer branch if the
// target is a floating-point instruction or floating-point branch.
bool ErrataWorkaround::checkSeqTN0012(MachineBasicBlock::iterator I) {
if (I->getOpcode() != SP::BCOND && I->getOpcode() != SP::BCONDA)
return false;
MachineBasicBlock *TargetMBB = I->getOperand(0).getMBB();
MachineBasicBlock::iterator MI = TargetMBB->begin();
while (MI != TargetMBB->end() && MI->isMetaInstruction())
MI++;
if (MI == TargetMBB->end())
return false;
if (!isFloat(MI) && MI->getOpcode() != SP::FBCOND)
return false;
insertNop(MI);
return true;
}
// Prevents the following code sequence from being generated:
// (div/sqrt) -> (2 to 3 floating-point operations or loads) -> (div/sqrt)
// If the sequence is detected one or two NOP instruction are inserted after
// the first div/sqrt instruction. No NOPs are inserted if one of the floating-
// point instructions in the middle of the sequence is a (div/sqrt), or if
// they have dependency on the destination register of the first (div/sqrt).
//
// The function also prevents the following code sequence from being generated,
// (div/sqrt) -> (branch), by inserting a NOP instruction after the (div/sqrt).
bool ErrataWorkaround::checkSeqTN0013(MachineBasicBlock::iterator I) {
if (!isDivSqrt(I))
return false;
unsigned dstReg = I->getOperand(0).getReg();
MachineBasicBlock::iterator MI = I;
if (!moveNext(MI))
return false;
if (MI->isBranch()) {
insertNop(MI);
return true;
}
MachineBasicBlock::iterator PatchHere = MI;
unsigned fpFound = 0;
for (unsigned i = 0; i < 4; i++) {
if (!isFloat(MI)) {
if (!moveNext(MI))
return false;
continue;
}
if (MI->readsRegister(dstReg, TRI))
return false;
if (isDivSqrt(MI)) {
if (i < 2)
return false;
if (fpFound < 2)
return false;
insertNop(PatchHere);
if (i == 2)
insertNop(PatchHere);
return true;
}
fpFound++;
if (!moveNext(MI))
return false;
}
return false;
}
bool ErrataWorkaround::runOnMachineFunction(MachineFunction &MF) {
bool Changed = false;
ST = &MF.getSubtarget<SparcSubtarget>();
if (!(ST->fixTN0009() || ST->fixTN0010() || ST->fixTN0012() ||
ST->fixTN0013()))
return false;
TII = ST->getInstrInfo();
TRI = ST->getRegisterInfo();
if (ST->fixTN0010())
Changed |= checkSeqTN0010First(MF.front());
for (auto &MBB : MF) {
for (auto &I : MBB) {
if (ST->fixTN0009()) {
Changed |= checkSeqTN0009A(I);
Changed |= checkSeqTN0009B(I);
}
if (ST->fixTN0010())
Changed |= checkSeqTN0010(I);
if (ST->fixTN0012())
Changed |= checkSeqTN0012(I);
if (ST->fixTN0013())
Changed |= checkSeqTN0013(I);
}
}
return Changed;
}
LEONMachineFunctionPass::LEONMachineFunctionPass(char &ID)
: MachineFunctionPass(ID) {}
//*****************************************************************************
//**** InsertNOPLoad pass
//*****************************************************************************
// This pass fixes the incorrectly working Load instructions that exists for
// some earlier versions of the LEON processor line. NOP instructions must
// be inserted after the load instruction to ensure that the Load instruction
// behaves as expected for these processors.
//
// This pass inserts a NOP after any LD or LDF instruction.
//
char InsertNOPLoad::ID = 0;
InsertNOPLoad::InsertNOPLoad() : LEONMachineFunctionPass(ID) {}
bool InsertNOPLoad::runOnMachineFunction(MachineFunction &MF) {
Subtarget = &MF.getSubtarget<SparcSubtarget>();
if (!Subtarget->insertNOPLoad())
return false;
const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
DebugLoc DL = DebugLoc();
bool Modified = false;
for (MachineBasicBlock &MBB : MF) {
for (auto MBBI = MBB.begin(), E = MBB.end(); MBBI != E; ++MBBI) {
MachineInstr &MI = *MBBI;
unsigned Opcode = MI.getOpcode();
if (Opcode >= SP::LDDArr && Opcode <= SP::LDrr) {
MachineBasicBlock::iterator NMBBI = std::next(MBBI);
BuildMI(MBB, NMBBI, DL, TII.get(SP::NOP));
Modified = true;
}
}
}
return Modified;
}
//*****************************************************************************
//**** DetectRoundChange pass
//*****************************************************************************
// To prevent any explicit change of the default rounding mode, this pass
// detects any call of the fesetround function.
// A warning is generated to ensure the user knows this has happened.
//
// Detects an erratum in UT699 LEON 3 processor
char DetectRoundChange::ID = 0;
DetectRoundChange::DetectRoundChange() : LEONMachineFunctionPass(ID) {}
bool DetectRoundChange::runOnMachineFunction(MachineFunction &MF) {
Subtarget = &MF.getSubtarget<SparcSubtarget>();
if (!Subtarget->detectRoundChange())
return false;
bool Modified = false;
for (MachineBasicBlock &MBB : MF) {
for (MachineInstr &MI : MBB) {
unsigned Opcode = MI.getOpcode();
if (Opcode == SP::CALL && MI.getNumOperands() > 0) {
MachineOperand &MO = MI.getOperand(0);
if (MO.isGlobal()) {
StringRef FuncName = MO.getGlobal()->getName();
if (FuncName.compare_insensitive("fesetround") == 0) {
errs() << "Error: You are using the detectroundchange "
"option to detect rounding changes that will "
"cause LEON errata. The only way to fix this "
"is to remove the call to fesetround from "
"the source code.\n";
}
}
}
}
}
return Modified;
}
//*****************************************************************************
//**** FixAllFDIVSQRT pass
//*****************************************************************************
// This pass fixes the incorrectly working FDIVx and FSQRTx instructions that
// exist for some earlier versions of the LEON processor line. Five NOP
// instructions need to be inserted after these instructions to ensure the
// correct result is placed in the destination registers before they are used.
//
// This pass implements two fixes:
// 1) fixing the FSQRTS and FSQRTD instructions.
// 2) fixing the FDIVS and FDIVD instructions.
//
// FSQRTS and FDIVS are converted to FDIVD and FSQRTD respectively earlier in
// the pipeline when this option is enabled, so this pass needs only to deal
// with the changes that still need implementing for the "double" versions
// of these instructions.
//
char FixAllFDIVSQRT::ID = 0;
FixAllFDIVSQRT::FixAllFDIVSQRT() : LEONMachineFunctionPass(ID) {}
bool FixAllFDIVSQRT::runOnMachineFunction(MachineFunction &MF) {
Subtarget = &MF.getSubtarget<SparcSubtarget>();
if (!Subtarget->fixAllFDIVSQRT())
return false;
const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
DebugLoc DL = DebugLoc();
bool Modified = false;
for (MachineBasicBlock &MBB : MF) {
for (auto MBBI = MBB.begin(), E = MBB.end(); MBBI != E; ++MBBI) {
MachineInstr &MI = *MBBI;
unsigned Opcode = MI.getOpcode();
// Note: FDIVS and FSQRTS cannot be generated when this erratum fix is
// switched on so we don't need to check for them here. They will
// already have been converted to FSQRTD or FDIVD earlier in the
// pipeline.
if (Opcode == SP::FSQRTD || Opcode == SP::FDIVD) {
for (int InsertedCount = 0; InsertedCount < 5; InsertedCount++)
BuildMI(MBB, MBBI, DL, TII.get(SP::NOP));
MachineBasicBlock::iterator NMBBI = std::next(MBBI);
for (int InsertedCount = 0; InsertedCount < 28; InsertedCount++)
BuildMI(MBB, NMBBI, DL, TII.get(SP::NOP));
Modified = true;
}
}
}
return Modified;
}
|