aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Target/RISCV/RISCVInstrInfoZb.td
blob: d2a651444169c0637d516f2f29327292b2669f36 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
//===-- RISCVInstrInfoZb.td - RISC-V Bitmanip instructions -*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the RISC-V instructions from the standard Bitmanip
// extensions, versions:
//   Zba - 1.0
//   Zbb - 1.0
//   Zbc - 1.0
//   Zbs - 1.0
//
// This file also describes RISC-V instructions from the Zbk* extensions in
// Cryptography Extensions Volume I: Scalar & Entropy Source Instructions,
// versions:
//   Zbkb - 1.0
//   Zbkc - 1.0
//   Zbkx - 1.0
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Operand and SDNode transformation definitions.
//===----------------------------------------------------------------------===//

def SDTIntShiftAddOp : SDTypeProfile<1, 3, [   // shl_add
  SDTCisSameAs<0, 1>, SDTCisSameAs<0, 3>, SDTCisInt<0>, SDTCisInt<2>,
  SDTCisInt<3>
]>;

def riscv_shl_add : RVSDNode<"SHL_ADD", SDTIntShiftAddOp>;

// RV64IB rotates, directly matching the semantics of the named RISC-V
// instructions.
def riscv_rolw    : RVSDNode<"ROLW",    SDT_RISCVIntBinOpW>;
def riscv_rorw    : RVSDNode<"RORW",    SDT_RISCVIntBinOpW>;

// RV64IZbb bit counting instructions directly matching the semantics of the
// named RISC-V instructions.
def riscv_clzw    : RVSDNode<"CLZW",    SDT_RISCVIntUnaryOpW>;
def riscv_ctzw    : RVSDNode<"CTZW",    SDT_RISCVIntUnaryOpW>;

// brev8, orc.b, zip, and unzip from Zbb and Zbkb. All operands are i32 or
// XLenVT.
def riscv_brev8   : RVSDNode<"BREV8",   SDTIntUnaryOp>;
def riscv_orc_b   : RVSDNode<"ORC_B",   SDTIntUnaryOp>;
def riscv_zip     : RVSDNode<"ZIP",     SDTIntUnaryOp>;
def riscv_unzip   : RVSDNode<"UNZIP",   SDTIntUnaryOp>;

// RV64IZbb absolute value for i32. Expanded to (max (negw X), X) during isel.
def riscv_absw    : RVSDNode<"ABSW",    SDTIntUnaryOp>;

// Scalar cryptography
def riscv_clmul   : RVSDNode<"CLMUL",   SDTIntBinOp>;
def riscv_clmulh  : RVSDNode<"CLMULH",  SDTIntBinOp>;
def riscv_clmulr  : RVSDNode<"CLMULR",  SDTIntBinOp>;

def BCLRXForm : SDNodeXForm<imm, [{
  // Find the lowest 0.
  return CurDAG->getTargetConstant(llvm::countr_one(N->getZExtValue()),
                                   SDLoc(N), N->getValueType(0));
}]>;

def SingleBitSetMaskToIndex : SDNodeXForm<imm, [{
  // Find the lowest 1.
  return CurDAG->getTargetConstant(llvm::countr_zero(N->getZExtValue()),
                                   SDLoc(N), N->getValueType(0));
}]>;

// Checks if this mask has a single 0 bit and cannot be used with ANDI.
def BCLRMask : ImmLeaf<XLenVT, [{
  if (Subtarget->is64Bit())
    return !isInt<12>(Imm) && isPowerOf2_64(~Imm);
  return !isInt<12>(Imm) && isPowerOf2_32(~Imm);
}], BCLRXForm>;

// Checks if this mask has a single 1 bit and cannot be used with ORI/XORI.
def SingleBitSetMask : ImmLeaf<XLenVT, [{
  if (Subtarget->is64Bit())
    return !isInt<12>(Imm) && isPowerOf2_64(Imm);
  return !isInt<12>(Imm) && isPowerOf2_32(Imm);
}], SingleBitSetMaskToIndex>;

// Check if (or r, i) can be optimized to (BSETI (BSETI r, i0), i1),
// in which i = (1 << i0) | (1 << i1).
def BSETINVTwoBitsMask : PatLeaf<(imm), [{
  if (!N->hasOneUse())
    return false;
  // The immediate should not be a simm12.
  if (isInt<12>(N->getSExtValue()))
    return false;
  // The immediate must have exactly two bits set.
  return llvm::popcount(N->getZExtValue()) == 2;
}]>;

def BSETINVTwoBitsMaskHigh : SDNodeXForm<imm, [{
  uint64_t I = N->getZExtValue();
  return CurDAG->getTargetConstant(llvm::Log2_64(I), SDLoc(N),
                                   N->getValueType(0));
}]>;

// Check if (or r, imm) can be optimized to (BSETI (ORI r, i0), i1),
// in which imm = i0 | (1 << i1).
def BSETINVORIMask : PatLeaf<(imm), [{
  if (!N->hasOneUse())
    return false;
  // The immediate should not be a simm12.
  if (isInt<12>(N->getSExtValue()))
    return false;
  // There should be only one set bit from bit 11 to the top.
  return isPowerOf2_64(N->getZExtValue() & ~0x7ff);
}]>;

def BSETINVORIMaskLow : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(N->getZExtValue() & 0x7ff,
                                   SDLoc(N), N->getValueType(0));
}]>;

// Check if (and r, i) can be optimized to (BCLRI (BCLRI r, i0), i1),
// in which i = ~((1<<i0) | (1<<i1)).
def BCLRITwoBitsMask : PatLeaf<(imm), [{
  if (!N->hasOneUse())
    return false;
  // The immediate should not be a simm12.
  if (isInt<12>(N->getSExtValue()))
    return false;
  // The immediate must have exactly two bits clear.
  return (unsigned)llvm::popcount(N->getZExtValue()) == Subtarget->getXLen() - 2;
}]>;

def BCLRITwoBitsMaskLow : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(llvm::countr_zero(~N->getZExtValue()),
                                   SDLoc(N), N->getValueType(0));
}]>;

def BCLRITwoBitsMaskHigh : SDNodeXForm<imm, [{
  uint64_t I = N->getZExtValue();
  if (!Subtarget->is64Bit())
    I |= maskLeadingOnes<uint64_t>(32);
  return CurDAG->getTargetConstant(llvm::Log2_64(~I), SDLoc(N),
                                   N->getValueType(0));
}]>;

// Check if (and r, i) can be optimized to (BCLRI (ANDI r, i0), i1),
// in which i = i0 & ~(1<<i1).
def BCLRIANDIMask : PatLeaf<(imm), [{
  if (!N->hasOneUse())
    return false;
  // The immediate should not be a simm12.
  if (isInt<12>(N->getSExtValue()))
    return false;
  // There should be only one clear bit from bit 11 to the top.
  uint64_t I = N->getZExtValue() | 0x7ff;
  return Subtarget->is64Bit() ? isPowerOf2_64(~I) : isPowerOf2_32(~I);
}]>;

def BCLRIANDIMaskLow : SDNodeXForm<imm, [{
  return CurDAG->getSignedTargetConstant((N->getZExtValue() & 0x7ff) | ~0x7ffull,
                                         SDLoc(N), N->getValueType(0));
}]>;

def SimmShiftRightBy2XForm : SDNodeXForm<imm, [{
  return CurDAG->getSignedTargetConstant(N->getSExtValue() >> 2, SDLoc(N),
                                         N->getValueType(0));
}]>;

def SimmShiftRightBy3XForm : SDNodeXForm<imm, [{
  return CurDAG->getSignedTargetConstant(N->getSExtValue() >> 3, SDLoc(N),
                                         N->getValueType(0));
}]>;

def CSImm12MulBy4 : PatLeaf<(imm), [{
  if (!N->hasOneUse())
    return false;
  int64_t C = N->getSExtValue();
  // Skip if C is simm12, an lui, or can be optimized by the PatLeaf AddiPair.
  return !isInt<13>(C) && !isShiftedInt<20, 12>(C) && isShiftedInt<12, 2>(C);
}], SimmShiftRightBy2XForm>;

def CSImm12MulBy8 : PatLeaf<(imm), [{
  if (!N->hasOneUse())
    return false;
  int64_t C = N->getSExtValue();
  // Skip if C is simm12, an lui or can be optimized by the PatLeaf AddiPair or
  // CSImm12MulBy4.
  return !isInt<14>(C) && !isShiftedInt<20, 12>(C) && isShiftedInt<12, 3>(C);
}], SimmShiftRightBy3XForm>;

// Pattern to exclude simm12 immediates from matching, namely `non_imm12`.
// GISel currently doesn't support PatFrag for leaf nodes, so `non_imm12`
// cannot be implemented in that way. To reuse patterns between the two
// ISels, we instead create PatFrag on operators that use `non_imm12`.
class binop_with_non_imm12<SDPatternOperator binop>
  : PatFrag<(ops node:$x, node:$y), (binop node:$x, node:$y), [{
  auto *C = dyn_cast<ConstantSDNode>(Operands[1]);
  return !C || !isInt<12>(C->getSExtValue());
}]> {
  let PredicateCodeUsesOperands = 1;
  let GISelPredicateCode = [{
    const MachineOperand &ImmOp = *Operands[1];

    if (ImmOp.isReg() && ImmOp.getReg())
      if (auto Val = getIConstantVRegValWithLookThrough(ImmOp.getReg(), MRI)) {
        // We do NOT want immediates that fit in 12 bits.
        return !isInt<12>(Val->Value.getSExtValue());
      }

    return true;
  }];
}
def add_non_imm12       : binop_with_non_imm12<add>;
def add_like_non_imm12 : binop_with_non_imm12<add_like>;

def Shifted32OnesMask : IntImmLeaf<XLenVT, [{
  if (!Imm.isShiftedMask())
    return false;

  unsigned TrailingZeros = Imm.countr_zero();
  return TrailingZeros > 0 && TrailingZeros < 32 &&
         Imm == UINT64_C(0xFFFFFFFF) << TrailingZeros;
}], TrailingZeros>;

def sh1add_op : ComplexPattern<XLenVT, 1, "selectSHXADDOp<1>", [], [], 6>;
def sh2add_op : ComplexPattern<XLenVT, 1, "selectSHXADDOp<2>", [], [], 6>;
def sh3add_op : ComplexPattern<XLenVT, 1, "selectSHXADDOp<3>", [], [], 6>;
def gi_sh1add_op : GIComplexOperandMatcher<s32, "selectSHXADDOp<1>">,
                   GIComplexPatternEquiv<sh1add_op>;
def gi_sh2add_op : GIComplexOperandMatcher<s32, "selectSHXADDOp<2>">,
                   GIComplexPatternEquiv<sh2add_op>;
def gi_sh3add_op : GIComplexOperandMatcher<s32, "selectSHXADDOp<3>">,
                   GIComplexPatternEquiv<sh3add_op>;


def sh1add_uw_op : ComplexPattern<XLenVT, 1, "selectSHXADD_UWOp<1>", [], [], 6>;
def sh2add_uw_op : ComplexPattern<XLenVT, 1, "selectSHXADD_UWOp<2>", [], [], 6>;
def sh3add_uw_op : ComplexPattern<XLenVT, 1, "selectSHXADD_UWOp<3>", [], [], 6>;
def gi_sh1add_uw_op : GIComplexOperandMatcher<s32, "selectSHXADD_UWOp<1>">,
                      GIComplexPatternEquiv<sh1add_uw_op>;
def gi_sh2add_uw_op : GIComplexOperandMatcher<s32, "selectSHXADD_UWOp<2>">,
                      GIComplexPatternEquiv<sh2add_uw_op>;
def gi_sh3add_uw_op : GIComplexOperandMatcher<s32, "selectSHXADD_UWOp<3>">,
                      GIComplexPatternEquiv<sh3add_uw_op>;

//===----------------------------------------------------------------------===//
// Instruction class templates
//===----------------------------------------------------------------------===//

let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class RVBUnaryR<bits<7> funct7, bits<3> funct3,
                RISCVOpcode opcode, string opcodestr>
    : RVInstR<funct7, funct3, opcode, (outs GPR:$rd), (ins GPR:$rs1),
              opcodestr, "$rd, $rs1"> {
  let rs2 = 0;
}

let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class RVBShift_ri<bits<5> imm11_7, bits<3> funct3, RISCVOpcode opcode,
                  string opcodestr>
    : RVInstIShift<imm11_7, funct3, opcode, (outs GPR:$rd),
                   (ins GPR:$rs1, uimmlog2xlen:$shamt), opcodestr,
                   "$rd, $rs1, $shamt">;

//===----------------------------------------------------------------------===//
// Instructions
//===----------------------------------------------------------------------===//

let Predicates = [HasStdExtZbbOrZbkb] in {
def ANDN  : ALU_rr<0b0100000, 0b111, "andn">,
            Sched<[WriteIALU, ReadIALU, ReadIALU]>;
def ORN   : ALU_rr<0b0100000, 0b110, "orn">,
            Sched<[WriteIALU, ReadIALU, ReadIALU]>;
def XNOR  : ALU_rr<0b0100000, 0b100, "xnor", Commutable=1>,
            Sched<[WriteIALU, ReadIALU, ReadIALU]>;
} // Predicates = [HasStdExtZbbOrZbkb]

let Predicates = [HasStdExtZbaOrP] in
def SH1ADD : ALU_rr<0b0010000, 0b010, "sh1add">,
             Sched<[WriteSHXADD, ReadSHXADD, ReadSHXADD]>;
let Predicates = [HasStdExtZba] in {
def SH2ADD : ALU_rr<0b0010000, 0b100, "sh2add">,
             Sched<[WriteSHXADD, ReadSHXADD, ReadSHXADD]>;
def SH3ADD : ALU_rr<0b0010000, 0b110, "sh3add">,
             Sched<[WriteSHXADD, ReadSHXADD, ReadSHXADD]>;
} // Predicates = [HasStdExtZba]

let Predicates = [HasStdExtZba, IsRV64] in {
def SLLI_UW : RVBShift_ri<0b00001, 0b001, OPC_OP_IMM_32, "slli.uw">,
              Sched<[WriteShiftImm32, ReadShiftImm32]>;
def ADD_UW : ALUW_rr<0b0000100, 0b000, "add.uw">,
             Sched<[WriteIALU32, ReadIALU32, ReadIALU32]>;
def SH1ADD_UW : ALUW_rr<0b0010000, 0b010, "sh1add.uw">,
                Sched<[WriteSHXADD32, ReadSHXADD32, ReadSHXADD32]>;
def SH2ADD_UW : ALUW_rr<0b0010000, 0b100, "sh2add.uw">,
                Sched<[WriteSHXADD32, ReadSHXADD32, ReadSHXADD32]>;
def SH3ADD_UW : ALUW_rr<0b0010000, 0b110, "sh3add.uw">,
                Sched<[WriteSHXADD32, ReadSHXADD32, ReadSHXADD32]>;
} // Predicates = [HasStdExtZba, IsRV64]

let Predicates = [HasStdExtZbbOrZbkb] in {
def ROL   : ALU_rr<0b0110000, 0b001, "rol">,
            Sched<[WriteRotateReg, ReadRotateReg, ReadRotateReg]>;
def ROR   : ALU_rr<0b0110000, 0b101, "ror">,
            Sched<[WriteRotateReg, ReadRotateReg, ReadRotateReg]>;

def RORI  : Shift_ri<0b01100, 0b101, "rori">,
            Sched<[WriteRotateImm, ReadRotateImm]>;
} // Predicates = [HasStdExtZbbOrZbkb]

let Predicates = [HasStdExtZbbOrZbkb, IsRV64], IsSignExtendingOpW = 1 in {
def ROLW  : ALUW_rr<0b0110000, 0b001, "rolw">,
            Sched<[WriteRotateReg32, ReadRotateReg32, ReadRotateReg32]>;
def RORW  : ALUW_rr<0b0110000, 0b101, "rorw">,
            Sched<[WriteRotateReg32, ReadRotateReg32, ReadRotateReg32]>;

def RORIW : ShiftW_ri<0b0110000, 0b101, "roriw">,
            Sched<[WriteRotateImm32, ReadRotateImm32]>;
} // Predicates = [HasStdExtZbbOrZbkb, IsRV64]

let Predicates = [HasStdExtZbs] in {
def BCLR : ALU_rr<0b0100100, 0b001, "bclr">,
           Sched<[WriteSingleBit, ReadSingleBit, ReadSingleBit]>;
def BSET : ALU_rr<0b0010100, 0b001, "bset">,
           Sched<[WriteSingleBit, ReadSingleBit, ReadSingleBit]>;
def BINV : ALU_rr<0b0110100, 0b001, "binv">,
           Sched<[WriteSingleBit, ReadSingleBit, ReadSingleBit]>;
let IsSignExtendingOpW = 1 in
def BEXT : ALU_rr<0b0100100, 0b101, "bext">,
           Sched<[WriteBEXT, ReadSingleBit, ReadSingleBit]>;

def BCLRI : Shift_ri<0b01001, 0b001, "bclri">,
            Sched<[WriteSingleBitImm, ReadSingleBitImm]>;
def BSETI : Shift_ri<0b00101, 0b001, "bseti">,
            Sched<[WriteSingleBitImm, ReadSingleBitImm]>;
def BINVI : Shift_ri<0b01101, 0b001, "binvi">,
            Sched<[WriteSingleBitImm, ReadSingleBitImm]>;
let IsSignExtendingOpW = 1 in
def BEXTI : Shift_ri<0b01001, 0b101, "bexti">,
            Sched<[WriteBEXTI, ReadSingleBitImm]>;
} // Predicates = [HasStdExtZbs]

// These instructions were named xperm.n and xperm.b in the last version of
// the draft bit manipulation specification they were included in. However, we
// use the mnemonics given to them in the ratified Zbkx extension.
let Predicates = [HasStdExtZbkx] in {
def XPERM4 : ALU_rr<0b0010100, 0b010, "xperm4">,
             Sched<[WriteXPERM, ReadXPERM, ReadXPERM]>;
def XPERM8 : ALU_rr<0b0010100, 0b100, "xperm8">,
             Sched<[WriteXPERM, ReadXPERM, ReadXPERM]>;
} // Predicates = [HasStdExtZbkx]

let Predicates = [HasStdExtZbbOrP], IsSignExtendingOpW = 1 in
def CLZ  : Unary_r<0b011000000000, 0b001, "clz">,
           Sched<[WriteCLZ, ReadCLZ]>;
let Predicates = [HasStdExtZbb], IsSignExtendingOpW = 1 in {
def CTZ  : Unary_r<0b011000000001, 0b001, "ctz">,
           Sched<[WriteCTZ, ReadCTZ]>;
def CPOP : Unary_r<0b011000000010, 0b001, "cpop">,
           Sched<[WriteCPOP, ReadCPOP]>;
} // Predicates = [HasStdExtZbb]

let Predicates = [HasStdExtZbbOrP, IsRV64], IsSignExtendingOpW = 1 in
def CLZW  : UnaryW_r<0b011000000000, 0b001, "clzw">,
            Sched<[WriteCLZ32, ReadCLZ32]>;
let Predicates = [HasStdExtZbb, IsRV64], IsSignExtendingOpW = 1 in {
def CTZW  : UnaryW_r<0b011000000001, 0b001, "ctzw">,
            Sched<[WriteCTZ32, ReadCTZ32]>;
def CPOPW : UnaryW_r<0b011000000010, 0b001, "cpopw">,
            Sched<[WriteCPOP32, ReadCPOP32]>;
} // Predicates = [HasStdExtZbb, IsRV64]

let Predicates = [HasStdExtZbbOrP], IsSignExtendingOpW = 1 in {
def SEXT_B : Unary_r<0b011000000100, 0b001, "sext.b">,
             Sched<[WriteIALU, ReadIALU]>;
def SEXT_H : Unary_r<0b011000000101, 0b001, "sext.h">,
             Sched<[WriteIALU, ReadIALU]>;
} // Predicates = [HasStdExtZbbOrP]

let Predicates = [HasStdExtZbc] in {
def CLMULR : ALU_rr<0b0000101, 0b010, "clmulr", Commutable=1>,
             Sched<[WriteCLMUL, ReadCLMUL, ReadCLMUL]>;
} // Predicates = [HasStdExtZbc]

let Predicates = [HasStdExtZbcOrZbkc] in {
def CLMUL  : ALU_rr<0b0000101, 0b001, "clmul", Commutable=1>,
             Sched<[WriteCLMUL, ReadCLMUL, ReadCLMUL]>;
def CLMULH : ALU_rr<0b0000101, 0b011, "clmulh", Commutable=1>,
             Sched<[WriteCLMUL, ReadCLMUL, ReadCLMUL]>;
} // Predicates = [HasStdExtZbcOrZbkc]

let Predicates = [HasStdExtZbbOrP] in {
def MIN  : ALU_rr<0b0000101, 0b100, "min", Commutable=1>,
           Sched<[WriteIMinMax, ReadIMinMax, ReadIMinMax]>;
def MINU : ALU_rr<0b0000101, 0b101, "minu", Commutable=1>,
           Sched<[WriteIMinMax, ReadIMinMax, ReadIMinMax]>;
def MAX  : ALU_rr<0b0000101, 0b110, "max", Commutable=1>,
           Sched<[WriteIMinMax, ReadIMinMax, ReadIMinMax]>;
def MAXU : ALU_rr<0b0000101, 0b111, "maxu", Commutable=1>,
           Sched<[WriteIMinMax, ReadIMinMax, ReadIMinMax]>;
} // Predicates = [HasStdExtZbb]

let Predicates = [HasStdExtZbkbOrP] in
def PACK  : ALU_rr<0b0000100, 0b100, "pack">,
            Sched<[WritePACK, ReadPACK, ReadPACK]>;
let Predicates = [HasStdExtZbkb] in {
let IsSignExtendingOpW = 1 in
def PACKH : ALU_rr<0b0000100, 0b111, "packh">,
            Sched<[WritePACK, ReadPACK, ReadPACK]>;
} // Predicates = [HasStdExtZbkb]

let Predicates = [HasStdExtZbkb, IsRV64], IsSignExtendingOpW = 1 in
def PACKW  : ALUW_rr<0b0000100, 0b100, "packw">,
             Sched<[WritePACK32, ReadPACK32, ReadPACK32]>;

let Predicates = [HasStdExtZbb, IsRV32] in {
def ZEXT_H_RV32 : RVBUnaryR<0b0000100, 0b100, OPC_OP, "zext.h">,
                  Sched<[WriteIALU, ReadIALU]>;
} // Predicates = [HasStdExtZbb, IsRV32]

let Predicates = [HasStdExtZbb, IsRV64], IsSignExtendingOpW = 1 in {
def ZEXT_H_RV64 : RVBUnaryR<0b0000100, 0b100, OPC_OP_32, "zext.h">,
                  Sched<[WriteIALU, ReadIALU]>;
} // Predicates = [HasStdExtZbb, IsRV64]

let Predicates = [HasStdExtZbbOrZbkbOrP, IsRV32] in {
def REV8_RV32 : Unary_r<0b011010011000, 0b101, "rev8">,
                Sched<[WriteREV8, ReadREV8]>;
} // Predicates = [HasStdExtZbbOrZbkbOrP, IsRV32]

let Predicates = [HasStdExtZbbOrZbkbOrP, IsRV64] in {
def REV8_RV64 : Unary_r<0b011010111000, 0b101, "rev8">,
                Sched<[WriteREV8, ReadREV8]>;
} // Predicates = [HasStdExtZbbOrZbkbOrP, IsRV64]

let Predicates = [HasStdExtZbb] in {
def ORC_B : Unary_r<0b001010000111, 0b101, "orc.b">,
            Sched<[WriteORCB, ReadORCB]>;
} // Predicates = [HasStdExtZbb]

let Predicates = [HasStdExtZbkb] in
def BREV8 : Unary_r<0b011010000111, 0b101, "brev8">,
            Sched<[WriteBREV8, ReadBREV8]>;

let Predicates = [HasStdExtZbkb, IsRV32] in {
def ZIP_RV32   : Unary_r<0b000010001111, 0b001, "zip">,
                 Sched<[WriteZIP, ReadZIP]>;
def UNZIP_RV32 : Unary_r<0b000010001111, 0b101, "unzip">,
                 Sched<[WriteZIP, ReadZIP]>;
} // Predicates = [HasStdExtZbkb, IsRV32]


//===----------------------------------------------------------------------===//
// Pseudo Instructions
//===----------------------------------------------------------------------===//

let Predicates = [HasStdExtZba, IsRV64] in {
def : InstAlias<"zext.w $rd, $rs", (ADD_UW GPR:$rd, GPR:$rs, X0)>;
} // Predicates = [HasStdExtZba, IsRV64]

let Predicates = [HasStdExtZbb] in {
def : InstAlias<"ror $rd, $rs1, $shamt",
                (RORI  GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt), 0>;
} // Predicates = [HasStdExtZbb]

let Predicates = [HasStdExtZbb, IsRV64] in {
def : InstAlias<"rorw $rd, $rs1, $shamt",
                (RORIW  GPR:$rd, GPR:$rs1, uimm5:$shamt), 0>;
} // Predicates = [HasStdExtZbb, IsRV64]

let Predicates = [HasStdExtZbs] in {
def : InstAlias<"bset $rd, $rs1, $shamt",
                (BSETI  GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt), 0>;
def : InstAlias<"bclr $rd, $rs1, $shamt",
                (BCLRI GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt), 0>;
def : InstAlias<"binv $rd, $rs1, $shamt",
                (BINVI GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt), 0>;
def : InstAlias<"bext $rd, $rs1, $shamt",
                (BEXTI GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt), 0>;
} // Predicates = [HasStdExtZbs]

let Predicates = [HasStdExtZbkb, NoStdExtZbb, IsRV32] in {
def : InstAlias<"zext.h $rd, $rs", (PACK GPR:$rd, GPR:$rs, X0)>;
} // Predicates = [HasStdExtZbkb, NoStdExtZbb, IsRV32]

let Predicates = [HasStdExtZbkb, NoStdExtZbb, IsRV64] in {
def : InstAlias<"zext.h $rd, $rs", (PACKW GPR:$rd, GPR:$rs, X0)>;
} // Predicates = [HasStdExtZbkb, NoStdExtZbb, IsRV64]

//===----------------------------------------------------------------------===//
// Codegen patterns
//===----------------------------------------------------------------------===//

def invLogicImm : ComplexPattern<XLenVT, 1, "selectInvLogicImm", [], [], 0>;

let Predicates = [HasStdExtZbbOrZbkb] in {
def : Pat<(XLenVT (and GPR:$rs1, (not GPR:$rs2))), (ANDN GPR:$rs1, GPR:$rs2)>;
def : Pat<(XLenVT (or  GPR:$rs1, (not GPR:$rs2))), (ORN  GPR:$rs1, GPR:$rs2)>;
def : Pat<(XLenVT (not (riscv_xor_like GPR:$rs1, GPR:$rs2))),
          (XNOR GPR:$rs1, GPR:$rs2)>;

def : Pat<(XLenVT (and GPR:$rs1, invLogicImm:$rs2)), (ANDN GPR:$rs1, invLogicImm:$rs2)>;
def : Pat<(XLenVT (or  GPR:$rs1, invLogicImm:$rs2)), (ORN  GPR:$rs1, invLogicImm:$rs2)>;
def : Pat<(XLenVT (xor GPR:$rs1, invLogicImm:$rs2)), (XNOR GPR:$rs1, invLogicImm:$rs2)>;
} // Predicates = [HasStdExtZbbOrZbkb]

let Predicates = [HasStdExtZbbOrZbkb] in {
def : PatGprGpr<shiftop<rotl>, ROL>;
def : PatGprGpr<shiftop<rotr>, ROR>;

def : PatGprImm<rotr, RORI, uimmlog2xlen>;
// There's no encoding for roli in the the 'B' extension as it can be
// implemented with rori by negating the immediate.
def : Pat<(XLenVT (rotl GPR:$rs1, uimmlog2xlen:$shamt)),
          (RORI GPR:$rs1, (ImmSubFromXLen uimmlog2xlen:$shamt))>;
} // Predicates = [HasStdExtZbbOrZbkb]

let Predicates = [HasStdExtZbbOrZbkb, IsRV64] in {
def : PatGprGpr<shiftopw<riscv_rolw>, ROLW>;
def : PatGprGpr<shiftopw<riscv_rorw>, RORW>;
def : PatGprImm<riscv_rorw, RORIW, uimm5>;
def : Pat<(riscv_rolw GPR:$rs1, uimm5:$rs2),
          (RORIW GPR:$rs1, (ImmSubFrom32 uimm5:$rs2))>;
} // Predicates = [HasStdExtZbbOrZbkb, IsRV64]

let Predicates = [HasStdExtZbs] in {
def : Pat<(XLenVT (and (not (shiftop<shl> 1, (XLenVT GPR:$rs2))), GPR:$rs1)),
          (BCLR GPR:$rs1, GPR:$rs2)>;
def : Pat<(XLenVT (and (rotl -2, (XLenVT GPR:$rs2)), GPR:$rs1)),
          (BCLR GPR:$rs1, GPR:$rs2)>;
def : Pat<(XLenVT (or (shiftop<shl> 1, (XLenVT GPR:$rs2)), GPR:$rs1)),
          (BSET GPR:$rs1, GPR:$rs2)>;
def : Pat<(XLenVT (xor (shiftop<shl> 1, (XLenVT GPR:$rs2)), GPR:$rs1)),
          (BINV GPR:$rs1, GPR:$rs2)>;
def : Pat<(XLenVT (and (shiftop<srl> GPR:$rs1, (XLenVT GPR:$rs2)), 1)),
          (BEXT GPR:$rs1, GPR:$rs2)>;

def : Pat<(XLenVT (shiftop<shl> 1, (XLenVT GPR:$rs2))),
          (BSET (XLenVT X0), GPR:$rs2)>;
def : Pat<(XLenVT (not (shiftop<shl> -1, (XLenVT GPR:$rs2)))),
          (ADDI (XLenVT (BSET (XLenVT X0), GPR:$rs2)), -1)>;

def : Pat<(XLenVT (and GPR:$rs1, BCLRMask:$mask)),
          (BCLRI GPR:$rs1, BCLRMask:$mask)>;
def : Pat<(XLenVT (or GPR:$rs1, SingleBitSetMask:$mask)),
          (BSETI GPR:$rs1, SingleBitSetMask:$mask)>;
def : Pat<(XLenVT (xor GPR:$rs1, SingleBitSetMask:$mask)),
          (BINVI GPR:$rs1, SingleBitSetMask:$mask)>;

def : Pat<(XLenVT (and (srl GPR:$rs1, uimmlog2xlen:$shamt), (XLenVT 1))),
          (BEXTI GPR:$rs1, uimmlog2xlen:$shamt)>;

def : Pat<(XLenVT (seteq (XLenVT (and GPR:$rs1, SingleBitSetMask:$mask)), 0)),
          (BEXTI (XLenVT (XORI GPR:$rs1, -1)), SingleBitSetMask:$mask)>;

def : Pat<(XLenVT (or GPR:$r, BSETINVTwoBitsMask:$i)),
          (BSETI (XLenVT (BSETI GPR:$r, (TrailingZeros BSETINVTwoBitsMask:$i))),
                 (BSETINVTwoBitsMaskHigh BSETINVTwoBitsMask:$i))>;
def : Pat<(XLenVT (xor GPR:$r, BSETINVTwoBitsMask:$i)),
          (BINVI (XLenVT (BINVI GPR:$r, (TrailingZeros BSETINVTwoBitsMask:$i))),
                 (BSETINVTwoBitsMaskHigh BSETINVTwoBitsMask:$i))>;
def : Pat<(XLenVT (or GPR:$r, BSETINVORIMask:$i)),
          (BSETI (XLenVT (ORI GPR:$r, (BSETINVORIMaskLow BSETINVORIMask:$i))),
                 (BSETINVTwoBitsMaskHigh BSETINVORIMask:$i))>;
def : Pat<(XLenVT (xor GPR:$r, BSETINVORIMask:$i)),
          (BINVI (XLenVT (XORI GPR:$r, (BSETINVORIMaskLow BSETINVORIMask:$i))),
                 (BSETINVTwoBitsMaskHigh BSETINVORIMask:$i))>;
def : Pat<(XLenVT (and GPR:$r, BCLRITwoBitsMask:$i)),
          (BCLRI (XLenVT (BCLRI GPR:$r, (BCLRITwoBitsMaskLow BCLRITwoBitsMask:$i))),
                 (BCLRITwoBitsMaskHigh BCLRITwoBitsMask:$i))>;
def : Pat<(XLenVT (and GPR:$r, BCLRIANDIMask:$i)),
          (BCLRI (XLenVT (ANDI GPR:$r, (BCLRIANDIMaskLow BCLRIANDIMask:$i))),
                 (BCLRITwoBitsMaskHigh BCLRIANDIMask:$i))>;
} // Predicates = [HasStdExtZbs]

let Predicates = [HasStdExtZbb] in
def : PatGpr<riscv_orc_b, ORC_B>;

let Predicates = [HasStdExtZbkb] in
def : PatGpr<riscv_brev8, BREV8>;

let Predicates = [HasStdExtZbkb, IsRV32] in {
// We treat zip and unzip as separate instructions, so match it directly.
def : PatGpr<riscv_zip, ZIP_RV32, i32>;
def : PatGpr<riscv_unzip, UNZIP_RV32, i32>;
} // Predicates = [HasStdExtZbkb, IsRV32]

let Predicates = [HasStdExtZbb] in {
def : PatGpr<ctlz, CLZ>;
def : PatGpr<cttz, CTZ>;
def : PatGpr<ctpop, CPOP>;
} // Predicates = [HasStdExtZbb]

let Predicates = [HasStdExtZbb, IsRV64] in {
def : PatGpr<riscv_clzw, CLZW>;
def : PatGpr<riscv_ctzw, CTZW>;
def : Pat<(i64 (ctpop (i64 (zexti32 (i64 GPR:$rs1))))), (CPOPW GPR:$rs1)>;

def : Pat<(i64 (riscv_absw GPR:$rs1)),
          (MAX GPR:$rs1, (XLenVT (SUBW (XLenVT X0), GPR:$rs1)))>;
} // Predicates = [HasStdExtZbb, IsRV64]

let Predicates = [HasStdExtZbb] in {
def : Pat<(XLenVT (sext_inreg GPR:$rs1, i8)), (SEXT_B GPR:$rs1)>;
def : Pat<(XLenVT (sext_inreg GPR:$rs1, i16)), (SEXT_H GPR:$rs1)>;
} // Predicates = [HasStdExtZbb]

let Predicates = [HasStdExtZbb] in {
def : PatGprGpr<smin, MIN>;
def : PatGprGpr<smax, MAX>;
def : PatGprGpr<umin, MINU>;
def : PatGprGpr<umax, MAXU>;
} // Predicates = [HasStdExtZbb]

let Predicates = [HasStdExtZbbOrZbkb, IsRV32] in
def : PatGpr<bswap, REV8_RV32, i32>;

let Predicates = [HasStdExtZbbOrZbkb, IsRV64] in
def : PatGpr<bswap, REV8_RV64, i64>;

let Predicates = [HasStdExtZbkb] in {
def : Pat<(or (and (shl GPR:$rs2, (XLenVT 8)), 0xFFFF),
              (zexti8 (XLenVT GPR:$rs1))),
          (PACKH GPR:$rs1, GPR:$rs2)>;
def : Pat<(or (shl (zexti8 (XLenVT GPR:$rs2)), (XLenVT 8)),
              (zexti8 (XLenVT GPR:$rs1))),
          (PACKH GPR:$rs1, GPR:$rs2)>;
def : Pat<(and (or (shl GPR:$rs2, (XLenVT 8)),
                   (zexti8 (XLenVT GPR:$rs1))), 0xFFFF),
          (PACKH GPR:$rs1, GPR:$rs2)>;
def : Pat<(or (shl (zexti8 (XLenVT GPR:$rs2)), (XLenVT 24)),
              (shl (zexti8 (XLenVT GPR:$rs1)), (XLenVT 16))),
          (SLLI (XLenVT (PACKH GPR:$rs1, GPR:$rs2)), (XLenVT 16))>;

def : Pat<(binop_allhusers<or> (shl GPR:$rs2, (XLenVT 8)),
                               (zexti8 (XLenVT GPR:$rs1))),
          (PACKH GPR:$rs1, GPR:$rs2)>;
} // Predicates = [HasStdExtZbkb]

let Predicates = [HasStdExtZbkb, IsRV32] in {
def : Pat<(i32 (or (zexti16 (i32 GPR:$rs1)), (shl GPR:$rs2, (i32 16)))),
          (PACK GPR:$rs1, GPR:$rs2)>;
def : Pat<(or (or
                  (shl (zexti8 (XLenVT GPR:$op1rs2)), (XLenVT 24)),
                  (shl (zexti8 (XLenVT GPR:$op1rs1)), (XLenVT 16))),
              (or
                  (shl (zexti8 (XLenVT GPR:$op0rs2)), (XLenVT 8)),
                  (zexti8 (XLenVT GPR:$op0rs1)))),
          (PACK (XLenVT (PACKH GPR:$op0rs1, GPR:$op0rs2)),
                (XLenVT (PACKH GPR:$op1rs1, GPR:$op1rs2)))>;
}

let Predicates = [HasStdExtZbkb, IsRV64] in {
def : Pat<(i64 (or (zexti32 (i64 GPR:$rs1)), (shl GPR:$rs2, (i64 32)))),
          (PACK GPR:$rs1, GPR:$rs2)>;

def : Pat<(binop_allwusers<or> (shl GPR:$rs2, (i64 16)),
                               (zexti16 (i64 GPR:$rs1))),
          (PACKW GPR:$rs1, GPR:$rs2)>;
def : Pat<(i64 (or (sext_inreg (shl GPR:$rs2, (i64 16)), i32),
                   (zexti16 (i64 GPR:$rs1)))),
          (PACKW GPR:$rs1, GPR:$rs2)>;
} // Predicates = [HasStdExtZbkb, IsRV64]

let Predicates = [HasStdExtZbb, IsRV32] in
def : Pat<(i32 (and GPR:$rs, 0xFFFF)), (ZEXT_H_RV32 GPR:$rs)>;
let Predicates = [HasStdExtZbb, IsRV64] in
def : Pat<(i64 (and GPR:$rs, 0xFFFF)), (ZEXT_H_RV64 GPR:$rs)>;

let Predicates = [HasStdExtZbkb, NoStdExtZbb, IsRV32] in
def : Pat<(i32 (and GPR:$rs, 0xFFFF)), (PACK GPR:$rs, (XLenVT X0))>;
let Predicates = [HasStdExtZbkb, NoStdExtZbb, IsRV64] in
def : Pat<(i64 (and GPR:$rs, 0xFFFF)), (PACKW GPR:$rs, (XLenVT X0))>;

multiclass ShxAddPat<int i, Instruction shxadd> {
  def : Pat<(XLenVT (add_like_non_imm12 (shl GPR:$rs1, (XLenVT i)), GPR:$rs2)),
            (shxadd GPR:$rs1, GPR:$rs2)>;
  def : Pat<(XLenVT (riscv_shl_add GPR:$rs1, (XLenVT i), GPR:$rs2)),
            (shxadd GPR:$rs1, GPR:$rs2)>;

  defvar pat = !cast<ComplexPattern>("sh"#i#"add_op");
  // More complex cases use a ComplexPattern.
  def : Pat<(XLenVT (add_like_non_imm12 pat:$rs1, GPR:$rs2)),
            (shxadd pat:$rs1, GPR:$rs2)>;
}

class CSImm12MulBy4Pat<Instruction sh2add>
    : Pat<(add_like (XLenVT GPR:$r), CSImm12MulBy4:$i),
          (sh2add (XLenVT (ADDI (XLenVT X0), CSImm12MulBy4:$i)),
                  GPR:$r)>;

class CSImm12MulBy8Pat<Instruction sh3add>
    : Pat<(add_like (XLenVT GPR:$r), CSImm12MulBy8:$i),
          (sh3add (XLenVT (ADDI (XLenVT X0), CSImm12MulBy8:$i)),
                  GPR:$r)>;

let Predicates = [HasStdExtZba] in {
foreach i = {1,2,3} in {
  defvar shxadd = !cast<Instruction>("SH"#i#"ADD");
  defm : ShxAddPat<i, shxadd>;
}

def : CSImm12MulBy4Pat<SH2ADD>;
def : CSImm12MulBy8Pat<SH3ADD>;
} // Predicates = [HasStdExtZba]

def zExtImm32 : ComplexPattern<i64, 1, "selectZExtImm32", [], [], 0>;

multiclass ADD_UWPat<Instruction add_uw> {
  def : Pat<(i64 (add_like_non_imm12 (and GPR:$rs1, 0xFFFFFFFF), GPR:$rs2)),
            (add_uw GPR:$rs1, GPR:$rs2)>;
  def : Pat<(i64 (add_like zExtImm32:$rs1, GPR:$rs2)),
            (add_uw zExtImm32:$rs1, GPR:$rs2)>;
  def : Pat<(i64 (and GPR:$rs, 0xFFFFFFFF)), (add_uw GPR:$rs, (XLenVT X0))>;
}

multiclass ShxAdd_UWPat<int i, Instruction shxadd_uw> {
  def : Pat<(i64 (add_like_non_imm12 (shl (and GPR:$rs1, 0xFFFFFFFF), (i64 i)),
                                     (XLenVT GPR:$rs2))),
            (shxadd_uw GPR:$rs1, GPR:$rs2)>;
  def : Pat<(i64 (riscv_shl_add (and GPR:$rs1, 0xFFFFFFFF), (i64 i), GPR:$rs2)),
            (shxadd_uw GPR:$rs1, GPR:$rs2)>;

  defvar pat = !cast<ComplexPattern>("sh"#i#"add_uw_op");
  // More complex cases use a ComplexPattern.
  def : Pat<(i64 (add_like_non_imm12 pat:$rs1, (XLenVT GPR:$rs2))),
            (shxadd_uw pat:$rs1, GPR:$rs2)>;
}

multiclass Sh1Add_UWPat<Instruction sh1add_uw> {
  def : Pat<(i64 (add_like_non_imm12 (and (shl GPR:$rs1, (i64 1)), 0x1FFFFFFFF),
                                     (XLenVT GPR:$rs2))),
            (sh1add_uw GPR:$rs1, GPR:$rs2)>;
  // Use SRLI to clear the LSBs and SHXADD_UW to mask and shift.
  def : Pat<(i64 (add_like_non_imm12 (and GPR:$rs1, 0x1FFFFFFFE),
                                     (XLenVT GPR:$rs2))),
            (sh1add_uw (XLenVT (SRLI GPR:$rs1, 1)), GPR:$rs2)>;
}

multiclass Sh2Add_UWPat<Instruction sh2add_uw> {
  def : Pat<(i64 (add_like_non_imm12 (and (shl GPR:$rs1, (i64 2)), 0x3FFFFFFFF),
                                     (XLenVT GPR:$rs2))),
            (sh2add_uw GPR:$rs1, GPR:$rs2)>;
  // Use SRLI to clear the LSBs and SHXADD_UW to mask and shift.
  def : Pat<(i64 (add_like_non_imm12 (and GPR:$rs1, 0x3FFFFFFFC),
                                     (XLenVT GPR:$rs2))),
            (sh2add_uw (XLenVT (SRLI GPR:$rs1, 2)), GPR:$rs2)>;
}

multiclass Sh3Add_UWPat<Instruction sh3add_uw> {
  def : Pat<(i64 (add_like_non_imm12 (and GPR:$rs1, 0xFFFFFFF8),
                                     (XLenVT GPR:$rs2))),
            (sh3add_uw (XLenVT (SRLIW GPR:$rs1, 3)), GPR:$rs2)>;
  // Use SRLI to clear the LSBs and SHXADD_UW to mask and shift.
  def : Pat<(i64 (add_like_non_imm12 (and GPR:$rs1, 0x7FFFFFFF8),
                                     (XLenVT GPR:$rs2))),
            (sh3add_uw (XLenVT (SRLI GPR:$rs1, 3)), GPR:$rs2)>;
}

class Sh1AddPat<Instruction sh1add>
    : Pat<(i64 (add_like_non_imm12 (and GPR:$rs1, 0xFFFFFFFE),
                                   (XLenVT GPR:$rs2))),
          (sh1add (XLenVT (SRLIW GPR:$rs1, 1)), GPR:$rs2)>;

class Sh2AddPat<Instruction sh2add>
    : Pat<(i64 (add_like_non_imm12 (and GPR:$rs1, 0xFFFFFFFC),
                                   (XLenVT GPR:$rs2))),
          (sh2add (XLenVT (SRLIW GPR:$rs1, 2)), GPR:$rs2)>;

class Sh3AddPat<Instruction sh3add>
    : Pat<(i64 (add_like_non_imm12 (and GPR:$rs1, 0xFFFFFFF8),
                                   (XLenVT GPR:$rs2))),
          (sh3add (XLenVT (SRLIW GPR:$rs1, 3)), GPR:$rs2)>;

let Predicates = [HasStdExtZba, IsRV64] in {
def : Pat<(i64 (shl (and GPR:$rs1, 0xFFFFFFFF), uimm5:$shamt)),
          (SLLI_UW GPR:$rs1, uimm5:$shamt)>;
// Match a shifted 0xffffffff mask. Use SRLI to clear the LSBs and SLLI_UW to
// mask and shift.
def : Pat<(i64 (and GPR:$rs1, Shifted32OnesMask:$mask)),
          (SLLI_UW (XLenVT (SRLI GPR:$rs1, Shifted32OnesMask:$mask)),
                   Shifted32OnesMask:$mask)>;

defm : ADD_UWPat<ADD_UW>;

foreach i = {1,2,3} in {
  defvar shxadd_uw = !cast<Instruction>("SH"#i#"ADD_UW");
  defm : ShxAdd_UWPat<i, shxadd_uw>;
}

defm : Sh1Add_UWPat<SH1ADD_UW>;
defm : Sh2Add_UWPat<SH2ADD_UW>;
defm : Sh3Add_UWPat<SH3ADD_UW>;

def : Sh1AddPat<SH1ADD>;
def : Sh2AddPat<SH2ADD>;
def : Sh3AddPat<SH3ADD>;
} // Predicates = [HasStdExtZba, IsRV64]

let Predicates = [HasStdExtZbcOrZbkc] in {
def : PatGprGpr<riscv_clmul, CLMUL>;
def : PatGprGpr<riscv_clmulh, CLMULH>;
} // Predicates = [HasStdExtZbcOrZbkc]

let Predicates = [HasStdExtZbc] in
def : PatGprGpr<riscv_clmulr, CLMULR>;

let Predicates = [HasStdExtZbkx] in {
def : PatGprGpr<int_riscv_xperm4, XPERM4>;
def : PatGprGpr<int_riscv_xperm8, XPERM8>;
} // Predicates = [HasStdExtZbkx]