//===------ LeonPasses.cpp - Define passes specific to LEON ---------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // //===----------------------------------------------------------------------===// #include "LeonPasses.h" #include "SparcSubtarget.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; char ErrataWorkaround::ID = 0; ErrataWorkaround::ErrataWorkaround() : MachineFunctionPass(ID) { initializeErrataWorkaroundPass(*PassRegistry::getPassRegistry()); } INITIALIZE_PASS(ErrataWorkaround, "errata-workaround", "Errata workaround pass", false, false) // Move iterator to the next instruction in the function, ignoring // meta instructions and inline assembly. Returns false when reaching // the end of the function. bool ErrataWorkaround::moveNext(MachineBasicBlock::iterator &I) { MachineBasicBlock *MBB = I->getParent(); do { I++; while (I == MBB->end()) { if (MBB->getFallThrough() == nullptr) return false; MBB = MBB->getFallThrough(); I = MBB->begin(); } } while (I->isMetaInstruction() || I->isInlineAsm()); return true; } void ErrataWorkaround::insertNop(MachineBasicBlock::iterator I) { BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(SP::NOP)); } bool ErrataWorkaround::isFloat(MachineBasicBlock::iterator I) { if (I->getNumOperands() == 0) return false; if (!I->getOperand(0).isReg()) return false; unsigned reg = I->getOperand(0).getReg(); if (!SP::FPRegsRegClass.contains(reg) && !SP::DFPRegsRegClass.contains(reg)) return false; return true; } bool ErrataWorkaround::isDivSqrt(MachineBasicBlock::iterator I) { switch (I->getOpcode()) { case SP::FDIVS: case SP::FDIVD: case SP::FSQRTS: case SP::FSQRTD: return true; } return false; } // Prevents the following code sequence from being generated: // (stb/sth/st/stf) -> (single non-store/load instruction) -> (any store) // If the sequence is detected a NOP instruction is inserted after // the first store instruction. bool ErrataWorkaround::checkSeqTN0009A(MachineBasicBlock::iterator I) { switch (I->getOpcode()) { case SP::STrr: case SP::STri: case SP::STBrr: case SP::STBri: case SP::STHrr: case SP::STHri: case SP::STFrr: case SP::STFri: break; default: return false; } MachineBasicBlock::iterator MI = I; if (!moveNext(MI)) return false; if (MI->mayStore() || MI->mayLoad()) return false; MachineBasicBlock::iterator PatchHere = MI; if (!moveNext(MI)) return false; if (!MI->mayStore()) return false; insertNop(PatchHere); return true; } // Prevents the following code sequence from being generated: // (std/stdf) -> (any store) // If the sequence is detected a NOP instruction is inserted after // the first store instruction. bool ErrataWorkaround::checkSeqTN0009B(MachineBasicBlock::iterator I) { switch (I->getOpcode()) { case SP::STDrr: case SP::STDri: case SP::STDFrr: case SP::STDFri: break; default: return false; } MachineBasicBlock::iterator MI = I; if (!moveNext(MI)) return false; if (!MI->mayStore()) return false; insertNop(MI); return true; } // Insert a NOP at branch target if load in delay slot and atomic // instruction at branch target. Also insert a NOP between load // instruction and atomic instruction (swap or casa). bool ErrataWorkaround::checkSeqTN0010(MachineBasicBlock::iterator I) { // Check for load instruction or branch bundled with load instruction if (!I->mayLoad()) return false; // Check for branch to atomic instruction with load in delay slot if (I->isBranch()) { MachineBasicBlock *TargetMBB = I->getOperand(0).getMBB(); MachineBasicBlock::iterator MI = TargetMBB->begin(); while (MI != TargetMBB->end() && MI->isMetaInstruction()) MI++; if (MI == TargetMBB->end()) return false; switch (MI->getOpcode()) { case SP::SWAPrr: case SP::SWAPri: case SP::CASArr: insertNop(MI); break; default: break; } } // Check for load followed by atomic instruction MachineBasicBlock::iterator MI = I; if (!moveNext(MI)) return false; switch (MI->getOpcode()) { case SP::SWAPrr: case SP::SWAPri: case SP::CASArr: break; default: return false; } insertNop(MI); return true; } // Do not allow functions to begin with an atomic instruction bool ErrataWorkaround::checkSeqTN0010First(MachineBasicBlock &MBB) { MachineBasicBlock::iterator I = MBB.begin(); while (I != MBB.end() && I->isMetaInstruction()) I++; switch (I->getOpcode()) { case SP::SWAPrr: case SP::SWAPri: case SP::CASArr: break; default: return false; } insertNop(I); return true; } // Inserts a NOP instruction at the target of an integer branch if the // target is a floating-point instruction or floating-point branch. bool ErrataWorkaround::checkSeqTN0012(MachineBasicBlock::iterator I) { if (I->getOpcode() != SP::BCOND && I->getOpcode() != SP::BCONDA) return false; MachineBasicBlock *TargetMBB = I->getOperand(0).getMBB(); MachineBasicBlock::iterator MI = TargetMBB->begin(); while (MI != TargetMBB->end() && MI->isMetaInstruction()) MI++; if (MI == TargetMBB->end()) return false; if (!isFloat(MI) && MI->getOpcode() != SP::FBCOND) return false; insertNop(MI); return true; } // Prevents the following code sequence from being generated: // (div/sqrt) -> (2 to 3 floating-point operations or loads) -> (div/sqrt) // If the sequence is detected one or two NOP instruction are inserted after // the first div/sqrt instruction. No NOPs are inserted if one of the floating- // point instructions in the middle of the sequence is a (div/sqrt), or if // they have dependency on the destination register of the first (div/sqrt). // // The function also prevents the following code sequence from being generated, // (div/sqrt) -> (branch), by inserting a NOP instruction after the (div/sqrt). bool ErrataWorkaround::checkSeqTN0013(MachineBasicBlock::iterator I) { if (!isDivSqrt(I)) return false; unsigned dstReg = I->getOperand(0).getReg(); MachineBasicBlock::iterator MI = I; if (!moveNext(MI)) return false; if (MI->isBranch()) { insertNop(MI); return true; } MachineBasicBlock::iterator PatchHere = MI; unsigned fpFound = 0; for (unsigned i = 0; i < 4; i++) { if (!isFloat(MI)) { if (!moveNext(MI)) return false; continue; } if (MI->readsRegister(dstReg, TRI)) return false; if (isDivSqrt(MI)) { if (i < 2) return false; if (fpFound < 2) return false; insertNop(PatchHere); if (i == 2) insertNop(PatchHere); return true; } fpFound++; if (!moveNext(MI)) return false; } return false; } bool ErrataWorkaround::runOnMachineFunction(MachineFunction &MF) { bool Changed = false; ST = &MF.getSubtarget(); if (!(ST->fixTN0009() || ST->fixTN0010() || ST->fixTN0012() || ST->fixTN0013())) return false; TII = ST->getInstrInfo(); TRI = ST->getRegisterInfo(); if (ST->fixTN0010()) Changed |= checkSeqTN0010First(MF.front()); for (auto &MBB : MF) { for (auto &I : MBB) { if (ST->fixTN0009()) { Changed |= checkSeqTN0009A(I); Changed |= checkSeqTN0009B(I); } if (ST->fixTN0010()) Changed |= checkSeqTN0010(I); if (ST->fixTN0012()) Changed |= checkSeqTN0012(I); if (ST->fixTN0013()) Changed |= checkSeqTN0013(I); } } return Changed; } LEONMachineFunctionPass::LEONMachineFunctionPass(char &ID) : MachineFunctionPass(ID) {} //***************************************************************************** //**** InsertNOPLoad pass //***************************************************************************** // This pass fixes the incorrectly working Load instructions that exists for // some earlier versions of the LEON processor line. NOP instructions must // be inserted after the load instruction to ensure that the Load instruction // behaves as expected for these processors. // // This pass inserts a NOP after any LD or LDF instruction. // char InsertNOPLoad::ID = 0; InsertNOPLoad::InsertNOPLoad() : LEONMachineFunctionPass(ID) {} bool InsertNOPLoad::runOnMachineFunction(MachineFunction &MF) { Subtarget = &MF.getSubtarget(); if (!Subtarget->insertNOPLoad()) return false; const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); DebugLoc DL = DebugLoc(); bool Modified = false; for (MachineBasicBlock &MBB : MF) { for (auto MBBI = MBB.begin(), E = MBB.end(); MBBI != E; ++MBBI) { MachineInstr &MI = *MBBI; unsigned Opcode = MI.getOpcode(); if (Opcode >= SP::LDDArr && Opcode <= SP::LDrr) { MachineBasicBlock::iterator NMBBI = std::next(MBBI); BuildMI(MBB, NMBBI, DL, TII.get(SP::NOP)); Modified = true; } } } return Modified; } //***************************************************************************** //**** DetectRoundChange pass //***************************************************************************** // To prevent any explicit change of the default rounding mode, this pass // detects any call of the fesetround function. // A warning is generated to ensure the user knows this has happened. // // Detects an erratum in UT699 LEON 3 processor char DetectRoundChange::ID = 0; DetectRoundChange::DetectRoundChange() : LEONMachineFunctionPass(ID) {} bool DetectRoundChange::runOnMachineFunction(MachineFunction &MF) { Subtarget = &MF.getSubtarget(); if (!Subtarget->detectRoundChange()) return false; bool Modified = false; for (MachineBasicBlock &MBB : MF) { for (MachineInstr &MI : MBB) { unsigned Opcode = MI.getOpcode(); if (Opcode == SP::CALL && MI.getNumOperands() > 0) { MachineOperand &MO = MI.getOperand(0); if (MO.isGlobal()) { StringRef FuncName = MO.getGlobal()->getName(); if (FuncName.compare_insensitive("fesetround") == 0) { errs() << "Error: You are using the detectroundchange " "option to detect rounding changes that will " "cause LEON errata. The only way to fix this " "is to remove the call to fesetround from " "the source code.\n"; } } } } } return Modified; } //***************************************************************************** //**** FixAllFDIVSQRT pass //***************************************************************************** // This pass fixes the incorrectly working FDIVx and FSQRTx instructions that // exist for some earlier versions of the LEON processor line. Five NOP // instructions need to be inserted after these instructions to ensure the // correct result is placed in the destination registers before they are used. // // This pass implements two fixes: // 1) fixing the FSQRTS and FSQRTD instructions. // 2) fixing the FDIVS and FDIVD instructions. // // FSQRTS and FDIVS are converted to FDIVD and FSQRTD respectively earlier in // the pipeline when this option is enabled, so this pass needs only to deal // with the changes that still need implementing for the "double" versions // of these instructions. // char FixAllFDIVSQRT::ID = 0; FixAllFDIVSQRT::FixAllFDIVSQRT() : LEONMachineFunctionPass(ID) {} bool FixAllFDIVSQRT::runOnMachineFunction(MachineFunction &MF) { Subtarget = &MF.getSubtarget(); if (!Subtarget->fixAllFDIVSQRT()) return false; const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); DebugLoc DL = DebugLoc(); bool Modified = false; for (MachineBasicBlock &MBB : MF) { for (auto MBBI = MBB.begin(), E = MBB.end(); MBBI != E; ++MBBI) { MachineInstr &MI = *MBBI; unsigned Opcode = MI.getOpcode(); // Note: FDIVS and FSQRTS cannot be generated when this erratum fix is // switched on so we don't need to check for them here. They will // already have been converted to FSQRTD or FDIVD earlier in the // pipeline. if (Opcode == SP::FSQRTD || Opcode == SP::FDIVD) { for (int InsertedCount = 0; InsertedCount < 5; InsertedCount++) BuildMI(MBB, MBBI, DL, TII.get(SP::NOP)); MachineBasicBlock::iterator NMBBI = std::next(MBBI); for (int InsertedCount = 0; InsertedCount < 28; InsertedCount++) BuildMI(MBB, NMBBI, DL, TII.get(SP::NOP)); Modified = true; } } } return Modified; }