1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
19012
19013
19014
19015
19016
19017
19018
19019
19020
19021
19022
19023
19024
19025
19026
19027
19028
19029
19030
19031
19032
19033
19034
19035
19036
19037
19038
19039
19040
19041
19042
19043
19044
19045
19046
19047
19048
19049
19050
19051
19052
19053
19054
19055
19056
19057
19058
19059
19060
19061
19062
19063
19064
19065
19066
19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
19083
19084
19085
19086
19087
19088
19089
19090
19091
19092
19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174
19175
19176
19177
19178
19179
19180
19181
19182
19183
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193
19194
19195
19196
19197
19198
19199
19200
19201
19202
19203
19204
19205
19206
19207
19208
19209
19210
19211
19212
19213
19214
19215
19216
19217
19218
19219
19220
19221
19222
19223
19224
19225
19226
19227
19228
19229
19230
19231
19232
19233
19234
19235
19236
19237
19238
19239
19240
19241
19242
19243
19244
19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255
19256
19257
19258
19259
19260
19261
19262
19263
19264
19265
19266
19267
19268
19269
19270
19271
19272
19273
19274
19275
19276
19277
19278
19279
19280
19281
19282
19283
19284
19285
19286
19287
19288
19289
19290
19291
19292
19293
19294
19295
19296
19297
19298
19299
19300
19301
19302
19303
19304
19305
19306
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
19331
19332
19333
19334
19335
19336
19337
19338
19339
19340
19341
19342
19343
19344
19345
19346
19347
19348
19349
19350
19351
19352
19353
19354
19355
19356
19357
19358
19359
19360
19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391
19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
19414
19415
19416
19417
19418
19419
19420
19421
19422
19423
19424
19425
19426
19427
19428
19429
19430
19431
19432
19433
19434
19435
19436
19437
19438
19439
19440
19441
19442
19443
19444
19445
19446
19447
19448
19449
19450
19451
19452
19453
19454
19455
19456
19457
19458
19459
19460
19461
19462
19463
19464
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
19499
19500
19501
19502
19503
19504
19505
19506
19507
19508
19509
19510
19511
19512
19513
19514
19515
19516
19517
19518
19519
19520
19521
19522
19523
19524
19525
19526
19527
19528
19529
19530
19531
19532
19533
19534
19535
19536
19537
19538
19539
19540
19541
19542
19543
19544
19545
19546
19547
19548
19549
19550
19551
19552
19553
19554
19555
19556
19557
19558
19559
19560
19561
19562
19563
19564
19565
19566
19567
19568
19569
19570
19571
19572
19573
19574
19575
19576
19577
19578
19579
19580
19581
19582
19583
19584
19585
19586
19587
19588
19589
19590
19591
19592
19593
19594
19595
19596
19597
19598
19599
19600
19601
19602
19603
19604
19605
19606
19607
19608
19609
19610
19611
19612
19613
19614
19615
19616
19617
19618
19619
19620
19621
19622
19623
19624
19625
19626
19627
19628
19629
19630
19631
19632
19633
19634
19635
19636
19637
19638
19639
19640
19641
19642
19643
19644
19645
19646
19647
19648
19649
19650
19651
19652
19653
19654
19655
19656
19657
19658
19659
19660
19661
19662
19663
19664
19665
19666
19667
19668
19669
19670
19671
19672
19673
19674
19675
19676
19677
19678
19679
19680
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
19694
19695
19696
19697
19698
19699
19700
19701
19702
19703
19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
19718
19719
19720
19721
19722
19723
19724
19725
19726
19727
19728
19729
19730
19731
19732
19733
19734
19735
19736
19737
19738
19739
19740
19741
19742
19743
19744
19745
19746
19747
19748
19749
19750
19751
19752
19753
19754
19755
19756
19757
19758
19759
19760
19761
19762
19763
19764
19765
19766
19767
19768
19769
19770
19771
19772
19773
19774
19775
19776
19777
19778
19779
19780
19781
19782
19783
19784
19785
19786
19787
19788
19789
19790
19791
19792
19793
19794
19795
19796
19797
19798
19799
19800
19801
19802
19803
19804
19805
19806
19807
19808
19809
19810
19811
19812
19813
19814
19815
19816
19817
19818
19819
19820
19821
19822
19823
19824
19825
19826
19827
19828
19829
19830
19831
19832
19833
19834
19835
19836
19837
19838
19839
19840
19841
19842
19843
19844
19845
19846
19847
19848
19849
19850
19851
19852
19853
19854
19855
19856
19857
19858
19859
19860
19861
19862
19863
19864
19865
19866
19867
19868
19869
19870
19871
19872
19873
19874
19875
19876
19877
19878
19879
19880
19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893
19894
19895
19896
19897
19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
19913
19914
19915
19916
19917
19918
19919
19920
19921
19922
19923
19924
19925
19926
19927
19928
19929
19930
19931
19932
19933
19934
19935
19936
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
19967
19968
19969
19970
19971
19972
19973
19974
19975
19976
19977
19978
19979
19980
19981
19982
19983
19984
19985
19986
19987
19988
19989
19990
19991
19992
19993
19994
19995
19996
19997
19998
19999
20000
20001
20002
20003
20004
20005
20006
20007
20008
20009
20010
20011
20012
20013
20014
20015
20016
20017
20018
20019
20020
20021
20022
20023
20024
20025
20026
20027
20028
20029
20030
20031
20032
20033
20034
20035
20036
20037
20038
20039
20040
20041
20042
20043
20044
20045
20046
20047
20048
20049
20050
20051
20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064
20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
20076
20077
20078
20079
20080
20081
20082
20083
20084
20085
20086
20087
20088
20089
20090
20091
20092
20093
20094
20095
20096
20097
20098
20099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
20200
20201
20202
20203
20204
20205
20206
20207
20208
20209
20210
20211
20212
20213
20214
20215
20216
20217
20218
20219
20220
20221
20222
20223
20224
20225
20226
20227
20228
20229
20230
20231
20232
20233
20234
20235
20236
20237
20238
20239
20240
20241
20242
20243
20244
20245
20246
20247
20248
20249
20250
20251
20252
20253
20254
20255
20256
20257
20258
20259
20260
20261
20262
20263
20264
20265
20266
20267
20268
20269
20270
20271
20272
20273
20274
20275
20276
20277
20278
20279
20280
20281
20282
20283
20284
20285
20286
20287
20288
20289
20290
20291
20292
20293
20294
20295
20296
20297
20298
20299
20300
20301
20302
20303
20304
20305
20306
20307
20308
20309
20310
20311
20312
20313
20314
20315
20316
20317
20318
20319
20320
20321
20322
20323
20324
20325
20326
20327
20328
20329
20330
20331
20332
20333
20334
20335
20336
20337
20338
20339
20340
20341
20342
20343
20344
20345
20346
20347
20348
20349
20350
20351
20352
20353
20354
20355
20356
20357
20358
20359
20360
20361
20362
20363
20364
20365
20366
20367
20368
20369
20370
20371
20372
20373
20374
20375
20376
20377
20378
20379
20380
20381
20382
20383
20384
20385
20386
20387
20388
20389
20390
20391
20392
20393
20394
20395
20396
20397
20398
20399
20400
20401
20402
20403
20404
20405
20406
20407
20408
20409
20410
20411
20412
20413
20414
20415
20416
20417
20418
20419
20420
20421
20422
20423
20424
20425
20426
20427
20428
20429
20430
20431
20432
20433
20434
20435
20436
20437
20438
20439
20440
20441
20442
20443
20444
20445
20446
20447
20448
20449
20450
20451
20452
20453
20454
20455
20456
20457
20458
20459
20460
20461
20462
20463
20464
20465
20466
20467
20468
20469
20470
20471
20472
20473
20474
20475
20476
20477
20478
20479
20480
20481
20482
20483
20484
20485
20486
20487
20488
20489
20490
20491
20492
20493
20494
20495
20496
20497
20498
20499
20500
20501
20502
20503
20504
20505
20506
20507
20508
20509
20510
20511
20512
20513
20514
20515
20516
20517
20518
20519
20520
20521
20522
20523
20524
20525
20526
20527
20528
20529
20530
20531
20532
20533
20534
20535
20536
20537
20538
20539
20540
20541
20542
20543
20544
20545
20546
20547
20548
20549
20550
20551
20552
20553
20554
20555
20556
20557
20558
20559
20560
20561
20562
20563
20564
20565
20566
20567
20568
20569
20570
20571
20572
20573
20574
20575
20576
20577
20578
20579
20580
20581
20582
20583
20584
20585
20586
20587
20588
20589
20590
20591
20592
20593
20594
20595
20596
20597
20598
20599
20600
20601
20602
20603
20604
20605
20606
20607
20608
20609
20610
20611
20612
20613
20614
20615
20616
20617
20618
20619
20620
20621
20622
20623
20624
20625
20626
20627
20628
20629
20630
20631
20632
20633
20634
20635
20636
20637
20638
20639
20640
20641
20642
20643
20644
20645
20646
20647
20648
20649
20650
20651
20652
20653
20654
20655
20656
20657
20658
20659
20660
20661
20662
20663
20664
20665
20666
20667
20668
20669
20670
20671
20672
20673
20674
20675
20676
20677
20678
20679
20680
20681
20682
20683
20684
20685
20686
20687
20688
20689
20690
20691
20692
20693
20694
20695
20696
20697
20698
20699
20700
20701
20702
20703
20704
20705
20706
20707
20708
20709
20710
20711
20712
20713
20714
20715
20716
20717
20718
20719
20720
20721
20722
20723
20724
20725
20726
20727
20728
20729
20730
20731
20732
20733
20734
20735
20736
20737
20738
20739
20740
20741
20742
20743
20744
20745
20746
20747
20748
20749
20750
20751
20752
20753
20754
20755
20756
20757
20758
20759
20760
20761
20762
20763
20764
20765
20766
20767
20768
20769
20770
20771
20772
20773
20774
20775
20776
20777
20778
20779
20780
20781
20782
20783
20784
20785
20786
20787
20788
20789
20790
20791
20792
20793
20794
20795
20796
20797
20798
20799
20800
20801
20802
20803
20804
20805
20806
20807
20808
20809
20810
20811
20812
20813
20814
20815
20816
20817
20818
20819
20820
20821
20822
20823
20824
20825
20826
20827
20828
20829
20830
20831
20832
20833
20834
20835
20836
20837
20838
20839
20840
20841
20842
20843
20844
20845
20846
20847
20848
20849
20850
20851
20852
20853
20854
20855
20856
20857
20858
20859
20860
20861
20862
20863
20864
20865
20866
20867
20868
20869
20870
20871
20872
20873
20874
20875
20876
20877
20878
20879
20880
20881
20882
20883
20884
20885
20886
20887
20888
20889
20890
20891
20892
20893
20894
20895
20896
20897
20898
20899
20900
20901
20902
20903
20904
20905
20906
20907
20908
20909
20910
20911
20912
20913
20914
20915
20916
20917
20918
20919
20920
20921
20922
20923
20924
20925
20926
20927
20928
20929
20930
20931
20932
20933
20934
20935
20936
20937
20938
20939
20940
20941
20942
20943
20944
20945
20946
20947
20948
20949
20950
20951
20952
20953
20954
20955
20956
20957
20958
20959
20960
20961
20962
20963
20964
20965
20966
20967
20968
20969
20970
20971
20972
20973
20974
20975
20976
20977
20978
20979
20980
20981
20982
20983
20984
20985
20986
20987
20988
20989
20990
20991
20992
20993
20994
20995
20996
20997
20998
20999
21000
21001
21002
21003
21004
21005
21006
21007
21008
21009
21010
21011
21012
21013
21014
21015
21016
21017
21018
21019
21020
21021
21022
21023
21024
21025
21026
21027
21028
21029
21030
21031
21032
21033
21034
21035
21036
21037
21038
21039
21040
21041
21042
21043
21044
21045
21046
21047
21048
21049
21050
21051
21052
21053
21054
21055
21056
21057
21058
21059
21060
21061
21062
21063
21064
21065
21066
21067
21068
21069
21070
21071
21072
21073
21074
21075
21076
21077
21078
21079
21080
21081
21082
21083
21084
21085
21086
21087
21088
21089
21090
21091
21092
21093
21094
21095
21096
21097
21098
21099
21100
21101
21102
21103
21104
21105
21106
21107
21108
21109
21110
21111
21112
21113
21114
21115
21116
21117
21118
21119
21120
21121
21122
21123
21124
21125
21126
21127
21128
21129
21130
21131
21132
21133
21134
21135
21136
21137
21138
21139
21140
21141
21142
21143
21144
21145
21146
21147
21148
21149
21150
21151
21152
21153
21154
21155
21156
21157
21158
21159
21160
21161
21162
21163
21164
21165
21166
21167
21168
21169
21170
21171
21172
21173
21174
21175
21176
21177
21178
21179
21180
21181
21182
21183
21184
21185
21186
21187
21188
21189
21190
21191
21192
21193
21194
21195
21196
21197
21198
21199
21200
21201
21202
21203
21204
21205
21206
21207
21208
21209
21210
21211
21212
21213
21214
21215
21216
21217
21218
21219
21220
21221
21222
21223
21224
21225
21226
21227
21228
21229
21230
21231
21232
21233
21234
21235
21236
21237
21238
21239
21240
21241
21242
21243
21244
21245
21246
21247
21248
21249
21250
21251
21252
21253
21254
21255
21256
21257
21258
21259
21260
21261
21262
21263
21264
21265
21266
21267
21268
21269
21270
21271
21272
21273
21274
21275
21276
21277
21278
21279
21280
21281
21282
21283
21284
21285
21286
21287
21288
21289
21290
21291
21292
21293
21294
21295
21296
21297
21298
21299
21300
21301
21302
21303
21304
21305
21306
21307
21308
21309
21310
21311
21312
21313
21314
21315
21316
21317
21318
21319
21320
21321
21322
21323
21324
21325
21326
21327
21328
21329
21330
21331
21332
21333
21334
21335
21336
21337
21338
21339
21340
21341
21342
21343
21344
21345
21346
21347
21348
21349
21350
21351
21352
21353
21354
21355
21356
21357
21358
21359
21360
21361
21362
21363
21364
21365
21366
21367
21368
21369
21370
21371
21372
21373
21374
21375
21376
21377
21378
21379
21380
21381
21382
21383
21384
21385
21386
21387
21388
21389
21390
21391
21392
21393
21394
21395
21396
21397
21398
21399
21400
21401
21402
21403
21404
21405
21406
21407
21408
21409
21410
21411
21412
21413
21414
21415
21416
21417
21418
21419
21420
21421
21422
21423
21424
21425
21426
21427
21428
21429
21430
21431
21432
21433
21434
21435
21436
21437
21438
21439
21440
21441
21442
21443
21444
21445
21446
21447
21448
21449
21450
21451
21452
21453
21454
21455
21456
21457
21458
21459
21460
21461
21462
21463
21464
21465
21466
21467
21468
21469
21470
21471
21472
21473
21474
21475
21476
21477
21478
21479
21480
21481
21482
21483
21484
21485
21486
21487
21488
21489
21490
21491
21492
21493
21494
21495
21496
21497
21498
21499
21500
21501
21502
21503
21504
21505
21506
21507
21508
21509
21510
21511
21512
21513
21514
21515
21516
21517
21518
21519
21520
21521
21522
21523
21524
21525
21526
21527
21528
21529
21530
21531
21532
21533
21534
21535
21536
21537
21538
21539
21540
21541
21542
21543
21544
21545
21546
21547
21548
21549
21550
21551
21552
21553
21554
21555
21556
21557
21558
21559
21560
21561
21562
21563
21564
21565
21566
21567
21568
21569
21570
21571
21572
21573
21574
21575
21576
21577
21578
21579
21580
21581
21582
21583
21584
21585
21586
21587
21588
21589
21590
21591
21592
21593
21594
21595
21596
21597
21598
21599
21600
21601
21602
21603
21604
21605
21606
21607
21608
21609
21610
21611
21612
21613
21614
21615
21616
21617
21618
21619
21620
21621
21622
21623
21624
21625
21626
21627
21628
21629
21630
21631
21632
21633
21634
21635
21636
21637
21638
21639
21640
21641
21642
21643
21644
21645
21646
21647
21648
21649
21650
21651
21652
21653
21654
21655
21656
21657
21658
21659
21660
21661
21662
21663
21664
21665
21666
21667
21668
21669
21670
21671
21672
21673
21674
21675
21676
21677
21678
21679
21680
21681
21682
21683
21684
21685
21686
21687
21688
21689
21690
21691
21692
21693
21694
21695
21696
21697
21698
21699
21700
21701
21702
21703
21704
21705
21706
21707
21708
21709
21710
21711
21712
21713
21714
21715
21716
21717
21718
21719
21720
21721
21722
21723
21724
21725
21726
21727
21728
21729
21730
21731
21732
21733
21734
21735
21736
21737
21738
21739
21740
21741
21742
21743
21744
21745
21746
21747
21748
21749
21750
21751
21752
21753
21754
21755
21756
21757
21758
21759
21760
21761
21762
21763
21764
21765
21766
21767
21768
21769
21770
21771
21772
21773
21774
21775
21776
21777
21778
21779
21780
21781
21782
21783
21784
21785
21786
21787
21788
21789
21790
21791
21792
21793
21794
21795
21796
21797
21798
21799
21800
21801
21802
21803
21804
21805
21806
21807
21808
21809
21810
21811
21812
21813
21814
21815
21816
21817
21818
21819
21820
21821
21822
21823
21824
21825
21826
21827
21828
21829
21830
21831
21832
21833
21834
21835
21836
21837
21838
21839
21840
21841
21842
21843
21844
21845
21846
21847
21848
21849
21850
21851
21852
21853
21854
21855
21856
21857
21858
21859
21860
21861
21862
21863
21864
21865
21866
21867
21868
21869
21870
21871
21872
21873
21874
21875
21876
21877
21878
21879
21880
21881
21882
21883
21884
21885
21886
21887
21888
21889
21890
21891
21892
21893
21894
21895
21896
21897
21898
21899
21900
21901
21902
21903
21904
21905
21906
21907
21908
21909
21910
21911
21912
21913
21914
21915
21916
21917
21918
21919
21920
21921
21922
21923
21924
21925
21926
21927
21928
21929
21930
21931
21932
21933
21934
21935
21936
21937
21938
21939
21940
21941
21942
21943
21944
21945
21946
21947
21948
21949
21950
21951
21952
21953
21954
21955
21956
21957
21958
21959
21960
21961
21962
21963
21964
21965
21966
21967
21968
21969
21970
21971
21972
21973
21974
21975
21976
21977
21978
21979
21980
21981
21982
21983
21984
21985
21986
21987
21988
21989
21990
21991
21992
21993
21994
21995
21996
21997
21998
21999
22000
22001
22002
22003
22004
22005
22006
22007
22008
22009
22010
22011
22012
22013
22014
22015
22016
22017
22018
22019
22020
22021
22022
22023
22024
22025
22026
22027
22028
22029
22030
22031
22032
22033
22034
22035
22036
22037
22038
22039
22040
22041
22042
22043
22044
22045
22046
22047
22048
22049
22050
22051
22052
22053
22054
22055
22056
22057
22058
22059
22060
22061
22062
22063
22064
22065
22066
22067
22068
22069
22070
22071
22072
22073
22074
22075
22076
22077
22078
22079
22080
22081
22082
22083
22084
22085
22086
22087
22088
22089
22090
22091
22092
22093
22094
22095
22096
22097
22098
22099
22100
22101
22102
22103
22104
22105
22106
22107
22108
22109
22110
22111
22112
22113
22114
22115
22116
22117
22118
22119
22120
22121
22122
22123
22124
22125
22126
22127
22128
22129
22130
22131
22132
22133
22134
22135
22136
22137
22138
22139
22140
22141
22142
22143
22144
22145
22146
22147
22148
22149
22150
22151
22152
22153
22154
22155
22156
22157
22158
22159
22160
22161
22162
22163
22164
22165
22166
22167
22168
22169
22170
22171
22172
22173
22174
22175
22176
22177
22178
22179
22180
22181
22182
22183
22184
22185
22186
22187
22188
22189
22190
22191
22192
22193
22194
22195
22196
22197
22198
22199
22200
22201
22202
22203
22204
22205
22206
22207
22208
22209
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
22230
22231
22232
22233
22234
22235
22236
22237
22238
22239
22240
22241
22242
22243
22244
22245
22246
22247
22248
22249
22250
22251
22252
22253
22254
22255
22256
22257
22258
22259
22260
22261
22262
22263
22264
22265
22266
22267
22268
22269
22270
22271
22272
22273
22274
22275
22276
22277
22278
22279
22280
22281
22282
22283
22284
22285
22286
22287
22288
22289
22290
22291
22292
22293
22294
22295
22296
22297
22298
22299
22300
22301
22302
22303
22304
22305
22306
22307
22308
22309
22310
22311
22312
22313
22314
22315
22316
22317
22318
22319
22320
22321
22322
22323
22324
22325
22326
22327
22328
22329
22330
22331
22332
22333
22334
22335
22336
22337
22338
22339
22340
22341
22342
22343
22344
22345
22346
22347
22348
22349
22350
22351
22352
22353
22354
22355
22356
22357
22358
22359
22360
22361
22362
22363
22364
22365
22366
22367
22368
22369
22370
22371
22372
22373
22374
22375
22376
22377
22378
22379
22380
22381
22382
22383
22384
22385
22386
22387
22388
22389
22390
22391
22392
22393
22394
22395
22396
22397
22398
22399
22400
22401
22402
22403
22404
22405
22406
22407
22408
22409
22410
22411
22412
22413
22414
22415
22416
22417
22418
22419
22420
22421
22422
22423
22424
22425
22426
22427
22428
22429
22430
22431
22432
22433
22434
22435
22436
22437
22438
22439
22440
22441
22442
22443
22444
22445
22446
22447
22448
22449
22450
22451
22452
22453
22454
22455
22456
22457
22458
22459
22460
22461
22462
22463
22464
22465
22466
22467
22468
22469
22470
22471
22472
22473
22474
22475
22476
22477
22478
22479
22480
22481
22482
22483
22484
22485
22486
22487
22488
22489
22490
22491
22492
22493
22494
22495
22496
22497
22498
22499
22500
22501
22502
22503
22504
22505
22506
22507
22508
22509
22510
22511
22512
22513
22514
22515
22516
22517
22518
22519
22520
22521
22522
22523
22524
22525
22526
22527
22528
22529
22530
22531
22532
22533
22534
22535
22536
22537
22538
22539
22540
22541
22542
22543
22544
22545
22546
22547
22548
22549
22550
22551
22552
22553
22554
22555
22556
22557
22558
22559
22560
22561
22562
22563
22564
22565
22566
22567
22568
22569
22570
22571
22572
22573
22574
22575
22576
22577
22578
22579
22580
22581
22582
22583
22584
22585
22586
22587
22588
22589
22590
22591
22592
22593
22594
22595
22596
22597
22598
22599
22600
22601
22602
22603
22604
22605
22606
22607
22608
22609
22610
22611
22612
22613
22614
22615
22616
22617
22618
22619
22620
22621
22622
22623
22624
22625
22626
22627
22628
22629
22630
22631
22632
22633
22634
22635
22636
22637
22638
22639
22640
22641
22642
22643
22644
22645
22646
22647
22648
22649
22650
22651
22652
22653
22654
22655
22656
22657
22658
22659
22660
22661
22662
22663
22664
22665
22666
22667
22668
22669
22670
22671
22672
22673
22674
22675
22676
22677
22678
22679
22680
22681
22682
22683
22684
22685
22686
22687
22688
22689
22690
22691
22692
22693
22694
22695
22696
22697
22698
22699
22700
22701
22702
22703
22704
22705
22706
22707
22708
22709
22710
22711
22712
22713
22714
22715
22716
22717
22718
22719
22720
22721
22722
22723
22724
22725
22726
22727
22728
22729
22730
22731
22732
22733
22734
22735
22736
22737
22738
22739
22740
22741
22742
22743
22744
22745
22746
22747
22748
22749
22750
22751
22752
22753
22754
22755
22756
22757
22758
22759
22760
22761
22762
22763
22764
22765
22766
22767
22768
22769
22770
22771
22772
22773
22774
22775
22776
22777
22778
22779
22780
22781
22782
22783
22784
22785
22786
22787
22788
22789
22790
22791
22792
22793
22794
22795
22796
22797
22798
22799
22800
22801
22802
22803
22804
22805
22806
22807
22808
22809
22810
22811
22812
22813
22814
22815
22816
22817
22818
22819
22820
22821
22822
22823
22824
22825
22826
22827
22828
22829
22830
22831
22832
22833
22834
22835
22836
22837
22838
22839
22840
22841
22842
22843
22844
22845
22846
22847
22848
22849
22850
22851
22852
22853
22854
22855
22856
22857
22858
22859
22860
22861
22862
22863
22864
22865
22866
22867
22868
22869
22870
22871
22872
22873
22874
22875
22876
22877
22878
22879
22880
22881
22882
22883
22884
22885
22886
22887
22888
22889
22890
22891
22892
22893
22894
22895
22896
22897
22898
22899
22900
22901
22902
22903
22904
22905
22906
22907
22908
22909
22910
22911
22912
22913
22914
22915
22916
22917
22918
22919
22920
22921
22922
22923
22924
22925
22926
22927
22928
22929
22930
22931
22932
22933
22934
22935
22936
22937
22938
22939
22940
22941
22942
22943
22944
22945
22946
22947
22948
22949
22950
22951
22952
22953
22954
22955
22956
22957
22958
22959
22960
22961
22962
22963
22964
22965
22966
22967
22968
22969
22970
22971
22972
22973
22974
22975
22976
22977
22978
22979
22980
22981
22982
22983
22984
22985
22986
22987
22988
22989
22990
22991
22992
22993
22994
22995
22996
22997
22998
22999
23000
23001
23002
23003
23004
23005
23006
23007
23008
23009
23010
23011
23012
23013
23014
23015
23016
23017
23018
23019
23020
23021
23022
23023
23024
23025
23026
23027
23028
23029
23030
23031
23032
23033
23034
23035
23036
23037
23038
23039
23040
23041
23042
23043
23044
23045
23046
23047
23048
23049
23050
23051
23052
23053
23054
23055
23056
23057
23058
23059
23060
23061
23062
23063
23064
23065
23066
23067
23068
23069
23070
23071
23072
23073
23074
23075
23076
23077
23078
23079
23080
23081
23082
23083
23084
23085
23086
23087
23088
23089
23090
23091
23092
23093
23094
23095
23096
23097
23098
23099
23100
23101
23102
23103
23104
23105
23106
23107
23108
23109
23110
23111
23112
23113
23114
23115
23116
23117
23118
23119
23120
23121
23122
23123
23124
23125
23126
23127
23128
23129
23130
23131
23132
23133
23134
23135
23136
23137
23138
23139
23140
23141
23142
23143
23144
23145
23146
23147
23148
23149
23150
23151
23152
23153
23154
23155
23156
23157
23158
23159
23160
23161
23162
23163
23164
23165
23166
23167
23168
23169
23170
23171
23172
23173
23174
23175
23176
23177
23178
23179
23180
23181
23182
23183
23184
23185
23186
23187
23188
23189
23190
23191
23192
23193
23194
23195
23196
23197
23198
23199
23200
23201
23202
23203
23204
23205
23206
23207
23208
23209
23210
23211
23212
23213
23214
23215
23216
23217
23218
23219
23220
23221
23222
23223
23224
23225
23226
23227
23228
23229
23230
23231
23232
23233
23234
23235
23236
23237
23238
23239
23240
23241
23242
23243
23244
23245
23246
23247
23248
23249
23250
23251
23252
23253
23254
23255
23256
23257
23258
23259
23260
23261
23262
23263
23264
23265
23266
23267
23268
23269
23270
23271
23272
23273
23274
23275
23276
23277
23278
23279
23280
23281
23282
23283
23284
23285
23286
23287
23288
23289
23290
23291
23292
23293
23294
23295
23296
23297
23298
23299
23300
23301
23302
23303
23304
23305
23306
23307
23308
23309
23310
23311
23312
23313
23314
23315
23316
23317
23318
23319
23320
23321
23322
23323
23324
23325
23326
23327
23328
23329
23330
23331
23332
23333
23334
23335
23336
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
23354
23355
23356
23357
23358
23359
23360
23361
23362
23363
23364
23365
23366
23367
23368
23369
23370
23371
23372
23373
23374
23375
23376
23377
23378
23379
23380
23381
23382
23383
23384
23385
23386
23387
23388
23389
23390
23391
23392
23393
23394
23395
23396
23397
23398
23399
23400
23401
23402
23403
23404
23405
23406
23407
23408
23409
23410
23411
23412
23413
23414
23415
23416
23417
23418
23419
23420
23421
23422
23423
23424
23425
23426
23427
23428
23429
23430
23431
23432
23433
23434
23435
23436
23437
23438
23439
23440
23441
23442
23443
23444
23445
23446
23447
23448
23449
23450
23451
23452
23453
23454
23455
23456
23457
23458
23459
23460
23461
23462
23463
23464
23465
23466
23467
23468
23469
23470
23471
23472
23473
23474
23475
23476
23477
23478
23479
23480
23481
23482
23483
23484
23485
23486
23487
23488
23489
23490
23491
23492
23493
23494
23495
23496
23497
23498
23499
23500
23501
23502
23503
23504
23505
23506
23507
23508
23509
23510
23511
23512
23513
23514
23515
23516
23517
23518
23519
23520
23521
23522
23523
23524
23525
23526
23527
23528
23529
23530
23531
23532
23533
23534
23535
23536
23537
23538
23539
23540
23541
23542
23543
23544
23545
23546
23547
23548
23549
23550
23551
23552
23553
23554
23555
23556
23557
23558
23559
23560
23561
23562
23563
23564
23565
23566
23567
23568
23569
23570
23571
23572
23573
23574
23575
23576
23577
23578
23579
23580
23581
23582
23583
23584
23585
23586
23587
23588
23589
23590
23591
23592
23593
23594
23595
23596
23597
23598
23599
23600
23601
23602
23603
23604
23605
23606
23607
23608
23609
23610
23611
23612
23613
23614
23615
23616
23617
23618
23619
23620
23621
23622
23623
23624
23625
23626
23627
23628
23629
23630
23631
23632
23633
23634
23635
23636
23637
23638
23639
23640
23641
23642
23643
23644
23645
23646
23647
23648
23649
23650
23651
23652
23653
23654
23655
23656
23657
23658
23659
23660
23661
23662
23663
23664
23665
23666
23667
23668
23669
23670
23671
23672
23673
23674
23675
23676
23677
23678
23679
23680
23681
23682
23683
23684
23685
23686
23687
23688
23689
23690
23691
23692
23693
23694
23695
23696
23697
23698
23699
23700
23701
23702
23703
23704
23705
23706
23707
23708
23709
23710
23711
23712
23713
23714
23715
23716
23717
23718
23719
23720
23721
23722
23723
23724
23725
23726
23727
23728
23729
23730
23731
23732
23733
23734
23735
23736
23737
23738
23739
23740
23741
23742
23743
23744
23745
23746
23747
23748
23749
23750
23751
23752
23753
23754
23755
23756
23757
23758
23759
23760
23761
23762
23763
23764
23765
23766
23767
23768
23769
23770
23771
23772
23773
23774
23775
23776
23777
23778
23779
23780
23781
23782
23783
23784
23785
23786
23787
23788
23789
23790
23791
23792
23793
23794
23795
23796
23797
23798
23799
23800
23801
23802
23803
23804
23805
23806
23807
23808
23809
23810
23811
23812
23813
23814
23815
23816
23817
23818
23819
23820
23821
23822
23823
23824
23825
23826
23827
23828
23829
23830
23831
23832
23833
23834
23835
23836
23837
23838
23839
23840
23841
23842
23843
23844
23845
23846
23847
23848
23849
23850
23851
23852
23853
23854
23855
23856
23857
23858
23859
23860
23861
23862
23863
23864
23865
23866
23867
23868
23869
23870
23871
23872
23873
23874
23875
23876
23877
23878
23879
23880
23881
23882
23883
23884
23885
23886
23887
23888
23889
23890
23891
23892
23893
23894
23895
23896
23897
23898
23899
23900
23901
23902
23903
23904
23905
23906
23907
23908
23909
23910
23911
23912
23913
23914
23915
23916
23917
23918
23919
23920
23921
23922
23923
23924
23925
23926
23927
23928
23929
23930
23931
23932
23933
23934
23935
23936
23937
23938
23939
23940
23941
23942
23943
23944
23945
23946
23947
23948
23949
23950
23951
23952
23953
23954
23955
23956
23957
23958
23959
23960
23961
23962
23963
23964
23965
23966
23967
23968
23969
23970
23971
23972
23973
23974
23975
23976
23977
23978
23979
23980
23981
23982
23983
23984
23985
23986
23987
23988
23989
23990
23991
23992
23993
23994
23995
23996
23997
23998
23999
24000
24001
24002
24003
24004
24005
24006
24007
24008
24009
24010
24011
24012
24013
24014
24015
24016
24017
24018
24019
24020
24021
24022
24023
24024
24025
24026
24027
24028
24029
24030
24031
24032
24033
24034
24035
24036
24037
24038
24039
24040
24041
24042
24043
24044
24045
24046
24047
24048
24049
24050
24051
24052
24053
24054
24055
24056
24057
24058
24059
24060
24061
24062
24063
24064
24065
24066
24067
24068
24069
24070
24071
24072
24073
24074
24075
24076
24077
24078
24079
24080
24081
24082
24083
24084
24085
24086
24087
24088
24089
24090
24091
24092
24093
24094
24095
24096
24097
24098
24099
24100
24101
24102
24103
24104
24105
24106
24107
24108
24109
24110
24111
24112
24113
24114
24115
24116
24117
24118
24119
24120
24121
24122
24123
24124
24125
24126
24127
24128
24129
24130
24131
24132
24133
24134
24135
24136
24137
24138
24139
24140
24141
24142
24143
24144
24145
24146
24147
24148
24149
24150
24151
24152
24153
24154
24155
24156
24157
24158
24159
24160
24161
24162
24163
24164
24165
24166
24167
24168
24169
24170
24171
24172
24173
24174
24175
24176
24177
24178
24179
24180
24181
24182
24183
24184
24185
24186
24187
24188
24189
24190
24191
24192
24193
24194
24195
24196
24197
24198
24199
24200
24201
24202
24203
24204
24205
24206
24207
24208
24209
24210
24211
24212
24213
24214
24215
24216
24217
24218
24219
24220
24221
24222
24223
24224
24225
24226
24227
24228
24229
24230
24231
24232
24233
24234
24235
24236
24237
24238
24239
24240
24241
24242
24243
24244
24245
24246
24247
24248
24249
24250
24251
24252
24253
24254
24255
24256
24257
24258
24259
24260
24261
24262
24263
24264
24265
24266
24267
24268
24269
24270
24271
24272
24273
24274
24275
24276
24277
24278
24279
24280
24281
24282
24283
24284
24285
24286
24287
24288
24289
24290
24291
24292
24293
24294
24295
24296
24297
24298
24299
24300
24301
24302
24303
24304
24305
24306
24307
24308
24309
24310
24311
24312
24313
24314
24315
24316
24317
24318
24319
24320
24321
24322
24323
24324
24325
24326
24327
24328
24329
24330
24331
24332
24333
24334
24335
24336
24337
24338
24339
24340
24341
24342
24343
24344
24345
24346
24347
24348
24349
24350
24351
24352
24353
24354
24355
24356
24357
24358
24359
24360
24361
24362
24363
24364
24365
24366
24367
24368
24369
24370
24371
24372
24373
24374
24375
24376
24377
24378
24379
24380
24381
24382
24383
24384
24385
24386
24387
24388
24389
24390
24391
24392
24393
24394
24395
24396
24397
24398
24399
24400
24401
24402
24403
24404
24405
24406
24407
24408
24409
24410
24411
24412
24413
24414
24415
24416
24417
24418
24419
24420
24421
24422
24423
24424
24425
24426
24427
24428
24429
24430
24431
24432
24433
24434
24435
24436
24437
24438
24439
24440
24441
24442
24443
24444
24445
24446
24447
24448
24449
24450
24451
24452
24453
24454
24455
24456
24457
24458
24459
24460
24461
24462
24463
24464
24465
24466
24467
24468
24469
24470
24471
24472
24473
24474
24475
24476
24477
24478
24479
24480
24481
24482
24483
24484
24485
24486
24487
24488
24489
24490
24491
24492
24493
24494
24495
24496
24497
24498
24499
24500
24501
24502
24503
24504
24505
24506
24507
24508
24509
24510
24511
24512
24513
24514
24515
24516
24517
24518
24519
24520
24521
24522
24523
24524
24525
24526
24527
24528
24529
24530
24531
24532
24533
24534
24535
24536
24537
24538
24539
24540
24541
24542
24543
24544
24545
24546
24547
24548
24549
24550
24551
24552
24553
24554
24555
24556
24557
24558
24559
24560
24561
24562
24563
24564
24565
24566
24567
24568
24569
24570
24571
24572
24573
24574
24575
24576
24577
24578
24579
24580
24581
24582
24583
24584
24585
24586
24587
24588
24589
24590
24591
24592
24593
24594
24595
24596
24597
24598
24599
24600
24601
24602
24603
24604
24605
24606
24607
24608
24609
24610
24611
24612
24613
24614
24615
24616
24617
24618
24619
24620
24621
24622
24623
24624
24625
24626
24627
24628
24629
24630
24631
24632
24633
24634
24635
24636
24637
24638
24639
24640
24641
24642
24643
24644
24645
24646
24647
24648
24649
24650
24651
24652
24653
24654
24655
24656
24657
24658
24659
24660
24661
24662
24663
24664
24665
24666
24667
24668
24669
24670
24671
24672
24673
24674
24675
24676
24677
24678
24679
24680
24681
24682
24683
24684
24685
24686
24687
24688
24689
24690
24691
24692
24693
24694
24695
24696
24697
24698
24699
24700
24701
24702
24703
24704
24705
24706
24707
24708
24709
24710
24711
24712
24713
24714
24715
24716
24717
24718
24719
24720
24721
24722
24723
24724
24725
24726
24727
24728
24729
24730
24731
24732
24733
24734
24735
24736
24737
24738
24739
24740
24741
24742
24743
24744
24745
24746
24747
24748
24749
24750
24751
24752
24753
24754
24755
24756
24757
24758
24759
24760
24761
24762
24763
24764
24765
24766
24767
24768
24769
24770
24771
24772
24773
24774
24775
24776
24777
24778
24779
24780
24781
24782
24783
24784
24785
24786
24787
24788
24789
24790
24791
24792
24793
24794
24795
24796
24797
24798
24799
24800
24801
24802
24803
24804
24805
24806
24807
24808
24809
24810
24811
24812
24813
24814
24815
24816
24817
24818
24819
24820
24821
24822
24823
24824
24825
24826
24827
24828
24829
24830
24831
24832
24833
24834
24835
24836
24837
24838
24839
24840
24841
24842
24843
24844
24845
24846
24847
24848
24849
24850
24851
24852
24853
24854
24855
24856
24857
24858
24859
24860
24861
24862
24863
24864
24865
24866
24867
24868
24869
24870
24871
24872
24873
24874
24875
24876
24877
24878
24879
24880
24881
24882
24883
24884
24885
24886
24887
24888
24889
24890
24891
24892
24893
24894
24895
24896
24897
24898
24899
24900
24901
24902
24903
24904
24905
24906
24907
24908
24909
24910
24911
24912
24913
24914
24915
24916
24917
24918
24919
24920
24921
24922
24923
24924
24925
24926
24927
24928
24929
24930
24931
24932
24933
24934
24935
24936
24937
24938
24939
24940
24941
24942
24943
24944
24945
24946
24947
24948
24949
24950
24951
24952
24953
24954
24955
24956
24957
24958
24959
24960
24961
24962
24963
24964
24965
24966
24967
24968
24969
24970
24971
24972
24973
24974
24975
24976
24977
24978
24979
24980
24981
24982
24983
24984
24985
24986
24987
24988
24989
24990
24991
24992
24993
24994
24995
24996
24997
24998
24999
25000
25001
25002
25003
25004
25005
25006
25007
25008
25009
25010
25011
25012
25013
25014
25015
25016
25017
25018
25019
25020
25021
25022
25023
25024
25025
25026
25027
25028
25029
25030
25031
25032
25033
25034
25035
25036
25037
25038
25039
25040
25041
25042
25043
25044
25045
25046
25047
25048
25049
25050
25051
25052
25053
25054
25055
25056
25057
25058
25059
25060
25061
25062
25063
25064
25065
25066
25067
25068
25069
25070
25071
25072
25073
25074
25075
25076
25077
25078
25079
25080
25081
25082
25083
25084
25085
25086
25087
25088
25089
25090
25091
25092
25093
25094
25095
25096
25097
25098
25099
25100
25101
25102
25103
25104
25105
25106
25107
25108
25109
25110
25111
25112
25113
25114
25115
25116
25117
25118
25119
25120
25121
25122
25123
25124
25125
25126
25127
25128
25129
25130
25131
25132
25133
25134
25135
25136
25137
25138
25139
25140
25141
25142
25143
25144
25145
25146
25147
25148
25149
25150
25151
25152
25153
25154
25155
25156
25157
25158
25159
25160
25161
25162
25163
25164
25165
25166
25167
25168
25169
25170
25171
25172
25173
25174
25175
25176
25177
25178
25179
25180
25181
25182
25183
25184
25185
25186
25187
25188
25189
25190
25191
25192
25193
25194
25195
25196
25197
25198
25199
25200
25201
25202
25203
25204
25205
25206
25207
25208
25209
25210
25211
25212
25213
25214
25215
25216
25217
25218
25219
25220
25221
25222
25223
25224
25225
25226
25227
25228
25229
25230
25231
25232
25233
25234
25235
25236
25237
25238
25239
25240
25241
25242
25243
25244
25245
25246
25247
25248
25249
25250
25251
25252
25253
25254
25255
25256
25257
25258
25259
25260
25261
25262
25263
25264
25265
25266
25267
25268
25269
25270
25271
25272
25273
25274
25275
25276
25277
25278
25279
25280
25281
25282
25283
25284
25285
25286
25287
25288
25289
25290
25291
25292
25293
25294
25295
25296
25297
25298
25299
25300
25301
25302
25303
25304
25305
25306
25307
25308
25309
25310
25311
25312
25313
25314
25315
25316
25317
25318
25319
25320
25321
25322
25323
25324
25325
25326
25327
25328
25329
25330
25331
25332
25333
25334
25335
25336
25337
25338
25339
25340
25341
25342
25343
25344
25345
25346
25347
25348
25349
25350
25351
25352
25353
25354
25355
25356
25357
25358
25359
25360
25361
25362
25363
25364
25365
25366
25367
25368
25369
25370
25371
25372
25373
25374
25375
25376
25377
25378
25379
25380
25381
25382
25383
25384
25385
25386
25387
25388
25389
25390
25391
25392
25393
25394
25395
25396
25397
25398
25399
25400
25401
25402
25403
25404
25405
25406
25407
25408
25409
25410
25411
25412
25413
25414
25415
25416
25417
25418
25419
25420
25421
25422
25423
25424
25425
25426
25427
25428
25429
25430
25431
25432
25433
25434
25435
25436
25437
25438
25439
25440
25441
25442
25443
25444
25445
25446
25447
25448
25449
25450
25451
25452
25453
25454
25455
25456
25457
25458
25459
25460
25461
25462
25463
25464
25465
25466
25467
25468
25469
25470
25471
25472
25473
25474
25475
25476
25477
25478
25479
25480
25481
25482
25483
25484
25485
25486
25487
25488
25489
25490
25491
25492
25493
25494
25495
25496
25497
25498
25499
25500
25501
25502
25503
25504
25505
25506
25507
25508
25509
25510
25511
25512
25513
25514
25515
25516
25517
25518
25519
25520
25521
25522
25523
25524
25525
25526
25527
25528
25529
25530
25531
25532
25533
25534
25535
25536
25537
25538
25539
25540
25541
25542
25543
25544
25545
25546
25547
25548
25549
25550
25551
25552
25553
25554
25555
25556
25557
25558
25559
25560
25561
25562
25563
25564
25565
25566
25567
25568
25569
25570
25571
25572
25573
25574
25575
25576
25577
25578
25579
25580
25581
25582
25583
25584
25585
25586
25587
25588
25589
25590
25591
25592
25593
25594
25595
25596
25597
25598
25599
25600
25601
25602
25603
25604
25605
25606
25607
25608
25609
25610
25611
25612
25613
25614
25615
25616
25617
25618
25619
25620
25621
25622
25623
25624
25625
25626
25627
25628
25629
25630
25631
25632
25633
25634
25635
25636
25637
25638
25639
25640
25641
25642
25643
25644
25645
25646
25647
25648
25649
25650
25651
25652
25653
25654
25655
25656
25657
25658
25659
25660
25661
25662
25663
25664
25665
25666
25667
25668
25669
25670
25671
25672
25673
25674
25675
25676
25677
25678
25679
25680
25681
25682
25683
25684
25685
25686
25687
25688
25689
25690
25691
25692
25693
25694
25695
25696
25697
25698
25699
25700
25701
25702
25703
25704
25705
25706
25707
25708
25709
25710
25711
25712
25713
25714
25715
25716
25717
25718
25719
25720
25721
25722
25723
25724
25725
25726
25727
25728
25729
25730
25731
25732
25733
25734
25735
25736
25737
25738
25739
25740
25741
25742
25743
25744
25745
25746
25747
25748
25749
25750
25751
25752
25753
25754
25755
25756
25757
25758
25759
25760
25761
25762
25763
25764
25765
25766
25767
25768
25769
25770
25771
25772
25773
25774
25775
25776
25777
25778
25779
25780
25781
25782
25783
25784
25785
25786
25787
25788
25789
25790
25791
25792
25793
25794
25795
25796
25797
25798
25799
25800
25801
25802
25803
25804
25805
25806
25807
25808
25809
25810
25811
25812
25813
25814
25815
25816
25817
25818
25819
25820
25821
25822
25823
25824
25825
25826
25827
25828
25829
25830
25831
25832
25833
25834
25835
25836
25837
25838
25839
25840
25841
25842
25843
25844
25845
25846
25847
25848
25849
25850
25851
25852
25853
25854
25855
25856
25857
25858
25859
25860
25861
25862
25863
25864
25865
25866
25867
25868
25869
25870
25871
25872
25873
25874
25875
25876
25877
25878
25879
25880
25881
25882
25883
25884
25885
25886
25887
25888
25889
25890
25891
25892
25893
25894
25895
25896
25897
25898
25899
25900
25901
25902
25903
25904
25905
25906
25907
25908
25909
25910
25911
25912
25913
25914
25915
25916
25917
25918
25919
25920
25921
25922
25923
25924
25925
25926
25927
25928
25929
25930
25931
25932
25933
25934
25935
25936
25937
25938
25939
25940
25941
25942
25943
25944
25945
25946
25947
25948
25949
25950
25951
25952
25953
25954
25955
25956
25957
25958
25959
25960
25961
25962
25963
25964
25965
25966
25967
25968
25969
25970
25971
25972
25973
25974
25975
25976
25977
25978
25979
25980
25981
25982
25983
25984
25985
25986
25987
25988
25989
25990
25991
25992
25993
25994
25995
25996
25997
25998
25999
26000
26001
26002
26003
26004
26005
26006
26007
26008
26009
26010
26011
26012
26013
26014
26015
26016
26017
26018
26019
26020
26021
26022
26023
26024
26025
26026
26027
26028
26029
26030
26031
26032
26033
26034
26035
26036
26037
26038
26039
26040
26041
26042
26043
26044
26045
26046
26047
26048
26049
26050
26051
26052
26053
26054
26055
26056
26057
26058
26059
26060
26061
26062
26063
26064
26065
26066
26067
26068
26069
26070
26071
26072
26073
26074
26075
26076
26077
26078
26079
26080
26081
26082
26083
26084
26085
26086
26087
26088
26089
26090
26091
26092
26093
26094
26095
26096
26097
26098
26099
26100
26101
26102
26103
26104
26105
26106
26107
26108
26109
26110
26111
26112
26113
26114
26115
26116
26117
26118
26119
26120
26121
26122
26123
26124
26125
26126
26127
26128
26129
26130
26131
26132
26133
26134
26135
26136
26137
26138
26139
26140
26141
26142
26143
26144
26145
26146
26147
26148
26149
26150
26151
26152
26153
26154
26155
26156
26157
26158
26159
26160
26161
26162
26163
26164
26165
26166
26167
26168
26169
26170
26171
26172
26173
26174
26175
26176
26177
26178
26179
26180
26181
26182
26183
26184
26185
26186
26187
26188
26189
26190
26191
26192
26193
26194
26195
26196
26197
26198
26199
26200
26201
26202
26203
26204
26205
26206
26207
26208
26209
26210
26211
26212
26213
26214
26215
26216
26217
26218
26219
26220
26221
26222
26223
26224
26225
26226
26227
26228
26229
26230
26231
26232
26233
26234
26235
26236
26237
26238
26239
26240
26241
26242
26243
26244
26245
26246
26247
26248
26249
26250
26251
26252
26253
26254
26255
26256
26257
26258
26259
26260
26261
26262
26263
26264
26265
26266
26267
26268
26269
26270
26271
26272
26273
26274
26275
26276
26277
26278
26279
26280
26281
26282
26283
26284
26285
26286
26287
26288
26289
26290
26291
26292
26293
26294
26295
26296
26297
26298
26299
26300
26301
26302
26303
26304
26305
26306
26307
26308
26309
26310
26311
26312
26313
26314
26315
26316
26317
26318
26319
26320
26321
26322
26323
26324
26325
26326
26327
26328
26329
26330
26331
26332
26333
26334
26335
26336
26337
26338
26339
26340
26341
26342
26343
26344
26345
26346
26347
26348
26349
26350
26351
26352
26353
26354
26355
26356
26357
26358
26359
26360
26361
26362
26363
26364
26365
26366
26367
26368
26369
26370
26371
26372
26373
26374
26375
26376
26377
26378
26379
26380
26381
26382
26383
26384
26385
26386
26387
26388
26389
26390
26391
26392
26393
26394
26395
26396
26397
26398
26399
26400
26401
26402
26403
26404
26405
26406
26407
26408
26409
26410
26411
26412
26413
26414
26415
26416
26417
26418
26419
26420
26421
26422
26423
26424
26425
26426
26427
26428
26429
26430
26431
26432
26433
26434
26435
26436
26437
26438
26439
26440
26441
26442
26443
26444
26445
26446
26447
26448
26449
26450
26451
26452
26453
26454
26455
26456
26457
26458
26459
26460
26461
26462
26463
26464
26465
26466
26467
26468
26469
26470
26471
26472
26473
26474
26475
26476
26477
26478
26479
26480
26481
26482
26483
26484
26485
26486
26487
26488
26489
26490
26491
26492
26493
26494
26495
26496
26497
26498
26499
26500
26501
26502
26503
26504
26505
26506
26507
26508
26509
26510
26511
26512
26513
26514
26515
26516
26517
26518
26519
26520
26521
26522
26523
26524
26525
26526
26527
26528
26529
26530
26531
26532
26533
26534
26535
26536
26537
26538
26539
26540
26541
26542
26543
26544
26545
26546
26547
26548
26549
26550
26551
26552
26553
26554
26555
26556
26557
26558
26559
26560
26561
26562
26563
26564
26565
26566
26567
26568
26569
26570
26571
26572
26573
26574
26575
26576
26577
26578
26579
26580
26581
26582
26583
26584
26585
26586
26587
26588
26589
26590
26591
26592
26593
26594
26595
26596
26597
26598
26599
26600
26601
26602
26603
26604
26605
26606
26607
26608
26609
26610
26611
26612
26613
26614
26615
26616
26617
26618
26619
26620
26621
26622
26623
26624
26625
26626
26627
26628
26629
26630
26631
26632
26633
26634
26635
26636
26637
26638
26639
26640
26641
26642
26643
26644
26645
26646
26647
26648
26649
26650
26651
26652
26653
26654
26655
26656
26657
26658
26659
26660
26661
26662
26663
26664
26665
26666
26667
26668
26669
26670
26671
26672
26673
26674
26675
26676
26677
26678
26679
26680
26681
26682
26683
26684
26685
26686
26687
26688
26689
26690
26691
26692
26693
26694
26695
26696
26697
26698
26699
26700
26701
26702
26703
26704
26705
26706
26707
26708
26709
26710
26711
26712
26713
26714
26715
26716
26717
26718
26719
26720
26721
26722
26723
26724
26725
26726
26727
26728
26729
26730
26731
26732
26733
26734
26735
26736
26737
26738
26739
26740
26741
26742
26743
26744
26745
26746
26747
26748
26749
26750
26751
26752
26753
26754
26755
26756
26757
26758
26759
26760
26761
26762
26763
26764
26765
26766
26767
26768
26769
26770
26771
26772
26773
26774
26775
26776
26777
26778
26779
26780
26781
26782
26783
26784
26785
26786
26787
26788
26789
26790
26791
26792
26793
26794
26795
26796
26797
26798
26799
26800
26801
26802
26803
26804
26805
26806
26807
26808
26809
26810
26811
26812
26813
26814
26815
26816
26817
26818
26819
26820
26821
26822
26823
26824
26825
26826
26827
26828
26829
26830
26831
26832
26833
26834
26835
26836
26837
26838
26839
26840
26841
26842
26843
26844
26845
26846
26847
26848
26849
26850
26851
26852
26853
26854
26855
26856
26857
26858
26859
26860
26861
26862
26863
26864
26865
26866
26867
26868
26869
26870
26871
26872
26873
26874
26875
26876
26877
26878
26879
26880
26881
26882
26883
26884
26885
26886
26887
26888
26889
26890
26891
26892
26893
26894
26895
26896
26897
26898
26899
26900
26901
26902
26903
26904
26905
26906
26907
26908
26909
26910
26911
26912
26913
26914
26915
26916
26917
26918
26919
26920
26921
26922
26923
26924
26925
26926
26927
26928
26929
26930
26931
26932
26933
26934
26935
26936
26937
26938
26939
26940
26941
26942
26943
26944
26945
26946
26947
26948
26949
26950
26951
26952
26953
26954
26955
26956
26957
26958
26959
26960
26961
26962
26963
26964
26965
26966
26967
26968
26969
26970
26971
26972
26973
26974
26975
26976
26977
26978
26979
26980
26981
26982
26983
26984
26985
26986
26987
26988
26989
26990
26991
26992
26993
26994
26995
26996
26997
26998
26999
27000
27001
27002
27003
27004
27005
27006
27007
27008
27009
27010
27011
27012
27013
27014
27015
27016
27017
27018
27019
27020
27021
27022
27023
27024
27025
27026
27027
27028
27029
27030
27031
27032
27033
27034
27035
27036
27037
27038
27039
27040
27041
27042
27043
27044
27045
27046
27047
27048
27049
27050
27051
27052
27053
27054
27055
27056
27057
27058
27059
27060
27061
27062
27063
27064
27065
27066
27067
27068
27069
27070
27071
27072
27073
27074
27075
27076
27077
27078
27079
27080
27081
27082
27083
27084
27085
27086
27087
27088
27089
27090
27091
27092
27093
27094
27095
27096
27097
27098
27099
27100
27101
27102
27103
27104
27105
27106
27107
27108
27109
27110
27111
27112
27113
27114
27115
27116
27117
27118
27119
27120
27121
27122
27123
27124
27125
27126
27127
27128
27129
27130
27131
27132
27133
27134
27135
27136
27137
27138
27139
27140
27141
27142
27143
27144
27145
27146
27147
27148
27149
27150
27151
27152
27153
27154
27155
27156
27157
27158
27159
27160
27161
27162
27163
27164
27165
27166
27167
27168
27169
27170
27171
27172
27173
27174
27175
27176
27177
27178
27179
27180
27181
27182
27183
27184
27185
27186
27187
27188
27189
27190
27191
27192
27193
27194
27195
27196
27197
27198
27199
27200
27201
27202
27203
27204
27205
27206
27207
27208
27209
27210
27211
27212
27213
27214
27215
27216
27217
27218
27219
27220
27221
27222
27223
27224
27225
27226
27227
27228
27229
27230
27231
27232
27233
27234
27235
27236
27237
27238
27239
27240
27241
27242
27243
27244
27245
27246
27247
27248
27249
27250
27251
27252
27253
27254
27255
27256
27257
27258
27259
27260
27261
27262
27263
27264
27265
27266
27267
27268
27269
27270
27271
27272
27273
27274
27275
27276
27277
27278
27279
27280
27281
27282
27283
27284
27285
27286
27287
27288
27289
27290
27291
27292
27293
27294
27295
27296
27297
27298
27299
27300
27301
27302
27303
27304
27305
27306
27307
27308
27309
27310
27311
27312
27313
27314
27315
27316
27317
27318
27319
27320
27321
27322
27323
27324
27325
27326
27327
27328
27329
27330
27331
27332
27333
27334
27335
27336
27337
27338
27339
27340
27341
27342
27343
27344
27345
27346
27347
27348
27349
27350
27351
27352
27353
27354
27355
27356
27357
27358
27359
27360
27361
27362
27363
27364
27365
27366
27367
27368
27369
27370
27371
27372
27373
27374
27375
27376
27377
27378
27379
27380
27381
27382
27383
27384
27385
27386
27387
27388
27389
27390
27391
27392
27393
27394
27395
27396
27397
27398
27399
27400
27401
27402
27403
27404
27405
27406
27407
27408
27409
27410
27411
27412
27413
27414
27415
27416
27417
27418
27419
27420
27421
27422
27423
27424
27425
27426
27427
27428
27429
27430
27431
27432
27433
27434
27435
27436
27437
27438
27439
27440
27441
27442
27443
27444
27445
27446
27447
27448
27449
27450
27451
27452
27453
27454
27455
27456
27457
27458
27459
27460
27461
27462
27463
27464
27465
27466
27467
27468
27469
27470
27471
27472
27473
27474
27475
27476
27477
27478
27479
27480
27481
27482
27483
27484
27485
27486
27487
27488
27489
27490
27491
27492
27493
27494
27495
27496
27497
27498
27499
27500
27501
27502
27503
27504
27505
27506
27507
27508
27509
27510
27511
27512
27513
27514
27515
27516
27517
27518
27519
27520
27521
27522
27523
27524
27525
27526
27527
27528
27529
27530
27531
27532
27533
27534
27535
27536
27537
27538
27539
27540
27541
27542
27543
27544
27545
27546
27547
27548
27549
27550
27551
27552
27553
27554
27555
27556
27557
27558
27559
27560
27561
27562
27563
27564
27565
27566
27567
27568
27569
27570
27571
27572
27573
27574
27575
27576
27577
27578
27579
27580
27581
27582
27583
27584
27585
27586
27587
27588
27589
27590
27591
27592
27593
27594
27595
27596
27597
27598
27599
27600
27601
27602
27603
27604
27605
27606
27607
27608
27609
27610
27611
27612
27613
27614
27615
27616
27617
27618
27619
27620
27621
27622
27623
27624
27625
27626
27627
27628
27629
27630
27631
27632
27633
27634
27635
27636
27637
27638
27639
27640
27641
27642
27643
27644
27645
27646
27647
27648
27649
27650
27651
27652
27653
27654
27655
27656
27657
27658
27659
27660
27661
27662
27663
27664
27665
27666
27667
27668
27669
27670
27671
27672
27673
27674
27675
27676
27677
27678
27679
27680
27681
27682
27683
27684
27685
27686
27687
27688
27689
27690
27691
27692
27693
27694
27695
27696
27697
27698
27699
27700
27701
27702
27703
27704
27705
27706
27707
27708
27709
27710
27711
27712
27713
27714
27715
27716
27717
27718
27719
27720
27721
27722
27723
27724
27725
27726
27727
27728
27729
27730
27731
27732
27733
27734
27735
27736
27737
27738
27739
27740
27741
27742
27743
27744
27745
27746
27747
27748
27749
27750
27751
27752
27753
27754
27755
27756
27757
27758
27759
27760
27761
27762
27763
27764
27765
27766
27767
27768
27769
27770
27771
27772
27773
27774
27775
27776
27777
27778
27779
27780
27781
27782
27783
27784
27785
27786
27787
27788
27789
27790
27791
27792
27793
27794
27795
27796
27797
27798
27799
27800
27801
27802
27803
27804
27805
27806
27807
27808
27809
27810
27811
27812
27813
27814
27815
27816
27817
27818
27819
27820
27821
27822
27823
27824
27825
27826
27827
27828
27829
27830
27831
27832
27833
27834
27835
27836
27837
27838
27839
27840
27841
27842
27843
27844
27845
27846
27847
27848
27849
27850
27851
27852
27853
27854
27855
27856
27857
27858
27859
27860
27861
27862
27863
27864
27865
27866
27867
27868
27869
27870
27871
27872
27873
27874
27875
27876
27877
27878
27879
27880
27881
27882
27883
27884
27885
27886
27887
27888
27889
27890
27891
27892
27893
27894
27895
27896
27897
27898
27899
27900
27901
27902
27903
27904
27905
27906
27907
27908
27909
27910
27911
27912
27913
27914
27915
27916
27917
27918
27919
27920
27921
27922
27923
27924
27925
27926
27927
27928
27929
27930
27931
27932
27933
27934
27935
27936
27937
27938
27939
27940
27941
27942
27943
27944
27945
27946
27947
27948
27949
27950
27951
27952
27953
27954
27955
27956
27957
27958
27959
27960
27961
27962
27963
27964
27965
27966
27967
27968
27969
27970
27971
27972
27973
27974
27975
27976
27977
27978
27979
27980
27981
27982
27983
27984
27985
27986
27987
27988
27989
27990
27991
27992
27993
27994
27995
27996
27997
27998
27999
28000
28001
28002
28003
28004
28005
28006
28007
28008
28009
28010
28011
28012
28013
28014
28015
28016
28017
28018
28019
28020
28021
28022
28023
28024
28025
28026
28027
28028
28029
28030
28031
28032
28033
28034
28035
28036
28037
28038
28039
28040
28041
28042
28043
28044
28045
28046
28047
28048
28049
28050
28051
28052
28053
28054
28055
28056
28057
28058
28059
28060
28061
28062
28063
28064
28065
28066
28067
28068
28069
28070
28071
28072
28073
28074
28075
28076
28077
28078
28079
28080
28081
28082
28083
28084
28085
28086
28087
28088
28089
28090
28091
28092
28093
28094
28095
28096
28097
28098
28099
28100
28101
28102
28103
28104
28105
28106
28107
28108
28109
28110
28111
28112
28113
28114
28115
28116
28117
28118
28119
28120
28121
28122
28123
28124
28125
28126
28127
28128
28129
28130
28131
28132
28133
28134
28135
28136
28137
28138
28139
28140
28141
28142
28143
28144
28145
28146
28147
28148
28149
28150
28151
28152
28153
28154
28155
28156
28157
28158
28159
28160
28161
28162
28163
28164
28165
28166
28167
28168
28169
28170
28171
28172
28173
28174
28175
28176
28177
28178
28179
28180
28181
28182
28183
28184
28185
28186
28187
28188
28189
28190
28191
28192
28193
28194
28195
28196
28197
28198
28199
28200
28201
28202
28203
28204
28205
28206
28207
28208
28209
28210
28211
28212
28213
28214
28215
28216
28217
28218
28219
28220
28221
28222
28223
28224
28225
28226
28227
28228
28229
28230
28231
28232
28233
28234
28235
28236
28237
28238
28239
28240
28241
28242
28243
28244
28245
28246
28247
28248
28249
28250
28251
28252
28253
28254
28255
28256
28257
28258
28259
28260
28261
28262
28263
28264
28265
28266
28267
28268
28269
28270
28271
28272
28273
28274
28275
28276
28277
28278
28279
28280
28281
28282
28283
28284
28285
28286
28287
28288
28289
28290
28291
28292
28293
28294
28295
28296
28297
28298
28299
28300
28301
28302
28303
28304
28305
28306
28307
28308
28309
28310
28311
28312
28313
28314
28315
28316
28317
28318
28319
28320
28321
28322
28323
28324
28325
28326
28327
28328
28329
28330
28331
28332
28333
28334
28335
28336
28337
28338
28339
28340
28341
28342
28343
28344
28345
28346
28347
28348
28349
28350
28351
28352
28353
28354
28355
28356
28357
28358
28359
28360
28361
28362
28363
28364
28365
28366
28367
28368
28369
28370
28371
28372
28373
28374
28375
28376
28377
28378
28379
28380
28381
28382
28383
28384
28385
28386
28387
28388
28389
28390
28391
28392
28393
28394
28395
28396
28397
28398
28399
28400
28401
28402
28403
28404
28405
28406
28407
28408
28409
28410
28411
28412
28413
28414
28415
28416
28417
28418
28419
28420
28421
28422
28423
28424
28425
28426
28427
28428
28429
28430
28431
28432
28433
28434
28435
28436
28437
28438
28439
28440
28441
28442
28443
28444
28445
28446
28447
28448
28449
28450
28451
28452
28453
28454
28455
28456
28457
28458
28459
28460
28461
28462
28463
28464
28465
28466
28467
28468
28469
28470
28471
28472
28473
28474
28475
28476
28477
28478
28479
28480
28481
28482
28483
28484
28485
28486
28487
28488
28489
28490
28491
28492
28493
28494
28495
28496
28497
28498
28499
28500
28501
28502
28503
28504
28505
28506
28507
28508
28509
28510
28511
28512
28513
28514
28515
28516
28517
28518
28519
28520
28521
28522
28523
28524
28525
28526
28527
28528
28529
28530
28531
28532
28533
28534
28535
28536
28537
28538
28539
28540
28541
28542
28543
28544
28545
28546
28547
28548
28549
28550
28551
28552
28553
28554
28555
28556
28557
28558
28559
28560
28561
28562
28563
28564
28565
28566
28567
28568
28569
28570
28571
28572
28573
28574
28575
28576
28577
28578
28579
28580
28581
28582
28583
28584
28585
28586
28587
28588
28589
28590
28591
28592
28593
28594
28595
28596
28597
28598
28599
28600
28601
28602
28603
28604
28605
28606
28607
28608
28609
28610
28611
28612
28613
28614
28615
28616
28617
28618
28619
28620
28621
28622
28623
28624
28625
28626
28627
28628
28629
28630
28631
28632
28633
28634
28635
28636
28637
28638
28639
28640
28641
28642
28643
28644
28645
28646
28647
28648
28649
28650
28651
28652
28653
28654
28655
28656
28657
28658
28659
28660
28661
28662
28663
28664
28665
28666
28667
28668
28669
28670
28671
28672
28673
28674
28675
28676
28677
28678
28679
28680
28681
28682
28683
28684
28685
28686
28687
28688
28689
28690
28691
28692
28693
28694
28695
28696
28697
28698
28699
28700
28701
28702
28703
28704
28705
28706
28707
28708
28709
28710
28711
28712
28713
28714
28715
28716
28717
28718
28719
28720
28721
28722
28723
28724
28725
28726
28727
28728
28729
28730
28731
28732
28733
28734
28735
28736
28737
28738
28739
28740
28741
28742
28743
28744
28745
28746
28747
28748
28749
28750
28751
28752
28753
28754
28755
28756
28757
28758
28759
28760
28761
28762
28763
28764
28765
28766
28767
28768
28769
28770
28771
28772
28773
28774
28775
28776
28777
28778
28779
28780
28781
28782
28783
28784
28785
28786
28787
28788
28789
28790
28791
28792
28793
28794
28795
28796
28797
28798
28799
28800
28801
28802
28803
28804
28805
28806
28807
28808
28809
28810
28811
28812
28813
28814
28815
28816
28817
28818
28819
28820
28821
28822
28823
28824
28825
28826
28827
28828
28829
28830
28831
28832
28833
28834
28835
28836
28837
28838
28839
28840
28841
28842
28843
28844
28845
28846
28847
28848
28849
28850
28851
28852
28853
28854
28855
28856
28857
28858
28859
28860
28861
28862
28863
28864
28865
28866
28867
28868
28869
28870
28871
28872
28873
28874
28875
28876
28877
28878
28879
28880
28881
28882
28883
28884
28885
28886
28887
28888
28889
28890
28891
28892
28893
28894
28895
28896
28897
28898
28899
28900
28901
28902
28903
28904
28905
28906
28907
28908
28909
28910
28911
28912
28913
28914
28915
28916
28917
28918
28919
28920
28921
28922
28923
28924
28925
28926
28927
28928
28929
28930
28931
28932
28933
28934
28935
28936
28937
28938
28939
28940
28941
28942
28943
28944
28945
28946
28947
28948
28949
28950
28951
28952
28953
28954
28955
28956
28957
28958
28959
28960
28961
28962
28963
28964
28965
28966
28967
28968
28969
28970
28971
28972
28973
28974
28975
28976
28977
28978
28979
28980
28981
28982
28983
28984
28985
28986
28987
28988
28989
28990
28991
28992
28993
28994
28995
28996
28997
28998
28999
29000
29001
29002
29003
29004
29005
29006
29007
29008
29009
29010
29011
29012
29013
29014
29015
29016
29017
29018
29019
29020
29021
29022
29023
29024
29025
29026
29027
29028
29029
29030
29031
29032
29033
29034
29035
29036
29037
29038
29039
29040
29041
29042
29043
29044
29045
29046
29047
29048
29049
29050
29051
29052
29053
29054
29055
29056
29057
29058
29059
29060
29061
29062
29063
29064
29065
29066
29067
29068
29069
29070
29071
29072
29073
29074
29075
29076
29077
29078
29079
29080
29081
29082
29083
29084
29085
29086
29087
29088
29089
29090
29091
29092
29093
29094
29095
29096
29097
29098
29099
29100
29101
29102
29103
29104
29105
29106
29107
29108
29109
29110
29111
29112
29113
29114
29115
29116
29117
29118
29119
29120
29121
29122
29123
29124
29125
29126
29127
29128
29129
29130
29131
29132
29133
29134
29135
29136
29137
29138
29139
29140
29141
29142
29143
29144
29145
29146
29147
29148
29149
29150
29151
29152
29153
29154
29155
29156
29157
29158
29159
29160
29161
29162
29163
29164
29165
29166
29167
29168
29169
29170
29171
29172
29173
29174
29175
29176
29177
29178
29179
29180
29181
29182
29183
29184
29185
29186
29187
29188
29189
29190
29191
29192
29193
29194
29195
29196
29197
29198
29199
29200
29201
29202
29203
29204
29205
29206
29207
29208
29209
29210
29211
29212
29213
29214
29215
29216
29217
29218
29219
29220
29221
29222
29223
29224
29225
29226
29227
29228
29229
29230
29231
29232
29233
29234
29235
29236
29237
29238
29239
29240
29241
29242
29243
29244
29245
29246
29247
29248
29249
29250
29251
29252
29253
29254
29255
29256
29257
29258
29259
29260
29261
29262
29263
29264
29265
29266
29267
29268
29269
29270
29271
29272
29273
29274
29275
29276
29277
29278
29279
29280
29281
29282
29283
29284
29285
29286
29287
29288
29289
29290
29291
29292
29293
29294
29295
29296
29297
29298
29299
29300
29301
29302
29303
29304
29305
29306
29307
29308
29309
29310
29311
29312
29313
29314
29315
29316
29317
29318
29319
29320
29321
29322
29323
29324
29325
29326
29327
29328
29329
29330
29331
29332
29333
29334
29335
29336
29337
29338
29339
29340
29341
29342
29343
29344
29345
29346
29347
29348
29349
29350
29351
29352
29353
29354
29355
29356
29357
29358
29359
29360
29361
29362
29363
29364
29365
29366
29367
29368
29369
29370
29371
29372
29373
29374
29375
29376
29377
29378
29379
29380
29381
29382
29383
29384
29385
29386
29387
29388
29389
29390
29391
29392
29393
29394
29395
29396
29397
29398
29399
29400
29401
29402
29403
29404
29405
29406
29407
29408
29409
29410
29411
29412
29413
29414
29415
29416
29417
29418
29419
29420
29421
29422
29423
29424
29425
29426
29427
29428
29429
29430
29431
29432
29433
29434
29435
29436
29437
29438
29439
29440
29441
29442
29443
29444
29445
29446
29447
29448
29449
29450
29451
29452
29453
29454
29455
29456
29457
29458
29459
29460
29461
29462
29463
29464
29465
29466
29467
29468
29469
29470
29471
29472
29473
29474
29475
29476
29477
29478
29479
29480
29481
29482
29483
29484
29485
29486
29487
29488
29489
29490
29491
29492
29493
29494
29495
29496
29497
29498
29499
29500
29501
29502
29503
29504
29505
29506
29507
29508
29509
29510
29511
29512
29513
29514
29515
29516
29517
29518
29519
29520
29521
29522
29523
29524
29525
29526
29527
29528
29529
29530
29531
29532
29533
29534
29535
29536
29537
29538
29539
29540
29541
29542
29543
29544
29545
29546
29547
29548
29549
29550
29551
29552
29553
29554
29555
29556
29557
29558
29559
29560
29561
29562
29563
29564
29565
29566
29567
29568
29569
29570
29571
29572
29573
29574
29575
29576
29577
29578
29579
29580
29581
29582
29583
29584
29585
29586
29587
29588
29589
29590
29591
29592
29593
29594
29595
29596
29597
29598
29599
29600
29601
29602
29603
29604
29605
29606
29607
29608
29609
29610
29611
29612
29613
29614
29615
29616
29617
29618
29619
29620
29621
29622
29623
29624
29625
29626
29627
29628
29629
29630
29631
29632
29633
29634
29635
29636
29637
29638
29639
29640
29641
29642
29643
29644
29645
29646
29647
29648
29649
29650
29651
29652
29653
29654
29655
29656
29657
29658
29659
29660
29661
29662
29663
29664
29665
29666
29667
29668
29669
29670
29671
29672
29673
29674
|
//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the AArch64TargetLowering class.
//
//===----------------------------------------------------------------------===//
#include "AArch64ISelLowering.h"
#include "AArch64CallingConvention.h"
#include "AArch64ExpandImm.h"
#include "AArch64MachineFunctionInfo.h"
#include "AArch64PerfectShuffle.h"
#include "AArch64RegisterInfo.h"
#include "AArch64Subtarget.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "Utils/AArch64BaseInfo.h"
#include "Utils/AArch64SMEAttributes.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SmallVectorExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/ObjCARCUtil.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/ComplexDeinterleavingPass.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/TargetCallingConv.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/CodeGenTypes/MachineValueType.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsAArch64.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/InstructionCost.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/SipHash.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/TargetParser/Triple.h"
#include <algorithm>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cstdint>
#include <cstdlib>
#include <iterator>
#include <limits>
#include <optional>
#include <tuple>
#include <utility>
#include <vector>
using namespace llvm;
using namespace llvm::PatternMatch;
#define DEBUG_TYPE "aarch64-lower"
STATISTIC(NumTailCalls, "Number of tail calls");
STATISTIC(NumShiftInserts, "Number of vector shift inserts");
STATISTIC(NumOptimizedImms, "Number of times immediates were optimized");
// FIXME: The necessary dtprel relocations don't seem to be supported
// well in the GNU bfd and gold linkers at the moment. Therefore, by
// default, for now, fall back to GeneralDynamic code generation.
cl::opt<bool> EnableAArch64ELFLocalDynamicTLSGeneration(
"aarch64-elf-ldtls-generation", cl::Hidden,
cl::desc("Allow AArch64 Local Dynamic TLS code generation"),
cl::init(false));
static cl::opt<bool>
EnableOptimizeLogicalImm("aarch64-enable-logical-imm", cl::Hidden,
cl::desc("Enable AArch64 logical imm instruction "
"optimization"),
cl::init(true));
// Temporary option added for the purpose of testing functionality added
// to DAGCombiner.cpp in D92230. It is expected that this can be removed
// in future when both implementations will be based off MGATHER rather
// than the GLD1 nodes added for the SVE gather load intrinsics.
static cl::opt<bool>
EnableCombineMGatherIntrinsics("aarch64-enable-mgather-combine", cl::Hidden,
cl::desc("Combine extends of AArch64 masked "
"gather intrinsics"),
cl::init(true));
static cl::opt<bool> EnableExtToTBL("aarch64-enable-ext-to-tbl", cl::Hidden,
cl::desc("Combine ext and trunc to TBL"),
cl::init(true));
// All of the XOR, OR and CMP use ALU ports, and data dependency will become the
// bottleneck after this transform on high end CPU. So this max leaf node
// limitation is guard cmp+ccmp will be profitable.
static cl::opt<unsigned> MaxXors("aarch64-max-xors", cl::init(16), cl::Hidden,
cl::desc("Maximum of xors"));
// By turning this on, we will not fallback to DAG ISel when encountering
// scalable vector types for all instruction, even if SVE is not yet supported
// with some instructions.
// See [AArch64TargetLowering::fallbackToDAGISel] for implementation details.
cl::opt<bool> EnableSVEGISel(
"aarch64-enable-gisel-sve", cl::Hidden,
cl::desc("Enable / disable SVE scalable vectors in Global ISel"),
cl::init(false));
/// Value type used for condition codes.
static const MVT MVT_CC = MVT::i32;
static const MCPhysReg GPRArgRegs[] = {AArch64::X0, AArch64::X1, AArch64::X2,
AArch64::X3, AArch64::X4, AArch64::X5,
AArch64::X6, AArch64::X7};
static const MCPhysReg FPRArgRegs[] = {AArch64::Q0, AArch64::Q1, AArch64::Q2,
AArch64::Q3, AArch64::Q4, AArch64::Q5,
AArch64::Q6, AArch64::Q7};
ArrayRef<MCPhysReg> llvm::AArch64::getGPRArgRegs() { return GPRArgRegs; }
ArrayRef<MCPhysReg> llvm::AArch64::getFPRArgRegs() { return FPRArgRegs; }
static inline EVT getPackedSVEVectorVT(EVT VT) {
switch (VT.getSimpleVT().SimpleTy) {
default:
llvm_unreachable("unexpected element type for vector");
case MVT::i8:
return MVT::nxv16i8;
case MVT::i16:
return MVT::nxv8i16;
case MVT::i32:
return MVT::nxv4i32;
case MVT::i64:
return MVT::nxv2i64;
case MVT::f16:
return MVT::nxv8f16;
case MVT::f32:
return MVT::nxv4f32;
case MVT::f64:
return MVT::nxv2f64;
case MVT::bf16:
return MVT::nxv8bf16;
}
}
// NOTE: Currently there's only a need to return integer vector types. If this
// changes then just add an extra "type" parameter.
static inline EVT getPackedSVEVectorVT(ElementCount EC) {
switch (EC.getKnownMinValue()) {
default:
llvm_unreachable("unexpected element count for vector");
case 16:
return MVT::nxv16i8;
case 8:
return MVT::nxv8i16;
case 4:
return MVT::nxv4i32;
case 2:
return MVT::nxv2i64;
}
}
static inline EVT getPromotedVTForPredicate(EVT VT) {
assert(VT.isScalableVector() && (VT.getVectorElementType() == MVT::i1) &&
"Expected scalable predicate vector type!");
switch (VT.getVectorMinNumElements()) {
default:
llvm_unreachable("unexpected element count for vector");
case 2:
return MVT::nxv2i64;
case 4:
return MVT::nxv4i32;
case 8:
return MVT::nxv8i16;
case 16:
return MVT::nxv16i8;
}
}
/// Returns true if VT's elements occupy the lowest bit positions of its
/// associated register class without any intervening space.
///
/// For example, nxv2f16, nxv4f16 and nxv8f16 are legal types that belong to the
/// same register class, but only nxv8f16 can be treated as a packed vector.
static inline bool isPackedVectorType(EVT VT, SelectionDAG &DAG) {
assert(VT.isVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
"Expected legal vector type!");
return VT.isFixedLengthVector() ||
VT.getSizeInBits().getKnownMinValue() == AArch64::SVEBitsPerBlock;
}
// Returns true for ####_MERGE_PASSTHRU opcodes, whose operands have a leading
// predicate and end with a passthru value matching the result type.
static bool isMergePassthruOpcode(unsigned Opc) {
switch (Opc) {
default:
return false;
case AArch64ISD::BITREVERSE_MERGE_PASSTHRU:
case AArch64ISD::BSWAP_MERGE_PASSTHRU:
case AArch64ISD::REVH_MERGE_PASSTHRU:
case AArch64ISD::REVW_MERGE_PASSTHRU:
case AArch64ISD::REVD_MERGE_PASSTHRU:
case AArch64ISD::CTLZ_MERGE_PASSTHRU:
case AArch64ISD::CTPOP_MERGE_PASSTHRU:
case AArch64ISD::DUP_MERGE_PASSTHRU:
case AArch64ISD::ABS_MERGE_PASSTHRU:
case AArch64ISD::NEG_MERGE_PASSTHRU:
case AArch64ISD::FNEG_MERGE_PASSTHRU:
case AArch64ISD::SIGN_EXTEND_INREG_MERGE_PASSTHRU:
case AArch64ISD::ZERO_EXTEND_INREG_MERGE_PASSTHRU:
case AArch64ISD::FCEIL_MERGE_PASSTHRU:
case AArch64ISD::FFLOOR_MERGE_PASSTHRU:
case AArch64ISD::FNEARBYINT_MERGE_PASSTHRU:
case AArch64ISD::FRINT_MERGE_PASSTHRU:
case AArch64ISD::FROUND_MERGE_PASSTHRU:
case AArch64ISD::FROUNDEVEN_MERGE_PASSTHRU:
case AArch64ISD::FTRUNC_MERGE_PASSTHRU:
case AArch64ISD::FP_ROUND_MERGE_PASSTHRU:
case AArch64ISD::FP_EXTEND_MERGE_PASSTHRU:
case AArch64ISD::SINT_TO_FP_MERGE_PASSTHRU:
case AArch64ISD::UINT_TO_FP_MERGE_PASSTHRU:
case AArch64ISD::FCVTX_MERGE_PASSTHRU:
case AArch64ISD::FCVTZU_MERGE_PASSTHRU:
case AArch64ISD::FCVTZS_MERGE_PASSTHRU:
case AArch64ISD::FSQRT_MERGE_PASSTHRU:
case AArch64ISD::FRECPX_MERGE_PASSTHRU:
case AArch64ISD::FABS_MERGE_PASSTHRU:
return true;
}
}
// Returns true if inactive lanes are known to be zeroed by construction.
static bool isZeroingInactiveLanes(SDValue Op) {
switch (Op.getOpcode()) {
default:
return false;
// We guarantee i1 splat_vectors to zero the other lanes
case ISD::SPLAT_VECTOR:
case AArch64ISD::PTRUE:
case AArch64ISD::SETCC_MERGE_ZERO:
return true;
case ISD::INTRINSIC_WO_CHAIN:
switch (Op.getConstantOperandVal(0)) {
default:
return false;
case Intrinsic::aarch64_sve_ptrue:
case Intrinsic::aarch64_sve_pnext:
case Intrinsic::aarch64_sve_cmpeq:
case Intrinsic::aarch64_sve_cmpne:
case Intrinsic::aarch64_sve_cmpge:
case Intrinsic::aarch64_sve_cmpgt:
case Intrinsic::aarch64_sve_cmphs:
case Intrinsic::aarch64_sve_cmphi:
case Intrinsic::aarch64_sve_cmpeq_wide:
case Intrinsic::aarch64_sve_cmpne_wide:
case Intrinsic::aarch64_sve_cmpge_wide:
case Intrinsic::aarch64_sve_cmpgt_wide:
case Intrinsic::aarch64_sve_cmplt_wide:
case Intrinsic::aarch64_sve_cmple_wide:
case Intrinsic::aarch64_sve_cmphs_wide:
case Intrinsic::aarch64_sve_cmphi_wide:
case Intrinsic::aarch64_sve_cmplo_wide:
case Intrinsic::aarch64_sve_cmpls_wide:
case Intrinsic::aarch64_sve_fcmpeq:
case Intrinsic::aarch64_sve_fcmpne:
case Intrinsic::aarch64_sve_fcmpge:
case Intrinsic::aarch64_sve_fcmpgt:
case Intrinsic::aarch64_sve_fcmpuo:
case Intrinsic::aarch64_sve_facgt:
case Intrinsic::aarch64_sve_facge:
case Intrinsic::aarch64_sve_whilege:
case Intrinsic::aarch64_sve_whilegt:
case Intrinsic::aarch64_sve_whilehi:
case Intrinsic::aarch64_sve_whilehs:
case Intrinsic::aarch64_sve_whilele:
case Intrinsic::aarch64_sve_whilelo:
case Intrinsic::aarch64_sve_whilels:
case Intrinsic::aarch64_sve_whilelt:
case Intrinsic::aarch64_sve_match:
case Intrinsic::aarch64_sve_nmatch:
case Intrinsic::aarch64_sve_whilege_x2:
case Intrinsic::aarch64_sve_whilegt_x2:
case Intrinsic::aarch64_sve_whilehi_x2:
case Intrinsic::aarch64_sve_whilehs_x2:
case Intrinsic::aarch64_sve_whilele_x2:
case Intrinsic::aarch64_sve_whilelo_x2:
case Intrinsic::aarch64_sve_whilels_x2:
case Intrinsic::aarch64_sve_whilelt_x2:
return true;
}
}
}
static std::tuple<SDValue, SDValue>
extractPtrauthBlendDiscriminators(SDValue Disc, SelectionDAG *DAG) {
SDLoc DL(Disc);
SDValue AddrDisc;
SDValue ConstDisc;
// If this is a blend, remember the constant and address discriminators.
// Otherwise, it's either a constant discriminator, or a non-blended
// address discriminator.
if (Disc->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
Disc->getConstantOperandVal(0) == Intrinsic::ptrauth_blend) {
AddrDisc = Disc->getOperand(1);
ConstDisc = Disc->getOperand(2);
} else {
ConstDisc = Disc;
}
// If the constant discriminator (either the blend RHS, or the entire
// discriminator value) isn't a 16-bit constant, bail out, and let the
// discriminator be computed separately.
const auto *ConstDiscN = dyn_cast<ConstantSDNode>(ConstDisc);
if (!ConstDiscN || !isUInt<16>(ConstDiscN->getZExtValue()))
return std::make_tuple(DAG->getTargetConstant(0, DL, MVT::i64), Disc);
// If there's no address discriminator, use NoRegister, which we'll later
// replace with XZR, or directly use a Z variant of the inst. when available.
if (!AddrDisc)
AddrDisc = DAG->getRegister(AArch64::NoRegister, MVT::i64);
return std::make_tuple(
DAG->getTargetConstant(ConstDiscN->getZExtValue(), DL, MVT::i64),
AddrDisc);
}
AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM,
const AArch64Subtarget &STI)
: TargetLowering(TM), Subtarget(&STI) {
// AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
// we have to make something up. Arbitrarily, choose ZeroOrOne.
setBooleanContents(ZeroOrOneBooleanContent);
// When comparing vectors the result sets the different elements in the
// vector to all-one or all-zero.
setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
// Set up the register classes.
addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass);
addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass);
if (Subtarget->hasLS64()) {
addRegisterClass(MVT::i64x8, &AArch64::GPR64x8ClassRegClass);
setOperationAction(ISD::LOAD, MVT::i64x8, Custom);
setOperationAction(ISD::STORE, MVT::i64x8, Custom);
}
if (Subtarget->hasFPARMv8()) {
addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
addRegisterClass(MVT::bf16, &AArch64::FPR16RegClass);
addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
}
if (Subtarget->hasNEON()) {
addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass);
addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass);
addDRType(MVT::v2f32);
addDRType(MVT::v8i8);
addDRType(MVT::v4i16);
addDRType(MVT::v2i32);
addDRType(MVT::v1i64);
addDRType(MVT::v1f64);
addDRType(MVT::v4f16);
addDRType(MVT::v4bf16);
addQRType(MVT::v4f32);
addQRType(MVT::v2f64);
addQRType(MVT::v16i8);
addQRType(MVT::v8i16);
addQRType(MVT::v4i32);
addQRType(MVT::v2i64);
addQRType(MVT::v8f16);
addQRType(MVT::v8bf16);
}
if (Subtarget->isSVEorStreamingSVEAvailable()) {
// Add legal sve predicate types
addRegisterClass(MVT::nxv1i1, &AArch64::PPRRegClass);
addRegisterClass(MVT::nxv2i1, &AArch64::PPRRegClass);
addRegisterClass(MVT::nxv4i1, &AArch64::PPRRegClass);
addRegisterClass(MVT::nxv8i1, &AArch64::PPRRegClass);
addRegisterClass(MVT::nxv16i1, &AArch64::PPRRegClass);
// Add legal sve data types
addRegisterClass(MVT::nxv16i8, &AArch64::ZPRRegClass);
addRegisterClass(MVT::nxv8i16, &AArch64::ZPRRegClass);
addRegisterClass(MVT::nxv4i32, &AArch64::ZPRRegClass);
addRegisterClass(MVT::nxv2i64, &AArch64::ZPRRegClass);
addRegisterClass(MVT::nxv2f16, &AArch64::ZPRRegClass);
addRegisterClass(MVT::nxv4f16, &AArch64::ZPRRegClass);
addRegisterClass(MVT::nxv8f16, &AArch64::ZPRRegClass);
addRegisterClass(MVT::nxv2f32, &AArch64::ZPRRegClass);
addRegisterClass(MVT::nxv4f32, &AArch64::ZPRRegClass);
addRegisterClass(MVT::nxv2f64, &AArch64::ZPRRegClass);
addRegisterClass(MVT::nxv2bf16, &AArch64::ZPRRegClass);
addRegisterClass(MVT::nxv4bf16, &AArch64::ZPRRegClass);
addRegisterClass(MVT::nxv8bf16, &AArch64::ZPRRegClass);
if (Subtarget->useSVEForFixedLengthVectors()) {
for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
if (useSVEForFixedLengthVectorVT(VT))
addRegisterClass(VT, &AArch64::ZPRRegClass);
for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
if (useSVEForFixedLengthVectorVT(VT))
addRegisterClass(VT, &AArch64::ZPRRegClass);
}
}
if (Subtarget->hasSVE2p1() || Subtarget->hasSME2()) {
addRegisterClass(MVT::aarch64svcount, &AArch64::PPRRegClass);
setOperationPromotedToType(ISD::LOAD, MVT::aarch64svcount, MVT::nxv16i1);
setOperationPromotedToType(ISD::STORE, MVT::aarch64svcount, MVT::nxv16i1);
setOperationAction(ISD::SELECT, MVT::aarch64svcount, Custom);
setOperationAction(ISD::SELECT_CC, MVT::aarch64svcount, Expand);
}
// Compute derived properties from the register classes
computeRegisterProperties(Subtarget->getRegisterInfo());
// Provide all sorts of operation actions
setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
setOperationAction(ISD::SETCC, MVT::i32, Custom);
setOperationAction(ISD::SETCC, MVT::i64, Custom);
setOperationAction(ISD::SETCC, MVT::bf16, Custom);
setOperationAction(ISD::SETCC, MVT::f16, Custom);
setOperationAction(ISD::SETCC, MVT::f32, Custom);
setOperationAction(ISD::SETCC, MVT::f64, Custom);
setOperationAction(ISD::STRICT_FSETCC, MVT::bf16, Custom);
setOperationAction(ISD::STRICT_FSETCC, MVT::f16, Custom);
setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Custom);
setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Custom);
setOperationAction(ISD::STRICT_FSETCCS, MVT::f16, Custom);
setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Custom);
setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Custom);
setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
setOperationAction(ISD::BRCOND, MVT::Other, Custom);
setOperationAction(ISD::BR_CC, MVT::i32, Custom);
setOperationAction(ISD::BR_CC, MVT::i64, Custom);
setOperationAction(ISD::BR_CC, MVT::f16, Custom);
setOperationAction(ISD::BR_CC, MVT::f32, Custom);
setOperationAction(ISD::BR_CC, MVT::f64, Custom);
setOperationAction(ISD::SELECT, MVT::i32, Custom);
setOperationAction(ISD::SELECT, MVT::i64, Custom);
setOperationAction(ISD::SELECT, MVT::f16, Custom);
setOperationAction(ISD::SELECT, MVT::bf16, Custom);
setOperationAction(ISD::SELECT, MVT::f32, Custom);
setOperationAction(ISD::SELECT, MVT::f64, Custom);
setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f16, Custom);
setOperationAction(ISD::SELECT_CC, MVT::bf16, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
setOperationAction(ISD::BR_JT, MVT::Other, Custom);
setOperationAction(ISD::JumpTable, MVT::i64, Custom);
setOperationAction(ISD::BRIND, MVT::Other, Custom);
setOperationAction(ISD::SETCCCARRY, MVT::i64, Custom);
setOperationAction(ISD::PtrAuthGlobalAddress, MVT::i64, Custom);
setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
setOperationAction(ISD::FREM, MVT::f32, Expand);
setOperationAction(ISD::FREM, MVT::f64, Expand);
setOperationAction(ISD::FREM, MVT::f80, Expand);
setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
// Custom lowering hooks are needed for XOR
// to fold it into CSINC/CSINV.
setOperationAction(ISD::XOR, MVT::i32, Custom);
setOperationAction(ISD::XOR, MVT::i64, Custom);
// Virtually no operation on f128 is legal, but LLVM can't expand them when
// there's a valid register class, so we need custom operations in most cases.
setOperationAction(ISD::FABS, MVT::f128, Expand);
setOperationAction(ISD::FADD, MVT::f128, LibCall);
setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
setOperationAction(ISD::FCOS, MVT::f128, Expand);
setOperationAction(ISD::FDIV, MVT::f128, LibCall);
setOperationAction(ISD::FMA, MVT::f128, Expand);
setOperationAction(ISD::FMUL, MVT::f128, LibCall);
setOperationAction(ISD::FNEG, MVT::f128, Expand);
setOperationAction(ISD::FPOW, MVT::f128, Expand);
setOperationAction(ISD::FREM, MVT::f128, Expand);
setOperationAction(ISD::FRINT, MVT::f128, Expand);
setOperationAction(ISD::FSIN, MVT::f128, Expand);
setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
setOperationAction(ISD::FSQRT, MVT::f128, Expand);
setOperationAction(ISD::FSUB, MVT::f128, LibCall);
setOperationAction(ISD::FTAN, MVT::f128, Expand);
setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
setOperationAction(ISD::SETCC, MVT::f128, Custom);
setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Custom);
setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Custom);
setOperationAction(ISD::BR_CC, MVT::f128, Custom);
setOperationAction(ISD::SELECT, MVT::f128, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
// FIXME: f128 FMINIMUM and FMAXIMUM (including STRICT versions) currently
// aren't handled.
// Lowering for many of the conversions is actually specified by the non-f128
// type. The LowerXXX function will be trivial when f128 isn't involved.
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i128, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom);
setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i128, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i128, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom);
setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom);
setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i128, Custom);
if (Subtarget->hasFPARMv8()) {
setOperationAction(ISD::FP_ROUND, MVT::f16, Custom);
setOperationAction(ISD::FP_ROUND, MVT::bf16, Custom);
}
setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
if (Subtarget->hasFPARMv8()) {
setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Custom);
setOperationAction(ISD::STRICT_FP_ROUND, MVT::bf16, Custom);
}
setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Custom);
setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Custom);
setOperationAction(ISD::FP_TO_UINT_SAT, MVT::i32, Custom);
setOperationAction(ISD::FP_TO_UINT_SAT, MVT::i64, Custom);
setOperationAction(ISD::FP_TO_SINT_SAT, MVT::i32, Custom);
setOperationAction(ISD::FP_TO_SINT_SAT, MVT::i64, Custom);
// Variable arguments.
setOperationAction(ISD::VASTART, MVT::Other, Custom);
setOperationAction(ISD::VAARG, MVT::Other, Custom);
setOperationAction(ISD::VACOPY, MVT::Other, Custom);
setOperationAction(ISD::VAEND, MVT::Other, Expand);
// Variable-sized objects.
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
// Lowering Funnel Shifts to EXTR
setOperationAction(ISD::FSHR, MVT::i32, Custom);
setOperationAction(ISD::FSHR, MVT::i64, Custom);
setOperationAction(ISD::FSHL, MVT::i32, Custom);
setOperationAction(ISD::FSHL, MVT::i64, Custom);
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom);
// Constant pool entries
setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
// BlockAddress
setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
// AArch64 lacks both left-rotate and popcount instructions.
setOperationAction(ISD::ROTL, MVT::i32, Expand);
setOperationAction(ISD::ROTL, MVT::i64, Expand);
for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
setOperationAction(ISD::ROTL, VT, Expand);
setOperationAction(ISD::ROTR, VT, Expand);
}
// AArch64 doesn't have i32 MULH{S|U}.
setOperationAction(ISD::MULHU, MVT::i32, Expand);
setOperationAction(ISD::MULHS, MVT::i32, Expand);
// AArch64 doesn't have {U|S}MUL_LOHI.
setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
if (Subtarget->hasCSSC()) {
setOperationAction(ISD::CTPOP, MVT::i32, Legal);
setOperationAction(ISD::CTPOP, MVT::i64, Legal);
setOperationAction(ISD::CTPOP, MVT::i128, Expand);
setOperationAction(ISD::PARITY, MVT::i128, Expand);
setOperationAction(ISD::CTTZ, MVT::i32, Legal);
setOperationAction(ISD::CTTZ, MVT::i64, Legal);
setOperationAction(ISD::CTTZ, MVT::i128, Expand);
setOperationAction(ISD::ABS, MVT::i32, Legal);
setOperationAction(ISD::ABS, MVT::i64, Legal);
setOperationAction(ISD::SMAX, MVT::i32, Legal);
setOperationAction(ISD::SMAX, MVT::i64, Legal);
setOperationAction(ISD::UMAX, MVT::i32, Legal);
setOperationAction(ISD::UMAX, MVT::i64, Legal);
setOperationAction(ISD::SMIN, MVT::i32, Legal);
setOperationAction(ISD::SMIN, MVT::i64, Legal);
setOperationAction(ISD::UMIN, MVT::i32, Legal);
setOperationAction(ISD::UMIN, MVT::i64, Legal);
} else {
setOperationAction(ISD::CTPOP, MVT::i32, Custom);
setOperationAction(ISD::CTPOP, MVT::i64, Custom);
setOperationAction(ISD::CTPOP, MVT::i128, Custom);
setOperationAction(ISD::PARITY, MVT::i64, Custom);
setOperationAction(ISD::PARITY, MVT::i128, Custom);
setOperationAction(ISD::ABS, MVT::i32, Custom);
setOperationAction(ISD::ABS, MVT::i64, Custom);
}
setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
setOperationAction(ISD::SDIVREM, VT, Expand);
setOperationAction(ISD::UDIVREM, VT, Expand);
}
setOperationAction(ISD::SREM, MVT::i32, Expand);
setOperationAction(ISD::SREM, MVT::i64, Expand);
setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
setOperationAction(ISD::UREM, MVT::i32, Expand);
setOperationAction(ISD::UREM, MVT::i64, Expand);
// Custom lower Add/Sub/Mul with overflow.
setOperationAction(ISD::SADDO, MVT::i32, Custom);
setOperationAction(ISD::SADDO, MVT::i64, Custom);
setOperationAction(ISD::UADDO, MVT::i32, Custom);
setOperationAction(ISD::UADDO, MVT::i64, Custom);
setOperationAction(ISD::SSUBO, MVT::i32, Custom);
setOperationAction(ISD::SSUBO, MVT::i64, Custom);
setOperationAction(ISD::USUBO, MVT::i32, Custom);
setOperationAction(ISD::USUBO, MVT::i64, Custom);
setOperationAction(ISD::SMULO, MVT::i32, Custom);
setOperationAction(ISD::SMULO, MVT::i64, Custom);
setOperationAction(ISD::UMULO, MVT::i32, Custom);
setOperationAction(ISD::UMULO, MVT::i64, Custom);
setOperationAction(ISD::UADDO_CARRY, MVT::i32, Custom);
setOperationAction(ISD::UADDO_CARRY, MVT::i64, Custom);
setOperationAction(ISD::USUBO_CARRY, MVT::i32, Custom);
setOperationAction(ISD::USUBO_CARRY, MVT::i64, Custom);
setOperationAction(ISD::SADDO_CARRY, MVT::i32, Custom);
setOperationAction(ISD::SADDO_CARRY, MVT::i64, Custom);
setOperationAction(ISD::SSUBO_CARRY, MVT::i32, Custom);
setOperationAction(ISD::SSUBO_CARRY, MVT::i64, Custom);
setOperationAction(ISD::FSIN, MVT::f32, Expand);
setOperationAction(ISD::FSIN, MVT::f64, Expand);
setOperationAction(ISD::FCOS, MVT::f32, Expand);
setOperationAction(ISD::FCOS, MVT::f64, Expand);
setOperationAction(ISD::FPOW, MVT::f32, Expand);
setOperationAction(ISD::FPOW, MVT::f64, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
if (Subtarget->hasFullFP16()) {
setOperationAction(ISD::FCOPYSIGN, MVT::f16, Custom);
setOperationAction(ISD::FCOPYSIGN, MVT::bf16, Custom);
} else {
setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote);
setOperationAction(ISD::FCOPYSIGN, MVT::bf16, Promote);
}
for (auto Op : {ISD::FREM, ISD::FPOW, ISD::FPOWI,
ISD::FCOS, ISD::FSIN, ISD::FSINCOS,
ISD::FACOS, ISD::FASIN, ISD::FATAN,
ISD::FATAN2, ISD::FCOSH, ISD::FSINH,
ISD::FTANH, ISD::FTAN, ISD::FEXP,
ISD::FEXP2, ISD::FEXP10, ISD::FLOG,
ISD::FLOG2, ISD::FLOG10, ISD::STRICT_FREM,
ISD::STRICT_FPOW, ISD::STRICT_FPOWI, ISD::STRICT_FCOS,
ISD::STRICT_FSIN, ISD::STRICT_FACOS, ISD::STRICT_FASIN,
ISD::STRICT_FATAN, ISD::STRICT_FATAN2, ISD::STRICT_FCOSH,
ISD::STRICT_FSINH, ISD::STRICT_FTANH, ISD::STRICT_FEXP,
ISD::STRICT_FEXP2, ISD::STRICT_FLOG, ISD::STRICT_FLOG2,
ISD::STRICT_FLOG10, ISD::STRICT_FTAN}) {
setOperationAction(Op, MVT::f16, Promote);
setOperationAction(Op, MVT::v4f16, Expand);
setOperationAction(Op, MVT::v8f16, Expand);
setOperationAction(Op, MVT::bf16, Promote);
setOperationAction(Op, MVT::v4bf16, Expand);
setOperationAction(Op, MVT::v8bf16, Expand);
}
auto LegalizeNarrowFP = [this](MVT ScalarVT) {
for (auto Op : {
ISD::SETCC,
ISD::SELECT_CC,
ISD::BR_CC,
ISD::FADD,
ISD::FSUB,
ISD::FMUL,
ISD::FDIV,
ISD::FMA,
ISD::FCEIL,
ISD::FSQRT,
ISD::FFLOOR,
ISD::FNEARBYINT,
ISD::FRINT,
ISD::FROUND,
ISD::FROUNDEVEN,
ISD::FTRUNC,
ISD::FMINNUM,
ISD::FMAXNUM,
ISD::FMINIMUM,
ISD::FMAXIMUM,
ISD::FCANONICALIZE,
ISD::STRICT_FADD,
ISD::STRICT_FSUB,
ISD::STRICT_FMUL,
ISD::STRICT_FDIV,
ISD::STRICT_FMA,
ISD::STRICT_FCEIL,
ISD::STRICT_FFLOOR,
ISD::STRICT_FSQRT,
ISD::STRICT_FRINT,
ISD::STRICT_FNEARBYINT,
ISD::STRICT_FROUND,
ISD::STRICT_FTRUNC,
ISD::STRICT_FROUNDEVEN,
ISD::STRICT_FMINNUM,
ISD::STRICT_FMAXNUM,
ISD::STRICT_FMINIMUM,
ISD::STRICT_FMAXIMUM,
})
setOperationAction(Op, ScalarVT, Promote);
for (auto Op : {ISD::FNEG, ISD::FABS})
setOperationAction(Op, ScalarVT, Legal);
// Round-to-integer need custom lowering for fp16, as Promote doesn't work
// because the result type is integer.
for (auto Op : {ISD::LROUND, ISD::LLROUND, ISD::LRINT, ISD::LLRINT,
ISD::STRICT_LROUND, ISD::STRICT_LLROUND, ISD::STRICT_LRINT,
ISD::STRICT_LLRINT})
setOperationAction(Op, ScalarVT, Custom);
// promote v4f16 to v4f32 when that is known to be safe.
auto V4Narrow = MVT::getVectorVT(ScalarVT, 4);
setOperationPromotedToType(ISD::FADD, V4Narrow, MVT::v4f32);
setOperationPromotedToType(ISD::FSUB, V4Narrow, MVT::v4f32);
setOperationPromotedToType(ISD::FMUL, V4Narrow, MVT::v4f32);
setOperationPromotedToType(ISD::FDIV, V4Narrow, MVT::v4f32);
setOperationPromotedToType(ISD::FCEIL, V4Narrow, MVT::v4f32);
setOperationPromotedToType(ISD::FFLOOR, V4Narrow, MVT::v4f32);
setOperationPromotedToType(ISD::FROUND, V4Narrow, MVT::v4f32);
setOperationPromotedToType(ISD::FTRUNC, V4Narrow, MVT::v4f32);
setOperationPromotedToType(ISD::FROUNDEVEN, V4Narrow, MVT::v4f32);
setOperationPromotedToType(ISD::FRINT, V4Narrow, MVT::v4f32);
setOperationPromotedToType(ISD::FNEARBYINT, V4Narrow, MVT::v4f32);
setOperationPromotedToType(ISD::FCANONICALIZE, V4Narrow, MVT::v4f32);
setOperationAction(ISD::FABS, V4Narrow, Legal);
setOperationAction(ISD::FNEG, V4Narrow, Legal);
setOperationAction(ISD::FMA, V4Narrow, Expand);
setOperationAction(ISD::SETCC, V4Narrow, Custom);
setOperationAction(ISD::BR_CC, V4Narrow, Expand);
setOperationAction(ISD::SELECT, V4Narrow, Expand);
setOperationAction(ISD::SELECT_CC, V4Narrow, Expand);
setOperationAction(ISD::FCOPYSIGN, V4Narrow, Custom);
setOperationAction(ISD::FSQRT, V4Narrow, Expand);
auto V8Narrow = MVT::getVectorVT(ScalarVT, 8);
setOperationAction(ISD::FABS, V8Narrow, Legal);
setOperationAction(ISD::FADD, V8Narrow, Legal);
setOperationAction(ISD::FCEIL, V8Narrow, Legal);
setOperationAction(ISD::FCOPYSIGN, V8Narrow, Custom);
setOperationAction(ISD::FDIV, V8Narrow, Legal);
setOperationAction(ISD::FFLOOR, V8Narrow, Legal);
setOperationAction(ISD::FMA, V8Narrow, Expand);
setOperationAction(ISD::FMUL, V8Narrow, Legal);
setOperationAction(ISD::FNEARBYINT, V8Narrow, Legal);
setOperationAction(ISD::FNEG, V8Narrow, Legal);
setOperationAction(ISD::FROUND, V8Narrow, Legal);
setOperationAction(ISD::FROUNDEVEN, V8Narrow, Legal);
setOperationAction(ISD::FRINT, V8Narrow, Legal);
setOperationAction(ISD::FSQRT, V8Narrow, Expand);
setOperationAction(ISD::FSUB, V8Narrow, Legal);
setOperationAction(ISD::FTRUNC, V8Narrow, Legal);
setOperationAction(ISD::SETCC, V8Narrow, Expand);
setOperationAction(ISD::BR_CC, V8Narrow, Expand);
setOperationAction(ISD::SELECT, V8Narrow, Expand);
setOperationAction(ISD::SELECT_CC, V8Narrow, Expand);
setOperationAction(ISD::FP_EXTEND, V8Narrow, Expand);
setOperationPromotedToType(ISD::FCANONICALIZE, V8Narrow, MVT::v8f32);
};
if (!Subtarget->hasFullFP16()) {
LegalizeNarrowFP(MVT::f16);
}
LegalizeNarrowFP(MVT::bf16);
setOperationAction(ISD::FP_ROUND, MVT::v4f32, Custom);
setOperationAction(ISD::FP_ROUND, MVT::v4bf16, Custom);
// AArch64 has implementations of a lot of rounding-like FP operations.
// clang-format off
for (auto Op :
{ISD::FFLOOR, ISD::FNEARBYINT, ISD::FCEIL,
ISD::FRINT, ISD::FTRUNC, ISD::FROUND,
ISD::FROUNDEVEN, ISD::FMINNUM, ISD::FMAXNUM,
ISD::FMINIMUM, ISD::FMAXIMUM, ISD::LROUND,
ISD::LLROUND, ISD::LRINT, ISD::LLRINT,
ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE,
ISD::STRICT_FFLOOR, ISD::STRICT_FCEIL, ISD::STRICT_FNEARBYINT,
ISD::STRICT_FRINT, ISD::STRICT_FTRUNC, ISD::STRICT_FROUNDEVEN,
ISD::STRICT_FROUND, ISD::STRICT_FMINNUM, ISD::STRICT_FMAXNUM,
ISD::STRICT_FMINIMUM, ISD::STRICT_FMAXIMUM, ISD::STRICT_LROUND,
ISD::STRICT_LLROUND, ISD::STRICT_LRINT, ISD::STRICT_LLRINT}) {
for (MVT Ty : {MVT::f32, MVT::f64})
setOperationAction(Op, Ty, Legal);
if (Subtarget->hasFullFP16())
setOperationAction(Op, MVT::f16, Legal);
}
// clang-format on
// Basic strict FP operations are legal
for (auto Op : {ISD::STRICT_FADD, ISD::STRICT_FSUB, ISD::STRICT_FMUL,
ISD::STRICT_FDIV, ISD::STRICT_FMA, ISD::STRICT_FSQRT}) {
for (MVT Ty : {MVT::f32, MVT::f64})
setOperationAction(Op, Ty, Legal);
if (Subtarget->hasFullFP16())
setOperationAction(Op, MVT::f16, Legal);
}
// Strict conversion to a larger type is legal
for (auto VT : {MVT::f32, MVT::f64})
setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal);
setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
setOperationAction(ISD::GET_ROUNDING, MVT::i32, Custom);
setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
setOperationAction(ISD::GET_FPMODE, MVT::i32, Custom);
setOperationAction(ISD::SET_FPMODE, MVT::i32, Custom);
setOperationAction(ISD::RESET_FPMODE, MVT::Other, Custom);
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
if (!Subtarget->hasLSE() && !Subtarget->outlineAtomics()) {
setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, LibCall);
setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, LibCall);
} else {
setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Expand);
}
setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
// Generate outline atomics library calls only if LSE was not specified for
// subtarget
if (Subtarget->outlineAtomics() && !Subtarget->hasLSE()) {
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, LibCall);
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, LibCall);
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, LibCall);
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, LibCall);
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, LibCall);
setOperationAction(ISD::ATOMIC_SWAP, MVT::i8, LibCall);
setOperationAction(ISD::ATOMIC_SWAP, MVT::i16, LibCall);
setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, LibCall);
setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, LibCall);
setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i8, LibCall);
setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i16, LibCall);
setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, LibCall);
setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, LibCall);
setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i8, LibCall);
setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i16, LibCall);
setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, LibCall);
setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, LibCall);
setOperationAction(ISD::ATOMIC_LOAD_CLR, MVT::i8, LibCall);
setOperationAction(ISD::ATOMIC_LOAD_CLR, MVT::i16, LibCall);
setOperationAction(ISD::ATOMIC_LOAD_CLR, MVT::i32, LibCall);
setOperationAction(ISD::ATOMIC_LOAD_CLR, MVT::i64, LibCall);
setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i8, LibCall);
setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i16, LibCall);
setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, LibCall);
setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, LibCall);
#define LCALLNAMES(A, B, N) \
setLibcallName(A##N##_RELAX, #B #N "_relax"); \
setLibcallName(A##N##_ACQ, #B #N "_acq"); \
setLibcallName(A##N##_REL, #B #N "_rel"); \
setLibcallName(A##N##_ACQ_REL, #B #N "_acq_rel");
#define LCALLNAME4(A, B) \
LCALLNAMES(A, B, 1) \
LCALLNAMES(A, B, 2) LCALLNAMES(A, B, 4) LCALLNAMES(A, B, 8)
#define LCALLNAME5(A, B) \
LCALLNAMES(A, B, 1) \
LCALLNAMES(A, B, 2) \
LCALLNAMES(A, B, 4) LCALLNAMES(A, B, 8) LCALLNAMES(A, B, 16)
LCALLNAME5(RTLIB::OUTLINE_ATOMIC_CAS, __aarch64_cas)
LCALLNAME4(RTLIB::OUTLINE_ATOMIC_SWP, __aarch64_swp)
LCALLNAME4(RTLIB::OUTLINE_ATOMIC_LDADD, __aarch64_ldadd)
LCALLNAME4(RTLIB::OUTLINE_ATOMIC_LDSET, __aarch64_ldset)
LCALLNAME4(RTLIB::OUTLINE_ATOMIC_LDCLR, __aarch64_ldclr)
LCALLNAME4(RTLIB::OUTLINE_ATOMIC_LDEOR, __aarch64_ldeor)
#undef LCALLNAMES
#undef LCALLNAME4
#undef LCALLNAME5
}
if (Subtarget->hasLSE128()) {
// Custom lowering because i128 is not legal. Must be replaced by 2x64
// values. ATOMIC_LOAD_AND also needs op legalisation to emit LDCLRP.
setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i128, Custom);
setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i128, Custom);
setOperationAction(ISD::ATOMIC_SWAP, MVT::i128, Custom);
}
// 128-bit loads and stores can be done without expanding
setOperationAction(ISD::LOAD, MVT::i128, Custom);
setOperationAction(ISD::STORE, MVT::i128, Custom);
// Aligned 128-bit loads and stores are single-copy atomic according to the
// v8.4a spec. LRCPC3 introduces 128-bit STILP/LDIAPP but still requires LSE2.
if (Subtarget->hasLSE2()) {
setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom);
setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom);
}
// 256 bit non-temporal stores can be lowered to STNP. Do this as part of the
// custom lowering, as there are no un-paired non-temporal stores and
// legalization will break up 256 bit inputs.
setOperationAction(ISD::STORE, MVT::v32i8, Custom);
setOperationAction(ISD::STORE, MVT::v16i16, Custom);
setOperationAction(ISD::STORE, MVT::v16f16, Custom);
setOperationAction(ISD::STORE, MVT::v16bf16, Custom);
setOperationAction(ISD::STORE, MVT::v8i32, Custom);
setOperationAction(ISD::STORE, MVT::v8f32, Custom);
setOperationAction(ISD::STORE, MVT::v4f64, Custom);
setOperationAction(ISD::STORE, MVT::v4i64, Custom);
// 256 bit non-temporal loads can be lowered to LDNP. This is done using
// custom lowering, as there are no un-paired non-temporal loads legalization
// will break up 256 bit inputs.
setOperationAction(ISD::LOAD, MVT::v32i8, Custom);
setOperationAction(ISD::LOAD, MVT::v16i16, Custom);
setOperationAction(ISD::LOAD, MVT::v16f16, Custom);
setOperationAction(ISD::LOAD, MVT::v16bf16, Custom);
setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
setOperationAction(ISD::LOAD, MVT::v8f32, Custom);
setOperationAction(ISD::LOAD, MVT::v4f64, Custom);
setOperationAction(ISD::LOAD, MVT::v4i64, Custom);
// Lower READCYCLECOUNTER using an mrs from CNTVCT_EL0.
setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr &&
getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) {
// Issue __sincos_stret if available.
setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
} else {
setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
}
// Make floating-point constants legal for the large code model, so they don't
// become loads from the constant pool.
if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) {
setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
}
// AArch64 does not have floating-point extending loads, i1 sign-extending
// load, floating-point truncating stores, or v2i32->v2i16 truncating store.
for (MVT VT : MVT::fp_valuetypes()) {
setLoadExtAction(ISD::EXTLOAD, VT, MVT::bf16, Expand);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
}
for (MVT VT : MVT::integer_valuetypes())
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Expand);
for (MVT WideVT : MVT::fp_valuetypes()) {
for (MVT NarrowVT : MVT::fp_valuetypes()) {
if (WideVT.getScalarSizeInBits() > NarrowVT.getScalarSizeInBits()) {
setTruncStoreAction(WideVT, NarrowVT, Expand);
}
}
}
if (Subtarget->hasFPARMv8()) {
setOperationAction(ISD::BITCAST, MVT::i16, Custom);
setOperationAction(ISD::BITCAST, MVT::f16, Custom);
setOperationAction(ISD::BITCAST, MVT::bf16, Custom);
}
// Indexed loads and stores are supported.
for (unsigned im = (unsigned)ISD::PRE_INC;
im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
setIndexedLoadAction(im, MVT::i8, Legal);
setIndexedLoadAction(im, MVT::i16, Legal);
setIndexedLoadAction(im, MVT::i32, Legal);
setIndexedLoadAction(im, MVT::i64, Legal);
setIndexedLoadAction(im, MVT::f64, Legal);
setIndexedLoadAction(im, MVT::f32, Legal);
setIndexedLoadAction(im, MVT::f16, Legal);
setIndexedLoadAction(im, MVT::bf16, Legal);
setIndexedStoreAction(im, MVT::i8, Legal);
setIndexedStoreAction(im, MVT::i16, Legal);
setIndexedStoreAction(im, MVT::i32, Legal);
setIndexedStoreAction(im, MVT::i64, Legal);
setIndexedStoreAction(im, MVT::f64, Legal);
setIndexedStoreAction(im, MVT::f32, Legal);
setIndexedStoreAction(im, MVT::f16, Legal);
setIndexedStoreAction(im, MVT::bf16, Legal);
}
// Trap.
setOperationAction(ISD::TRAP, MVT::Other, Legal);
setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
setOperationAction(ISD::UBSANTRAP, MVT::Other, Legal);
// We combine OR nodes for bitfield operations.
setTargetDAGCombine(ISD::OR);
// Try to create BICs for vector ANDs.
setTargetDAGCombine(ISD::AND);
// llvm.init.trampoline and llvm.adjust.trampoline
setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
// Vector add and sub nodes may conceal a high-half opportunity.
// Also, try to fold ADD into CSINC/CSINV..
setTargetDAGCombine({ISD::ADD, ISD::ABS, ISD::SUB, ISD::XOR, ISD::SINT_TO_FP,
ISD::UINT_TO_FP});
setTargetDAGCombine({ISD::FP_TO_SINT, ISD::FP_TO_UINT, ISD::FP_TO_SINT_SAT,
ISD::FP_TO_UINT_SAT, ISD::FADD});
// Try and combine setcc with csel
setTargetDAGCombine(ISD::SETCC);
setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
setTargetDAGCombine({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND,
ISD::SIGN_EXTEND_INREG, ISD::CONCAT_VECTORS,
ISD::EXTRACT_SUBVECTOR, ISD::INSERT_SUBVECTOR,
ISD::STORE, ISD::BUILD_VECTOR});
setTargetDAGCombine(ISD::TRUNCATE);
setTargetDAGCombine(ISD::LOAD);
setTargetDAGCombine(ISD::MSTORE);
setTargetDAGCombine(ISD::MUL);
setTargetDAGCombine({ISD::SELECT, ISD::VSELECT});
setTargetDAGCombine({ISD::INTRINSIC_VOID, ISD::INTRINSIC_W_CHAIN,
ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT,
ISD::VECREDUCE_ADD, ISD::STEP_VECTOR});
setTargetDAGCombine(
{ISD::MGATHER, ISD::MSCATTER, ISD::EXPERIMENTAL_VECTOR_HISTOGRAM});
setTargetDAGCombine(ISD::FP_EXTEND);
setTargetDAGCombine(ISD::GlobalAddress);
setTargetDAGCombine(ISD::CTLZ);
setTargetDAGCombine(ISD::VECREDUCE_AND);
setTargetDAGCombine(ISD::VECREDUCE_OR);
setTargetDAGCombine(ISD::VECREDUCE_XOR);
setTargetDAGCombine(ISD::SCALAR_TO_VECTOR);
// In case of strict alignment, avoid an excessive number of byte wide stores.
MaxStoresPerMemsetOptSize = 8;
MaxStoresPerMemset =
Subtarget->requiresStrictAlign() ? MaxStoresPerMemsetOptSize : 32;
MaxGluedStoresPerMemcpy = 4;
MaxStoresPerMemcpyOptSize = 4;
MaxStoresPerMemcpy =
Subtarget->requiresStrictAlign() ? MaxStoresPerMemcpyOptSize : 16;
MaxStoresPerMemmoveOptSize = 4;
MaxStoresPerMemmove =
Subtarget->requiresStrictAlign() ? MaxStoresPerMemmoveOptSize : 16;
MaxLoadsPerMemcmpOptSize = 4;
MaxLoadsPerMemcmp =
Subtarget->requiresStrictAlign() ? MaxLoadsPerMemcmpOptSize : 8;
setStackPointerRegisterToSaveRestore(AArch64::SP);
setSchedulingPreference(Sched::Hybrid);
EnableExtLdPromotion = true;
// Set required alignment.
setMinFunctionAlignment(Align(4));
// Set preferred alignments.
// Don't align loops on Windows. The SEH unwind info generation needs to
// know the exact length of functions before the alignments have been
// expanded.
if (!Subtarget->isTargetWindows())
setPrefLoopAlignment(STI.getPrefLoopAlignment());
setMaxBytesForAlignment(STI.getMaxBytesForLoopAlignment());
setPrefFunctionAlignment(STI.getPrefFunctionAlignment());
// Only change the limit for entries in a jump table if specified by
// the sub target, but not at the command line.
unsigned MaxJT = STI.getMaximumJumpTableSize();
if (MaxJT && getMaximumJumpTableSize() == UINT_MAX)
setMaximumJumpTableSize(MaxJT);
setHasExtractBitsInsn(true);
setMaxDivRemBitWidthSupported(128);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
if (Subtarget->isNeonAvailable()) {
// FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
// silliness like this:
// clang-format off
for (auto Op :
{ISD::SELECT, ISD::SELECT_CC, ISD::FATAN2,
ISD::BR_CC, ISD::FADD, ISD::FSUB,
ISD::FMUL, ISD::FDIV, ISD::FMA,
ISD::FNEG, ISD::FABS, ISD::FCEIL,
ISD::FSQRT, ISD::FFLOOR, ISD::FNEARBYINT,
ISD::FSIN, ISD::FCOS, ISD::FTAN,
ISD::FASIN, ISD::FACOS, ISD::FATAN,
ISD::FSINH, ISD::FCOSH, ISD::FTANH,
ISD::FPOW, ISD::FLOG, ISD::FLOG2,
ISD::FLOG10, ISD::FEXP, ISD::FEXP2,
ISD::FEXP10, ISD::FRINT, ISD::FROUND,
ISD::FROUNDEVEN, ISD::FTRUNC, ISD::FMINNUM,
ISD::FMAXNUM, ISD::FMINIMUM, ISD::FMAXIMUM,
ISD::FMAXNUM_IEEE, ISD::FMINNUM_IEEE,
ISD::STRICT_FADD, ISD::STRICT_FSUB, ISD::STRICT_FMUL,
ISD::STRICT_FDIV, ISD::STRICT_FMA, ISD::STRICT_FCEIL,
ISD::STRICT_FFLOOR, ISD::STRICT_FSQRT, ISD::STRICT_FRINT,
ISD::STRICT_FNEARBYINT, ISD::STRICT_FROUND, ISD::STRICT_FTRUNC,
ISD::STRICT_FROUNDEVEN, ISD::STRICT_FMINNUM, ISD::STRICT_FMAXNUM,
ISD::STRICT_FMINIMUM, ISD::STRICT_FMAXIMUM})
setOperationAction(Op, MVT::v1f64, Expand);
// clang-format on
for (auto Op :
{ISD::FP_TO_SINT, ISD::FP_TO_UINT, ISD::SINT_TO_FP, ISD::UINT_TO_FP,
ISD::FP_ROUND, ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT, ISD::MUL,
ISD::STRICT_FP_TO_SINT, ISD::STRICT_FP_TO_UINT,
ISD::STRICT_SINT_TO_FP, ISD::STRICT_UINT_TO_FP, ISD::STRICT_FP_ROUND})
setOperationAction(Op, MVT::v1i64, Expand);
// AArch64 doesn't have a direct vector ->f32 conversion instructions for
// elements smaller than i32, so promote the input to i32 first.
setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v4i8, MVT::v4i32);
setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v4i8, MVT::v4i32);
// Similarly, there is no direct i32 -> f64 vector conversion instruction.
// Or, direct i32 -> f16 vector conversion. Set it so custom, so the
// conversion happens in two steps: v4i32 -> v4f32 -> v4f16
for (auto Op : {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::STRICT_SINT_TO_FP,
ISD::STRICT_UINT_TO_FP})
for (auto VT : {MVT::v2i32, MVT::v2i64, MVT::v4i32})
setOperationAction(Op, VT, Custom);
if (Subtarget->hasFullFP16()) {
setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
setOperationAction(ISD::ConstantFP, MVT::bf16, Legal);
setOperationAction(ISD::SINT_TO_FP, MVT::v8i8, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::v8i8, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::v16i8, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::v16i8, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom);
} else {
// when AArch64 doesn't have fullfp16 support, promote the input
// to i32 first.
setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v8i8, MVT::v8i32);
setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v8i8, MVT::v8i32);
setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v16i8, MVT::v16i32);
setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v16i8, MVT::v16i32);
setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v4i16, MVT::v4i32);
setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v4i16, MVT::v4i32);
setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v8i16, MVT::v8i32);
setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v8i16, MVT::v8i32);
}
setOperationAction(ISD::CTLZ, MVT::v1i64, Expand);
setOperationAction(ISD::CTLZ, MVT::v2i64, Expand);
setOperationAction(ISD::BITREVERSE, MVT::v8i8, Legal);
setOperationAction(ISD::BITREVERSE, MVT::v16i8, Legal);
setOperationAction(ISD::BITREVERSE, MVT::v2i32, Custom);
setOperationAction(ISD::BITREVERSE, MVT::v4i32, Custom);
setOperationAction(ISD::BITREVERSE, MVT::v1i64, Custom);
setOperationAction(ISD::BITREVERSE, MVT::v2i64, Custom);
for (auto VT : {MVT::v1i64, MVT::v2i64}) {
setOperationAction(ISD::UMAX, VT, Custom);
setOperationAction(ISD::SMAX, VT, Custom);
setOperationAction(ISD::UMIN, VT, Custom);
setOperationAction(ISD::SMIN, VT, Custom);
}
// Custom handling for some quad-vector types to detect MULL.
setOperationAction(ISD::MUL, MVT::v8i16, Custom);
setOperationAction(ISD::MUL, MVT::v4i32, Custom);
setOperationAction(ISD::MUL, MVT::v2i64, Custom);
setOperationAction(ISD::MUL, MVT::v4i16, Custom);
setOperationAction(ISD::MUL, MVT::v2i32, Custom);
setOperationAction(ISD::MUL, MVT::v1i64, Custom);
// Saturates
for (MVT VT : { MVT::v8i8, MVT::v4i16, MVT::v2i32,
MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64 }) {
setOperationAction(ISD::SADDSAT, VT, Legal);
setOperationAction(ISD::UADDSAT, VT, Legal);
setOperationAction(ISD::SSUBSAT, VT, Legal);
setOperationAction(ISD::USUBSAT, VT, Legal);
}
for (MVT VT : {MVT::v8i8, MVT::v4i16, MVT::v2i32, MVT::v16i8, MVT::v8i16,
MVT::v4i32}) {
setOperationAction(ISD::AVGFLOORS, VT, Legal);
setOperationAction(ISD::AVGFLOORU, VT, Legal);
setOperationAction(ISD::AVGCEILS, VT, Legal);
setOperationAction(ISD::AVGCEILU, VT, Legal);
setOperationAction(ISD::ABDS, VT, Legal);
setOperationAction(ISD::ABDU, VT, Legal);
}
// Vector reductions
for (MVT VT : { MVT::v4f16, MVT::v2f32,
MVT::v8f16, MVT::v4f32, MVT::v2f64 }) {
if (VT.getVectorElementType() != MVT::f16 || Subtarget->hasFullFP16()) {
setOperationAction(ISD::VECREDUCE_FMAX, VT, Legal);
setOperationAction(ISD::VECREDUCE_FMIN, VT, Legal);
setOperationAction(ISD::VECREDUCE_FMAXIMUM, VT, Legal);
setOperationAction(ISD::VECREDUCE_FMINIMUM, VT, Legal);
setOperationAction(ISD::VECREDUCE_FADD, VT, Legal);
}
}
for (MVT VT : { MVT::v8i8, MVT::v4i16, MVT::v2i32,
MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
}
setOperationAction(ISD::VECREDUCE_ADD, MVT::v2i64, Custom);
setOperationAction(ISD::VECREDUCE_AND, MVT::v2i64, Custom);
setOperationAction(ISD::VECREDUCE_OR, MVT::v2i64, Custom);
setOperationAction(ISD::VECREDUCE_XOR, MVT::v2i64, Custom);
setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal);
setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
// Likewise, narrowing and extending vector loads/stores aren't handled
// directly.
for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32) {
setOperationAction(ISD::MULHS, VT, Legal);
setOperationAction(ISD::MULHU, VT, Legal);
} else {
setOperationAction(ISD::MULHS, VT, Expand);
setOperationAction(ISD::MULHU, VT, Expand);
}
setOperationAction(ISD::SMUL_LOHI, VT, Expand);
setOperationAction(ISD::UMUL_LOHI, VT, Expand);
setOperationAction(ISD::BSWAP, VT, Expand);
setOperationAction(ISD::CTTZ, VT, Expand);
for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
setTruncStoreAction(VT, InnerVT, Expand);
setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
}
}
for (auto Op :
{ISD::FFLOOR, ISD::FNEARBYINT, ISD::FCEIL, ISD::FRINT, ISD::FTRUNC,
ISD::FROUND, ISD::FROUNDEVEN, ISD::FMAXNUM_IEEE, ISD::FMINNUM_IEEE,
ISD::STRICT_FFLOOR, ISD::STRICT_FNEARBYINT, ISD::STRICT_FCEIL,
ISD::STRICT_FRINT, ISD::STRICT_FTRUNC, ISD::STRICT_FROUND,
ISD::STRICT_FROUNDEVEN}) {
for (MVT Ty : {MVT::v2f32, MVT::v4f32, MVT::v2f64})
setOperationAction(Op, Ty, Legal);
if (Subtarget->hasFullFP16())
for (MVT Ty : {MVT::v4f16, MVT::v8f16})
setOperationAction(Op, Ty, Legal);
}
// LRINT and LLRINT.
for (auto Op : {ISD::LRINT, ISD::LLRINT}) {
for (MVT Ty : {MVT::v2f32, MVT::v4f32, MVT::v2f64})
setOperationAction(Op, Ty, Custom);
if (Subtarget->hasFullFP16())
for (MVT Ty : {MVT::v4f16, MVT::v8f16})
setOperationAction(Op, Ty, Custom);
}
setTruncStoreAction(MVT::v4i16, MVT::v4i8, Custom);
setOperationAction(ISD::BITCAST, MVT::i2, Custom);
setOperationAction(ISD::BITCAST, MVT::i4, Custom);
setOperationAction(ISD::BITCAST, MVT::i8, Custom);
setOperationAction(ISD::BITCAST, MVT::i16, Custom);
setOperationAction(ISD::BITCAST, MVT::v2i8, Custom);
setOperationAction(ISD::BITCAST, MVT::v2i16, Custom);
setOperationAction(ISD::BITCAST, MVT::v4i8, Custom);
setLoadExtAction(ISD::EXTLOAD, MVT::v4i16, MVT::v4i8, Custom);
setLoadExtAction(ISD::SEXTLOAD, MVT::v4i16, MVT::v4i8, Custom);
setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i16, MVT::v4i8, Custom);
setLoadExtAction(ISD::EXTLOAD, MVT::v4i32, MVT::v4i8, Custom);
setLoadExtAction(ISD::SEXTLOAD, MVT::v4i32, MVT::v4i8, Custom);
setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i32, MVT::v4i8, Custom);
// ADDP custom lowering
for (MVT VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64 })
setOperationAction(ISD::ADD, VT, Custom);
// FADDP custom lowering
for (MVT VT : { MVT::v16f16, MVT::v8f32, MVT::v4f64 })
setOperationAction(ISD::FADD, VT, Custom);
} else /* !isNeonAvailable */ {
for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
setOperationAction(Op, VT, Expand);
if (VT.is128BitVector() || VT.is64BitVector()) {
setOperationAction(ISD::LOAD, VT, Legal);
setOperationAction(ISD::STORE, VT, Legal);
setOperationAction(ISD::BITCAST, VT,
Subtarget->isLittleEndian() ? Legal : Expand);
}
for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
setTruncStoreAction(VT, InnerVT, Expand);
setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
}
}
}
for (MVT VT : {MVT::v8i16, MVT::v4i32, MVT::v2i64}) {
setOperationAction(ISD::TRUNCATE_SSAT_S, VT, Legal);
setOperationAction(ISD::TRUNCATE_SSAT_U, VT, Legal);
setOperationAction(ISD::TRUNCATE_USAT_U, VT, Legal);
}
if (Subtarget->hasSME()) {
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
}
// FIXME: Move lowering for more nodes here if those are common between
// SVE and SME.
if (Subtarget->isSVEorStreamingSVEAvailable()) {
for (auto VT :
{MVT::nxv16i1, MVT::nxv8i1, MVT::nxv4i1, MVT::nxv2i1, MVT::nxv1i1}) {
setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::VECTOR_DEINTERLEAVE, VT, Custom);
setOperationAction(ISD::VECTOR_INTERLEAVE, VT, Custom);
}
}
if (Subtarget->isSVEorStreamingSVEAvailable()) {
for (auto VT : {MVT::nxv16i8, MVT::nxv8i16, MVT::nxv4i32, MVT::nxv2i64}) {
setOperationAction(ISD::BITREVERSE, VT, Custom);
setOperationAction(ISD::BSWAP, VT, Custom);
setOperationAction(ISD::CTLZ, VT, Custom);
setOperationAction(ISD::CTPOP, VT, Custom);
setOperationAction(ISD::CTTZ, VT, Custom);
setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
setOperationAction(ISD::UINT_TO_FP, VT, Custom);
setOperationAction(ISD::SINT_TO_FP, VT, Custom);
setOperationAction(ISD::FP_TO_UINT, VT, Custom);
setOperationAction(ISD::FP_TO_SINT, VT, Custom);
setOperationAction(ISD::MLOAD, VT, Custom);
setOperationAction(ISD::MUL, VT, Custom);
setOperationAction(ISD::MULHS, VT, Custom);
setOperationAction(ISD::MULHU, VT, Custom);
setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
setOperationAction(ISD::VECTOR_SPLICE, VT, Custom);
setOperationAction(ISD::SELECT, VT, Custom);
setOperationAction(ISD::SETCC, VT, Custom);
setOperationAction(ISD::SDIV, VT, Custom);
setOperationAction(ISD::UDIV, VT, Custom);
setOperationAction(ISD::SMIN, VT, Custom);
setOperationAction(ISD::UMIN, VT, Custom);
setOperationAction(ISD::SMAX, VT, Custom);
setOperationAction(ISD::UMAX, VT, Custom);
setOperationAction(ISD::SHL, VT, Custom);
setOperationAction(ISD::SRL, VT, Custom);
setOperationAction(ISD::SRA, VT, Custom);
setOperationAction(ISD::ABS, VT, Custom);
setOperationAction(ISD::ABDS, VT, Custom);
setOperationAction(ISD::ABDU, VT, Custom);
setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
setOperationAction(ISD::VECTOR_DEINTERLEAVE, VT, Custom);
setOperationAction(ISD::VECTOR_INTERLEAVE, VT, Custom);
setOperationAction(ISD::UMUL_LOHI, VT, Expand);
setOperationAction(ISD::SMUL_LOHI, VT, Expand);
setOperationAction(ISD::SELECT_CC, VT, Expand);
setOperationAction(ISD::ROTL, VT, Expand);
setOperationAction(ISD::ROTR, VT, Expand);
setOperationAction(ISD::SADDSAT, VT, Legal);
setOperationAction(ISD::UADDSAT, VT, Legal);
setOperationAction(ISD::SSUBSAT, VT, Legal);
setOperationAction(ISD::USUBSAT, VT, Legal);
setOperationAction(ISD::UREM, VT, Expand);
setOperationAction(ISD::SREM, VT, Expand);
setOperationAction(ISD::SDIVREM, VT, Expand);
setOperationAction(ISD::UDIVREM, VT, Expand);
setOperationAction(ISD::AVGFLOORS, VT, Custom);
setOperationAction(ISD::AVGFLOORU, VT, Custom);
setOperationAction(ISD::AVGCEILS, VT, Custom);
setOperationAction(ISD::AVGCEILU, VT, Custom);
if (!Subtarget->isLittleEndian())
setOperationAction(ISD::BITCAST, VT, Custom);
if (Subtarget->hasSVE2() ||
(Subtarget->hasSME() && Subtarget->isStreaming()))
// For SLI/SRI.
setOperationAction(ISD::OR, VT, Custom);
}
// Illegal unpacked integer vector types.
for (auto VT : {MVT::nxv8i8, MVT::nxv4i16, MVT::nxv2i32}) {
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
}
// Type legalize unpacked bitcasts.
for (auto VT : {MVT::nxv2i16, MVT::nxv4i16, MVT::nxv2i32})
setOperationAction(ISD::BITCAST, VT, Custom);
for (auto VT :
{ MVT::nxv2i8, MVT::nxv2i16, MVT::nxv2i32, MVT::nxv2i64, MVT::nxv4i8,
MVT::nxv4i16, MVT::nxv4i32, MVT::nxv8i8, MVT::nxv8i16 })
setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Legal);
for (auto VT :
{MVT::nxv16i1, MVT::nxv8i1, MVT::nxv4i1, MVT::nxv2i1, MVT::nxv1i1}) {
setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
setOperationAction(ISD::SELECT, VT, Custom);
setOperationAction(ISD::SETCC, VT, Custom);
setOperationAction(ISD::TRUNCATE, VT, Custom);
setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
setOperationAction(ISD::OR, VT, Custom);
setOperationAction(ISD::SELECT_CC, VT, Expand);
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
// There are no legal MVT::nxv16f## based types.
if (VT != MVT::nxv16i1) {
setOperationAction(ISD::SINT_TO_FP, VT, Custom);
setOperationAction(ISD::UINT_TO_FP, VT, Custom);
}
}
// NEON doesn't support masked loads/stores, but SME and SVE do.
for (auto VT :
{MVT::v4f16, MVT::v8f16, MVT::v2f32, MVT::v4f32, MVT::v1f64,
MVT::v2f64, MVT::v8i8, MVT::v16i8, MVT::v4i16, MVT::v8i16,
MVT::v2i32, MVT::v4i32, MVT::v1i64, MVT::v2i64}) {
setOperationAction(ISD::MLOAD, VT, Custom);
setOperationAction(ISD::MSTORE, VT, Custom);
}
// Firstly, exclude all scalable vector extending loads/truncating stores,
// include both integer and floating scalable vector.
for (MVT VT : MVT::scalable_vector_valuetypes()) {
for (MVT InnerVT : MVT::scalable_vector_valuetypes()) {
setTruncStoreAction(VT, InnerVT, Expand);
setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
}
}
// Then, selectively enable those which we directly support.
setTruncStoreAction(MVT::nxv2i64, MVT::nxv2i8, Legal);
setTruncStoreAction(MVT::nxv2i64, MVT::nxv2i16, Legal);
setTruncStoreAction(MVT::nxv2i64, MVT::nxv2i32, Legal);
setTruncStoreAction(MVT::nxv4i32, MVT::nxv4i8, Legal);
setTruncStoreAction(MVT::nxv4i32, MVT::nxv4i16, Legal);
setTruncStoreAction(MVT::nxv8i16, MVT::nxv8i8, Legal);
for (auto Op : {ISD::ZEXTLOAD, ISD::SEXTLOAD, ISD::EXTLOAD}) {
setLoadExtAction(Op, MVT::nxv2i64, MVT::nxv2i8, Legal);
setLoadExtAction(Op, MVT::nxv2i64, MVT::nxv2i16, Legal);
setLoadExtAction(Op, MVT::nxv2i64, MVT::nxv2i32, Legal);
setLoadExtAction(Op, MVT::nxv4i32, MVT::nxv4i8, Legal);
setLoadExtAction(Op, MVT::nxv4i32, MVT::nxv4i16, Legal);
setLoadExtAction(Op, MVT::nxv8i16, MVT::nxv8i8, Legal);
}
// SVE supports truncating stores of 64 and 128-bit vectors
setTruncStoreAction(MVT::v2i64, MVT::v2i8, Custom);
setTruncStoreAction(MVT::v2i64, MVT::v2i16, Custom);
setTruncStoreAction(MVT::v2i64, MVT::v2i32, Custom);
setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom);
setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom);
for (auto VT : {MVT::nxv2f16, MVT::nxv4f16, MVT::nxv8f16, MVT::nxv2f32,
MVT::nxv4f32, MVT::nxv2f64}) {
setOperationAction(ISD::BITCAST, VT, Custom);
setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
setOperationAction(ISD::MLOAD, VT, Custom);
setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
setOperationAction(ISD::SELECT, VT, Custom);
setOperationAction(ISD::SETCC, VT, Custom);
setOperationAction(ISD::FADD, VT, Custom);
setOperationAction(ISD::FCOPYSIGN, VT, Custom);
setOperationAction(ISD::FDIV, VT, Custom);
setOperationAction(ISD::FMA, VT, Custom);
setOperationAction(ISD::FMAXIMUM, VT, Custom);
setOperationAction(ISD::FMAXNUM, VT, Custom);
setOperationAction(ISD::FMINIMUM, VT, Custom);
setOperationAction(ISD::FMINNUM, VT, Custom);
setOperationAction(ISD::FMUL, VT, Custom);
setOperationAction(ISD::FNEG, VT, Custom);
setOperationAction(ISD::FSUB, VT, Custom);
setOperationAction(ISD::FCEIL, VT, Custom);
setOperationAction(ISD::FFLOOR, VT, Custom);
setOperationAction(ISD::FNEARBYINT, VT, Custom);
setOperationAction(ISD::FRINT, VT, Custom);
setOperationAction(ISD::LRINT, VT, Custom);
setOperationAction(ISD::LLRINT, VT, Custom);
setOperationAction(ISD::FROUND, VT, Custom);
setOperationAction(ISD::FROUNDEVEN, VT, Custom);
setOperationAction(ISD::FTRUNC, VT, Custom);
setOperationAction(ISD::FSQRT, VT, Custom);
setOperationAction(ISD::FABS, VT, Custom);
setOperationAction(ISD::FP_EXTEND, VT, Custom);
setOperationAction(ISD::FP_ROUND, VT, Custom);
setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
setOperationAction(ISD::VECREDUCE_FMAXIMUM, VT, Custom);
setOperationAction(ISD::VECREDUCE_FMINIMUM, VT, Custom);
setOperationAction(ISD::VECTOR_SPLICE, VT, Custom);
setOperationAction(ISD::VECTOR_DEINTERLEAVE, VT, Custom);
setOperationAction(ISD::VECTOR_INTERLEAVE, VT, Custom);
setOperationAction(ISD::SELECT_CC, VT, Expand);
setOperationAction(ISD::FREM, VT, Expand);
setOperationAction(ISD::FPOW, VT, Expand);
setOperationAction(ISD::FPOWI, VT, Expand);
setOperationAction(ISD::FCOS, VT, Expand);
setOperationAction(ISD::FSIN, VT, Expand);
setOperationAction(ISD::FSINCOS, VT, Expand);
setOperationAction(ISD::FTAN, VT, Expand);
setOperationAction(ISD::FACOS, VT, Expand);
setOperationAction(ISD::FASIN, VT, Expand);
setOperationAction(ISD::FATAN, VT, Expand);
setOperationAction(ISD::FATAN2, VT, Expand);
setOperationAction(ISD::FCOSH, VT, Expand);
setOperationAction(ISD::FSINH, VT, Expand);
setOperationAction(ISD::FTANH, VT, Expand);
setOperationAction(ISD::FEXP, VT, Expand);
setOperationAction(ISD::FEXP2, VT, Expand);
setOperationAction(ISD::FEXP10, VT, Expand);
setOperationAction(ISD::FLOG, VT, Expand);
setOperationAction(ISD::FLOG2, VT, Expand);
setOperationAction(ISD::FLOG10, VT, Expand);
setCondCodeAction(ISD::SETO, VT, Expand);
setCondCodeAction(ISD::SETOLT, VT, Expand);
setCondCodeAction(ISD::SETLT, VT, Expand);
setCondCodeAction(ISD::SETOLE, VT, Expand);
setCondCodeAction(ISD::SETLE, VT, Expand);
setCondCodeAction(ISD::SETULT, VT, Expand);
setCondCodeAction(ISD::SETULE, VT, Expand);
setCondCodeAction(ISD::SETUGE, VT, Expand);
setCondCodeAction(ISD::SETUGT, VT, Expand);
setCondCodeAction(ISD::SETUEQ, VT, Expand);
setCondCodeAction(ISD::SETONE, VT, Expand);
}
for (auto VT : {MVT::nxv2bf16, MVT::nxv4bf16, MVT::nxv8bf16}) {
setOperationAction(ISD::BITCAST, VT, Custom);
setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
setOperationAction(ISD::FABS, VT, Legal);
setOperationAction(ISD::FNEG, VT, Legal);
setOperationAction(ISD::FP_EXTEND, VT, Custom);
setOperationAction(ISD::FP_ROUND, VT, Custom);
setOperationAction(ISD::MLOAD, VT, Custom);
setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
setOperationAction(ISD::VECTOR_SPLICE, VT, Custom);
if (Subtarget->hasSVEB16B16()) {
setOperationAction(ISD::FADD, VT, Legal);
setOperationAction(ISD::FMA, VT, Custom);
setOperationAction(ISD::FMAXIMUM, VT, Custom);
setOperationAction(ISD::FMAXNUM, VT, Custom);
setOperationAction(ISD::FMINIMUM, VT, Custom);
setOperationAction(ISD::FMINNUM, VT, Custom);
setOperationAction(ISD::FMUL, VT, Legal);
setOperationAction(ISD::FSUB, VT, Legal);
}
}
for (auto Opcode :
{ISD::FCEIL, ISD::FDIV, ISD::FFLOOR, ISD::FNEARBYINT, ISD::FRINT,
ISD::FROUND, ISD::FROUNDEVEN, ISD::FSQRT, ISD::FTRUNC}) {
setOperationPromotedToType(Opcode, MVT::nxv2bf16, MVT::nxv2f32);
setOperationPromotedToType(Opcode, MVT::nxv4bf16, MVT::nxv4f32);
setOperationAction(Opcode, MVT::nxv8bf16, Expand);
}
if (!Subtarget->hasSVEB16B16()) {
for (auto Opcode : {ISD::FADD, ISD::FMA, ISD::FMAXIMUM, ISD::FMAXNUM,
ISD::FMINIMUM, ISD::FMINNUM, ISD::FMUL, ISD::FSUB}) {
setOperationPromotedToType(Opcode, MVT::nxv2bf16, MVT::nxv2f32);
setOperationPromotedToType(Opcode, MVT::nxv4bf16, MVT::nxv4f32);
setOperationAction(Opcode, MVT::nxv8bf16, Expand);
}
}
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
// NEON doesn't support integer divides, but SVE does
for (auto VT : {MVT::v8i8, MVT::v16i8, MVT::v4i16, MVT::v8i16, MVT::v2i32,
MVT::v4i32, MVT::v1i64, MVT::v2i64}) {
setOperationAction(ISD::SDIV, VT, Custom);
setOperationAction(ISD::UDIV, VT, Custom);
}
// NEON doesn't support 64-bit vector integer muls, but SVE does.
setOperationAction(ISD::MUL, MVT::v1i64, Custom);
setOperationAction(ISD::MUL, MVT::v2i64, Custom);
// NOTE: Currently this has to happen after computeRegisterProperties rather
// than the preferred option of combining it with the addRegisterClass call.
if (Subtarget->useSVEForFixedLengthVectors()) {
for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
if (useSVEForFixedLengthVectorVT(
VT, /*OverrideNEON=*/!Subtarget->isNeonAvailable()))
addTypeForFixedLengthSVE(VT);
}
for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
if (useSVEForFixedLengthVectorVT(
VT, /*OverrideNEON=*/!Subtarget->isNeonAvailable()))
addTypeForFixedLengthSVE(VT);
}
// 64bit results can mean a bigger than NEON input.
for (auto VT : {MVT::v8i8, MVT::v4i16})
setOperationAction(ISD::TRUNCATE, VT, Custom);
setOperationAction(ISD::FP_ROUND, MVT::v4f16, Custom);
// 128bit results imply a bigger than NEON input.
for (auto VT : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
setOperationAction(ISD::TRUNCATE, VT, Custom);
for (auto VT : {MVT::v8f16, MVT::v4f32})
setOperationAction(ISD::FP_ROUND, VT, Custom);
// These operations are not supported on NEON but SVE can do them.
setOperationAction(ISD::BITREVERSE, MVT::v1i64, Custom);
setOperationAction(ISD::CTLZ, MVT::v1i64, Custom);
setOperationAction(ISD::CTLZ, MVT::v2i64, Custom);
setOperationAction(ISD::CTTZ, MVT::v1i64, Custom);
setOperationAction(ISD::MULHS, MVT::v1i64, Custom);
setOperationAction(ISD::MULHS, MVT::v2i64, Custom);
setOperationAction(ISD::MULHU, MVT::v1i64, Custom);
setOperationAction(ISD::MULHU, MVT::v2i64, Custom);
setOperationAction(ISD::SMAX, MVT::v1i64, Custom);
setOperationAction(ISD::SMAX, MVT::v2i64, Custom);
setOperationAction(ISD::SMIN, MVT::v1i64, Custom);
setOperationAction(ISD::SMIN, MVT::v2i64, Custom);
setOperationAction(ISD::UMAX, MVT::v1i64, Custom);
setOperationAction(ISD::UMAX, MVT::v2i64, Custom);
setOperationAction(ISD::UMIN, MVT::v1i64, Custom);
setOperationAction(ISD::UMIN, MVT::v2i64, Custom);
setOperationAction(ISD::VECREDUCE_SMAX, MVT::v2i64, Custom);
setOperationAction(ISD::VECREDUCE_SMIN, MVT::v2i64, Custom);
setOperationAction(ISD::VECREDUCE_UMAX, MVT::v2i64, Custom);
setOperationAction(ISD::VECREDUCE_UMIN, MVT::v2i64, Custom);
// Int operations with no NEON support.
for (auto VT : {MVT::v8i8, MVT::v16i8, MVT::v4i16, MVT::v8i16,
MVT::v2i32, MVT::v4i32, MVT::v2i64}) {
setOperationAction(ISD::BITREVERSE, VT, Custom);
setOperationAction(ISD::CTTZ, VT, Custom);
setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
setOperationAction(ISD::MULHS, VT, Custom);
setOperationAction(ISD::MULHU, VT, Custom);
}
// Use SVE for vectors with more than 2 elements.
for (auto VT : {MVT::v4f16, MVT::v8f16, MVT::v4f32})
setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
}
setOperationPromotedToType(ISD::VECTOR_SPLICE, MVT::nxv2i1, MVT::nxv2i64);
setOperationPromotedToType(ISD::VECTOR_SPLICE, MVT::nxv4i1, MVT::nxv4i32);
setOperationPromotedToType(ISD::VECTOR_SPLICE, MVT::nxv8i1, MVT::nxv8i16);
setOperationPromotedToType(ISD::VECTOR_SPLICE, MVT::nxv16i1, MVT::nxv16i8);
setOperationAction(ISD::VSCALE, MVT::i32, Custom);
for (auto VT : {MVT::v16i1, MVT::v8i1, MVT::v4i1, MVT::v2i1})
setOperationAction(ISD::INTRINSIC_WO_CHAIN, VT, Custom);
}
// Handle operations that are only available in non-streaming SVE mode.
if (Subtarget->isSVEAvailable()) {
for (auto VT : {MVT::nxv16i8, MVT::nxv8i16, MVT::nxv4i32, MVT::nxv2i64,
MVT::nxv2f16, MVT::nxv4f16, MVT::nxv8f16, MVT::nxv2f32,
MVT::nxv4f32, MVT::nxv2f64, MVT::nxv2bf16, MVT::nxv4bf16,
MVT::nxv8bf16, MVT::v4f16, MVT::v8f16, MVT::v2f32,
MVT::v4f32, MVT::v1f64, MVT::v2f64, MVT::v8i8,
MVT::v16i8, MVT::v4i16, MVT::v8i16, MVT::v2i32,
MVT::v4i32, MVT::v1i64, MVT::v2i64}) {
setOperationAction(ISD::MGATHER, VT, Custom);
setOperationAction(ISD::MSCATTER, VT, Custom);
}
for (auto VT : {MVT::nxv2f16, MVT::nxv4f16, MVT::nxv8f16, MVT::nxv2f32,
MVT::nxv4f32, MVT::nxv2f64, MVT::v4f16, MVT::v8f16,
MVT::v2f32, MVT::v4f32, MVT::v2f64})
setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
// We can lower types that have <vscale x {2|4}> elements to compact.
for (auto VT :
{MVT::nxv2i8, MVT::nxv2i16, MVT::nxv2i32, MVT::nxv2i64, MVT::nxv2f32,
MVT::nxv2f64, MVT::nxv4i8, MVT::nxv4i16, MVT::nxv4i32, MVT::nxv4f32})
setOperationAction(ISD::VECTOR_COMPRESS, VT, Custom);
// If we have SVE, we can use SVE logic for legal (or smaller than legal)
// NEON vectors in the lowest bits of the SVE register.
for (auto VT : {MVT::v2i8, MVT::v2i16, MVT::v2i32, MVT::v2i64, MVT::v2f32,
MVT::v2f64, MVT::v4i8, MVT::v4i16, MVT::v4i32, MVT::v4f32})
setOperationAction(ISD::VECTOR_COMPRESS, VT, Custom);
// Histcnt is SVE2 only
if (Subtarget->hasSVE2()) {
setOperationAction(ISD::EXPERIMENTAL_VECTOR_HISTOGRAM, MVT::nxv4i32,
Custom);
setOperationAction(ISD::EXPERIMENTAL_VECTOR_HISTOGRAM, MVT::nxv2i64,
Custom);
}
}
if (Subtarget->hasMOPS() && Subtarget->hasMTE()) {
// Only required for llvm.aarch64.mops.memset.tag
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
}
setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
if (Subtarget->hasSVE()) {
setOperationAction(ISD::FLDEXP, MVT::f64, Custom);
setOperationAction(ISD::FLDEXP, MVT::f32, Custom);
setOperationAction(ISD::FLDEXP, MVT::f16, Custom);
setOperationAction(ISD::FLDEXP, MVT::bf16, Custom);
}
PredictableSelectIsExpensive = Subtarget->predictableSelectIsExpensive();
IsStrictFPEnabled = true;
setMaxAtomicSizeInBitsSupported(128);
// On MSVC, both 32-bit and 64-bit, ldexpf(f32) is not defined. MinGW has
// it, but it's just a wrapper around ldexp.
if (Subtarget->isTargetWindows()) {
for (ISD::NodeType Op : {ISD::FLDEXP, ISD::STRICT_FLDEXP, ISD::FFREXP})
if (isOperationExpand(Op, MVT::f32))
setOperationAction(Op, MVT::f32, Promote);
}
// LegalizeDAG currently can't expand fp16 LDEXP/FREXP on targets where i16
// isn't legal.
for (ISD::NodeType Op : {ISD::FLDEXP, ISD::STRICT_FLDEXP, ISD::FFREXP})
if (isOperationExpand(Op, MVT::f16))
setOperationAction(Op, MVT::f16, Promote);
if (Subtarget->isWindowsArm64EC()) {
// FIXME: are there intrinsics we need to exclude from this?
for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
auto code = static_cast<RTLIB::Libcall>(i);
auto libcallName = getLibcallName(code);
if ((libcallName != nullptr) && (libcallName[0] != '#')) {
setLibcallName(code, Saver.save(Twine("#") + libcallName).data());
}
}
}
}
void AArch64TargetLowering::addTypeForNEON(MVT VT) {
assert(VT.isVector() && "VT should be a vector type");
if (VT.isFloatingPoint()) {
MVT PromoteTo = EVT(VT).changeVectorElementTypeToInteger().getSimpleVT();
setOperationPromotedToType(ISD::LOAD, VT, PromoteTo);
setOperationPromotedToType(ISD::STORE, VT, PromoteTo);
}
// Mark vector float intrinsics as expand.
if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) {
setOperationAction(ISD::FSIN, VT, Expand);
setOperationAction(ISD::FCOS, VT, Expand);
setOperationAction(ISD::FTAN, VT, Expand);
setOperationAction(ISD::FASIN, VT, Expand);
setOperationAction(ISD::FACOS, VT, Expand);
setOperationAction(ISD::FATAN, VT, Expand);
setOperationAction(ISD::FATAN2, VT, Expand);
setOperationAction(ISD::FSINH, VT, Expand);
setOperationAction(ISD::FCOSH, VT, Expand);
setOperationAction(ISD::FTANH, VT, Expand);
setOperationAction(ISD::FPOW, VT, Expand);
setOperationAction(ISD::FLOG, VT, Expand);
setOperationAction(ISD::FLOG2, VT, Expand);
setOperationAction(ISD::FLOG10, VT, Expand);
setOperationAction(ISD::FEXP, VT, Expand);
setOperationAction(ISD::FEXP2, VT, Expand);
setOperationAction(ISD::FEXP10, VT, Expand);
}
// But we do support custom-lowering for FCOPYSIGN.
if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
((VT == MVT::v4bf16 || VT == MVT::v8bf16 || VT == MVT::v4f16 ||
VT == MVT::v8f16) &&
Subtarget->hasFullFP16()))
setOperationAction(ISD::FCOPYSIGN, VT, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
setOperationAction(ISD::SRA, VT, Custom);
setOperationAction(ISD::SRL, VT, Custom);
setOperationAction(ISD::SHL, VT, Custom);
setOperationAction(ISD::OR, VT, Custom);
setOperationAction(ISD::SETCC, VT, Custom);
setOperationAction(ISD::CONCAT_VECTORS, VT, Legal);
setOperationAction(ISD::SELECT, VT, Expand);
setOperationAction(ISD::SELECT_CC, VT, Expand);
setOperationAction(ISD::VSELECT, VT, Expand);
for (MVT InnerVT : MVT::all_valuetypes())
setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand);
// CNT supports only B element sizes, then use UADDLP to widen.
if (VT != MVT::v8i8 && VT != MVT::v16i8)
setOperationAction(ISD::CTPOP, VT, Custom);
setOperationAction(ISD::UDIV, VT, Expand);
setOperationAction(ISD::SDIV, VT, Expand);
setOperationAction(ISD::UREM, VT, Expand);
setOperationAction(ISD::SREM, VT, Expand);
setOperationAction(ISD::FREM, VT, Expand);
for (unsigned Opcode :
{ISD::FP_TO_SINT, ISD::FP_TO_UINT, ISD::FP_TO_SINT_SAT,
ISD::FP_TO_UINT_SAT, ISD::STRICT_FP_TO_SINT, ISD::STRICT_FP_TO_UINT})
setOperationAction(Opcode, VT, Custom);
if (!VT.isFloatingPoint())
setOperationAction(ISD::ABS, VT, Legal);
// [SU][MIN|MAX] are available for all NEON types apart from i64.
if (!VT.isFloatingPoint() && VT != MVT::v2i64 && VT != MVT::v1i64)
for (unsigned Opcode : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
setOperationAction(Opcode, VT, Legal);
// F[MIN|MAX][NUM|NAN] and simple strict operations are available for all FP
// NEON types.
if (VT.isFloatingPoint() &&
VT.getVectorElementType() != MVT::bf16 &&
(VT.getVectorElementType() != MVT::f16 || Subtarget->hasFullFP16()))
for (unsigned Opcode :
{ISD::FMINIMUM, ISD::FMAXIMUM, ISD::FMINNUM, ISD::FMAXNUM,
ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE, ISD::STRICT_FMINIMUM,
ISD::STRICT_FMAXIMUM, ISD::STRICT_FMINNUM, ISD::STRICT_FMAXNUM,
ISD::STRICT_FADD, ISD::STRICT_FSUB, ISD::STRICT_FMUL,
ISD::STRICT_FDIV, ISD::STRICT_FMA, ISD::STRICT_FSQRT})
setOperationAction(Opcode, VT, Legal);
// Strict fp extend and trunc are legal
if (VT.isFloatingPoint() && VT.getScalarSizeInBits() != 16)
setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal);
if (VT.isFloatingPoint() && VT.getScalarSizeInBits() != 64)
setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal);
// FIXME: We could potentially make use of the vector comparison instructions
// for STRICT_FSETCC and STRICT_FSETCSS, but there's a number of
// complications:
// * FCMPEQ/NE are quiet comparisons, the rest are signalling comparisons,
// so we would need to expand when the condition code doesn't match the
// kind of comparison.
// * Some kinds of comparison require more than one FCMXY instruction so
// would need to be expanded instead.
// * The lowering of the non-strict versions involves target-specific ISD
// nodes so we would likely need to add strict versions of all of them and
// handle them appropriately.
setOperationAction(ISD::STRICT_FSETCC, VT, Expand);
setOperationAction(ISD::STRICT_FSETCCS, VT, Expand);
if (Subtarget->isLittleEndian()) {
for (unsigned im = (unsigned)ISD::PRE_INC;
im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
setIndexedLoadAction(im, VT, Legal);
setIndexedStoreAction(im, VT, Legal);
}
}
if (Subtarget->hasD128()) {
setOperationAction(ISD::READ_REGISTER, MVT::i128, Custom);
setOperationAction(ISD::WRITE_REGISTER, MVT::i128, Custom);
}
}
bool AArch64TargetLowering::shouldExpandGetActiveLaneMask(EVT ResVT,
EVT OpVT) const {
// Only SVE has a 1:1 mapping from intrinsic -> instruction (whilelo).
if (!Subtarget->hasSVE())
return true;
// We can only support legal predicate result types. We can use the SVE
// whilelo instruction for generating fixed-width predicates too.
if (ResVT != MVT::nxv2i1 && ResVT != MVT::nxv4i1 && ResVT != MVT::nxv8i1 &&
ResVT != MVT::nxv16i1 && ResVT != MVT::v2i1 && ResVT != MVT::v4i1 &&
ResVT != MVT::v8i1 && ResVT != MVT::v16i1)
return true;
// The whilelo instruction only works with i32 or i64 scalar inputs.
if (OpVT != MVT::i32 && OpVT != MVT::i64)
return true;
return false;
}
bool AArch64TargetLowering::shouldExpandPartialReductionIntrinsic(
const IntrinsicInst *I) const {
if (I->getIntrinsicID() != Intrinsic::experimental_vector_partial_reduce_add)
return true;
EVT VT = EVT::getEVT(I->getType());
auto Op1 = I->getOperand(1);
EVT Op1VT = EVT::getEVT(Op1->getType());
if (Op1VT.getVectorElementType() == VT.getVectorElementType() &&
(VT.getVectorElementCount() * 4 == Op1VT.getVectorElementCount() ||
VT.getVectorElementCount() * 2 == Op1VT.getVectorElementCount()))
return false;
return true;
}
bool AArch64TargetLowering::shouldExpandCttzElements(EVT VT) const {
if (!Subtarget->isSVEorStreamingSVEAvailable())
return true;
// We can only use the BRKB + CNTP sequence with legal predicate types. We can
// also support fixed-width predicates.
return VT != MVT::nxv16i1 && VT != MVT::nxv8i1 && VT != MVT::nxv4i1 &&
VT != MVT::nxv2i1 && VT != MVT::v16i1 && VT != MVT::v8i1 &&
VT != MVT::v4i1 && VT != MVT::v2i1;
}
void AArch64TargetLowering::addTypeForFixedLengthSVE(MVT VT) {
assert(VT.isFixedLengthVector() && "Expected fixed length vector type!");
// By default everything must be expanded.
for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
setOperationAction(Op, VT, Expand);
if (VT.isFloatingPoint()) {
setCondCodeAction(ISD::SETO, VT, Expand);
setCondCodeAction(ISD::SETOLT, VT, Expand);
setCondCodeAction(ISD::SETOLE, VT, Expand);
setCondCodeAction(ISD::SETULT, VT, Expand);
setCondCodeAction(ISD::SETULE, VT, Expand);
setCondCodeAction(ISD::SETUGE, VT, Expand);
setCondCodeAction(ISD::SETUGT, VT, Expand);
setCondCodeAction(ISD::SETUEQ, VT, Expand);
setCondCodeAction(ISD::SETONE, VT, Expand);
}
TargetLoweringBase::LegalizeAction Default =
VT == MVT::v1f64 ? Expand : Custom;
// Mark integer truncating stores/extending loads as having custom lowering
if (VT.isInteger()) {
MVT InnerVT = VT.changeVectorElementType(MVT::i8);
while (InnerVT != VT) {
setTruncStoreAction(VT, InnerVT, Default);
setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Default);
setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Default);
setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Default);
InnerVT = InnerVT.changeVectorElementType(
MVT::getIntegerVT(2 * InnerVT.getScalarSizeInBits()));
}
}
// Mark floating-point truncating stores/extending loads as having custom
// lowering
if (VT.isFloatingPoint()) {
MVT InnerVT = VT.changeVectorElementType(MVT::f16);
while (InnerVT != VT) {
setTruncStoreAction(VT, InnerVT, Custom);
setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Default);
InnerVT = InnerVT.changeVectorElementType(
MVT::getFloatingPointVT(2 * InnerVT.getScalarSizeInBits()));
}
}
bool PreferNEON = VT.is64BitVector() || VT.is128BitVector();
bool PreferSVE = !PreferNEON && Subtarget->isSVEAvailable();
// Lower fixed length vector operations to scalable equivalents.
setOperationAction(ISD::ABDS, VT, Default);
setOperationAction(ISD::ABDU, VT, Default);
setOperationAction(ISD::ABS, VT, Default);
setOperationAction(ISD::ADD, VT, Default);
setOperationAction(ISD::AND, VT, Default);
setOperationAction(ISD::ANY_EXTEND, VT, Default);
setOperationAction(ISD::BITCAST, VT, PreferNEON ? Legal : Default);
setOperationAction(ISD::BITREVERSE, VT, Default);
setOperationAction(ISD::BSWAP, VT, Default);
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
setOperationAction(ISD::CONCAT_VECTORS, VT, Default);
setOperationAction(ISD::CTLZ, VT, Default);
setOperationAction(ISD::CTPOP, VT, Default);
setOperationAction(ISD::CTTZ, VT, Default);
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Default);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Default);
setOperationAction(ISD::FABS, VT, Default);
setOperationAction(ISD::FADD, VT, Default);
setOperationAction(ISD::FCEIL, VT, Default);
setOperationAction(ISD::FCOPYSIGN, VT, Default);
setOperationAction(ISD::FDIV, VT, Default);
setOperationAction(ISD::FFLOOR, VT, Default);
setOperationAction(ISD::FMA, VT, Default);
setOperationAction(ISD::FMAXIMUM, VT, Default);
setOperationAction(ISD::FMAXNUM, VT, Default);
setOperationAction(ISD::FMINIMUM, VT, Default);
setOperationAction(ISD::FMINNUM, VT, Default);
setOperationAction(ISD::FMUL, VT, Default);
setOperationAction(ISD::FNEARBYINT, VT, Default);
setOperationAction(ISD::FNEG, VT, Default);
setOperationAction(ISD::FP_EXTEND, VT, Default);
setOperationAction(ISD::FP_ROUND, VT, Default);
setOperationAction(ISD::FP_TO_SINT, VT, Default);
setOperationAction(ISD::FP_TO_UINT, VT, Default);
setOperationAction(ISD::FRINT, VT, Default);
setOperationAction(ISD::LRINT, VT, Default);
setOperationAction(ISD::LLRINT, VT, Default);
setOperationAction(ISD::FROUND, VT, Default);
setOperationAction(ISD::FROUNDEVEN, VT, Default);
setOperationAction(ISD::FSQRT, VT, Default);
setOperationAction(ISD::FSUB, VT, Default);
setOperationAction(ISD::FTRUNC, VT, Default);
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Default);
setOperationAction(ISD::LOAD, VT, PreferNEON ? Legal : Default);
setOperationAction(ISD::MGATHER, VT, PreferSVE ? Default : Expand);
setOperationAction(ISD::MLOAD, VT, Default);
setOperationAction(ISD::MSCATTER, VT, PreferSVE ? Default : Expand);
setOperationAction(ISD::MSTORE, VT, Default);
setOperationAction(ISD::MUL, VT, Default);
setOperationAction(ISD::MULHS, VT, Default);
setOperationAction(ISD::MULHU, VT, Default);
setOperationAction(ISD::OR, VT, Default);
setOperationAction(ISD::SCALAR_TO_VECTOR, VT, PreferNEON ? Legal : Expand);
setOperationAction(ISD::SDIV, VT, Default);
setOperationAction(ISD::SELECT, VT, Default);
setOperationAction(ISD::SETCC, VT, Default);
setOperationAction(ISD::SHL, VT, Default);
setOperationAction(ISD::SIGN_EXTEND, VT, Default);
setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Default);
setOperationAction(ISD::SINT_TO_FP, VT, Default);
setOperationAction(ISD::SMAX, VT, Default);
setOperationAction(ISD::SMIN, VT, Default);
setOperationAction(ISD::SPLAT_VECTOR, VT, Default);
setOperationAction(ISD::SRA, VT, Default);
setOperationAction(ISD::SRL, VT, Default);
setOperationAction(ISD::STORE, VT, PreferNEON ? Legal : Default);
setOperationAction(ISD::SUB, VT, Default);
setOperationAction(ISD::TRUNCATE, VT, Default);
setOperationAction(ISD::UDIV, VT, Default);
setOperationAction(ISD::UINT_TO_FP, VT, Default);
setOperationAction(ISD::UMAX, VT, Default);
setOperationAction(ISD::UMIN, VT, Default);
setOperationAction(ISD::VECREDUCE_ADD, VT, Default);
setOperationAction(ISD::VECREDUCE_AND, VT, Default);
setOperationAction(ISD::VECREDUCE_FADD, VT, Default);
setOperationAction(ISD::VECREDUCE_FMAX, VT, Default);
setOperationAction(ISD::VECREDUCE_FMIN, VT, Default);
setOperationAction(ISD::VECREDUCE_FMAXIMUM, VT, Default);
setOperationAction(ISD::VECREDUCE_FMINIMUM, VT, Default);
setOperationAction(ISD::VECREDUCE_OR, VT, Default);
setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, PreferSVE ? Default : Expand);
setOperationAction(ISD::VECREDUCE_SMAX, VT, Default);
setOperationAction(ISD::VECREDUCE_SMIN, VT, Default);
setOperationAction(ISD::VECREDUCE_UMAX, VT, Default);
setOperationAction(ISD::VECREDUCE_UMIN, VT, Default);
setOperationAction(ISD::VECREDUCE_XOR, VT, Default);
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Default);
setOperationAction(ISD::VECTOR_SPLICE, VT, Default);
setOperationAction(ISD::VSELECT, VT, Default);
setOperationAction(ISD::XOR, VT, Default);
setOperationAction(ISD::ZERO_EXTEND, VT, Default);
}
void AArch64TargetLowering::addDRType(MVT VT) {
addRegisterClass(VT, &AArch64::FPR64RegClass);
if (Subtarget->isNeonAvailable())
addTypeForNEON(VT);
}
void AArch64TargetLowering::addQRType(MVT VT) {
addRegisterClass(VT, &AArch64::FPR128RegClass);
if (Subtarget->isNeonAvailable())
addTypeForNEON(VT);
}
EVT AArch64TargetLowering::getSetCCResultType(const DataLayout &,
LLVMContext &C, EVT VT) const {
if (!VT.isVector())
return MVT::i32;
if (VT.isScalableVector())
return EVT::getVectorVT(C, MVT::i1, VT.getVectorElementCount());
return VT.changeVectorElementTypeToInteger();
}
// isIntImmediate - This method tests to see if the node is a constant
// operand. If so Imm will receive the value.
static bool isIntImmediate(const SDNode *N, uint64_t &Imm) {
if (const ConstantSDNode *C = dyn_cast<const ConstantSDNode>(N)) {
Imm = C->getZExtValue();
return true;
}
return false;
}
// isOpcWithIntImmediate - This method tests to see if the node is a specific
// opcode and that it has a immediate integer right operand.
// If so Imm will receive the value.
static bool isOpcWithIntImmediate(const SDNode *N, unsigned Opc,
uint64_t &Imm) {
return N->getOpcode() == Opc &&
isIntImmediate(N->getOperand(1).getNode(), Imm);
}
static bool optimizeLogicalImm(SDValue Op, unsigned Size, uint64_t Imm,
const APInt &Demanded,
TargetLowering::TargetLoweringOpt &TLO,
unsigned NewOpc) {
uint64_t OldImm = Imm, NewImm, Enc;
uint64_t Mask = ((uint64_t)(-1LL) >> (64 - Size)), OrigMask = Mask;
// Return if the immediate is already all zeros, all ones, a bimm32 or a
// bimm64.
if (Imm == 0 || Imm == Mask ||
AArch64_AM::isLogicalImmediate(Imm & Mask, Size))
return false;
unsigned EltSize = Size;
uint64_t DemandedBits = Demanded.getZExtValue();
// Clear bits that are not demanded.
Imm &= DemandedBits;
while (true) {
// The goal here is to set the non-demanded bits in a way that minimizes
// the number of switching between 0 and 1. In order to achieve this goal,
// we set the non-demanded bits to the value of the preceding demanded bits.
// For example, if we have an immediate 0bx10xx0x1 ('x' indicates a
// non-demanded bit), we copy bit0 (1) to the least significant 'x',
// bit2 (0) to 'xx', and bit6 (1) to the most significant 'x'.
// The final result is 0b11000011.
uint64_t NonDemandedBits = ~DemandedBits;
uint64_t InvertedImm = ~Imm & DemandedBits;
uint64_t RotatedImm =
((InvertedImm << 1) | (InvertedImm >> (EltSize - 1) & 1)) &
NonDemandedBits;
uint64_t Sum = RotatedImm + NonDemandedBits;
bool Carry = NonDemandedBits & ~Sum & (1ULL << (EltSize - 1));
uint64_t Ones = (Sum + Carry) & NonDemandedBits;
NewImm = (Imm | Ones) & Mask;
// If NewImm or its bitwise NOT is a shifted mask, it is a bitmask immediate
// or all-ones or all-zeros, in which case we can stop searching. Otherwise,
// we halve the element size and continue the search.
if (isShiftedMask_64(NewImm) || isShiftedMask_64(~(NewImm | ~Mask)))
break;
// We cannot shrink the element size any further if it is 2-bits.
if (EltSize == 2)
return false;
EltSize /= 2;
Mask >>= EltSize;
uint64_t Hi = Imm >> EltSize, DemandedBitsHi = DemandedBits >> EltSize;
// Return if there is mismatch in any of the demanded bits of Imm and Hi.
if (((Imm ^ Hi) & (DemandedBits & DemandedBitsHi) & Mask) != 0)
return false;
// Merge the upper and lower halves of Imm and DemandedBits.
Imm |= Hi;
DemandedBits |= DemandedBitsHi;
}
++NumOptimizedImms;
// Replicate the element across the register width.
while (EltSize < Size) {
NewImm |= NewImm << EltSize;
EltSize *= 2;
}
(void)OldImm;
assert(((OldImm ^ NewImm) & Demanded.getZExtValue()) == 0 &&
"demanded bits should never be altered");
assert(OldImm != NewImm && "the new imm shouldn't be equal to the old imm");
// Create the new constant immediate node.
EVT VT = Op.getValueType();
SDLoc DL(Op);
SDValue New;
// If the new constant immediate is all-zeros or all-ones, let the target
// independent DAG combine optimize this node.
if (NewImm == 0 || NewImm == OrigMask) {
New = TLO.DAG.getNode(Op.getOpcode(), DL, VT, Op.getOperand(0),
TLO.DAG.getConstant(NewImm, DL, VT));
// Otherwise, create a machine node so that target independent DAG combine
// doesn't undo this optimization.
} else {
Enc = AArch64_AM::encodeLogicalImmediate(NewImm, Size);
SDValue EncConst = TLO.DAG.getTargetConstant(Enc, DL, VT);
New = SDValue(
TLO.DAG.getMachineNode(NewOpc, DL, VT, Op.getOperand(0), EncConst), 0);
}
return TLO.CombineTo(Op, New);
}
bool AArch64TargetLowering::targetShrinkDemandedConstant(
SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
TargetLoweringOpt &TLO) const {
// Delay this optimization to as late as possible.
if (!TLO.LegalOps)
return false;
if (!EnableOptimizeLogicalImm)
return false;
EVT VT = Op.getValueType();
if (VT.isVector())
return false;
unsigned Size = VT.getSizeInBits();
assert((Size == 32 || Size == 64) &&
"i32 or i64 is expected after legalization.");
// Exit early if we demand all bits.
if (DemandedBits.popcount() == Size)
return false;
unsigned NewOpc;
switch (Op.getOpcode()) {
default:
return false;
case ISD::AND:
NewOpc = Size == 32 ? AArch64::ANDWri : AArch64::ANDXri;
break;
case ISD::OR:
NewOpc = Size == 32 ? AArch64::ORRWri : AArch64::ORRXri;
break;
case ISD::XOR:
NewOpc = Size == 32 ? AArch64::EORWri : AArch64::EORXri;
break;
}
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
if (!C)
return false;
uint64_t Imm = C->getZExtValue();
return optimizeLogicalImm(Op, Size, Imm, DemandedBits, TLO, NewOpc);
}
/// computeKnownBitsForTargetNode - Determine which of the bits specified in
/// Mask are known to be either zero or one and return them Known.
void AArch64TargetLowering::computeKnownBitsForTargetNode(
const SDValue Op, KnownBits &Known, const APInt &DemandedElts,
const SelectionDAG &DAG, unsigned Depth) const {
switch (Op.getOpcode()) {
default:
break;
case AArch64ISD::DUP: {
SDValue SrcOp = Op.getOperand(0);
Known = DAG.computeKnownBits(SrcOp, Depth + 1);
if (SrcOp.getValueSizeInBits() != Op.getScalarValueSizeInBits()) {
assert(SrcOp.getValueSizeInBits() > Op.getScalarValueSizeInBits() &&
"Expected DUP implicit truncation");
Known = Known.trunc(Op.getScalarValueSizeInBits());
}
break;
}
case AArch64ISD::CSEL: {
KnownBits Known2;
Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1);
Known2 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1);
Known = Known.intersectWith(Known2);
break;
}
case AArch64ISD::BICi: {
// Compute the bit cleared value.
APInt Mask =
~(Op->getConstantOperandAPInt(1) << Op->getConstantOperandAPInt(2))
.trunc(Known.getBitWidth());
Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1);
Known &= KnownBits::makeConstant(Mask);
break;
}
case AArch64ISD::VLSHR: {
KnownBits Known2;
Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1);
Known2 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1);
Known = KnownBits::lshr(Known, Known2);
break;
}
case AArch64ISD::VASHR: {
KnownBits Known2;
Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1);
Known2 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1);
Known = KnownBits::ashr(Known, Known2);
break;
}
case AArch64ISD::VSHL: {
KnownBits Known2;
Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1);
Known2 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1);
Known = KnownBits::shl(Known, Known2);
break;
}
case AArch64ISD::MOVI: {
Known = KnownBits::makeConstant(
APInt(Known.getBitWidth(), Op->getConstantOperandVal(0)));
break;
}
case AArch64ISD::LOADgot:
case AArch64ISD::ADDlow: {
if (!Subtarget->isTargetILP32())
break;
// In ILP32 mode all valid pointers are in the low 4GB of the address-space.
Known.Zero = APInt::getHighBitsSet(64, 32);
break;
}
case AArch64ISD::ASSERT_ZEXT_BOOL: {
Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1);
Known.Zero |= APInt(Known.getBitWidth(), 0xFE);
break;
}
case ISD::INTRINSIC_W_CHAIN: {
Intrinsic::ID IntID =
static_cast<Intrinsic::ID>(Op->getConstantOperandVal(1));
switch (IntID) {
default: return;
case Intrinsic::aarch64_ldaxr:
case Intrinsic::aarch64_ldxr: {
unsigned BitWidth = Known.getBitWidth();
EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
unsigned MemBits = VT.getScalarSizeInBits();
Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
return;
}
}
break;
}
case ISD::INTRINSIC_WO_CHAIN:
case ISD::INTRINSIC_VOID: {
unsigned IntNo = Op.getConstantOperandVal(0);
switch (IntNo) {
default:
break;
case Intrinsic::aarch64_neon_uaddlv: {
MVT VT = Op.getOperand(1).getValueType().getSimpleVT();
unsigned BitWidth = Known.getBitWidth();
if (VT == MVT::v8i8 || VT == MVT::v16i8) {
unsigned Bound = (VT == MVT::v8i8) ? 11 : 12;
assert(BitWidth >= Bound && "Unexpected width!");
APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - Bound);
Known.Zero |= Mask;
}
break;
}
case Intrinsic::aarch64_neon_umaxv:
case Intrinsic::aarch64_neon_uminv: {
// Figure out the datatype of the vector operand. The UMINV instruction
// will zero extend the result, so we can mark as known zero all the
// bits larger than the element datatype. 32-bit or larget doesn't need
// this as those are legal types and will be handled by isel directly.
MVT VT = Op.getOperand(1).getValueType().getSimpleVT();
unsigned BitWidth = Known.getBitWidth();
if (VT == MVT::v8i8 || VT == MVT::v16i8) {
assert(BitWidth >= 8 && "Unexpected width!");
APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8);
Known.Zero |= Mask;
} else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
assert(BitWidth >= 16 && "Unexpected width!");
APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
Known.Zero |= Mask;
}
break;
} break;
}
}
}
}
unsigned AArch64TargetLowering::ComputeNumSignBitsForTargetNode(
SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
unsigned Depth) const {
EVT VT = Op.getValueType();
unsigned VTBits = VT.getScalarSizeInBits();
unsigned Opcode = Op.getOpcode();
switch (Opcode) {
case AArch64ISD::CMEQ:
case AArch64ISD::CMGE:
case AArch64ISD::CMGT:
case AArch64ISD::CMHI:
case AArch64ISD::CMHS:
case AArch64ISD::FCMEQ:
case AArch64ISD::FCMGE:
case AArch64ISD::FCMGT:
case AArch64ISD::CMEQz:
case AArch64ISD::CMGEz:
case AArch64ISD::CMGTz:
case AArch64ISD::CMLEz:
case AArch64ISD::CMLTz:
case AArch64ISD::FCMEQz:
case AArch64ISD::FCMGEz:
case AArch64ISD::FCMGTz:
case AArch64ISD::FCMLEz:
case AArch64ISD::FCMLTz:
// Compares return either 0 or all-ones
return VTBits;
case AArch64ISD::VASHR: {
unsigned Tmp =
DAG.ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
return std::min<uint64_t>(Tmp + Op.getConstantOperandVal(1), VTBits);
}
}
return 1;
}
MVT AArch64TargetLowering::getScalarShiftAmountTy(const DataLayout &DL,
EVT) const {
return MVT::i64;
}
bool AArch64TargetLowering::allowsMisalignedMemoryAccesses(
EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
unsigned *Fast) const {
if (Subtarget->requiresStrictAlign())
return false;
if (Fast) {
// Some CPUs are fine with unaligned stores except for 128-bit ones.
*Fast = !Subtarget->isMisaligned128StoreSlow() || VT.getStoreSize() != 16 ||
// See comments in performSTORECombine() for more details about
// these conditions.
// Code that uses clang vector extensions can mark that it
// wants unaligned accesses to be treated as fast by
// underspecifying alignment to be 1 or 2.
Alignment <= 2 ||
// Disregard v2i64. Memcpy lowering produces those and splitting
// them regresses performance on micro-benchmarks and olden/bh.
VT == MVT::v2i64;
}
return true;
}
// Same as above but handling LLTs instead.
bool AArch64TargetLowering::allowsMisalignedMemoryAccesses(
LLT Ty, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
unsigned *Fast) const {
if (Subtarget->requiresStrictAlign())
return false;
if (Fast) {
// Some CPUs are fine with unaligned stores except for 128-bit ones.
*Fast = !Subtarget->isMisaligned128StoreSlow() ||
Ty.getSizeInBytes() != 16 ||
// See comments in performSTORECombine() for more details about
// these conditions.
// Code that uses clang vector extensions can mark that it
// wants unaligned accesses to be treated as fast by
// underspecifying alignment to be 1 or 2.
Alignment <= 2 ||
// Disregard v2i64. Memcpy lowering produces those and splitting
// them regresses performance on micro-benchmarks and olden/bh.
Ty == LLT::fixed_vector(2, 64);
}
return true;
}
FastISel *
AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
const TargetLibraryInfo *libInfo) const {
return AArch64::createFastISel(funcInfo, libInfo);
}
const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
#define MAKE_CASE(V) \
case V: \
return #V;
switch ((AArch64ISD::NodeType)Opcode) {
case AArch64ISD::FIRST_NUMBER:
break;
MAKE_CASE(AArch64ISD::ALLOCATE_ZA_BUFFER)
MAKE_CASE(AArch64ISD::INIT_TPIDR2OBJ)
MAKE_CASE(AArch64ISD::COALESCER_BARRIER)
MAKE_CASE(AArch64ISD::VG_SAVE)
MAKE_CASE(AArch64ISD::VG_RESTORE)
MAKE_CASE(AArch64ISD::SMSTART)
MAKE_CASE(AArch64ISD::SMSTOP)
MAKE_CASE(AArch64ISD::RESTORE_ZA)
MAKE_CASE(AArch64ISD::RESTORE_ZT)
MAKE_CASE(AArch64ISD::SAVE_ZT)
MAKE_CASE(AArch64ISD::CALL)
MAKE_CASE(AArch64ISD::ADRP)
MAKE_CASE(AArch64ISD::ADR)
MAKE_CASE(AArch64ISD::ADDlow)
MAKE_CASE(AArch64ISD::AUTH_CALL)
MAKE_CASE(AArch64ISD::AUTH_TC_RETURN)
MAKE_CASE(AArch64ISD::AUTH_CALL_RVMARKER)
MAKE_CASE(AArch64ISD::LOADgot)
MAKE_CASE(AArch64ISD::RET_GLUE)
MAKE_CASE(AArch64ISD::BRCOND)
MAKE_CASE(AArch64ISD::CSEL)
MAKE_CASE(AArch64ISD::CSINV)
MAKE_CASE(AArch64ISD::CSNEG)
MAKE_CASE(AArch64ISD::CSINC)
MAKE_CASE(AArch64ISD::THREAD_POINTER)
MAKE_CASE(AArch64ISD::TLSDESC_CALLSEQ)
MAKE_CASE(AArch64ISD::PROBED_ALLOCA)
MAKE_CASE(AArch64ISD::ABDS_PRED)
MAKE_CASE(AArch64ISD::ABDU_PRED)
MAKE_CASE(AArch64ISD::HADDS_PRED)
MAKE_CASE(AArch64ISD::HADDU_PRED)
MAKE_CASE(AArch64ISD::MUL_PRED)
MAKE_CASE(AArch64ISD::MULHS_PRED)
MAKE_CASE(AArch64ISD::MULHU_PRED)
MAKE_CASE(AArch64ISD::RHADDS_PRED)
MAKE_CASE(AArch64ISD::RHADDU_PRED)
MAKE_CASE(AArch64ISD::SDIV_PRED)
MAKE_CASE(AArch64ISD::SHL_PRED)
MAKE_CASE(AArch64ISD::SMAX_PRED)
MAKE_CASE(AArch64ISD::SMIN_PRED)
MAKE_CASE(AArch64ISD::SRA_PRED)
MAKE_CASE(AArch64ISD::SRL_PRED)
MAKE_CASE(AArch64ISD::UDIV_PRED)
MAKE_CASE(AArch64ISD::UMAX_PRED)
MAKE_CASE(AArch64ISD::UMIN_PRED)
MAKE_CASE(AArch64ISD::SRAD_MERGE_OP1)
MAKE_CASE(AArch64ISD::FNEG_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::SIGN_EXTEND_INREG_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::ZERO_EXTEND_INREG_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::FCEIL_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::FFLOOR_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::FNEARBYINT_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::FRINT_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::FROUND_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::FROUNDEVEN_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::FTRUNC_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::FP_ROUND_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::FP_EXTEND_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::SINT_TO_FP_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::UINT_TO_FP_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::FCVTX_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::FCVTZU_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::FCVTZS_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::FSQRT_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::FRECPX_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::FABS_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::ABS_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::NEG_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::SETCC_MERGE_ZERO)
MAKE_CASE(AArch64ISD::ADC)
MAKE_CASE(AArch64ISD::SBC)
MAKE_CASE(AArch64ISD::ADDS)
MAKE_CASE(AArch64ISD::SUBS)
MAKE_CASE(AArch64ISD::ADCS)
MAKE_CASE(AArch64ISD::SBCS)
MAKE_CASE(AArch64ISD::ANDS)
MAKE_CASE(AArch64ISD::CCMP)
MAKE_CASE(AArch64ISD::CCMN)
MAKE_CASE(AArch64ISD::FCCMP)
MAKE_CASE(AArch64ISD::FCMP)
MAKE_CASE(AArch64ISD::STRICT_FCMP)
MAKE_CASE(AArch64ISD::STRICT_FCMPE)
MAKE_CASE(AArch64ISD::FCVTXN)
MAKE_CASE(AArch64ISD::SME_ZA_LDR)
MAKE_CASE(AArch64ISD::SME_ZA_STR)
MAKE_CASE(AArch64ISD::DUP)
MAKE_CASE(AArch64ISD::DUPLANE8)
MAKE_CASE(AArch64ISD::DUPLANE16)
MAKE_CASE(AArch64ISD::DUPLANE32)
MAKE_CASE(AArch64ISD::DUPLANE64)
MAKE_CASE(AArch64ISD::DUPLANE128)
MAKE_CASE(AArch64ISD::MOVI)
MAKE_CASE(AArch64ISD::MOVIshift)
MAKE_CASE(AArch64ISD::MOVIedit)
MAKE_CASE(AArch64ISD::MOVImsl)
MAKE_CASE(AArch64ISD::FMOV)
MAKE_CASE(AArch64ISD::MVNIshift)
MAKE_CASE(AArch64ISD::MVNImsl)
MAKE_CASE(AArch64ISD::BICi)
MAKE_CASE(AArch64ISD::ORRi)
MAKE_CASE(AArch64ISD::BSP)
MAKE_CASE(AArch64ISD::ZIP1)
MAKE_CASE(AArch64ISD::ZIP2)
MAKE_CASE(AArch64ISD::UZP1)
MAKE_CASE(AArch64ISD::UZP2)
MAKE_CASE(AArch64ISD::TRN1)
MAKE_CASE(AArch64ISD::TRN2)
MAKE_CASE(AArch64ISD::REV16)
MAKE_CASE(AArch64ISD::REV32)
MAKE_CASE(AArch64ISD::REV64)
MAKE_CASE(AArch64ISD::EXT)
MAKE_CASE(AArch64ISD::SPLICE)
MAKE_CASE(AArch64ISD::VSHL)
MAKE_CASE(AArch64ISD::VLSHR)
MAKE_CASE(AArch64ISD::VASHR)
MAKE_CASE(AArch64ISD::VSLI)
MAKE_CASE(AArch64ISD::VSRI)
MAKE_CASE(AArch64ISD::CMEQ)
MAKE_CASE(AArch64ISD::CMGE)
MAKE_CASE(AArch64ISD::CMGT)
MAKE_CASE(AArch64ISD::CMHI)
MAKE_CASE(AArch64ISD::CMHS)
MAKE_CASE(AArch64ISD::FCMEQ)
MAKE_CASE(AArch64ISD::FCMGE)
MAKE_CASE(AArch64ISD::FCMGT)
MAKE_CASE(AArch64ISD::CMEQz)
MAKE_CASE(AArch64ISD::CMGEz)
MAKE_CASE(AArch64ISD::CMGTz)
MAKE_CASE(AArch64ISD::CMLEz)
MAKE_CASE(AArch64ISD::CMLTz)
MAKE_CASE(AArch64ISD::FCMEQz)
MAKE_CASE(AArch64ISD::FCMGEz)
MAKE_CASE(AArch64ISD::FCMGTz)
MAKE_CASE(AArch64ISD::FCMLEz)
MAKE_CASE(AArch64ISD::FCMLTz)
MAKE_CASE(AArch64ISD::SADDV)
MAKE_CASE(AArch64ISD::UADDV)
MAKE_CASE(AArch64ISD::UADDLV)
MAKE_CASE(AArch64ISD::SADDLV)
MAKE_CASE(AArch64ISD::SDOT)
MAKE_CASE(AArch64ISD::UDOT)
MAKE_CASE(AArch64ISD::USDOT)
MAKE_CASE(AArch64ISD::SMINV)
MAKE_CASE(AArch64ISD::UMINV)
MAKE_CASE(AArch64ISD::SMAXV)
MAKE_CASE(AArch64ISD::UMAXV)
MAKE_CASE(AArch64ISD::SADDV_PRED)
MAKE_CASE(AArch64ISD::UADDV_PRED)
MAKE_CASE(AArch64ISD::SMAXV_PRED)
MAKE_CASE(AArch64ISD::UMAXV_PRED)
MAKE_CASE(AArch64ISD::SMINV_PRED)
MAKE_CASE(AArch64ISD::UMINV_PRED)
MAKE_CASE(AArch64ISD::ORV_PRED)
MAKE_CASE(AArch64ISD::EORV_PRED)
MAKE_CASE(AArch64ISD::ANDV_PRED)
MAKE_CASE(AArch64ISD::CLASTA_N)
MAKE_CASE(AArch64ISD::CLASTB_N)
MAKE_CASE(AArch64ISD::LASTA)
MAKE_CASE(AArch64ISD::LASTB)
MAKE_CASE(AArch64ISD::REINTERPRET_CAST)
MAKE_CASE(AArch64ISD::LS64_BUILD)
MAKE_CASE(AArch64ISD::LS64_EXTRACT)
MAKE_CASE(AArch64ISD::TBL)
MAKE_CASE(AArch64ISD::FADD_PRED)
MAKE_CASE(AArch64ISD::FADDA_PRED)
MAKE_CASE(AArch64ISD::FADDV_PRED)
MAKE_CASE(AArch64ISD::FDIV_PRED)
MAKE_CASE(AArch64ISD::FMA_PRED)
MAKE_CASE(AArch64ISD::FMAX_PRED)
MAKE_CASE(AArch64ISD::FMAXV_PRED)
MAKE_CASE(AArch64ISD::FMAXNM_PRED)
MAKE_CASE(AArch64ISD::FMAXNMV_PRED)
MAKE_CASE(AArch64ISD::FMIN_PRED)
MAKE_CASE(AArch64ISD::FMINV_PRED)
MAKE_CASE(AArch64ISD::FMINNM_PRED)
MAKE_CASE(AArch64ISD::FMINNMV_PRED)
MAKE_CASE(AArch64ISD::FMUL_PRED)
MAKE_CASE(AArch64ISD::FSUB_PRED)
MAKE_CASE(AArch64ISD::RDSVL)
MAKE_CASE(AArch64ISD::BIC)
MAKE_CASE(AArch64ISD::CBZ)
MAKE_CASE(AArch64ISD::CBNZ)
MAKE_CASE(AArch64ISD::TBZ)
MAKE_CASE(AArch64ISD::TBNZ)
MAKE_CASE(AArch64ISD::TC_RETURN)
MAKE_CASE(AArch64ISD::PREFETCH)
MAKE_CASE(AArch64ISD::SITOF)
MAKE_CASE(AArch64ISD::UITOF)
MAKE_CASE(AArch64ISD::NVCAST)
MAKE_CASE(AArch64ISD::MRS)
MAKE_CASE(AArch64ISD::SQSHL_I)
MAKE_CASE(AArch64ISD::UQSHL_I)
MAKE_CASE(AArch64ISD::SRSHR_I)
MAKE_CASE(AArch64ISD::URSHR_I)
MAKE_CASE(AArch64ISD::SQSHLU_I)
MAKE_CASE(AArch64ISD::WrapperLarge)
MAKE_CASE(AArch64ISD::LD2post)
MAKE_CASE(AArch64ISD::LD3post)
MAKE_CASE(AArch64ISD::LD4post)
MAKE_CASE(AArch64ISD::ST2post)
MAKE_CASE(AArch64ISD::ST3post)
MAKE_CASE(AArch64ISD::ST4post)
MAKE_CASE(AArch64ISD::LD1x2post)
MAKE_CASE(AArch64ISD::LD1x3post)
MAKE_CASE(AArch64ISD::LD1x4post)
MAKE_CASE(AArch64ISD::ST1x2post)
MAKE_CASE(AArch64ISD::ST1x3post)
MAKE_CASE(AArch64ISD::ST1x4post)
MAKE_CASE(AArch64ISD::LD1DUPpost)
MAKE_CASE(AArch64ISD::LD2DUPpost)
MAKE_CASE(AArch64ISD::LD3DUPpost)
MAKE_CASE(AArch64ISD::LD4DUPpost)
MAKE_CASE(AArch64ISD::LD1LANEpost)
MAKE_CASE(AArch64ISD::LD2LANEpost)
MAKE_CASE(AArch64ISD::LD3LANEpost)
MAKE_CASE(AArch64ISD::LD4LANEpost)
MAKE_CASE(AArch64ISD::ST2LANEpost)
MAKE_CASE(AArch64ISD::ST3LANEpost)
MAKE_CASE(AArch64ISD::ST4LANEpost)
MAKE_CASE(AArch64ISD::SMULL)
MAKE_CASE(AArch64ISD::UMULL)
MAKE_CASE(AArch64ISD::PMULL)
MAKE_CASE(AArch64ISD::FRECPE)
MAKE_CASE(AArch64ISD::FRECPS)
MAKE_CASE(AArch64ISD::FRSQRTE)
MAKE_CASE(AArch64ISD::FRSQRTS)
MAKE_CASE(AArch64ISD::STG)
MAKE_CASE(AArch64ISD::STZG)
MAKE_CASE(AArch64ISD::ST2G)
MAKE_CASE(AArch64ISD::STZ2G)
MAKE_CASE(AArch64ISD::SUNPKHI)
MAKE_CASE(AArch64ISD::SUNPKLO)
MAKE_CASE(AArch64ISD::UUNPKHI)
MAKE_CASE(AArch64ISD::UUNPKLO)
MAKE_CASE(AArch64ISD::INSR)
MAKE_CASE(AArch64ISD::PTEST)
MAKE_CASE(AArch64ISD::PTEST_ANY)
MAKE_CASE(AArch64ISD::PTRUE)
MAKE_CASE(AArch64ISD::LD1_MERGE_ZERO)
MAKE_CASE(AArch64ISD::LD1S_MERGE_ZERO)
MAKE_CASE(AArch64ISD::LDNF1_MERGE_ZERO)
MAKE_CASE(AArch64ISD::LDNF1S_MERGE_ZERO)
MAKE_CASE(AArch64ISD::LDFF1_MERGE_ZERO)
MAKE_CASE(AArch64ISD::LDFF1S_MERGE_ZERO)
MAKE_CASE(AArch64ISD::LD1RQ_MERGE_ZERO)
MAKE_CASE(AArch64ISD::LD1RO_MERGE_ZERO)
MAKE_CASE(AArch64ISD::SVE_LD2_MERGE_ZERO)
MAKE_CASE(AArch64ISD::SVE_LD3_MERGE_ZERO)
MAKE_CASE(AArch64ISD::SVE_LD4_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLD1_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLD1_SCALED_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLD1_SXTW_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLD1_UXTW_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLD1_IMM_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLD1Q_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLD1Q_INDEX_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLD1S_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLD1S_SCALED_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLD1S_SXTW_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLD1S_UXTW_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLD1S_SXTW_SCALED_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLD1S_UXTW_SCALED_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLD1S_IMM_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLDFF1_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLDFF1_SCALED_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLDFF1_SXTW_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLDFF1_UXTW_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLDFF1_SXTW_SCALED_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLDFF1_UXTW_SCALED_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLDFF1_IMM_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLDFF1S_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLDFF1S_SCALED_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLDFF1S_SXTW_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLDFF1S_UXTW_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLDFF1S_SXTW_SCALED_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLDFF1S_UXTW_SCALED_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLDFF1S_IMM_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLDNT1_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLDNT1_INDEX_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLDNT1S_MERGE_ZERO)
MAKE_CASE(AArch64ISD::SST1Q_PRED)
MAKE_CASE(AArch64ISD::SST1Q_INDEX_PRED)
MAKE_CASE(AArch64ISD::ST1_PRED)
MAKE_CASE(AArch64ISD::SST1_PRED)
MAKE_CASE(AArch64ISD::SST1_SCALED_PRED)
MAKE_CASE(AArch64ISD::SST1_SXTW_PRED)
MAKE_CASE(AArch64ISD::SST1_UXTW_PRED)
MAKE_CASE(AArch64ISD::SST1_SXTW_SCALED_PRED)
MAKE_CASE(AArch64ISD::SST1_UXTW_SCALED_PRED)
MAKE_CASE(AArch64ISD::SST1_IMM_PRED)
MAKE_CASE(AArch64ISD::SSTNT1_PRED)
MAKE_CASE(AArch64ISD::SSTNT1_INDEX_PRED)
MAKE_CASE(AArch64ISD::LDP)
MAKE_CASE(AArch64ISD::LDIAPP)
MAKE_CASE(AArch64ISD::LDNP)
MAKE_CASE(AArch64ISD::STP)
MAKE_CASE(AArch64ISD::STILP)
MAKE_CASE(AArch64ISD::STNP)
MAKE_CASE(AArch64ISD::BITREVERSE_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::BSWAP_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::REVH_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::REVW_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::REVD_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::CTLZ_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::CTPOP_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::DUP_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::INDEX_VECTOR)
MAKE_CASE(AArch64ISD::ADDP)
MAKE_CASE(AArch64ISD::SADDLP)
MAKE_CASE(AArch64ISD::UADDLP)
MAKE_CASE(AArch64ISD::CALL_RVMARKER)
MAKE_CASE(AArch64ISD::ASSERT_ZEXT_BOOL)
MAKE_CASE(AArch64ISD::MOPS_MEMSET)
MAKE_CASE(AArch64ISD::MOPS_MEMSET_TAGGING)
MAKE_CASE(AArch64ISD::MOPS_MEMCOPY)
MAKE_CASE(AArch64ISD::MOPS_MEMMOVE)
MAKE_CASE(AArch64ISD::CALL_BTI)
MAKE_CASE(AArch64ISD::MRRS)
MAKE_CASE(AArch64ISD::MSRR)
MAKE_CASE(AArch64ISD::RSHRNB_I)
MAKE_CASE(AArch64ISD::CTTZ_ELTS)
MAKE_CASE(AArch64ISD::CALL_ARM64EC_TO_X64)
MAKE_CASE(AArch64ISD::URSHR_I_PRED)
}
#undef MAKE_CASE
return nullptr;
}
MachineBasicBlock *
AArch64TargetLowering::EmitF128CSEL(MachineInstr &MI,
MachineBasicBlock *MBB) const {
// We materialise the F128CSEL pseudo-instruction as some control flow and a
// phi node:
// OrigBB:
// [... previous instrs leading to comparison ...]
// b.ne TrueBB
// b EndBB
// TrueBB:
// ; Fallthrough
// EndBB:
// Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]
MachineFunction *MF = MBB->getParent();
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
const BasicBlock *LLVM_BB = MBB->getBasicBlock();
DebugLoc DL = MI.getDebugLoc();
MachineFunction::iterator It = ++MBB->getIterator();
Register DestReg = MI.getOperand(0).getReg();
Register IfTrueReg = MI.getOperand(1).getReg();
Register IfFalseReg = MI.getOperand(2).getReg();
unsigned CondCode = MI.getOperand(3).getImm();
bool NZCVKilled = MI.getOperand(4).isKill();
MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
MF->insert(It, TrueBB);
MF->insert(It, EndBB);
// Transfer rest of current basic-block to EndBB
EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
MBB->end());
EndBB->transferSuccessorsAndUpdatePHIs(MBB);
BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB);
BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB);
MBB->addSuccessor(TrueBB);
MBB->addSuccessor(EndBB);
// TrueBB falls through to the end.
TrueBB->addSuccessor(EndBB);
if (!NZCVKilled) {
TrueBB->addLiveIn(AArch64::NZCV);
EndBB->addLiveIn(AArch64::NZCV);
}
BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg)
.addReg(IfTrueReg)
.addMBB(TrueBB)
.addReg(IfFalseReg)
.addMBB(MBB);
MI.eraseFromParent();
return EndBB;
}
MachineBasicBlock *AArch64TargetLowering::EmitLoweredCatchRet(
MachineInstr &MI, MachineBasicBlock *BB) const {
assert(!isAsynchronousEHPersonality(classifyEHPersonality(
BB->getParent()->getFunction().getPersonalityFn())) &&
"SEH does not use catchret!");
return BB;
}
MachineBasicBlock *
AArch64TargetLowering::EmitDynamicProbedAlloc(MachineInstr &MI,
MachineBasicBlock *MBB) const {
MachineFunction &MF = *MBB->getParent();
MachineBasicBlock::iterator MBBI = MI.getIterator();
DebugLoc DL = MBB->findDebugLoc(MBBI);
const AArch64InstrInfo &TII =
*MF.getSubtarget<AArch64Subtarget>().getInstrInfo();
Register TargetReg = MI.getOperand(0).getReg();
MachineBasicBlock::iterator NextInst =
TII.probedStackAlloc(MBBI, TargetReg, false);
MI.eraseFromParent();
return NextInst->getParent();
}
MachineBasicBlock *
AArch64TargetLowering::EmitTileLoad(unsigned Opc, unsigned BaseReg,
MachineInstr &MI,
MachineBasicBlock *BB) const {
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
MachineInstrBuilder MIB = BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(Opc));
MIB.addReg(BaseReg + MI.getOperand(0).getImm(), RegState::Define);
MIB.add(MI.getOperand(1)); // slice index register
MIB.add(MI.getOperand(2)); // slice index offset
MIB.add(MI.getOperand(3)); // pg
MIB.add(MI.getOperand(4)); // base
MIB.add(MI.getOperand(5)); // offset
MI.eraseFromParent(); // The pseudo is gone now.
return BB;
}
MachineBasicBlock *
AArch64TargetLowering::EmitFill(MachineInstr &MI, MachineBasicBlock *BB) const {
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
MachineInstrBuilder MIB =
BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(AArch64::LDR_ZA));
MIB.addReg(AArch64::ZA, RegState::Define);
MIB.add(MI.getOperand(0)); // Vector select register
MIB.add(MI.getOperand(1)); // Vector select offset
MIB.add(MI.getOperand(2)); // Base
MIB.add(MI.getOperand(1)); // Offset, same as vector select offset
MI.eraseFromParent(); // The pseudo is gone now.
return BB;
}
MachineBasicBlock *AArch64TargetLowering::EmitZTInstr(MachineInstr &MI,
MachineBasicBlock *BB,
unsigned Opcode,
bool Op0IsDef) const {
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
MachineInstrBuilder MIB;
MIB = BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(Opcode))
.addReg(MI.getOperand(0).getReg(), Op0IsDef ? RegState::Define : 0);
for (unsigned I = 1; I < MI.getNumOperands(); ++I)
MIB.add(MI.getOperand(I));
MI.eraseFromParent(); // The pseudo is gone now.
return BB;
}
MachineBasicBlock *
AArch64TargetLowering::EmitZAInstr(unsigned Opc, unsigned BaseReg,
MachineInstr &MI,
MachineBasicBlock *BB) const {
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
MachineInstrBuilder MIB = BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(Opc));
unsigned StartIdx = 0;
bool HasTile = BaseReg != AArch64::ZA;
bool HasZPROut = HasTile && MI.getOperand(0).isReg();
if (HasZPROut) {
MIB.add(MI.getOperand(StartIdx)); // Output ZPR
++StartIdx;
}
if (HasTile) {
MIB.addReg(BaseReg + MI.getOperand(StartIdx).getImm(),
RegState::Define); // Output ZA Tile
MIB.addReg(BaseReg + MI.getOperand(StartIdx).getImm()); // Input Za Tile
StartIdx++;
} else {
// Avoids all instructions with mnemonic za.<sz>[Reg, Imm,
if (MI.getOperand(0).isReg() && !MI.getOperand(1).isImm()) {
MIB.add(MI.getOperand(StartIdx)); // Output ZPR
++StartIdx;
}
MIB.addReg(BaseReg, RegState::Define).addReg(BaseReg);
}
for (unsigned I = StartIdx; I < MI.getNumOperands(); ++I)
MIB.add(MI.getOperand(I));
MI.eraseFromParent(); // The pseudo is gone now.
return BB;
}
MachineBasicBlock *
AArch64TargetLowering::EmitZero(MachineInstr &MI, MachineBasicBlock *BB) const {
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
MachineInstrBuilder MIB =
BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(AArch64::ZERO_M));
MIB.add(MI.getOperand(0)); // Mask
unsigned Mask = MI.getOperand(0).getImm();
for (unsigned I = 0; I < 8; I++) {
if (Mask & (1 << I))
MIB.addDef(AArch64::ZAD0 + I, RegState::ImplicitDefine);
}
MI.eraseFromParent(); // The pseudo is gone now.
return BB;
}
MachineBasicBlock *
AArch64TargetLowering::EmitInitTPIDR2Object(MachineInstr &MI,
MachineBasicBlock *BB) const {
MachineFunction *MF = BB->getParent();
MachineFrameInfo &MFI = MF->getFrameInfo();
AArch64FunctionInfo *FuncInfo = MF->getInfo<AArch64FunctionInfo>();
TPIDR2Object &TPIDR2 = FuncInfo->getTPIDR2Obj();
if (TPIDR2.Uses > 0) {
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
// Store the buffer pointer to the TPIDR2 stack object.
BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(AArch64::STRXui))
.addReg(MI.getOperand(0).getReg())
.addFrameIndex(TPIDR2.FrameIndex)
.addImm(0);
// Set the reserved bytes (10-15) to zero
BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(AArch64::STRHHui))
.addReg(AArch64::WZR)
.addFrameIndex(TPIDR2.FrameIndex)
.addImm(5);
BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(AArch64::STRWui))
.addReg(AArch64::WZR)
.addFrameIndex(TPIDR2.FrameIndex)
.addImm(3);
} else
MFI.RemoveStackObject(TPIDR2.FrameIndex);
BB->remove_instr(&MI);
return BB;
}
MachineBasicBlock *
AArch64TargetLowering::EmitAllocateZABuffer(MachineInstr &MI,
MachineBasicBlock *BB) const {
MachineFunction *MF = BB->getParent();
MachineFrameInfo &MFI = MF->getFrameInfo();
AArch64FunctionInfo *FuncInfo = MF->getInfo<AArch64FunctionInfo>();
// TODO This function grows the stack with a subtraction, which doesn't work
// on Windows. Some refactoring to share the functionality in
// LowerWindowsDYNAMIC_STACKALLOC will be required once the Windows ABI
// supports SME
assert(!MF->getSubtarget<AArch64Subtarget>().isTargetWindows() &&
"Lazy ZA save is not yet supported on Windows");
TPIDR2Object &TPIDR2 = FuncInfo->getTPIDR2Obj();
if (TPIDR2.Uses > 0) {
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
MachineRegisterInfo &MRI = MF->getRegInfo();
// The SUBXrs below won't always be emitted in a form that accepts SP
// directly
Register SP = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(TargetOpcode::COPY), SP)
.addReg(AArch64::SP);
// Allocate a lazy-save buffer object of the size given, normally SVL * SVL
auto Size = MI.getOperand(1).getReg();
auto Dest = MI.getOperand(0).getReg();
BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(AArch64::MSUBXrrr), Dest)
.addReg(Size)
.addReg(Size)
.addReg(SP);
BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(TargetOpcode::COPY),
AArch64::SP)
.addReg(Dest);
// We have just allocated a variable sized object, tell this to PEI.
MFI.CreateVariableSizedObject(Align(16), nullptr);
}
BB->remove_instr(&MI);
return BB;
}
MachineBasicBlock *AArch64TargetLowering::EmitInstrWithCustomInserter(
MachineInstr &MI, MachineBasicBlock *BB) const {
int SMEOrigInstr = AArch64::getSMEPseudoMap(MI.getOpcode());
if (SMEOrigInstr != -1) {
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
uint64_t SMEMatrixType =
TII->get(MI.getOpcode()).TSFlags & AArch64::SMEMatrixTypeMask;
switch (SMEMatrixType) {
case (AArch64::SMEMatrixArray):
return EmitZAInstr(SMEOrigInstr, AArch64::ZA, MI, BB);
case (AArch64::SMEMatrixTileB):
return EmitZAInstr(SMEOrigInstr, AArch64::ZAB0, MI, BB);
case (AArch64::SMEMatrixTileH):
return EmitZAInstr(SMEOrigInstr, AArch64::ZAH0, MI, BB);
case (AArch64::SMEMatrixTileS):
return EmitZAInstr(SMEOrigInstr, AArch64::ZAS0, MI, BB);
case (AArch64::SMEMatrixTileD):
return EmitZAInstr(SMEOrigInstr, AArch64::ZAD0, MI, BB);
case (AArch64::SMEMatrixTileQ):
return EmitZAInstr(SMEOrigInstr, AArch64::ZAQ0, MI, BB);
}
}
switch (MI.getOpcode()) {
default:
#ifndef NDEBUG
MI.dump();
#endif
llvm_unreachable("Unexpected instruction for custom inserter!");
case AArch64::InitTPIDR2Obj:
return EmitInitTPIDR2Object(MI, BB);
case AArch64::AllocateZABuffer:
return EmitAllocateZABuffer(MI, BB);
case AArch64::F128CSEL:
return EmitF128CSEL(MI, BB);
case TargetOpcode::STATEPOINT:
// STATEPOINT is a pseudo instruction which has no implicit defs/uses
// while bl call instruction (where statepoint will be lowered at the end)
// has implicit def. This def is early-clobber as it will be set at
// the moment of the call and earlier than any use is read.
// Add this implicit dead def here as a workaround.
MI.addOperand(*MI.getMF(),
MachineOperand::CreateReg(
AArch64::LR, /*isDef*/ true,
/*isImp*/ true, /*isKill*/ false, /*isDead*/ true,
/*isUndef*/ false, /*isEarlyClobber*/ true));
[[fallthrough]];
case TargetOpcode::STACKMAP:
case TargetOpcode::PATCHPOINT:
return emitPatchPoint(MI, BB);
case TargetOpcode::PATCHABLE_EVENT_CALL:
case TargetOpcode::PATCHABLE_TYPED_EVENT_CALL:
return BB;
case AArch64::CATCHRET:
return EmitLoweredCatchRet(MI, BB);
case AArch64::PROBED_STACKALLOC_DYN:
return EmitDynamicProbedAlloc(MI, BB);
case AArch64::LD1_MXIPXX_H_PSEUDO_B:
return EmitTileLoad(AArch64::LD1_MXIPXX_H_B, AArch64::ZAB0, MI, BB);
case AArch64::LD1_MXIPXX_H_PSEUDO_H:
return EmitTileLoad(AArch64::LD1_MXIPXX_H_H, AArch64::ZAH0, MI, BB);
case AArch64::LD1_MXIPXX_H_PSEUDO_S:
return EmitTileLoad(AArch64::LD1_MXIPXX_H_S, AArch64::ZAS0, MI, BB);
case AArch64::LD1_MXIPXX_H_PSEUDO_D:
return EmitTileLoad(AArch64::LD1_MXIPXX_H_D, AArch64::ZAD0, MI, BB);
case AArch64::LD1_MXIPXX_H_PSEUDO_Q:
return EmitTileLoad(AArch64::LD1_MXIPXX_H_Q, AArch64::ZAQ0, MI, BB);
case AArch64::LD1_MXIPXX_V_PSEUDO_B:
return EmitTileLoad(AArch64::LD1_MXIPXX_V_B, AArch64::ZAB0, MI, BB);
case AArch64::LD1_MXIPXX_V_PSEUDO_H:
return EmitTileLoad(AArch64::LD1_MXIPXX_V_H, AArch64::ZAH0, MI, BB);
case AArch64::LD1_MXIPXX_V_PSEUDO_S:
return EmitTileLoad(AArch64::LD1_MXIPXX_V_S, AArch64::ZAS0, MI, BB);
case AArch64::LD1_MXIPXX_V_PSEUDO_D:
return EmitTileLoad(AArch64::LD1_MXIPXX_V_D, AArch64::ZAD0, MI, BB);
case AArch64::LD1_MXIPXX_V_PSEUDO_Q:
return EmitTileLoad(AArch64::LD1_MXIPXX_V_Q, AArch64::ZAQ0, MI, BB);
case AArch64::LDR_ZA_PSEUDO:
return EmitFill(MI, BB);
case AArch64::LDR_TX_PSEUDO:
return EmitZTInstr(MI, BB, AArch64::LDR_TX, /*Op0IsDef=*/true);
case AArch64::STR_TX_PSEUDO:
return EmitZTInstr(MI, BB, AArch64::STR_TX, /*Op0IsDef=*/false);
case AArch64::ZERO_M_PSEUDO:
return EmitZero(MI, BB);
case AArch64::ZERO_T_PSEUDO:
return EmitZTInstr(MI, BB, AArch64::ZERO_T, /*Op0IsDef=*/true);
case AArch64::MOVT_TIZ_PSEUDO:
return EmitZTInstr(MI, BB, AArch64::MOVT_TIZ, /*Op0IsDef=*/true);
}
}
//===----------------------------------------------------------------------===//
// AArch64 Lowering private implementation.
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Lowering Code
//===----------------------------------------------------------------------===//
// Forward declarations of SVE fixed length lowering helpers
static EVT getContainerForFixedLengthVector(SelectionDAG &DAG, EVT VT);
static SDValue convertToScalableVector(SelectionDAG &DAG, EVT VT, SDValue V);
static SDValue convertFromScalableVector(SelectionDAG &DAG, EVT VT, SDValue V);
static SDValue convertFixedMaskToScalableVector(SDValue Mask,
SelectionDAG &DAG);
static SDValue getPredicateForVector(SelectionDAG &DAG, SDLoc &DL, EVT VT);
static SDValue getPredicateForScalableVector(SelectionDAG &DAG, SDLoc &DL,
EVT VT);
/// isZerosVector - Check whether SDNode N is a zero-filled vector.
static bool isZerosVector(const SDNode *N) {
// Look through a bit convert.
while (N->getOpcode() == ISD::BITCAST)
N = N->getOperand(0).getNode();
if (ISD::isConstantSplatVectorAllZeros(N))
return true;
if (N->getOpcode() != AArch64ISD::DUP)
return false;
auto Opnd0 = N->getOperand(0);
return isNullConstant(Opnd0) || isNullFPConstant(Opnd0);
}
/// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64
/// CC
static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) {
switch (CC) {
default:
llvm_unreachable("Unknown condition code!");
case ISD::SETNE:
return AArch64CC::NE;
case ISD::SETEQ:
return AArch64CC::EQ;
case ISD::SETGT:
return AArch64CC::GT;
case ISD::SETGE:
return AArch64CC::GE;
case ISD::SETLT:
return AArch64CC::LT;
case ISD::SETLE:
return AArch64CC::LE;
case ISD::SETUGT:
return AArch64CC::HI;
case ISD::SETUGE:
return AArch64CC::HS;
case ISD::SETULT:
return AArch64CC::LO;
case ISD::SETULE:
return AArch64CC::LS;
}
}
/// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC.
static void changeFPCCToAArch64CC(ISD::CondCode CC,
AArch64CC::CondCode &CondCode,
AArch64CC::CondCode &CondCode2) {
CondCode2 = AArch64CC::AL;
switch (CC) {
default:
llvm_unreachable("Unknown FP condition!");
case ISD::SETEQ:
case ISD::SETOEQ:
CondCode = AArch64CC::EQ;
break;
case ISD::SETGT:
case ISD::SETOGT:
CondCode = AArch64CC::GT;
break;
case ISD::SETGE:
case ISD::SETOGE:
CondCode = AArch64CC::GE;
break;
case ISD::SETOLT:
CondCode = AArch64CC::MI;
break;
case ISD::SETOLE:
CondCode = AArch64CC::LS;
break;
case ISD::SETONE:
CondCode = AArch64CC::MI;
CondCode2 = AArch64CC::GT;
break;
case ISD::SETO:
CondCode = AArch64CC::VC;
break;
case ISD::SETUO:
CondCode = AArch64CC::VS;
break;
case ISD::SETUEQ:
CondCode = AArch64CC::EQ;
CondCode2 = AArch64CC::VS;
break;
case ISD::SETUGT:
CondCode = AArch64CC::HI;
break;
case ISD::SETUGE:
CondCode = AArch64CC::PL;
break;
case ISD::SETLT:
case ISD::SETULT:
CondCode = AArch64CC::LT;
break;
case ISD::SETLE:
case ISD::SETULE:
CondCode = AArch64CC::LE;
break;
case ISD::SETNE:
case ISD::SETUNE:
CondCode = AArch64CC::NE;
break;
}
}
/// Convert a DAG fp condition code to an AArch64 CC.
/// This differs from changeFPCCToAArch64CC in that it returns cond codes that
/// should be AND'ed instead of OR'ed.
static void changeFPCCToANDAArch64CC(ISD::CondCode CC,
AArch64CC::CondCode &CondCode,
AArch64CC::CondCode &CondCode2) {
CondCode2 = AArch64CC::AL;
switch (CC) {
default:
changeFPCCToAArch64CC(CC, CondCode, CondCode2);
assert(CondCode2 == AArch64CC::AL);
break;
case ISD::SETONE:
// (a one b)
// == ((a olt b) || (a ogt b))
// == ((a ord b) && (a une b))
CondCode = AArch64CC::VC;
CondCode2 = AArch64CC::NE;
break;
case ISD::SETUEQ:
// (a ueq b)
// == ((a uno b) || (a oeq b))
// == ((a ule b) && (a uge b))
CondCode = AArch64CC::PL;
CondCode2 = AArch64CC::LE;
break;
}
}
/// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64
/// CC usable with the vector instructions. Fewer operations are available
/// without a real NZCV register, so we have to use less efficient combinations
/// to get the same effect.
static void changeVectorFPCCToAArch64CC(ISD::CondCode CC,
AArch64CC::CondCode &CondCode,
AArch64CC::CondCode &CondCode2,
bool &Invert) {
Invert = false;
switch (CC) {
default:
// Mostly the scalar mappings work fine.
changeFPCCToAArch64CC(CC, CondCode, CondCode2);
break;
case ISD::SETUO:
Invert = true;
[[fallthrough]];
case ISD::SETO:
CondCode = AArch64CC::MI;
CondCode2 = AArch64CC::GE;
break;
case ISD::SETUEQ:
case ISD::SETULT:
case ISD::SETULE:
case ISD::SETUGT:
case ISD::SETUGE:
// All of the compare-mask comparisons are ordered, but we can switch
// between the two by a double inversion. E.g. ULE == !OGT.
Invert = true;
changeFPCCToAArch64CC(getSetCCInverse(CC, /* FP inverse */ MVT::f32),
CondCode, CondCode2);
break;
}
}
static bool isLegalArithImmed(uint64_t C) {
// Matches AArch64DAGToDAGISel::SelectArithImmed().
bool IsLegal = (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0);
LLVM_DEBUG(dbgs() << "Is imm " << C
<< " legal: " << (IsLegal ? "yes\n" : "no\n"));
return IsLegal;
}
static bool cannotBeIntMin(SDValue CheckedVal, SelectionDAG &DAG) {
KnownBits KnownSrc = DAG.computeKnownBits(CheckedVal);
return !KnownSrc.getSignedMinValue().isMinSignedValue();
}
// Can a (CMP op1, (sub 0, op2) be turned into a CMN instruction on
// the grounds that "op1 - (-op2) == op1 + op2" ? Not always, the C and V flags
// can be set differently by this operation. It comes down to whether
// "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then
// everything is fine. If not then the optimization is wrong. Thus general
// comparisons are only valid if op2 != 0.
//
// So, finally, the only LLVM-native comparisons that don't mention C or V
// are the ones that aren't unsigned comparisons. They're the only ones we can
// safely use CMN for in the absence of information about op2.
static bool isCMN(SDValue Op, ISD::CondCode CC, SelectionDAG &DAG) {
return Op.getOpcode() == ISD::SUB && isNullConstant(Op.getOperand(0)) &&
(isIntEqualitySetCC(CC) ||
(isUnsignedIntSetCC(CC) && DAG.isKnownNeverZero(Op.getOperand(1))) ||
(isSignedIntSetCC(CC) && cannotBeIntMin(Op.getOperand(1), DAG)));
}
static SDValue emitStrictFPComparison(SDValue LHS, SDValue RHS, const SDLoc &dl,
SelectionDAG &DAG, SDValue Chain,
bool IsSignaling) {
EVT VT = LHS.getValueType();
assert(VT != MVT::f128);
const bool FullFP16 = DAG.getSubtarget<AArch64Subtarget>().hasFullFP16();
if ((VT == MVT::f16 && !FullFP16) || VT == MVT::bf16) {
LHS = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {MVT::f32, MVT::Other},
{Chain, LHS});
RHS = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {MVT::f32, MVT::Other},
{LHS.getValue(1), RHS});
Chain = RHS.getValue(1);
VT = MVT::f32;
}
unsigned Opcode =
IsSignaling ? AArch64ISD::STRICT_FCMPE : AArch64ISD::STRICT_FCMP;
return DAG.getNode(Opcode, dl, {VT, MVT::Other}, {Chain, LHS, RHS});
}
static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC,
const SDLoc &dl, SelectionDAG &DAG) {
EVT VT = LHS.getValueType();
const bool FullFP16 = DAG.getSubtarget<AArch64Subtarget>().hasFullFP16();
if (VT.isFloatingPoint()) {
assert(VT != MVT::f128);
if ((VT == MVT::f16 && !FullFP16) || VT == MVT::bf16) {
LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS);
RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS);
VT = MVT::f32;
}
return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS);
}
// The CMP instruction is just an alias for SUBS, and representing it as
// SUBS means that it's possible to get CSE with subtract operations.
// A later phase can perform the optimization of setting the destination
// register to WZR/XZR if it ends up being unused.
unsigned Opcode = AArch64ISD::SUBS;
if (isCMN(RHS, CC, DAG)) {
// Can we combine a (CMP op1, (sub 0, op2) into a CMN instruction ?
Opcode = AArch64ISD::ADDS;
RHS = RHS.getOperand(1);
} else if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
isIntEqualitySetCC(CC)) {
// As we are looking for EQ/NE compares, the operands can be commuted ; can
// we combine a (CMP (sub 0, op1), op2) into a CMN instruction ?
Opcode = AArch64ISD::ADDS;
LHS = LHS.getOperand(1);
} else if (isNullConstant(RHS) && !isUnsignedIntSetCC(CC)) {
if (LHS.getOpcode() == ISD::AND) {
// Similarly, (CMP (and X, Y), 0) can be implemented with a TST
// (a.k.a. ANDS) except that the flags are only guaranteed to work for one
// of the signed comparisons.
const SDValue ANDSNode = DAG.getNode(AArch64ISD::ANDS, dl,
DAG.getVTList(VT, MVT_CC),
LHS.getOperand(0),
LHS.getOperand(1));
// Replace all users of (and X, Y) with newly generated (ands X, Y)
DAG.ReplaceAllUsesWith(LHS, ANDSNode);
return ANDSNode.getValue(1);
} else if (LHS.getOpcode() == AArch64ISD::ANDS) {
// Use result of ANDS
return LHS.getValue(1);
}
}
return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT_CC), LHS, RHS)
.getValue(1);
}
/// \defgroup AArch64CCMP CMP;CCMP matching
///
/// These functions deal with the formation of CMP;CCMP;... sequences.
/// The CCMP/CCMN/FCCMP/FCCMPE instructions allow the conditional execution of
/// a comparison. They set the NZCV flags to a predefined value if their
/// predicate is false. This allows to express arbitrary conjunctions, for
/// example "cmp 0 (and (setCA (cmp A)) (setCB (cmp B)))"
/// expressed as:
/// cmp A
/// ccmp B, inv(CB), CA
/// check for CB flags
///
/// This naturally lets us implement chains of AND operations with SETCC
/// operands. And we can even implement some other situations by transforming
/// them:
/// - We can implement (NEG SETCC) i.e. negating a single comparison by
/// negating the flags used in a CCMP/FCCMP operations.
/// - We can negate the result of a whole chain of CMP/CCMP/FCCMP operations
/// by negating the flags we test for afterwards. i.e.
/// NEG (CMP CCMP CCCMP ...) can be implemented.
/// - Note that we can only ever negate all previously processed results.
/// What we can not implement by flipping the flags to test is a negation
/// of two sub-trees (because the negation affects all sub-trees emitted so
/// far, so the 2nd sub-tree we emit would also affect the first).
/// With those tools we can implement some OR operations:
/// - (OR (SETCC A) (SETCC B)) can be implemented via:
/// NEG (AND (NEG (SETCC A)) (NEG (SETCC B)))
/// - After transforming OR to NEG/AND combinations we may be able to use NEG
/// elimination rules from earlier to implement the whole thing as a
/// CCMP/FCCMP chain.
///
/// As complete example:
/// or (or (setCA (cmp A)) (setCB (cmp B)))
/// (and (setCC (cmp C)) (setCD (cmp D)))"
/// can be reassociated to:
/// or (and (setCC (cmp C)) setCD (cmp D))
// (or (setCA (cmp A)) (setCB (cmp B)))
/// can be transformed to:
/// not (and (not (and (setCC (cmp C)) (setCD (cmp D))))
/// (and (not (setCA (cmp A)) (not (setCB (cmp B))))))"
/// which can be implemented as:
/// cmp C
/// ccmp D, inv(CD), CC
/// ccmp A, CA, inv(CD)
/// ccmp B, CB, inv(CA)
/// check for CB flags
///
/// A counterexample is "or (and A B) (and C D)" which translates to
/// not (and (not (and (not A) (not B))) (not (and (not C) (not D)))), we
/// can only implement 1 of the inner (not) operations, but not both!
/// @{
/// Create a conditional comparison; Use CCMP, CCMN or FCCMP as appropriate.
static SDValue emitConditionalComparison(SDValue LHS, SDValue RHS,
ISD::CondCode CC, SDValue CCOp,
AArch64CC::CondCode Predicate,
AArch64CC::CondCode OutCC,
const SDLoc &DL, SelectionDAG &DAG) {
unsigned Opcode = 0;
const bool FullFP16 = DAG.getSubtarget<AArch64Subtarget>().hasFullFP16();
if (LHS.getValueType().isFloatingPoint()) {
assert(LHS.getValueType() != MVT::f128);
if ((LHS.getValueType() == MVT::f16 && !FullFP16) ||
LHS.getValueType() == MVT::bf16) {
LHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, LHS);
RHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, RHS);
}
Opcode = AArch64ISD::FCCMP;
} else if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(RHS)) {
APInt Imm = Const->getAPIntValue();
if (Imm.isNegative() && Imm.sgt(-32)) {
Opcode = AArch64ISD::CCMN;
RHS = DAG.getConstant(Imm.abs(), DL, Const->getValueType(0));
}
} else if (isCMN(RHS, CC, DAG)) {
Opcode = AArch64ISD::CCMN;
RHS = RHS.getOperand(1);
} else if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
isIntEqualitySetCC(CC)) {
// As we are looking for EQ/NE compares, the operands can be commuted ; can
// we combine a (CCMP (sub 0, op1), op2) into a CCMN instruction ?
Opcode = AArch64ISD::CCMN;
LHS = LHS.getOperand(1);
}
if (Opcode == 0)
Opcode = AArch64ISD::CCMP;
SDValue Condition = DAG.getConstant(Predicate, DL, MVT_CC);
AArch64CC::CondCode InvOutCC = AArch64CC::getInvertedCondCode(OutCC);
unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(InvOutCC);
SDValue NZCVOp = DAG.getConstant(NZCV, DL, MVT::i32);
return DAG.getNode(Opcode, DL, MVT_CC, LHS, RHS, NZCVOp, Condition, CCOp);
}
/// Returns true if @p Val is a tree of AND/OR/SETCC operations that can be
/// expressed as a conjunction. See \ref AArch64CCMP.
/// \param CanNegate Set to true if we can negate the whole sub-tree just by
/// changing the conditions on the SETCC tests.
/// (this means we can call emitConjunctionRec() with
/// Negate==true on this sub-tree)
/// \param MustBeFirst Set to true if this subtree needs to be negated and we
/// cannot do the negation naturally. We are required to
/// emit the subtree first in this case.
/// \param WillNegate Is true if are called when the result of this
/// subexpression must be negated. This happens when the
/// outer expression is an OR. We can use this fact to know
/// that we have a double negation (or (or ...) ...) that
/// can be implemented for free.
static bool canEmitConjunction(const SDValue Val, bool &CanNegate,
bool &MustBeFirst, bool WillNegate,
unsigned Depth = 0) {
if (!Val.hasOneUse())
return false;
unsigned Opcode = Val->getOpcode();
if (Opcode == ISD::SETCC) {
if (Val->getOperand(0).getValueType() == MVT::f128)
return false;
CanNegate = true;
MustBeFirst = false;
return true;
}
// Protect against exponential runtime and stack overflow.
if (Depth > 6)
return false;
if (Opcode == ISD::AND || Opcode == ISD::OR) {
bool IsOR = Opcode == ISD::OR;
SDValue O0 = Val->getOperand(0);
SDValue O1 = Val->getOperand(1);
bool CanNegateL;
bool MustBeFirstL;
if (!canEmitConjunction(O0, CanNegateL, MustBeFirstL, IsOR, Depth+1))
return false;
bool CanNegateR;
bool MustBeFirstR;
if (!canEmitConjunction(O1, CanNegateR, MustBeFirstR, IsOR, Depth+1))
return false;
if (MustBeFirstL && MustBeFirstR)
return false;
if (IsOR) {
// For an OR expression we need to be able to naturally negate at least
// one side or we cannot do the transformation at all.
if (!CanNegateL && !CanNegateR)
return false;
// If we the result of the OR will be negated and we can naturally negate
// the leafs, then this sub-tree as a whole negates naturally.
CanNegate = WillNegate && CanNegateL && CanNegateR;
// If we cannot naturally negate the whole sub-tree, then this must be
// emitted first.
MustBeFirst = !CanNegate;
} else {
assert(Opcode == ISD::AND && "Must be OR or AND");
// We cannot naturally negate an AND operation.
CanNegate = false;
MustBeFirst = MustBeFirstL || MustBeFirstR;
}
return true;
}
return false;
}
/// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain
/// of CCMP/CFCMP ops. See @ref AArch64CCMP.
/// Tries to transform the given i1 producing node @p Val to a series compare
/// and conditional compare operations. @returns an NZCV flags producing node
/// and sets @p OutCC to the flags that should be tested or returns SDValue() if
/// transformation was not possible.
/// \p Negate is true if we want this sub-tree being negated just by changing
/// SETCC conditions.
static SDValue emitConjunctionRec(SelectionDAG &DAG, SDValue Val,
AArch64CC::CondCode &OutCC, bool Negate, SDValue CCOp,
AArch64CC::CondCode Predicate) {
// We're at a tree leaf, produce a conditional comparison operation.
unsigned Opcode = Val->getOpcode();
if (Opcode == ISD::SETCC) {
SDValue LHS = Val->getOperand(0);
SDValue RHS = Val->getOperand(1);
ISD::CondCode CC = cast<CondCodeSDNode>(Val->getOperand(2))->get();
bool isInteger = LHS.getValueType().isInteger();
if (Negate)
CC = getSetCCInverse(CC, LHS.getValueType());
SDLoc DL(Val);
// Determine OutCC and handle FP special case.
if (isInteger) {
OutCC = changeIntCCToAArch64CC(CC);
} else {
assert(LHS.getValueType().isFloatingPoint());
AArch64CC::CondCode ExtraCC;
changeFPCCToANDAArch64CC(CC, OutCC, ExtraCC);
// Some floating point conditions can't be tested with a single condition
// code. Construct an additional comparison in this case.
if (ExtraCC != AArch64CC::AL) {
SDValue ExtraCmp;
if (!CCOp.getNode())
ExtraCmp = emitComparison(LHS, RHS, CC, DL, DAG);
else
ExtraCmp = emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate,
ExtraCC, DL, DAG);
CCOp = ExtraCmp;
Predicate = ExtraCC;
}
}
// Produce a normal comparison if we are first in the chain
if (!CCOp)
return emitComparison(LHS, RHS, CC, DL, DAG);
// Otherwise produce a ccmp.
return emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate, OutCC, DL,
DAG);
}
assert(Val->hasOneUse() && "Valid conjunction/disjunction tree");
bool IsOR = Opcode == ISD::OR;
SDValue LHS = Val->getOperand(0);
bool CanNegateL;
bool MustBeFirstL;
bool ValidL = canEmitConjunction(LHS, CanNegateL, MustBeFirstL, IsOR);
assert(ValidL && "Valid conjunction/disjunction tree");
(void)ValidL;
SDValue RHS = Val->getOperand(1);
bool CanNegateR;
bool MustBeFirstR;
bool ValidR = canEmitConjunction(RHS, CanNegateR, MustBeFirstR, IsOR);
assert(ValidR && "Valid conjunction/disjunction tree");
(void)ValidR;
// Swap sub-tree that must come first to the right side.
if (MustBeFirstL) {
assert(!MustBeFirstR && "Valid conjunction/disjunction tree");
std::swap(LHS, RHS);
std::swap(CanNegateL, CanNegateR);
std::swap(MustBeFirstL, MustBeFirstR);
}
bool NegateR;
bool NegateAfterR;
bool NegateL;
bool NegateAfterAll;
if (Opcode == ISD::OR) {
// Swap the sub-tree that we can negate naturally to the left.
if (!CanNegateL) {
assert(CanNegateR && "at least one side must be negatable");
assert(!MustBeFirstR && "invalid conjunction/disjunction tree");
assert(!Negate);
std::swap(LHS, RHS);
NegateR = false;
NegateAfterR = true;
} else {
// Negate the left sub-tree if possible, otherwise negate the result.
NegateR = CanNegateR;
NegateAfterR = !CanNegateR;
}
NegateL = true;
NegateAfterAll = !Negate;
} else {
assert(Opcode == ISD::AND && "Valid conjunction/disjunction tree");
assert(!Negate && "Valid conjunction/disjunction tree");
NegateL = false;
NegateR = false;
NegateAfterR = false;
NegateAfterAll = false;
}
// Emit sub-trees.
AArch64CC::CondCode RHSCC;
SDValue CmpR = emitConjunctionRec(DAG, RHS, RHSCC, NegateR, CCOp, Predicate);
if (NegateAfterR)
RHSCC = AArch64CC::getInvertedCondCode(RHSCC);
SDValue CmpL = emitConjunctionRec(DAG, LHS, OutCC, NegateL, CmpR, RHSCC);
if (NegateAfterAll)
OutCC = AArch64CC::getInvertedCondCode(OutCC);
return CmpL;
}
/// Emit expression as a conjunction (a series of CCMP/CFCMP ops).
/// In some cases this is even possible with OR operations in the expression.
/// See \ref AArch64CCMP.
/// \see emitConjunctionRec().
static SDValue emitConjunction(SelectionDAG &DAG, SDValue Val,
AArch64CC::CondCode &OutCC) {
bool DummyCanNegate;
bool DummyMustBeFirst;
if (!canEmitConjunction(Val, DummyCanNegate, DummyMustBeFirst, false))
return SDValue();
return emitConjunctionRec(DAG, Val, OutCC, false, SDValue(), AArch64CC::AL);
}
/// @}
/// Returns how profitable it is to fold a comparison's operand's shift and/or
/// extension operations.
static unsigned getCmpOperandFoldingProfit(SDValue Op) {
auto isSupportedExtend = [&](SDValue V) {
if (V.getOpcode() == ISD::SIGN_EXTEND_INREG)
return true;
if (V.getOpcode() == ISD::AND)
if (ConstantSDNode *MaskCst = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
uint64_t Mask = MaskCst->getZExtValue();
return (Mask == 0xFF || Mask == 0xFFFF || Mask == 0xFFFFFFFF);
}
return false;
};
if (!Op.hasOneUse())
return 0;
if (isSupportedExtend(Op))
return 1;
unsigned Opc = Op.getOpcode();
if (Opc == ISD::SHL || Opc == ISD::SRL || Opc == ISD::SRA)
if (ConstantSDNode *ShiftCst = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
uint64_t Shift = ShiftCst->getZExtValue();
if (isSupportedExtend(Op.getOperand(0)))
return (Shift <= 4) ? 2 : 1;
EVT VT = Op.getValueType();
if ((VT == MVT::i32 && Shift <= 31) || (VT == MVT::i64 && Shift <= 63))
return 1;
}
return 0;
}
static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
SDValue &AArch64cc, SelectionDAG &DAG,
const SDLoc &dl) {
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
EVT VT = RHS.getValueType();
uint64_t C = RHSC->getZExtValue();
if (!isLegalArithImmed(C)) {
// Constant does not fit, try adjusting it by one?
switch (CC) {
default:
break;
case ISD::SETLT:
case ISD::SETGE:
if ((VT == MVT::i32 && C != 0x80000000 &&
isLegalArithImmed((uint32_t)(C - 1))) ||
(VT == MVT::i64 && C != 0x80000000ULL &&
isLegalArithImmed(C - 1ULL))) {
CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
RHS = DAG.getConstant(C, dl, VT);
}
break;
case ISD::SETULT:
case ISD::SETUGE:
if ((VT == MVT::i32 && C != 0 &&
isLegalArithImmed((uint32_t)(C - 1))) ||
(VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) {
CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
RHS = DAG.getConstant(C, dl, VT);
}
break;
case ISD::SETLE:
case ISD::SETGT:
if ((VT == MVT::i32 && C != INT32_MAX &&
isLegalArithImmed((uint32_t)(C + 1))) ||
(VT == MVT::i64 && C != INT64_MAX &&
isLegalArithImmed(C + 1ULL))) {
CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
RHS = DAG.getConstant(C, dl, VT);
}
break;
case ISD::SETULE:
case ISD::SETUGT:
if ((VT == MVT::i32 && C != UINT32_MAX &&
isLegalArithImmed((uint32_t)(C + 1))) ||
(VT == MVT::i64 && C != UINT64_MAX &&
isLegalArithImmed(C + 1ULL))) {
CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
RHS = DAG.getConstant(C, dl, VT);
}
break;
}
}
}
// Comparisons are canonicalized so that the RHS operand is simpler than the
// LHS one, the extreme case being when RHS is an immediate. However, AArch64
// can fold some shift+extend operations on the RHS operand, so swap the
// operands if that can be done.
//
// For example:
// lsl w13, w11, #1
// cmp w13, w12
// can be turned into:
// cmp w12, w11, lsl #1
if (!isa<ConstantSDNode>(RHS) ||
!isLegalArithImmed(RHS->getAsAPIntVal().abs().getZExtValue())) {
bool LHSIsCMN = isCMN(LHS, CC, DAG);
bool RHSIsCMN = isCMN(RHS, CC, DAG);
SDValue TheLHS = LHSIsCMN ? LHS.getOperand(1) : LHS;
SDValue TheRHS = RHSIsCMN ? RHS.getOperand(1) : RHS;
if (getCmpOperandFoldingProfit(TheLHS) + (LHSIsCMN ? 1 : 0) >
getCmpOperandFoldingProfit(TheRHS) + (RHSIsCMN ? 1 : 0)) {
std::swap(LHS, RHS);
CC = ISD::getSetCCSwappedOperands(CC);
}
}
SDValue Cmp;
AArch64CC::CondCode AArch64CC;
if (isIntEqualitySetCC(CC) && isa<ConstantSDNode>(RHS)) {
const ConstantSDNode *RHSC = cast<ConstantSDNode>(RHS);
// The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095.
// For the i8 operand, the largest immediate is 255, so this can be easily
// encoded in the compare instruction. For the i16 operand, however, the
// largest immediate cannot be encoded in the compare.
// Therefore, use a sign extending load and cmn to avoid materializing the
// -1 constant. For example,
// movz w1, #65535
// ldrh w0, [x0, #0]
// cmp w0, w1
// >
// ldrsh w0, [x0, #0]
// cmn w0, #1
// Fundamental, we're relying on the property that (zext LHS) == (zext RHS)
// if and only if (sext LHS) == (sext RHS). The checks are in place to
// ensure both the LHS and RHS are truly zero extended and to make sure the
// transformation is profitable.
if ((RHSC->getZExtValue() >> 16 == 0) && isa<LoadSDNode>(LHS) &&
cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD &&
cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 &&
LHS.getNode()->hasNUsesOfValue(1, 0)) {
int16_t ValueofRHS = RHS->getAsZExtVal();
if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) {
SDValue SExt =
DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS,
DAG.getValueType(MVT::i16));
Cmp = emitComparison(
SExt, DAG.getSignedConstant(ValueofRHS, dl, RHS.getValueType()), CC,
dl, DAG);
AArch64CC = changeIntCCToAArch64CC(CC);
}
}
if (!Cmp && (RHSC->isZero() || RHSC->isOne())) {
if ((Cmp = emitConjunction(DAG, LHS, AArch64CC))) {
if ((CC == ISD::SETNE) ^ RHSC->isZero())
AArch64CC = AArch64CC::getInvertedCondCode(AArch64CC);
}
}
}
if (!Cmp) {
Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
AArch64CC = changeIntCCToAArch64CC(CC);
}
AArch64cc = DAG.getConstant(AArch64CC, dl, MVT_CC);
return Cmp;
}
static std::pair<SDValue, SDValue>
getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) {
assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) &&
"Unsupported value type");
SDValue Value, Overflow;
SDLoc DL(Op);
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
unsigned Opc = 0;
switch (Op.getOpcode()) {
default:
llvm_unreachable("Unknown overflow instruction!");
case ISD::SADDO:
Opc = AArch64ISD::ADDS;
CC = AArch64CC::VS;
break;
case ISD::UADDO:
Opc = AArch64ISD::ADDS;
CC = AArch64CC::HS;
break;
case ISD::SSUBO:
Opc = AArch64ISD::SUBS;
CC = AArch64CC::VS;
break;
case ISD::USUBO:
Opc = AArch64ISD::SUBS;
CC = AArch64CC::LO;
break;
// Multiply needs a little bit extra work.
case ISD::SMULO:
case ISD::UMULO: {
CC = AArch64CC::NE;
bool IsSigned = Op.getOpcode() == ISD::SMULO;
if (Op.getValueType() == MVT::i32) {
// Extend to 64-bits, then perform a 64-bit multiply.
unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS);
RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS);
SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
// Check that the result fits into a 32-bit integer.
SDVTList VTs = DAG.getVTList(MVT::i64, MVT_CC);
if (IsSigned) {
// cmp xreg, wreg, sxtw
SDValue SExtMul = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Value);
Overflow =
DAG.getNode(AArch64ISD::SUBS, DL, VTs, Mul, SExtMul).getValue(1);
} else {
// tst xreg, #0xffffffff00000000
SDValue UpperBits = DAG.getConstant(0xFFFFFFFF00000000, DL, MVT::i64);
Overflow =
DAG.getNode(AArch64ISD::ANDS, DL, VTs, Mul, UpperBits).getValue(1);
}
break;
}
assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type");
// For the 64 bit multiply
Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
if (IsSigned) {
SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS);
SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value,
DAG.getConstant(63, DL, MVT::i64));
// It is important that LowerBits is last, otherwise the arithmetic
// shift will not be folded into the compare (SUBS).
SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
.getValue(1);
} else {
SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS);
SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
Overflow =
DAG.getNode(AArch64ISD::SUBS, DL, VTs,
DAG.getConstant(0, DL, MVT::i64),
UpperBits).getValue(1);
}
break;
}
} // switch (...)
if (Opc) {
SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32);
// Emit the AArch64 operation with overflow check.
Value = DAG.getNode(Opc, DL, VTs, LHS, RHS);
Overflow = Value.getValue(1);
}
return std::make_pair(Value, Overflow);
}
SDValue AArch64TargetLowering::LowerXOR(SDValue Op, SelectionDAG &DAG) const {
if (useSVEForFixedLengthVectorVT(Op.getValueType(),
!Subtarget->isNeonAvailable()))
return LowerToScalableOp(Op, DAG);
SDValue Sel = Op.getOperand(0);
SDValue Other = Op.getOperand(1);
SDLoc dl(Sel);
// If the operand is an overflow checking operation, invert the condition
// code and kill the Not operation. I.e., transform:
// (xor (overflow_op_bool, 1))
// -->
// (csel 1, 0, invert(cc), overflow_op_bool)
// ... which later gets transformed to just a cset instruction with an
// inverted condition code, rather than a cset + eor sequence.
if (isOneConstant(Other) && ISD::isOverflowIntrOpRes(Sel)) {
// Only lower legal XALUO ops.
if (!DAG.getTargetLoweringInfo().isTypeLegal(Sel->getValueType(0)))
return SDValue();
SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
AArch64CC::CondCode CC;
SDValue Value, Overflow;
std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Sel.getValue(0), DAG);
SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32);
return DAG.getNode(AArch64ISD::CSEL, dl, Op.getValueType(), TVal, FVal,
CCVal, Overflow);
}
// If neither operand is a SELECT_CC, give up.
if (Sel.getOpcode() != ISD::SELECT_CC)
std::swap(Sel, Other);
if (Sel.getOpcode() != ISD::SELECT_CC)
return Op;
// The folding we want to perform is:
// (xor x, (select_cc a, b, cc, 0, -1) )
// -->
// (csel x, (xor x, -1), cc ...)
//
// The latter will get matched to a CSINV instruction.
ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get();
SDValue LHS = Sel.getOperand(0);
SDValue RHS = Sel.getOperand(1);
SDValue TVal = Sel.getOperand(2);
SDValue FVal = Sel.getOperand(3);
// FIXME: This could be generalized to non-integer comparisons.
if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
return Op;
ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
// The values aren't constants, this isn't the pattern we're looking for.
if (!CFVal || !CTVal)
return Op;
// We can commute the SELECT_CC by inverting the condition. This
// might be needed to make this fit into a CSINV pattern.
if (CTVal->isAllOnes() && CFVal->isZero()) {
std::swap(TVal, FVal);
std::swap(CTVal, CFVal);
CC = ISD::getSetCCInverse(CC, LHS.getValueType());
}
// If the constants line up, perform the transform!
if (CTVal->isZero() && CFVal->isAllOnes()) {
SDValue CCVal;
SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
FVal = Other;
TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other,
DAG.getAllOnesConstant(dl, Other.getValueType()));
return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal,
CCVal, Cmp);
}
return Op;
}
// If Invert is false, sets 'C' bit of NZCV to 0 if value is 0, else sets 'C'
// bit to 1. If Invert is true, sets 'C' bit of NZCV to 1 if value is 0, else
// sets 'C' bit to 0.
static SDValue valueToCarryFlag(SDValue Value, SelectionDAG &DAG, bool Invert) {
SDLoc DL(Value);
EVT VT = Value.getValueType();
SDValue Op0 = Invert ? DAG.getConstant(0, DL, VT) : Value;
SDValue Op1 = Invert ? Value : DAG.getConstant(1, DL, VT);
SDValue Cmp =
DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::Glue), Op0, Op1);
return Cmp.getValue(1);
}
// If Invert is false, value is 1 if 'C' bit of NZCV is 1, else 0.
// If Invert is true, value is 0 if 'C' bit of NZCV is 1, else 1.
static SDValue carryFlagToValue(SDValue Glue, EVT VT, SelectionDAG &DAG,
bool Invert) {
assert(Glue.getResNo() == 1);
SDLoc DL(Glue);
SDValue Zero = DAG.getConstant(0, DL, VT);
SDValue One = DAG.getConstant(1, DL, VT);
unsigned Cond = Invert ? AArch64CC::LO : AArch64CC::HS;
SDValue CC = DAG.getConstant(Cond, DL, MVT::i32);
return DAG.getNode(AArch64ISD::CSEL, DL, VT, One, Zero, CC, Glue);
}
// Value is 1 if 'V' bit of NZCV is 1, else 0
static SDValue overflowFlagToValue(SDValue Glue, EVT VT, SelectionDAG &DAG) {
assert(Glue.getResNo() == 1);
SDLoc DL(Glue);
SDValue Zero = DAG.getConstant(0, DL, VT);
SDValue One = DAG.getConstant(1, DL, VT);
SDValue CC = DAG.getConstant(AArch64CC::VS, DL, MVT::i32);
return DAG.getNode(AArch64ISD::CSEL, DL, VT, One, Zero, CC, Glue);
}
// This lowering is inefficient, but it will get cleaned up by
// `foldOverflowCheck`
static SDValue lowerADDSUBO_CARRY(SDValue Op, SelectionDAG &DAG,
unsigned Opcode, bool IsSigned) {
EVT VT0 = Op.getValue(0).getValueType();
EVT VT1 = Op.getValue(1).getValueType();
if (VT0 != MVT::i32 && VT0 != MVT::i64)
return SDValue();
bool InvertCarry = Opcode == AArch64ISD::SBCS;
SDValue OpLHS = Op.getOperand(0);
SDValue OpRHS = Op.getOperand(1);
SDValue OpCarryIn = valueToCarryFlag(Op.getOperand(2), DAG, InvertCarry);
SDLoc DL(Op);
SDVTList VTs = DAG.getVTList(VT0, VT1);
SDValue Sum = DAG.getNode(Opcode, DL, DAG.getVTList(VT0, MVT::Glue), OpLHS,
OpRHS, OpCarryIn);
SDValue OutFlag =
IsSigned ? overflowFlagToValue(Sum.getValue(1), VT1, DAG)
: carryFlagToValue(Sum.getValue(1), VT1, DAG, InvertCarry);
return DAG.getNode(ISD::MERGE_VALUES, DL, VTs, Sum, OutFlag);
}
static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
// Let legalize expand this if it isn't a legal type yet.
if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
return SDValue();
SDLoc dl(Op);
AArch64CC::CondCode CC;
// The actual operation that sets the overflow or carry flag.
SDValue Value, Overflow;
std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG);
// We use 0 and 1 as false and true values.
SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
// We use an inverted condition, because the conditional select is inverted
// too. This will allow it to be selected to a single instruction:
// CSINC Wd, WZR, WZR, invert(cond).
SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32);
Overflow = DAG.getNode(AArch64ISD::CSEL, dl, MVT::i32, FVal, TVal,
CCVal, Overflow);
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
}
// Prefetch operands are:
// 1: Address to prefetch
// 2: bool isWrite
// 3: int locality (0 = no locality ... 3 = extreme locality)
// 4: bool isDataCache
static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) {
SDLoc DL(Op);
unsigned IsWrite = Op.getConstantOperandVal(2);
unsigned Locality = Op.getConstantOperandVal(3);
unsigned IsData = Op.getConstantOperandVal(4);
bool IsStream = !Locality;
// When the locality number is set
if (Locality) {
// The front-end should have filtered out the out-of-range values
assert(Locality <= 3 && "Prefetch locality out-of-range");
// The locality degree is the opposite of the cache speed.
// Put the number the other way around.
// The encoding starts at 0 for level 1
Locality = 3 - Locality;
}
// built the mask value encoding the expected behavior.
unsigned PrfOp = (IsWrite << 4) | // Load/Store bit
(!IsData << 3) | // IsDataCache bit
(Locality << 1) | // Cache level bits
(unsigned)IsStream; // Stream bit
return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0),
DAG.getTargetConstant(PrfOp, DL, MVT::i32),
Op.getOperand(1));
}
// Converts SETCC (AND X Y) Z ULT -> SETCC (AND X (Y & ~(Z - 1)) 0 EQ when Y is
// a power of 2. This is then lowered to ANDS X (Y & ~(Z - 1)) instead of SUBS
// (AND X Y) Z which produces a better opt with EmitComparison
static void simplifySetCCIntoEq(ISD::CondCode &CC, SDValue &LHS, SDValue &RHS,
SelectionDAG &DAG, const SDLoc dl) {
if (CC == ISD::SETULT && LHS.getOpcode() == ISD::AND && LHS->hasOneUse()) {
ConstantSDNode *LHSConstOp = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
if (LHSConstOp && RHSConst) {
uint64_t LHSConstValue = LHSConstOp->getZExtValue();
uint64_t RHSConstant = RHSConst->getZExtValue();
if (isPowerOf2_64(RHSConstant)) {
uint64_t NewMaskValue = LHSConstValue & ~(RHSConstant - 1);
LHS =
DAG.getNode(ISD::AND, dl, LHS.getValueType(), LHS.getOperand(0),
DAG.getConstant(NewMaskValue, dl, LHS.getValueType()));
RHS = DAG.getConstant(0, dl, RHS.getValueType());
CC = ISD::SETEQ;
}
}
}
}
SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op,
SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
if (VT.isScalableVector()) {
SDValue SrcVal = Op.getOperand(0);
if (SrcVal.getValueType().getScalarType() == MVT::bf16) {
// bf16 and f32 share the same exponent range so the conversion requires
// them to be aligned with the new mantissa bits zero'd. This is just a
// left shift that is best to isel directly.
if (VT == MVT::nxv2f32 || VT == MVT::nxv4f32)
return Op;
if (VT != MVT::nxv2f64)
return SDValue();
// Break other conversions in two with the first part converting to f32
// and the second using native f32->VT instructions.
SDLoc DL(Op);
return DAG.getNode(ISD::FP_EXTEND, DL, VT,
DAG.getNode(ISD::FP_EXTEND, DL, MVT::nxv2f32, SrcVal));
}
return LowerToPredicatedOp(Op, DAG, AArch64ISD::FP_EXTEND_MERGE_PASSTHRU);
}
if (useSVEForFixedLengthVectorVT(VT, !Subtarget->isNeonAvailable()))
return LowerFixedLengthFPExtendToSVE(Op, DAG);
assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
return SDValue();
}
SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op,
SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
bool IsStrict = Op->isStrictFPOpcode();
SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
EVT SrcVT = SrcVal.getValueType();
bool Trunc = Op.getConstantOperandVal(IsStrict ? 2 : 1) == 1;
if (VT.isScalableVector()) {
if (VT.getScalarType() != MVT::bf16)
return LowerToPredicatedOp(Op, DAG, AArch64ISD::FP_ROUND_MERGE_PASSTHRU);
SDLoc DL(Op);
constexpr EVT I32 = MVT::nxv4i32;
auto ImmV = [&](int I) -> SDValue { return DAG.getConstant(I, DL, I32); };
SDValue NaN;
SDValue Narrow;
if (SrcVT == MVT::nxv2f32 || SrcVT == MVT::nxv4f32) {
if (Subtarget->hasBF16())
return LowerToPredicatedOp(Op, DAG,
AArch64ISD::FP_ROUND_MERGE_PASSTHRU);
Narrow = getSVESafeBitCast(I32, SrcVal, DAG);
// Set the quiet bit.
if (!DAG.isKnownNeverSNaN(SrcVal))
NaN = DAG.getNode(ISD::OR, DL, I32, Narrow, ImmV(0x400000));
} else if (SrcVT == MVT::nxv2f64 &&
(Subtarget->hasSVE2() || Subtarget->isStreamingSVEAvailable())) {
// Round to float without introducing rounding errors and try again.
SDValue Pg = getPredicateForVector(DAG, DL, MVT::nxv2f32);
Narrow = DAG.getNode(AArch64ISD::FCVTX_MERGE_PASSTHRU, DL, MVT::nxv2f32,
Pg, SrcVal, DAG.getUNDEF(MVT::nxv2f32));
SmallVector<SDValue, 3> NewOps;
if (IsStrict)
NewOps.push_back(Op.getOperand(0));
NewOps.push_back(Narrow);
NewOps.push_back(Op.getOperand(IsStrict ? 2 : 1));
return DAG.getNode(Op.getOpcode(), DL, VT, NewOps, Op->getFlags());
} else
return SDValue();
if (!Trunc) {
SDValue Lsb = DAG.getNode(ISD::SRL, DL, I32, Narrow, ImmV(16));
Lsb = DAG.getNode(ISD::AND, DL, I32, Lsb, ImmV(1));
SDValue RoundingBias = DAG.getNode(ISD::ADD, DL, I32, Lsb, ImmV(0x7fff));
Narrow = DAG.getNode(ISD::ADD, DL, I32, Narrow, RoundingBias);
}
// Don't round if we had a NaN, we don't want to turn 0x7fffffff into
// 0x80000000.
if (NaN) {
EVT I1 = I32.changeElementType(MVT::i1);
EVT CondVT = VT.changeElementType(MVT::i1);
SDValue IsNaN = DAG.getSetCC(DL, CondVT, SrcVal, SrcVal, ISD::SETUO);
IsNaN = DAG.getNode(AArch64ISD::REINTERPRET_CAST, DL, I1, IsNaN);
Narrow = DAG.getSelect(DL, I32, IsNaN, NaN, Narrow);
}
// Now that we have rounded, shift the bits into position.
Narrow = DAG.getNode(ISD::SRL, DL, I32, Narrow, ImmV(16));
return getSVESafeBitCast(VT, Narrow, DAG);
}
if (useSVEForFixedLengthVectorVT(SrcVT, !Subtarget->isNeonAvailable()))
return LowerFixedLengthFPRoundToSVE(Op, DAG);
// Expand cases where the result type is BF16 but we don't have hardware
// instructions to lower it.
if (VT.getScalarType() == MVT::bf16 &&
!((Subtarget->hasNEON() || Subtarget->hasSME()) &&
Subtarget->hasBF16())) {
SDLoc dl(Op);
SDValue Narrow = SrcVal;
SDValue NaN;
EVT I32 = SrcVT.changeElementType(MVT::i32);
EVT F32 = SrcVT.changeElementType(MVT::f32);
if (SrcVT.getScalarType() == MVT::f32) {
bool NeverSNaN = DAG.isKnownNeverSNaN(Narrow);
Narrow = DAG.getNode(ISD::BITCAST, dl, I32, Narrow);
if (!NeverSNaN) {
// Set the quiet bit.
NaN = DAG.getNode(ISD::OR, dl, I32, Narrow,
DAG.getConstant(0x400000, dl, I32));
}
} else if (SrcVT.getScalarType() == MVT::f64) {
Narrow = DAG.getNode(AArch64ISD::FCVTXN, dl, F32, Narrow);
Narrow = DAG.getNode(ISD::BITCAST, dl, I32, Narrow);
} else {
return SDValue();
}
if (!Trunc) {
SDValue One = DAG.getConstant(1, dl, I32);
SDValue Lsb = DAG.getNode(ISD::SRL, dl, I32, Narrow,
DAG.getShiftAmountConstant(16, I32, dl));
Lsb = DAG.getNode(ISD::AND, dl, I32, Lsb, One);
SDValue RoundingBias =
DAG.getNode(ISD::ADD, dl, I32, DAG.getConstant(0x7fff, dl, I32), Lsb);
Narrow = DAG.getNode(ISD::ADD, dl, I32, Narrow, RoundingBias);
}
// Don't round if we had a NaN, we don't want to turn 0x7fffffff into
// 0x80000000.
if (NaN) {
SDValue IsNaN = DAG.getSetCC(
dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT),
SrcVal, SrcVal, ISD::SETUO);
Narrow = DAG.getSelect(dl, I32, IsNaN, NaN, Narrow);
}
// Now that we have rounded, shift the bits into position.
Narrow = DAG.getNode(ISD::SRL, dl, I32, Narrow,
DAG.getShiftAmountConstant(16, I32, dl));
if (VT.isVector()) {
EVT I16 = I32.changeVectorElementType(MVT::i16);
Narrow = DAG.getNode(ISD::TRUNCATE, dl, I16, Narrow);
return DAG.getNode(ISD::BITCAST, dl, VT, Narrow);
}
Narrow = DAG.getNode(ISD::BITCAST, dl, F32, Narrow);
SDValue Result = DAG.getTargetExtractSubreg(AArch64::hsub, dl, VT, Narrow);
return IsStrict ? DAG.getMergeValues({Result, Op.getOperand(0)}, dl)
: Result;
}
if (SrcVT != MVT::f128) {
// Expand cases where the input is a vector bigger than NEON.
if (useSVEForFixedLengthVectorVT(SrcVT))
return SDValue();
// It's legal except when f128 is involved
return Op;
}
return SDValue();
}
SDValue AArch64TargetLowering::LowerVectorFP_TO_INT(SDValue Op,
SelectionDAG &DAG) const {
// Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
// Any additional optimization in this function should be recorded
// in the cost tables.
bool IsStrict = Op->isStrictFPOpcode();
EVT InVT = Op.getOperand(IsStrict ? 1 : 0).getValueType();
EVT VT = Op.getValueType();
if (VT.isScalableVector()) {
unsigned Opcode = Op.getOpcode() == ISD::FP_TO_UINT
? AArch64ISD::FCVTZU_MERGE_PASSTHRU
: AArch64ISD::FCVTZS_MERGE_PASSTHRU;
return LowerToPredicatedOp(Op, DAG, Opcode);
}
if (useSVEForFixedLengthVectorVT(VT, !Subtarget->isNeonAvailable()) ||
useSVEForFixedLengthVectorVT(InVT, !Subtarget->isNeonAvailable()))
return LowerFixedLengthFPToIntToSVE(Op, DAG);
unsigned NumElts = InVT.getVectorNumElements();
// f16 conversions are promoted to f32 when full fp16 is not supported.
if ((InVT.getVectorElementType() == MVT::f16 && !Subtarget->hasFullFP16()) ||
InVT.getVectorElementType() == MVT::bf16) {
MVT NewVT = MVT::getVectorVT(MVT::f32, NumElts);
SDLoc dl(Op);
if (IsStrict) {
SDValue Ext = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NewVT, MVT::Other},
{Op.getOperand(0), Op.getOperand(1)});
return DAG.getNode(Op.getOpcode(), dl, {VT, MVT::Other},
{Ext.getValue(1), Ext.getValue(0)});
}
return DAG.getNode(
Op.getOpcode(), dl, Op.getValueType(),
DAG.getNode(ISD::FP_EXTEND, dl, NewVT, Op.getOperand(0)));
}
uint64_t VTSize = VT.getFixedSizeInBits();
uint64_t InVTSize = InVT.getFixedSizeInBits();
if (VTSize < InVTSize) {
SDLoc dl(Op);
if (IsStrict) {
InVT = InVT.changeVectorElementTypeToInteger();
SDValue Cv = DAG.getNode(Op.getOpcode(), dl, {InVT, MVT::Other},
{Op.getOperand(0), Op.getOperand(1)});
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, VT, Cv);
return DAG.getMergeValues({Trunc, Cv.getValue(1)}, dl);
}
SDValue Cv =
DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(),
Op.getOperand(0));
return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv);
}
if (VTSize > InVTSize) {
SDLoc dl(Op);
MVT ExtVT =
MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()),
VT.getVectorNumElements());
if (IsStrict) {
SDValue Ext = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {ExtVT, MVT::Other},
{Op.getOperand(0), Op.getOperand(1)});
return DAG.getNode(Op.getOpcode(), dl, {VT, MVT::Other},
{Ext.getValue(1), Ext.getValue(0)});
}
SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0));
return DAG.getNode(Op.getOpcode(), dl, VT, Ext);
}
// Use a scalar operation for conversions between single-element vectors of
// the same size.
if (NumElts == 1) {
SDLoc dl(Op);
SDValue Extract = DAG.getNode(
ISD::EXTRACT_VECTOR_ELT, dl, InVT.getScalarType(),
Op.getOperand(IsStrict ? 1 : 0), DAG.getConstant(0, dl, MVT::i64));
EVT ScalarVT = VT.getScalarType();
if (IsStrict)
return DAG.getNode(Op.getOpcode(), dl, {ScalarVT, MVT::Other},
{Op.getOperand(0), Extract});
return DAG.getNode(Op.getOpcode(), dl, ScalarVT, Extract);
}
// Type changing conversions are illegal.
return Op;
}
SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op,
SelectionDAG &DAG) const {
bool IsStrict = Op->isStrictFPOpcode();
SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
if (SrcVal.getValueType().isVector())
return LowerVectorFP_TO_INT(Op, DAG);
// f16 conversions are promoted to f32 when full fp16 is not supported.
if ((SrcVal.getValueType() == MVT::f16 && !Subtarget->hasFullFP16()) ||
SrcVal.getValueType() == MVT::bf16) {
SDLoc dl(Op);
if (IsStrict) {
SDValue Ext =
DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {MVT::f32, MVT::Other},
{Op.getOperand(0), SrcVal});
return DAG.getNode(Op.getOpcode(), dl, {Op.getValueType(), MVT::Other},
{Ext.getValue(1), Ext.getValue(0)});
}
return DAG.getNode(
Op.getOpcode(), dl, Op.getValueType(),
DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, SrcVal));
}
if (SrcVal.getValueType() != MVT::f128) {
// It's legal except when f128 is involved
return Op;
}
return SDValue();
}
SDValue
AArch64TargetLowering::LowerVectorFP_TO_INT_SAT(SDValue Op,
SelectionDAG &DAG) const {
// AArch64 FP-to-int conversions saturate to the destination element size, so
// we can lower common saturating conversions to simple instructions.
SDValue SrcVal = Op.getOperand(0);
EVT SrcVT = SrcVal.getValueType();
EVT DstVT = Op.getValueType();
EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
uint64_t SrcElementWidth = SrcVT.getScalarSizeInBits();
uint64_t DstElementWidth = DstVT.getScalarSizeInBits();
uint64_t SatWidth = SatVT.getScalarSizeInBits();
assert(SatWidth <= DstElementWidth &&
"Saturation width cannot exceed result width");
// TODO: Consider lowering to SVE operations, as in LowerVectorFP_TO_INT.
// Currently, the `llvm.fpto[su]i.sat.*` intrinsics don't accept scalable
// types, so this is hard to reach.
if (DstVT.isScalableVector())
return SDValue();
EVT SrcElementVT = SrcVT.getVectorElementType();
// In the absence of FP16 support, promote f16 to f32 and saturate the result.
SDLoc DL(Op);
SDValue SrcVal2;
if ((SrcElementVT == MVT::f16 &&
(!Subtarget->hasFullFP16() || DstElementWidth > 16)) ||
SrcElementVT == MVT::bf16) {
MVT F32VT = MVT::getVectorVT(MVT::f32, SrcVT.getVectorNumElements());
SrcVal = DAG.getNode(ISD::FP_EXTEND, DL, F32VT, SrcVal);
// If we are extending to a v8f32, split into two v4f32 to produce legal
// types.
if (F32VT.getSizeInBits() > 128) {
std::tie(SrcVal, SrcVal2) = DAG.SplitVector(SrcVal, DL);
F32VT = F32VT.getHalfNumVectorElementsVT();
}
SrcVT = F32VT;
SrcElementVT = MVT::f32;
SrcElementWidth = 32;
} else if (SrcElementVT != MVT::f64 && SrcElementVT != MVT::f32 &&
SrcElementVT != MVT::f16 && SrcElementVT != MVT::bf16)
return SDValue();
// Expand to f64 if we are saturating to i64, to help keep the lanes the same
// width and produce a fcvtzu.
if (SatWidth == 64 && SrcElementWidth < 64) {
MVT F64VT = MVT::getVectorVT(MVT::f64, SrcVT.getVectorNumElements());
SrcVal = DAG.getNode(ISD::FP_EXTEND, DL, F64VT, SrcVal);
SrcVT = F64VT;
SrcElementVT = MVT::f64;
SrcElementWidth = 64;
}
// Cases that we can emit directly.
if (SrcElementWidth == DstElementWidth && SrcElementWidth == SatWidth) {
SDValue Res = DAG.getNode(Op.getOpcode(), DL, DstVT, SrcVal,
DAG.getValueType(DstVT.getScalarType()));
if (SrcVal2) {
SDValue Res2 = DAG.getNode(Op.getOpcode(), DL, DstVT, SrcVal2,
DAG.getValueType(DstVT.getScalarType()));
return DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Res, Res2);
}
return Res;
}
// Otherwise we emit a cvt that saturates to a higher BW, and saturate the
// result. This is only valid if the legal cvt is larger than the saturate
// width. For double, as we don't have MIN/MAX, it can be simpler to scalarize
// (at least until sqxtn is selected).
if (SrcElementWidth < SatWidth || SrcElementVT == MVT::f64)
return SDValue();
EVT IntVT = SrcVT.changeVectorElementTypeToInteger();
SDValue NativeCvt = DAG.getNode(Op.getOpcode(), DL, IntVT, SrcVal,
DAG.getValueType(IntVT.getScalarType()));
SDValue NativeCvt2 =
SrcVal2 ? DAG.getNode(Op.getOpcode(), DL, IntVT, SrcVal2,
DAG.getValueType(IntVT.getScalarType()))
: SDValue();
SDValue Sat, Sat2;
if (Op.getOpcode() == ISD::FP_TO_SINT_SAT) {
SDValue MinC = DAG.getConstant(
APInt::getSignedMaxValue(SatWidth).sext(SrcElementWidth), DL, IntVT);
SDValue Min = DAG.getNode(ISD::SMIN, DL, IntVT, NativeCvt, MinC);
SDValue Min2 = SrcVal2 ? DAG.getNode(ISD::SMIN, DL, IntVT, NativeCvt2, MinC) : SDValue();
SDValue MaxC = DAG.getConstant(
APInt::getSignedMinValue(SatWidth).sext(SrcElementWidth), DL, IntVT);
Sat = DAG.getNode(ISD::SMAX, DL, IntVT, Min, MaxC);
Sat2 = SrcVal2 ? DAG.getNode(ISD::SMAX, DL, IntVT, Min2, MaxC) : SDValue();
} else {
SDValue MinC = DAG.getConstant(
APInt::getAllOnes(SatWidth).zext(SrcElementWidth), DL, IntVT);
Sat = DAG.getNode(ISD::UMIN, DL, IntVT, NativeCvt, MinC);
Sat2 = SrcVal2 ? DAG.getNode(ISD::UMIN, DL, IntVT, NativeCvt2, MinC) : SDValue();
}
if (SrcVal2)
Sat = DAG.getNode(ISD::CONCAT_VECTORS, DL,
IntVT.getDoubleNumVectorElementsVT(*DAG.getContext()),
Sat, Sat2);
return DAG.getNode(ISD::TRUNCATE, DL, DstVT, Sat);
}
SDValue AArch64TargetLowering::LowerFP_TO_INT_SAT(SDValue Op,
SelectionDAG &DAG) const {
// AArch64 FP-to-int conversions saturate to the destination register size, so
// we can lower common saturating conversions to simple instructions.
SDValue SrcVal = Op.getOperand(0);
EVT SrcVT = SrcVal.getValueType();
if (SrcVT.isVector())
return LowerVectorFP_TO_INT_SAT(Op, DAG);
EVT DstVT = Op.getValueType();
EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
uint64_t SatWidth = SatVT.getScalarSizeInBits();
uint64_t DstWidth = DstVT.getScalarSizeInBits();
assert(SatWidth <= DstWidth && "Saturation width cannot exceed result width");
// In the absence of FP16 support, promote f16 to f32 and saturate the result.
if ((SrcVT == MVT::f16 && !Subtarget->hasFullFP16()) || SrcVT == MVT::bf16) {
SrcVal = DAG.getNode(ISD::FP_EXTEND, SDLoc(Op), MVT::f32, SrcVal);
SrcVT = MVT::f32;
} else if (SrcVT != MVT::f64 && SrcVT != MVT::f32 && SrcVT != MVT::f16 &&
SrcVT != MVT::bf16)
return SDValue();
SDLoc DL(Op);
// Cases that we can emit directly.
if ((SrcVT == MVT::f64 || SrcVT == MVT::f32 ||
(SrcVT == MVT::f16 && Subtarget->hasFullFP16())) &&
DstVT == SatVT && (DstVT == MVT::i64 || DstVT == MVT::i32))
return DAG.getNode(Op.getOpcode(), DL, DstVT, SrcVal,
DAG.getValueType(DstVT));
// Otherwise we emit a cvt that saturates to a higher BW, and saturate the
// result. This is only valid if the legal cvt is larger than the saturate
// width.
if (DstWidth < SatWidth)
return SDValue();
SDValue NativeCvt =
DAG.getNode(Op.getOpcode(), DL, DstVT, SrcVal, DAG.getValueType(DstVT));
SDValue Sat;
if (Op.getOpcode() == ISD::FP_TO_SINT_SAT) {
SDValue MinC = DAG.getConstant(
APInt::getSignedMaxValue(SatWidth).sext(DstWidth), DL, DstVT);
SDValue Min = DAG.getNode(ISD::SMIN, DL, DstVT, NativeCvt, MinC);
SDValue MaxC = DAG.getConstant(
APInt::getSignedMinValue(SatWidth).sext(DstWidth), DL, DstVT);
Sat = DAG.getNode(ISD::SMAX, DL, DstVT, Min, MaxC);
} else {
SDValue MinC = DAG.getConstant(
APInt::getAllOnes(SatWidth).zext(DstWidth), DL, DstVT);
Sat = DAG.getNode(ISD::UMIN, DL, DstVT, NativeCvt, MinC);
}
return DAG.getNode(ISD::TRUNCATE, DL, DstVT, Sat);
}
SDValue AArch64TargetLowering::LowerVectorXRINT(SDValue Op,
SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
SDValue Src = Op.getOperand(0);
SDLoc DL(Op);
assert(VT.isVector() && "Expected vector type");
EVT CastVT =
VT.changeVectorElementType(Src.getValueType().getVectorElementType());
// Round the floating-point value into a floating-point register with the
// current rounding mode.
SDValue FOp = DAG.getNode(ISD::FRINT, DL, CastVT, Src);
// Truncate the rounded floating point to an integer.
return DAG.getNode(ISD::FP_TO_SINT_SAT, DL, VT, FOp,
DAG.getValueType(VT.getVectorElementType()));
}
SDValue AArch64TargetLowering::LowerVectorINT_TO_FP(SDValue Op,
SelectionDAG &DAG) const {
// Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
// Any additional optimization in this function should be recorded
// in the cost tables.
bool IsStrict = Op->isStrictFPOpcode();
EVT VT = Op.getValueType();
SDLoc dl(Op);
SDValue In = Op.getOperand(IsStrict ? 1 : 0);
EVT InVT = In.getValueType();
unsigned Opc = Op.getOpcode();
bool IsSigned = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP;
if (VT.isScalableVector()) {
if (InVT.getVectorElementType() == MVT::i1) {
// We can't directly extend an SVE predicate; extend it first.
unsigned CastOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
EVT CastVT = getPromotedVTForPredicate(InVT);
In = DAG.getNode(CastOpc, dl, CastVT, In);
return DAG.getNode(Opc, dl, VT, In);
}
unsigned Opcode = IsSigned ? AArch64ISD::SINT_TO_FP_MERGE_PASSTHRU
: AArch64ISD::UINT_TO_FP_MERGE_PASSTHRU;
return LowerToPredicatedOp(Op, DAG, Opcode);
}
if (useSVEForFixedLengthVectorVT(VT, !Subtarget->isNeonAvailable()) ||
useSVEForFixedLengthVectorVT(InVT, !Subtarget->isNeonAvailable()))
return LowerFixedLengthIntToFPToSVE(Op, DAG);
// Promote bf16 conversions to f32.
if (VT.getVectorElementType() == MVT::bf16) {
EVT F32 = VT.changeElementType(MVT::f32);
if (IsStrict) {
SDValue Val = DAG.getNode(Op.getOpcode(), dl, {F32, MVT::Other},
{Op.getOperand(0), In});
return DAG.getNode(
ISD::STRICT_FP_ROUND, dl, {Op.getValueType(), MVT::Other},
{Val.getValue(1), Val.getValue(0), DAG.getIntPtrConstant(0, dl)});
}
return DAG.getNode(ISD::FP_ROUND, dl, Op.getValueType(),
DAG.getNode(Op.getOpcode(), dl, F32, In),
DAG.getIntPtrConstant(0, dl));
}
uint64_t VTSize = VT.getFixedSizeInBits();
uint64_t InVTSize = InVT.getFixedSizeInBits();
if (VTSize < InVTSize) {
MVT CastVT =
MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()),
InVT.getVectorNumElements());
if (IsStrict) {
In = DAG.getNode(Opc, dl, {CastVT, MVT::Other},
{Op.getOperand(0), In});
return DAG.getNode(
ISD::STRICT_FP_ROUND, dl, {VT, MVT::Other},
{In.getValue(1), In.getValue(0), DAG.getIntPtrConstant(0, dl)});
}
In = DAG.getNode(Opc, dl, CastVT, In);
return DAG.getNode(ISD::FP_ROUND, dl, VT, In,
DAG.getIntPtrConstant(0, dl, /*isTarget=*/true));
}
if (VTSize > InVTSize) {
unsigned CastOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
EVT CastVT = VT.changeVectorElementTypeToInteger();
In = DAG.getNode(CastOpc, dl, CastVT, In);
if (IsStrict)
return DAG.getNode(Opc, dl, {VT, MVT::Other}, {Op.getOperand(0), In});
return DAG.getNode(Opc, dl, VT, In);
}
// Use a scalar operation for conversions between single-element vectors of
// the same size.
if (VT.getVectorNumElements() == 1) {
SDValue Extract = DAG.getNode(
ISD::EXTRACT_VECTOR_ELT, dl, InVT.getScalarType(),
In, DAG.getConstant(0, dl, MVT::i64));
EVT ScalarVT = VT.getScalarType();
if (IsStrict)
return DAG.getNode(Op.getOpcode(), dl, {ScalarVT, MVT::Other},
{Op.getOperand(0), Extract});
return DAG.getNode(Op.getOpcode(), dl, ScalarVT, Extract);
}
return Op;
}
SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op,
SelectionDAG &DAG) const {
if (Op.getValueType().isVector())
return LowerVectorINT_TO_FP(Op, DAG);
bool IsStrict = Op->isStrictFPOpcode();
SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
bool IsSigned = Op->getOpcode() == ISD::STRICT_SINT_TO_FP ||
Op->getOpcode() == ISD::SINT_TO_FP;
auto IntToFpViaPromotion = [&](EVT PromoteVT) {
SDLoc dl(Op);
if (IsStrict) {
SDValue Val = DAG.getNode(Op.getOpcode(), dl, {PromoteVT, MVT::Other},
{Op.getOperand(0), SrcVal});
return DAG.getNode(
ISD::STRICT_FP_ROUND, dl, {Op.getValueType(), MVT::Other},
{Val.getValue(1), Val.getValue(0), DAG.getIntPtrConstant(0, dl)});
}
return DAG.getNode(ISD::FP_ROUND, dl, Op.getValueType(),
DAG.getNode(Op.getOpcode(), dl, PromoteVT, SrcVal),
DAG.getIntPtrConstant(0, dl));
};
if (Op.getValueType() == MVT::bf16) {
unsigned MaxWidth = IsSigned
? DAG.ComputeMaxSignificantBits(SrcVal)
: DAG.computeKnownBits(SrcVal).countMaxActiveBits();
// bf16 conversions are promoted to f32 when converting from i16.
if (MaxWidth <= 24) {
return IntToFpViaPromotion(MVT::f32);
}
// bf16 conversions are promoted to f64 when converting from i32.
if (MaxWidth <= 53) {
return IntToFpViaPromotion(MVT::f64);
}
// We need to be careful about i64 -> bf16.
// Consider an i32 22216703.
// This number cannot be represented exactly as an f32 and so a itofp will
// turn it into 22216704.0 fptrunc to bf16 will turn this into 22282240.0
// However, the correct bf16 was supposed to be 22151168.0
// We need to use sticky rounding to get this correct.
if (SrcVal.getValueType() == MVT::i64) {
SDLoc DL(Op);
// This algorithm is equivalent to the following:
// uint64_t SrcHi = SrcVal & ~0xfffull;
// uint64_t SrcLo = SrcVal & 0xfffull;
// uint64_t Highest = SrcVal >> 53;
// bool HasHighest = Highest != 0;
// uint64_t ToRound = HasHighest ? SrcHi : SrcVal;
// double Rounded = static_cast<double>(ToRound);
// uint64_t RoundedBits = std::bit_cast<uint64_t>(Rounded);
// uint64_t HasLo = SrcLo != 0;
// bool NeedsAdjustment = HasHighest & HasLo;
// uint64_t AdjustedBits = RoundedBits | uint64_t{NeedsAdjustment};
// double Adjusted = std::bit_cast<double>(AdjustedBits);
// return static_cast<__bf16>(Adjusted);
//
// Essentially, what happens is that SrcVal either fits perfectly in a
// double-precision value or it is too big. If it is sufficiently small,
// we should just go u64 -> double -> bf16 in a naive way. Otherwise, we
// ensure that u64 -> double has no rounding error by only using the 52
// MSB of the input. The low order bits will get merged into a sticky bit
// which will avoid issues incurred by double rounding.
// Signed conversion is more or less like so:
// copysign((__bf16)abs(SrcVal), SrcVal)
SDValue SignBit;
if (IsSigned) {
SignBit = DAG.getNode(ISD::AND, DL, MVT::i64, SrcVal,
DAG.getConstant(1ull << 63, DL, MVT::i64));
SrcVal = DAG.getNode(ISD::ABS, DL, MVT::i64, SrcVal);
}
SDValue SrcHi = DAG.getNode(ISD::AND, DL, MVT::i64, SrcVal,
DAG.getConstant(~0xfffull, DL, MVT::i64));
SDValue SrcLo = DAG.getNode(ISD::AND, DL, MVT::i64, SrcVal,
DAG.getConstant(0xfffull, DL, MVT::i64));
SDValue Highest =
DAG.getNode(ISD::SRL, DL, MVT::i64, SrcVal,
DAG.getShiftAmountConstant(53, MVT::i64, DL));
SDValue Zero64 = DAG.getConstant(0, DL, MVT::i64);
SDValue ToRound =
DAG.getSelectCC(DL, Highest, Zero64, SrcHi, SrcVal, ISD::SETNE);
SDValue Rounded =
IsStrict ? DAG.getNode(Op.getOpcode(), DL, {MVT::f64, MVT::Other},
{Op.getOperand(0), ToRound})
: DAG.getNode(Op.getOpcode(), DL, MVT::f64, ToRound);
SDValue RoundedBits = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Rounded);
if (SignBit) {
RoundedBits = DAG.getNode(ISD::OR, DL, MVT::i64, RoundedBits, SignBit);
}
SDValue HasHighest = DAG.getSetCC(
DL,
getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64),
Highest, Zero64, ISD::SETNE);
SDValue HasLo = DAG.getSetCC(
DL,
getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64),
SrcLo, Zero64, ISD::SETNE);
SDValue NeedsAdjustment =
DAG.getNode(ISD::AND, DL, HasLo.getValueType(), HasHighest, HasLo);
NeedsAdjustment = DAG.getZExtOrTrunc(NeedsAdjustment, DL, MVT::i64);
SDValue AdjustedBits =
DAG.getNode(ISD::OR, DL, MVT::i64, RoundedBits, NeedsAdjustment);
SDValue Adjusted = DAG.getNode(ISD::BITCAST, DL, MVT::f64, AdjustedBits);
return IsStrict
? DAG.getNode(ISD::STRICT_FP_ROUND, DL,
{Op.getValueType(), MVT::Other},
{Rounded.getValue(1), Adjusted,
DAG.getIntPtrConstant(0, DL)})
: DAG.getNode(ISD::FP_ROUND, DL, Op.getValueType(), Adjusted,
DAG.getIntPtrConstant(0, DL, true));
}
}
// f16 conversions are promoted to f32 when full fp16 is not supported.
if (Op.getValueType() == MVT::f16 && !Subtarget->hasFullFP16()) {
return IntToFpViaPromotion(MVT::f32);
}
// i128 conversions are libcalls.
if (SrcVal.getValueType() == MVT::i128)
return SDValue();
// Other conversions are legal, unless it's to the completely software-based
// fp128.
if (Op.getValueType() != MVT::f128)
return Op;
return SDValue();
}
SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op,
SelectionDAG &DAG) const {
// For iOS, we want to call an alternative entry point: __sincos_stret,
// which returns the values in two S / D registers.
SDLoc dl(Op);
SDValue Arg = Op.getOperand(0);
EVT ArgVT = Arg.getValueType();
Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
ArgListTy Args;
ArgListEntry Entry;
Entry.Node = Arg;
Entry.Ty = ArgTy;
Entry.IsSExt = false;
Entry.IsZExt = false;
Args.push_back(Entry);
RTLIB::Libcall LC = ArgVT == MVT::f64 ? RTLIB::SINCOS_STRET_F64
: RTLIB::SINCOS_STRET_F32;
const char *LibcallName = getLibcallName(LC);
SDValue Callee =
DAG.getExternalSymbol(LibcallName, getPointerTy(DAG.getDataLayout()));
StructType *RetTy = StructType::get(ArgTy, ArgTy);
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(dl)
.setChain(DAG.getEntryNode())
.setLibCallee(CallingConv::Fast, RetTy, Callee, std::move(Args));
std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
return CallResult.first;
}
static MVT getSVEContainerType(EVT ContentTy);
SDValue AArch64TargetLowering::LowerBITCAST(SDValue Op,
SelectionDAG &DAG) const {
EVT OpVT = Op.getValueType();
EVT ArgVT = Op.getOperand(0).getValueType();
if (useSVEForFixedLengthVectorVT(OpVT))
return LowerFixedLengthBitcastToSVE(Op, DAG);
if (OpVT.isScalableVector()) {
assert(isTypeLegal(OpVT) && "Unexpected result type!");
// Handle type legalisation first.
if (!isTypeLegal(ArgVT)) {
assert(OpVT.isFloatingPoint() && !ArgVT.isFloatingPoint() &&
"Expected int->fp bitcast!");
// Bitcasting between unpacked vector types of different element counts is
// not a NOP because the live elements are laid out differently.
// 01234567
// e.g. nxv2i32 = XX??XX??
// nxv4f16 = X?X?X?X?
if (OpVT.getVectorElementCount() != ArgVT.getVectorElementCount())
return SDValue();
SDValue ExtResult =
DAG.getNode(ISD::ANY_EXTEND, SDLoc(Op), getSVEContainerType(ArgVT),
Op.getOperand(0));
return getSVESafeBitCast(OpVT, ExtResult, DAG);
}
// Bitcasts between legal types with the same element count are legal.
if (OpVT.getVectorElementCount() == ArgVT.getVectorElementCount())
return Op;
// getSVESafeBitCast does not support casting between unpacked types.
if (!isPackedVectorType(OpVT, DAG))
return SDValue();
return getSVESafeBitCast(OpVT, Op.getOperand(0), DAG);
}
if (OpVT != MVT::f16 && OpVT != MVT::bf16)
return SDValue();
// Bitcasts between f16 and bf16 are legal.
if (ArgVT == MVT::f16 || ArgVT == MVT::bf16)
return Op;
assert(ArgVT == MVT::i16);
SDLoc DL(Op);
Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0));
Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op);
return DAG.getTargetExtractSubreg(AArch64::hsub, DL, OpVT, Op);
}
static EVT getExtensionTo64Bits(const EVT &OrigVT) {
if (OrigVT.getSizeInBits() >= 64)
return OrigVT;
assert(OrigVT.isSimple() && "Expecting a simple value type");
MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
switch (OrigSimpleTy) {
default: llvm_unreachable("Unexpected Vector Type");
case MVT::v2i8:
case MVT::v2i16:
return MVT::v2i32;
case MVT::v4i8:
return MVT::v4i16;
}
}
static SDValue addRequiredExtensionForVectorMULL(SDValue N, SelectionDAG &DAG,
const EVT &OrigTy,
const EVT &ExtTy,
unsigned ExtOpcode) {
// The vector originally had a size of OrigTy. It was then extended to ExtTy.
// We expect the ExtTy to be 128-bits total. If the OrigTy is less than
// 64-bits we need to insert a new extension so that it will be 64-bits.
assert(ExtTy.is128BitVector() && "Unexpected extension size");
if (OrigTy.getSizeInBits() >= 64)
return N;
// Must extend size to at least 64 bits to be used as an operand for VMULL.
EVT NewVT = getExtensionTo64Bits(OrigTy);
return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
}
// Returns lane if Op extracts from a two-element vector and lane is constant
// (i.e., extractelt(<2 x Ty> %v, ConstantLane)), and std::nullopt otherwise.
static std::optional<uint64_t>
getConstantLaneNumOfExtractHalfOperand(SDValue &Op) {
SDNode *OpNode = Op.getNode();
if (OpNode->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
return std::nullopt;
EVT VT = OpNode->getOperand(0).getValueType();
ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpNode->getOperand(1));
if (!VT.isFixedLengthVector() || VT.getVectorNumElements() != 2 || !C)
return std::nullopt;
return C->getZExtValue();
}
static bool isExtendedBUILD_VECTOR(SDValue N, SelectionDAG &DAG,
bool isSigned) {
EVT VT = N.getValueType();
if (N.getOpcode() != ISD::BUILD_VECTOR)
return false;
for (const SDValue &Elt : N->op_values()) {
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
unsigned EltSize = VT.getScalarSizeInBits();
unsigned HalfSize = EltSize / 2;
if (isSigned) {
if (!isIntN(HalfSize, C->getSExtValue()))
return false;
} else {
if (!isUIntN(HalfSize, C->getZExtValue()))
return false;
}
continue;
}
return false;
}
return true;
}
static SDValue skipExtensionForVectorMULL(SDValue N, SelectionDAG &DAG) {
EVT VT = N.getValueType();
assert(VT.is128BitVector() && "Unexpected vector MULL size");
unsigned NumElts = VT.getVectorNumElements();
unsigned OrigEltSize = VT.getScalarSizeInBits();
unsigned EltSize = OrigEltSize / 2;
MVT TruncVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), NumElts);
APInt HiBits = APInt::getHighBitsSet(OrigEltSize, EltSize);
if (DAG.MaskedValueIsZero(N, HiBits))
return DAG.getNode(ISD::TRUNCATE, SDLoc(N), TruncVT, N);
if (ISD::isExtOpcode(N.getOpcode()))
return addRequiredExtensionForVectorMULL(N.getOperand(0), DAG,
N.getOperand(0).getValueType(), VT,
N.getOpcode());
assert(N.getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
SDLoc dl(N);
SmallVector<SDValue, 8> Ops;
for (unsigned i = 0; i != NumElts; ++i) {
const APInt &CInt = N.getConstantOperandAPInt(i);
// Element types smaller than 32 bits are not legal, so use i32 elements.
// The values are implicitly truncated so sext vs. zext doesn't matter.
Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
}
return DAG.getBuildVector(TruncVT, dl, Ops);
}
static bool isSignExtended(SDValue N, SelectionDAG &DAG) {
return N.getOpcode() == ISD::SIGN_EXTEND ||
N.getOpcode() == ISD::ANY_EXTEND ||
isExtendedBUILD_VECTOR(N, DAG, true);
}
static bool isZeroExtended(SDValue N, SelectionDAG &DAG) {
return N.getOpcode() == ISD::ZERO_EXTEND ||
N.getOpcode() == ISD::ANY_EXTEND ||
isExtendedBUILD_VECTOR(N, DAG, false);
}
static bool isAddSubSExt(SDValue N, SelectionDAG &DAG) {
unsigned Opcode = N.getOpcode();
if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
SDValue N0 = N.getOperand(0);
SDValue N1 = N.getOperand(1);
return N0->hasOneUse() && N1->hasOneUse() &&
isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
}
return false;
}
static bool isAddSubZExt(SDValue N, SelectionDAG &DAG) {
unsigned Opcode = N.getOpcode();
if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
SDValue N0 = N.getOperand(0);
SDValue N1 = N.getOperand(1);
return N0->hasOneUse() && N1->hasOneUse() &&
isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
}
return false;
}
SDValue AArch64TargetLowering::LowerGET_ROUNDING(SDValue Op,
SelectionDAG &DAG) const {
// The rounding mode is in bits 23:22 of the FPSCR.
// The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
// The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
// so that the shift + and get folded into a bitfield extract.
SDLoc dl(Op);
SDValue Chain = Op.getOperand(0);
SDValue FPCR_64 = DAG.getNode(
ISD::INTRINSIC_W_CHAIN, dl, {MVT::i64, MVT::Other},
{Chain, DAG.getConstant(Intrinsic::aarch64_get_fpcr, dl, MVT::i64)});
Chain = FPCR_64.getValue(1);
SDValue FPCR_32 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, FPCR_64);
SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPCR_32,
DAG.getConstant(1U << 22, dl, MVT::i32));
SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
DAG.getConstant(22, dl, MVT::i32));
SDValue AND = DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
DAG.getConstant(3, dl, MVT::i32));
return DAG.getMergeValues({AND, Chain}, dl);
}
SDValue AArch64TargetLowering::LowerSET_ROUNDING(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
SDValue Chain = Op->getOperand(0);
SDValue RMValue = Op->getOperand(1);
// The rounding mode is in bits 23:22 of the FPCR.
// The llvm.set.rounding argument value to the rounding mode in FPCR mapping
// is 0->3, 1->0, 2->1, 3->2. The formula we use to implement this is
// ((arg - 1) & 3) << 22).
//
// The argument of llvm.set.rounding must be within the segment [0, 3], so
// NearestTiesToAway (4) is not handled here. It is responsibility of the code
// generated llvm.set.rounding to ensure this condition.
// Calculate new value of FPCR[23:22].
RMValue = DAG.getNode(ISD::SUB, DL, MVT::i32, RMValue,
DAG.getConstant(1, DL, MVT::i32));
RMValue = DAG.getNode(ISD::AND, DL, MVT::i32, RMValue,
DAG.getConstant(0x3, DL, MVT::i32));
RMValue =
DAG.getNode(ISD::SHL, DL, MVT::i32, RMValue,
DAG.getConstant(AArch64::RoundingBitsPos, DL, MVT::i32));
RMValue = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, RMValue);
// Get current value of FPCR.
SDValue Ops[] = {
Chain, DAG.getTargetConstant(Intrinsic::aarch64_get_fpcr, DL, MVT::i64)};
SDValue FPCR =
DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, {MVT::i64, MVT::Other}, Ops);
Chain = FPCR.getValue(1);
FPCR = FPCR.getValue(0);
// Put new rounding mode into FPSCR[23:22].
const int RMMask = ~(AArch64::Rounding::rmMask << AArch64::RoundingBitsPos);
FPCR = DAG.getNode(ISD::AND, DL, MVT::i64, FPCR,
DAG.getConstant(RMMask, DL, MVT::i64));
FPCR = DAG.getNode(ISD::OR, DL, MVT::i64, FPCR, RMValue);
SDValue Ops2[] = {
Chain, DAG.getTargetConstant(Intrinsic::aarch64_set_fpcr, DL, MVT::i64),
FPCR};
return DAG.getNode(ISD::INTRINSIC_VOID, DL, MVT::Other, Ops2);
}
SDValue AArch64TargetLowering::LowerGET_FPMODE(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
SDValue Chain = Op->getOperand(0);
// Get current value of FPCR.
SDValue Ops[] = {
Chain, DAG.getTargetConstant(Intrinsic::aarch64_get_fpcr, DL, MVT::i64)};
SDValue FPCR =
DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, {MVT::i64, MVT::Other}, Ops);
Chain = FPCR.getValue(1);
FPCR = FPCR.getValue(0);
// Truncate FPCR to 32 bits.
SDValue Result = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPCR);
return DAG.getMergeValues({Result, Chain}, DL);
}
SDValue AArch64TargetLowering::LowerSET_FPMODE(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
SDValue Chain = Op->getOperand(0);
SDValue Mode = Op->getOperand(1);
// Extend the specified value to 64 bits.
SDValue FPCR = DAG.getZExtOrTrunc(Mode, DL, MVT::i64);
// Set new value of FPCR.
SDValue Ops2[] = {
Chain, DAG.getConstant(Intrinsic::aarch64_set_fpcr, DL, MVT::i64), FPCR};
return DAG.getNode(ISD::INTRINSIC_VOID, DL, MVT::Other, Ops2);
}
SDValue AArch64TargetLowering::LowerRESET_FPMODE(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
SDValue Chain = Op->getOperand(0);
// Get current value of FPCR.
SDValue Ops[] = {
Chain, DAG.getTargetConstant(Intrinsic::aarch64_get_fpcr, DL, MVT::i64)};
SDValue FPCR =
DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, {MVT::i64, MVT::Other}, Ops);
Chain = FPCR.getValue(1);
FPCR = FPCR.getValue(0);
// Clear bits that are not reserved.
SDValue FPSCRMasked = DAG.getNode(
ISD::AND, DL, MVT::i64, FPCR,
DAG.getConstant(AArch64::ReservedFPControlBits, DL, MVT::i64));
// Set new value of FPCR.
SDValue Ops2[] = {Chain,
DAG.getConstant(Intrinsic::aarch64_set_fpcr, DL, MVT::i64),
FPSCRMasked};
return DAG.getNode(ISD::INTRINSIC_VOID, DL, MVT::Other, Ops2);
}
static unsigned selectUmullSmull(SDValue &N0, SDValue &N1, SelectionDAG &DAG,
SDLoc DL, bool &IsMLA) {
bool IsN0SExt = isSignExtended(N0, DAG);
bool IsN1SExt = isSignExtended(N1, DAG);
if (IsN0SExt && IsN1SExt)
return AArch64ISD::SMULL;
bool IsN0ZExt = isZeroExtended(N0, DAG);
bool IsN1ZExt = isZeroExtended(N1, DAG);
if (IsN0ZExt && IsN1ZExt)
return AArch64ISD::UMULL;
// Select SMULL if we can replace zext with sext.
if (((IsN0SExt && IsN1ZExt) || (IsN0ZExt && IsN1SExt)) &&
!isExtendedBUILD_VECTOR(N0, DAG, false) &&
!isExtendedBUILD_VECTOR(N1, DAG, false)) {
SDValue ZextOperand;
if (IsN0ZExt)
ZextOperand = N0.getOperand(0);
else
ZextOperand = N1.getOperand(0);
if (DAG.SignBitIsZero(ZextOperand)) {
SDValue NewSext =
DAG.getSExtOrTrunc(ZextOperand, DL, N0.getValueType());
if (IsN0ZExt)
N0 = NewSext;
else
N1 = NewSext;
return AArch64ISD::SMULL;
}
}
// Select UMULL if we can replace the other operand with an extend.
if (IsN0ZExt || IsN1ZExt) {
EVT VT = N0.getValueType();
APInt Mask = APInt::getHighBitsSet(VT.getScalarSizeInBits(),
VT.getScalarSizeInBits() / 2);
if (DAG.MaskedValueIsZero(IsN0ZExt ? N1 : N0, Mask))
return AArch64ISD::UMULL;
}
if (!IsN1SExt && !IsN1ZExt)
return 0;
// Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
// into (s/zext A * s/zext C) + (s/zext B * s/zext C)
if (IsN1SExt && isAddSubSExt(N0, DAG)) {
IsMLA = true;
return AArch64ISD::SMULL;
}
if (IsN1ZExt && isAddSubZExt(N0, DAG)) {
IsMLA = true;
return AArch64ISD::UMULL;
}
if (IsN0ZExt && isAddSubZExt(N1, DAG)) {
std::swap(N0, N1);
IsMLA = true;
return AArch64ISD::UMULL;
}
return 0;
}
SDValue AArch64TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
bool OverrideNEON = !Subtarget->isNeonAvailable();
if (VT.isScalableVector() || useSVEForFixedLengthVectorVT(VT, OverrideNEON))
return LowerToPredicatedOp(Op, DAG, AArch64ISD::MUL_PRED);
// Multiplications are only custom-lowered for 128-bit and 64-bit vectors so
// that VMULL can be detected. Otherwise v2i64 multiplications are not legal.
assert((VT.is128BitVector() || VT.is64BitVector()) && VT.isInteger() &&
"unexpected type for custom-lowering ISD::MUL");
SDValue N0 = Op.getOperand(0);
SDValue N1 = Op.getOperand(1);
bool isMLA = false;
EVT OVT = VT;
if (VT.is64BitVector()) {
if (N0.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
isNullConstant(N0.getOperand(1)) &&
N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
isNullConstant(N1.getOperand(1))) {
N0 = N0.getOperand(0);
N1 = N1.getOperand(0);
VT = N0.getValueType();
} else {
if (VT == MVT::v1i64) {
if (Subtarget->hasSVE())
return LowerToPredicatedOp(Op, DAG, AArch64ISD::MUL_PRED);
// Fall through to expand this. It is not legal.
return SDValue();
} else
// Other vector multiplications are legal.
return Op;
}
}
SDLoc DL(Op);
unsigned NewOpc = selectUmullSmull(N0, N1, DAG, DL, isMLA);
if (!NewOpc) {
if (VT.getVectorElementType() == MVT::i64) {
// If SVE is available then i64 vector multiplications can also be made
// legal.
if (Subtarget->hasSVE())
return LowerToPredicatedOp(Op, DAG, AArch64ISD::MUL_PRED);
// Fall through to expand this. It is not legal.
return SDValue();
} else
// Other vector multiplications are legal.
return Op;
}
// Legalize to a S/UMULL instruction
SDValue Op0;
SDValue Op1 = skipExtensionForVectorMULL(N1, DAG);
if (!isMLA) {
Op0 = skipExtensionForVectorMULL(N0, DAG);
assert(Op0.getValueType().is64BitVector() &&
Op1.getValueType().is64BitVector() &&
"unexpected types for extended operands to VMULL");
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OVT,
DAG.getNode(NewOpc, DL, VT, Op0, Op1),
DAG.getConstant(0, DL, MVT::i64));
}
// Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during
// isel lowering to take advantage of no-stall back to back s/umul + s/umla.
// This is true for CPUs with accumulate forwarding such as Cortex-A53/A57
SDValue N00 = skipExtensionForVectorMULL(N0.getOperand(0), DAG);
SDValue N01 = skipExtensionForVectorMULL(N0.getOperand(1), DAG);
EVT Op1VT = Op1.getValueType();
return DAG.getNode(
ISD::EXTRACT_SUBVECTOR, DL, OVT,
DAG.getNode(N0.getOpcode(), DL, VT,
DAG.getNode(NewOpc, DL, VT,
DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
DAG.getNode(NewOpc, DL, VT,
DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1)),
DAG.getConstant(0, DL, MVT::i64));
}
static inline SDValue getPTrue(SelectionDAG &DAG, SDLoc DL, EVT VT,
int Pattern) {
if (VT == MVT::nxv1i1 && Pattern == AArch64SVEPredPattern::all)
return DAG.getConstant(1, DL, MVT::nxv1i1);
return DAG.getNode(AArch64ISD::PTRUE, DL, VT,
DAG.getTargetConstant(Pattern, DL, MVT::i32));
}
static SDValue optimizeIncrementingWhile(SDValue Op, SelectionDAG &DAG,
bool IsSigned, bool IsEqual) {
if (!isa<ConstantSDNode>(Op.getOperand(1)) ||
!isa<ConstantSDNode>(Op.getOperand(2)))
return SDValue();
SDLoc dl(Op);
APInt X = Op.getConstantOperandAPInt(1);
APInt Y = Op.getConstantOperandAPInt(2);
// When the second operand is the maximum value, comparisons that include
// equality can never fail and thus we can return an all active predicate.
if (IsEqual)
if (IsSigned ? Y.isMaxSignedValue() : Y.isMaxValue())
return DAG.getConstant(1, dl, Op.getValueType());
bool Overflow;
APInt NumActiveElems =
IsSigned ? Y.ssub_ov(X, Overflow) : Y.usub_ov(X, Overflow);
if (Overflow)
return SDValue();
if (IsEqual) {
APInt One(NumActiveElems.getBitWidth(), 1, IsSigned);
NumActiveElems = IsSigned ? NumActiveElems.sadd_ov(One, Overflow)
: NumActiveElems.uadd_ov(One, Overflow);
if (Overflow)
return SDValue();
}
std::optional<unsigned> PredPattern =
getSVEPredPatternFromNumElements(NumActiveElems.getZExtValue());
unsigned MinSVEVectorSize = std::max(
DAG.getSubtarget<AArch64Subtarget>().getMinSVEVectorSizeInBits(), 128u);
unsigned ElementSize = 128 / Op.getValueType().getVectorMinNumElements();
if (PredPattern != std::nullopt &&
NumActiveElems.getZExtValue() <= (MinSVEVectorSize / ElementSize))
return getPTrue(DAG, dl, Op.getValueType(), *PredPattern);
return SDValue();
}
// Returns a safe bitcast between two scalable vector predicates, where
// any newly created lanes from a widening bitcast are defined as zero.
static SDValue getSVEPredicateBitCast(EVT VT, SDValue Op, SelectionDAG &DAG) {
SDLoc DL(Op);
EVT InVT = Op.getValueType();
assert(InVT.getVectorElementType() == MVT::i1 &&
VT.getVectorElementType() == MVT::i1 &&
"Expected a predicate-to-predicate bitcast");
assert(VT.isScalableVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
InVT.isScalableVector() &&
DAG.getTargetLoweringInfo().isTypeLegal(InVT) &&
"Only expect to cast between legal scalable predicate types!");
// Return the operand if the cast isn't changing type,
if (InVT == VT)
return Op;
// Look through casts to <vscale x 16 x i1> when their input has more lanes
// than VT. This will increase the chances of removing casts that introduce
// new lanes, which have to be explicitly zero'd.
if (Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
Op.getConstantOperandVal(0) == Intrinsic::aarch64_sve_convert_to_svbool &&
Op.getOperand(1).getValueType().bitsGT(VT))
Op = Op.getOperand(1);
SDValue Reinterpret = DAG.getNode(AArch64ISD::REINTERPRET_CAST, DL, VT, Op);
// We only have to zero the lanes if new lanes are being defined, e.g. when
// casting from <vscale x 2 x i1> to <vscale x 16 x i1>. If this is not the
// case (e.g. when casting from <vscale x 16 x i1> -> <vscale x 2 x i1>) then
// we can return here.
if (InVT.bitsGT(VT))
return Reinterpret;
// Check if the other lanes are already known to be zeroed by
// construction.
if (isZeroingInactiveLanes(Op))
return Reinterpret;
// Zero the newly introduced lanes.
SDValue Mask = DAG.getConstant(1, DL, InVT);
Mask = DAG.getNode(AArch64ISD::REINTERPRET_CAST, DL, VT, Mask);
return DAG.getNode(ISD::AND, DL, VT, Reinterpret, Mask);
}
SDValue AArch64TargetLowering::getRuntimePStateSM(SelectionDAG &DAG,
SDValue Chain, SDLoc DL,
EVT VT) const {
SDValue Callee = DAG.getExternalSymbol("__arm_sme_state",
getPointerTy(DAG.getDataLayout()));
Type *Int64Ty = Type::getInt64Ty(*DAG.getContext());
Type *RetTy = StructType::get(Int64Ty, Int64Ty);
TargetLowering::CallLoweringInfo CLI(DAG);
ArgListTy Args;
CLI.setDebugLoc(DL).setChain(Chain).setLibCallee(
CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2,
RetTy, Callee, std::move(Args));
std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
SDValue Mask = DAG.getConstant(/*PSTATE.SM*/ 1, DL, MVT::i64);
return DAG.getNode(ISD::AND, DL, MVT::i64, CallResult.first.getOperand(0),
Mask);
}
// Lower an SME LDR/STR ZA intrinsic
// Case 1: If the vector number (vecnum) is an immediate in range, it gets
// folded into the instruction
// ldr(%tileslice, %ptr, 11) -> ldr [%tileslice, 11], [%ptr, 11]
// Case 2: If the vecnum is not an immediate, then it is used to modify the base
// and tile slice registers
// ldr(%tileslice, %ptr, %vecnum)
// ->
// %svl = rdsvl
// %ptr2 = %ptr + %svl * %vecnum
// %tileslice2 = %tileslice + %vecnum
// ldr [%tileslice2, 0], [%ptr2, 0]
// Case 3: If the vecnum is an immediate out of range, then the same is done as
// case 2, but the base and slice registers are modified by the greatest
// multiple of 15 lower than the vecnum and the remainder is folded into the
// instruction. This means that successive loads and stores that are offset from
// each other can share the same base and slice register updates.
// ldr(%tileslice, %ptr, 22)
// ldr(%tileslice, %ptr, 23)
// ->
// %svl = rdsvl
// %ptr2 = %ptr + %svl * 15
// %tileslice2 = %tileslice + 15
// ldr [%tileslice2, 7], [%ptr2, 7]
// ldr [%tileslice2, 8], [%ptr2, 8]
// Case 4: If the vecnum is an add of an immediate, then the non-immediate
// operand and the immediate can be folded into the instruction, like case 2.
// ldr(%tileslice, %ptr, %vecnum + 7)
// ldr(%tileslice, %ptr, %vecnum + 8)
// ->
// %svl = rdsvl
// %ptr2 = %ptr + %svl * %vecnum
// %tileslice2 = %tileslice + %vecnum
// ldr [%tileslice2, 7], [%ptr2, 7]
// ldr [%tileslice2, 8], [%ptr2, 8]
// Case 5: The vecnum being an add of an immediate out of range is also handled,
// in which case the same remainder logic as case 3 is used.
SDValue LowerSMELdrStr(SDValue N, SelectionDAG &DAG, bool IsLoad) {
SDLoc DL(N);
SDValue TileSlice = N->getOperand(2);
SDValue Base = N->getOperand(3);
SDValue VecNum = N->getOperand(4);
int32_t ConstAddend = 0;
SDValue VarAddend = VecNum;
// If the vnum is an add of an immediate, we can fold it into the instruction
if (VecNum.getOpcode() == ISD::ADD &&
isa<ConstantSDNode>(VecNum.getOperand(1))) {
ConstAddend = cast<ConstantSDNode>(VecNum.getOperand(1))->getSExtValue();
VarAddend = VecNum.getOperand(0);
} else if (auto ImmNode = dyn_cast<ConstantSDNode>(VecNum)) {
ConstAddend = ImmNode->getSExtValue();
VarAddend = SDValue();
}
int32_t ImmAddend = ConstAddend % 16;
if (int32_t C = (ConstAddend - ImmAddend)) {
SDValue CVal = DAG.getTargetConstant(C, DL, MVT::i32);
VarAddend = VarAddend
? DAG.getNode(ISD::ADD, DL, MVT::i32, {VarAddend, CVal})
: CVal;
}
if (VarAddend) {
// Get the vector length that will be multiplied by vnum
auto SVL = DAG.getNode(AArch64ISD::RDSVL, DL, MVT::i64,
DAG.getConstant(1, DL, MVT::i32));
// Multiply SVL and vnum then add it to the base
SDValue Mul = DAG.getNode(
ISD::MUL, DL, MVT::i64,
{SVL, DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, VarAddend)});
Base = DAG.getNode(ISD::ADD, DL, MVT::i64, {Base, Mul});
// Just add vnum to the tileslice
TileSlice = DAG.getNode(ISD::ADD, DL, MVT::i32, {TileSlice, VarAddend});
}
return DAG.getNode(IsLoad ? AArch64ISD::SME_ZA_LDR : AArch64ISD::SME_ZA_STR,
DL, MVT::Other,
{/*Chain=*/N.getOperand(0), TileSlice, Base,
DAG.getTargetConstant(ImmAddend, DL, MVT::i32)});
}
SDValue AArch64TargetLowering::LowerINTRINSIC_VOID(SDValue Op,
SelectionDAG &DAG) const {
unsigned IntNo = Op.getConstantOperandVal(1);
SDLoc DL(Op);
switch (IntNo) {
default:
return SDValue(); // Don't custom lower most intrinsics.
case Intrinsic::aarch64_prefetch: {
SDValue Chain = Op.getOperand(0);
SDValue Addr = Op.getOperand(2);
unsigned IsWrite = Op.getConstantOperandVal(3);
unsigned Locality = Op.getConstantOperandVal(4);
unsigned IsStream = Op.getConstantOperandVal(5);
unsigned IsData = Op.getConstantOperandVal(6);
unsigned PrfOp = (IsWrite << 4) | // Load/Store bit
(!IsData << 3) | // IsDataCache bit
(Locality << 1) | // Cache level bits
(unsigned)IsStream; // Stream bit
return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Chain,
DAG.getTargetConstant(PrfOp, DL, MVT::i32), Addr);
}
case Intrinsic::aarch64_sme_str:
case Intrinsic::aarch64_sme_ldr: {
return LowerSMELdrStr(Op, DAG, IntNo == Intrinsic::aarch64_sme_ldr);
}
case Intrinsic::aarch64_sme_za_enable:
return DAG.getNode(
AArch64ISD::SMSTART, DL, MVT::Other,
Op->getOperand(0), // Chain
DAG.getTargetConstant((int32_t)(AArch64SVCR::SVCRZA), DL, MVT::i32),
DAG.getConstant(AArch64SME::Always, DL, MVT::i64));
case Intrinsic::aarch64_sme_za_disable:
return DAG.getNode(
AArch64ISD::SMSTOP, DL, MVT::Other,
Op->getOperand(0), // Chain
DAG.getTargetConstant((int32_t)(AArch64SVCR::SVCRZA), DL, MVT::i32),
DAG.getConstant(AArch64SME::Always, DL, MVT::i64));
}
}
SDValue AArch64TargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
SelectionDAG &DAG) const {
unsigned IntNo = Op.getConstantOperandVal(1);
SDLoc DL(Op);
switch (IntNo) {
default:
return SDValue(); // Don't custom lower most intrinsics.
case Intrinsic::aarch64_mops_memset_tag: {
auto Node = cast<MemIntrinsicSDNode>(Op.getNode());
SDValue Chain = Node->getChain();
SDValue Dst = Op.getOperand(2);
SDValue Val = Op.getOperand(3);
Val = DAG.getAnyExtOrTrunc(Val, DL, MVT::i64);
SDValue Size = Op.getOperand(4);
auto Alignment = Node->getMemOperand()->getAlign();
bool IsVol = Node->isVolatile();
auto DstPtrInfo = Node->getPointerInfo();
const auto &SDI =
static_cast<const AArch64SelectionDAGInfo &>(DAG.getSelectionDAGInfo());
SDValue MS =
SDI.EmitMOPS(AArch64ISD::MOPS_MEMSET_TAGGING, DAG, DL, Chain, Dst, Val,
Size, Alignment, IsVol, DstPtrInfo, MachinePointerInfo{});
// MOPS_MEMSET_TAGGING has 3 results (DstWb, SizeWb, Chain) whereas the
// intrinsic has 2. So hide SizeWb using MERGE_VALUES. Otherwise
// LowerOperationWrapper will complain that the number of results has
// changed.
return DAG.getMergeValues({MS.getValue(0), MS.getValue(2)}, DL);
}
}
}
SDValue AArch64TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
SelectionDAG &DAG) const {
unsigned IntNo = Op.getConstantOperandVal(0);
SDLoc dl(Op);
switch (IntNo) {
default: return SDValue(); // Don't custom lower most intrinsics.
case Intrinsic::thread_pointer: {
EVT PtrVT = getPointerTy(DAG.getDataLayout());
return DAG.getNode(AArch64ISD::THREAD_POINTER, dl, PtrVT);
}
case Intrinsic::aarch64_neon_abs: {
EVT Ty = Op.getValueType();
if (Ty == MVT::i64) {
SDValue Result = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64,
Op.getOperand(1));
Result = DAG.getNode(ISD::ABS, dl, MVT::v1i64, Result);
return DAG.getNode(ISD::BITCAST, dl, MVT::i64, Result);
} else if (Ty.isVector() && Ty.isInteger() && isTypeLegal(Ty)) {
return DAG.getNode(ISD::ABS, dl, Ty, Op.getOperand(1));
} else {
report_fatal_error("Unexpected type for AArch64 NEON intrinic");
}
}
case Intrinsic::aarch64_neon_pmull64: {
SDValue LHS = Op.getOperand(1);
SDValue RHS = Op.getOperand(2);
std::optional<uint64_t> LHSLane =
getConstantLaneNumOfExtractHalfOperand(LHS);
std::optional<uint64_t> RHSLane =
getConstantLaneNumOfExtractHalfOperand(RHS);
assert((!LHSLane || *LHSLane < 2) && "Expect lane to be None or 0 or 1");
assert((!RHSLane || *RHSLane < 2) && "Expect lane to be None or 0 or 1");
// 'aarch64_neon_pmull64' takes i64 parameters; while pmull/pmull2
// instructions execute on SIMD registers. So canonicalize i64 to v1i64,
// which ISel recognizes better. For example, generate a ldr into d*
// registers as opposed to a GPR load followed by a fmov.
auto TryVectorizeOperand = [](SDValue N, std::optional<uint64_t> NLane,
std::optional<uint64_t> OtherLane,
const SDLoc &dl,
SelectionDAG &DAG) -> SDValue {
// If the operand is an higher half itself, rewrite it to
// extract_high_v2i64; this way aarch64_neon_pmull64 could
// re-use the dag-combiner function with aarch64_neon_{pmull,smull,umull}.
if (NLane && *NLane == 1)
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v1i64,
N.getOperand(0), DAG.getConstant(1, dl, MVT::i64));
// Operand N is not a higher half but the other operand is.
if (OtherLane && *OtherLane == 1) {
// If this operand is a lower half, rewrite it to
// extract_high_v2i64(duplane(<2 x Ty>, 0)). This saves a roundtrip to
// align lanes of two operands. A roundtrip sequence (to move from lane
// 1 to lane 0) is like this:
// mov x8, v0.d[1]
// fmov d0, x8
if (NLane && *NLane == 0)
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v1i64,
DAG.getNode(AArch64ISD::DUPLANE64, dl, MVT::v2i64,
N.getOperand(0),
DAG.getConstant(0, dl, MVT::i64)),
DAG.getConstant(1, dl, MVT::i64));
// Otherwise just dup from main to all lanes.
return DAG.getNode(AArch64ISD::DUP, dl, MVT::v1i64, N);
}
// Neither operand is an extract of higher half, so codegen may just use
// the non-high version of PMULL instruction. Use v1i64 to represent i64.
assert(N.getValueType() == MVT::i64 &&
"Intrinsic aarch64_neon_pmull64 requires i64 parameters");
return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, N);
};
LHS = TryVectorizeOperand(LHS, LHSLane, RHSLane, dl, DAG);
RHS = TryVectorizeOperand(RHS, RHSLane, LHSLane, dl, DAG);
return DAG.getNode(AArch64ISD::PMULL, dl, Op.getValueType(), LHS, RHS);
}
case Intrinsic::aarch64_neon_smax:
return DAG.getNode(ISD::SMAX, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::aarch64_neon_umax:
return DAG.getNode(ISD::UMAX, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::aarch64_neon_smin:
return DAG.getNode(ISD::SMIN, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::aarch64_neon_umin:
return DAG.getNode(ISD::UMIN, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::aarch64_neon_scalar_sqxtn:
case Intrinsic::aarch64_neon_scalar_sqxtun:
case Intrinsic::aarch64_neon_scalar_uqxtn: {
assert(Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::f32);
if (Op.getValueType() == MVT::i32)
return DAG.getNode(ISD::BITCAST, dl, MVT::i32,
DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::f32,
Op.getOperand(0),
DAG.getNode(ISD::BITCAST, dl, MVT::f64,
Op.getOperand(1))));
return SDValue();
}
case Intrinsic::aarch64_neon_sqxtn:
return DAG.getNode(ISD::TRUNCATE_SSAT_S, dl, Op.getValueType(),
Op.getOperand(1));
case Intrinsic::aarch64_neon_sqxtun:
return DAG.getNode(ISD::TRUNCATE_SSAT_U, dl, Op.getValueType(),
Op.getOperand(1));
case Intrinsic::aarch64_neon_uqxtn:
return DAG.getNode(ISD::TRUNCATE_USAT_U, dl, Op.getValueType(),
Op.getOperand(1));
case Intrinsic::aarch64_neon_sqshrn:
if (Op.getValueType().isVector())
return DAG.getNode(ISD::TRUNCATE_SSAT_S, dl, Op.getValueType(),
DAG.getNode(AArch64ISD::VASHR, dl,
Op.getOperand(1).getValueType(),
Op.getOperand(1), Op.getOperand(2)));
return SDValue();
case Intrinsic::aarch64_neon_sqshrun:
if (Op.getValueType().isVector())
return DAG.getNode(ISD::TRUNCATE_SSAT_U, dl, Op.getValueType(),
DAG.getNode(AArch64ISD::VASHR, dl,
Op.getOperand(1).getValueType(),
Op.getOperand(1), Op.getOperand(2)));
return SDValue();
case Intrinsic::aarch64_neon_uqshrn:
if (Op.getValueType().isVector())
return DAG.getNode(ISD::TRUNCATE_USAT_U, dl, Op.getValueType(),
DAG.getNode(AArch64ISD::VLSHR, dl,
Op.getOperand(1).getValueType(),
Op.getOperand(1), Op.getOperand(2)));
return SDValue();
case Intrinsic::aarch64_neon_sqrshrn:
if (Op.getValueType().isVector())
return DAG.getNode(
ISD::TRUNCATE_SSAT_S, dl, Op.getValueType(),
DAG.getNode(
AArch64ISD::SRSHR_I, dl, Op.getOperand(1).getValueType(),
Op.getOperand(1), Op.getOperand(2)));
return SDValue();
case Intrinsic::aarch64_neon_sqrshrun:
if (Op.getValueType().isVector())
return DAG.getNode(
ISD::TRUNCATE_SSAT_U, dl, Op.getValueType(),
DAG.getNode(
AArch64ISD::SRSHR_I, dl, Op.getOperand(1).getValueType(),
Op.getOperand(1), Op.getOperand(2)));
return SDValue();
case Intrinsic::aarch64_neon_uqrshrn:
if (Op.getValueType().isVector())
return DAG.getNode(
ISD::TRUNCATE_USAT_U, dl, Op.getValueType(),
DAG.getNode(
AArch64ISD::URSHR_I, dl, Op.getOperand(1).getValueType(), Op.getOperand(1), Op.getOperand(2)));
return SDValue();
case Intrinsic::aarch64_sve_whilelo:
return optimizeIncrementingWhile(Op, DAG, /*IsSigned=*/false,
/*IsEqual=*/false);
case Intrinsic::aarch64_sve_whilelt:
return optimizeIncrementingWhile(Op, DAG, /*IsSigned=*/true,
/*IsEqual=*/false);
case Intrinsic::aarch64_sve_whilels:
return optimizeIncrementingWhile(Op, DAG, /*IsSigned=*/false,
/*IsEqual=*/true);
case Intrinsic::aarch64_sve_whilele:
return optimizeIncrementingWhile(Op, DAG, /*IsSigned=*/true,
/*IsEqual=*/true);
case Intrinsic::aarch64_sve_sunpkhi:
return DAG.getNode(AArch64ISD::SUNPKHI, dl, Op.getValueType(),
Op.getOperand(1));
case Intrinsic::aarch64_sve_sunpklo:
return DAG.getNode(AArch64ISD::SUNPKLO, dl, Op.getValueType(),
Op.getOperand(1));
case Intrinsic::aarch64_sve_uunpkhi:
return DAG.getNode(AArch64ISD::UUNPKHI, dl, Op.getValueType(),
Op.getOperand(1));
case Intrinsic::aarch64_sve_uunpklo:
return DAG.getNode(AArch64ISD::UUNPKLO, dl, Op.getValueType(),
Op.getOperand(1));
case Intrinsic::aarch64_sve_clasta_n:
return DAG.getNode(AArch64ISD::CLASTA_N, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
case Intrinsic::aarch64_sve_clastb_n:
return DAG.getNode(AArch64ISD::CLASTB_N, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
case Intrinsic::aarch64_sve_lasta:
return DAG.getNode(AArch64ISD::LASTA, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::aarch64_sve_lastb:
return DAG.getNode(AArch64ISD::LASTB, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::aarch64_sve_rev:
return DAG.getNode(ISD::VECTOR_REVERSE, dl, Op.getValueType(),
Op.getOperand(1));
case Intrinsic::aarch64_sve_tbl:
return DAG.getNode(AArch64ISD::TBL, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::aarch64_sve_trn1:
return DAG.getNode(AArch64ISD::TRN1, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::aarch64_sve_trn2:
return DAG.getNode(AArch64ISD::TRN2, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::aarch64_sve_uzp1:
return DAG.getNode(AArch64ISD::UZP1, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::aarch64_sve_uzp2:
return DAG.getNode(AArch64ISD::UZP2, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::aarch64_sve_zip1:
return DAG.getNode(AArch64ISD::ZIP1, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::aarch64_sve_zip2:
return DAG.getNode(AArch64ISD::ZIP2, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::aarch64_sve_splice:
return DAG.getNode(AArch64ISD::SPLICE, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
case Intrinsic::aarch64_sve_ptrue:
return getPTrue(DAG, dl, Op.getValueType(), Op.getConstantOperandVal(1));
case Intrinsic::aarch64_sve_clz:
return DAG.getNode(AArch64ISD::CTLZ_MERGE_PASSTHRU, dl, Op.getValueType(),
Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
case Intrinsic::aarch64_sme_cntsb:
return DAG.getNode(AArch64ISD::RDSVL, dl, Op.getValueType(),
DAG.getConstant(1, dl, MVT::i32));
case Intrinsic::aarch64_sme_cntsh: {
SDValue One = DAG.getConstant(1, dl, MVT::i32);
SDValue Bytes = DAG.getNode(AArch64ISD::RDSVL, dl, Op.getValueType(), One);
return DAG.getNode(ISD::SRL, dl, Op.getValueType(), Bytes, One);
}
case Intrinsic::aarch64_sme_cntsw: {
SDValue Bytes = DAG.getNode(AArch64ISD::RDSVL, dl, Op.getValueType(),
DAG.getConstant(1, dl, MVT::i32));
return DAG.getNode(ISD::SRL, dl, Op.getValueType(), Bytes,
DAG.getConstant(2, dl, MVT::i32));
}
case Intrinsic::aarch64_sme_cntsd: {
SDValue Bytes = DAG.getNode(AArch64ISD::RDSVL, dl, Op.getValueType(),
DAG.getConstant(1, dl, MVT::i32));
return DAG.getNode(ISD::SRL, dl, Op.getValueType(), Bytes,
DAG.getConstant(3, dl, MVT::i32));
}
case Intrinsic::aarch64_sve_cnt: {
SDValue Data = Op.getOperand(3);
// CTPOP only supports integer operands.
if (Data.getValueType().isFloatingPoint())
Data = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Data);
return DAG.getNode(AArch64ISD::CTPOP_MERGE_PASSTHRU, dl, Op.getValueType(),
Op.getOperand(2), Data, Op.getOperand(1));
}
case Intrinsic::aarch64_sve_dupq_lane:
return LowerDUPQLane(Op, DAG);
case Intrinsic::aarch64_sve_convert_from_svbool:
if (Op.getValueType() == MVT::aarch64svcount)
return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Op.getOperand(1));
return getSVEPredicateBitCast(Op.getValueType(), Op.getOperand(1), DAG);
case Intrinsic::aarch64_sve_convert_to_svbool:
if (Op.getOperand(1).getValueType() == MVT::aarch64svcount)
return DAG.getNode(ISD::BITCAST, dl, MVT::nxv16i1, Op.getOperand(1));
return getSVEPredicateBitCast(MVT::nxv16i1, Op.getOperand(1), DAG);
case Intrinsic::aarch64_sve_fneg:
return DAG.getNode(AArch64ISD::FNEG_MERGE_PASSTHRU, dl, Op.getValueType(),
Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
case Intrinsic::aarch64_sve_frintp:
return DAG.getNode(AArch64ISD::FCEIL_MERGE_PASSTHRU, dl, Op.getValueType(),
Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
case Intrinsic::aarch64_sve_frintm:
return DAG.getNode(AArch64ISD::FFLOOR_MERGE_PASSTHRU, dl, Op.getValueType(),
Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
case Intrinsic::aarch64_sve_frinti:
return DAG.getNode(AArch64ISD::FNEARBYINT_MERGE_PASSTHRU, dl, Op.getValueType(),
Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
case Intrinsic::aarch64_sve_frintx:
return DAG.getNode(AArch64ISD::FRINT_MERGE_PASSTHRU, dl, Op.getValueType(),
Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
case Intrinsic::aarch64_sve_frinta:
return DAG.getNode(AArch64ISD::FROUND_MERGE_PASSTHRU, dl, Op.getValueType(),
Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
case Intrinsic::aarch64_sve_frintn:
return DAG.getNode(AArch64ISD::FROUNDEVEN_MERGE_PASSTHRU, dl, Op.getValueType(),
Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
case Intrinsic::aarch64_sve_frintz:
return DAG.getNode(AArch64ISD::FTRUNC_MERGE_PASSTHRU, dl, Op.getValueType(),
Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
case Intrinsic::aarch64_sve_ucvtf:
return DAG.getNode(AArch64ISD::UINT_TO_FP_MERGE_PASSTHRU, dl,
Op.getValueType(), Op.getOperand(2), Op.getOperand(3),
Op.getOperand(1));
case Intrinsic::aarch64_sve_scvtf:
return DAG.getNode(AArch64ISD::SINT_TO_FP_MERGE_PASSTHRU, dl,
Op.getValueType(), Op.getOperand(2), Op.getOperand(3),
Op.getOperand(1));
case Intrinsic::aarch64_sve_fcvtzu:
return DAG.getNode(AArch64ISD::FCVTZU_MERGE_PASSTHRU, dl,
Op.getValueType(), Op.getOperand(2), Op.getOperand(3),
Op.getOperand(1));
case Intrinsic::aarch64_sve_fcvtzs:
return DAG.getNode(AArch64ISD::FCVTZS_MERGE_PASSTHRU, dl,
Op.getValueType(), Op.getOperand(2), Op.getOperand(3),
Op.getOperand(1));
case Intrinsic::aarch64_sve_fsqrt:
return DAG.getNode(AArch64ISD::FSQRT_MERGE_PASSTHRU, dl, Op.getValueType(),
Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
case Intrinsic::aarch64_sve_frecpx:
return DAG.getNode(AArch64ISD::FRECPX_MERGE_PASSTHRU, dl, Op.getValueType(),
Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
case Intrinsic::aarch64_sve_frecpe_x:
return DAG.getNode(AArch64ISD::FRECPE, dl, Op.getValueType(),
Op.getOperand(1));
case Intrinsic::aarch64_sve_frecps_x:
return DAG.getNode(AArch64ISD::FRECPS, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::aarch64_sve_frsqrte_x:
return DAG.getNode(AArch64ISD::FRSQRTE, dl, Op.getValueType(),
Op.getOperand(1));
case Intrinsic::aarch64_sve_frsqrts_x:
return DAG.getNode(AArch64ISD::FRSQRTS, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::aarch64_sve_fabs:
return DAG.getNode(AArch64ISD::FABS_MERGE_PASSTHRU, dl, Op.getValueType(),
Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
case Intrinsic::aarch64_sve_abs:
return DAG.getNode(AArch64ISD::ABS_MERGE_PASSTHRU, dl, Op.getValueType(),
Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
case Intrinsic::aarch64_sve_neg:
return DAG.getNode(AArch64ISD::NEG_MERGE_PASSTHRU, dl, Op.getValueType(),
Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
case Intrinsic::aarch64_sve_insr: {
SDValue Scalar = Op.getOperand(2);
EVT ScalarTy = Scalar.getValueType();
if ((ScalarTy == MVT::i8) || (ScalarTy == MVT::i16))
Scalar = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Scalar);
return DAG.getNode(AArch64ISD::INSR, dl, Op.getValueType(),
Op.getOperand(1), Scalar);
}
case Intrinsic::aarch64_sve_rbit:
return DAG.getNode(AArch64ISD::BITREVERSE_MERGE_PASSTHRU, dl,
Op.getValueType(), Op.getOperand(2), Op.getOperand(3),
Op.getOperand(1));
case Intrinsic::aarch64_sve_revb:
return DAG.getNode(AArch64ISD::BSWAP_MERGE_PASSTHRU, dl, Op.getValueType(),
Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
case Intrinsic::aarch64_sve_revh:
return DAG.getNode(AArch64ISD::REVH_MERGE_PASSTHRU, dl, Op.getValueType(),
Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
case Intrinsic::aarch64_sve_revw:
return DAG.getNode(AArch64ISD::REVW_MERGE_PASSTHRU, dl, Op.getValueType(),
Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
case Intrinsic::aarch64_sve_revd:
return DAG.getNode(AArch64ISD::REVD_MERGE_PASSTHRU, dl, Op.getValueType(),
Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
case Intrinsic::aarch64_sve_sxtb:
return DAG.getNode(
AArch64ISD::SIGN_EXTEND_INREG_MERGE_PASSTHRU, dl, Op.getValueType(),
Op.getOperand(2), Op.getOperand(3),
DAG.getValueType(Op.getValueType().changeVectorElementType(MVT::i8)),
Op.getOperand(1));
case Intrinsic::aarch64_sve_sxth:
return DAG.getNode(
AArch64ISD::SIGN_EXTEND_INREG_MERGE_PASSTHRU, dl, Op.getValueType(),
Op.getOperand(2), Op.getOperand(3),
DAG.getValueType(Op.getValueType().changeVectorElementType(MVT::i16)),
Op.getOperand(1));
case Intrinsic::aarch64_sve_sxtw:
return DAG.getNode(
AArch64ISD::SIGN_EXTEND_INREG_MERGE_PASSTHRU, dl, Op.getValueType(),
Op.getOperand(2), Op.getOperand(3),
DAG.getValueType(Op.getValueType().changeVectorElementType(MVT::i32)),
Op.getOperand(1));
case Intrinsic::aarch64_sve_uxtb:
return DAG.getNode(
AArch64ISD::ZERO_EXTEND_INREG_MERGE_PASSTHRU, dl, Op.getValueType(),
Op.getOperand(2), Op.getOperand(3),
DAG.getValueType(Op.getValueType().changeVectorElementType(MVT::i8)),
Op.getOperand(1));
case Intrinsic::aarch64_sve_uxth:
return DAG.getNode(
AArch64ISD::ZERO_EXTEND_INREG_MERGE_PASSTHRU, dl, Op.getValueType(),
Op.getOperand(2), Op.getOperand(3),
DAG.getValueType(Op.getValueType().changeVectorElementType(MVT::i16)),
Op.getOperand(1));
case Intrinsic::aarch64_sve_uxtw:
return DAG.getNode(
AArch64ISD::ZERO_EXTEND_INREG_MERGE_PASSTHRU, dl, Op.getValueType(),
Op.getOperand(2), Op.getOperand(3),
DAG.getValueType(Op.getValueType().changeVectorElementType(MVT::i32)),
Op.getOperand(1));
case Intrinsic::localaddress: {
const auto &MF = DAG.getMachineFunction();
const auto *RegInfo = Subtarget->getRegisterInfo();
unsigned Reg = RegInfo->getLocalAddressRegister(MF);
return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg,
Op.getSimpleValueType());
}
case Intrinsic::eh_recoverfp: {
// FIXME: This needs to be implemented to correctly handle highly aligned
// stack objects. For now we simply return the incoming FP. Refer D53541
// for more details.
SDValue FnOp = Op.getOperand(1);
SDValue IncomingFPOp = Op.getOperand(2);
GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(FnOp);
auto *Fn = dyn_cast_or_null<Function>(GSD ? GSD->getGlobal() : nullptr);
if (!Fn)
report_fatal_error(
"llvm.eh.recoverfp must take a function as the first argument");
return IncomingFPOp;
}
case Intrinsic::aarch64_neon_vsri:
case Intrinsic::aarch64_neon_vsli:
case Intrinsic::aarch64_sve_sri:
case Intrinsic::aarch64_sve_sli: {
EVT Ty = Op.getValueType();
if (!Ty.isVector())
report_fatal_error("Unexpected type for aarch64_neon_vsli");
assert(Op.getConstantOperandVal(3) <= Ty.getScalarSizeInBits());
bool IsShiftRight = IntNo == Intrinsic::aarch64_neon_vsri ||
IntNo == Intrinsic::aarch64_sve_sri;
unsigned Opcode = IsShiftRight ? AArch64ISD::VSRI : AArch64ISD::VSLI;
return DAG.getNode(Opcode, dl, Ty, Op.getOperand(1), Op.getOperand(2),
Op.getOperand(3));
}
case Intrinsic::aarch64_neon_srhadd:
case Intrinsic::aarch64_neon_urhadd:
case Intrinsic::aarch64_neon_shadd:
case Intrinsic::aarch64_neon_uhadd: {
bool IsSignedAdd = (IntNo == Intrinsic::aarch64_neon_srhadd ||
IntNo == Intrinsic::aarch64_neon_shadd);
bool IsRoundingAdd = (IntNo == Intrinsic::aarch64_neon_srhadd ||
IntNo == Intrinsic::aarch64_neon_urhadd);
unsigned Opcode = IsSignedAdd
? (IsRoundingAdd ? ISD::AVGCEILS : ISD::AVGFLOORS)
: (IsRoundingAdd ? ISD::AVGCEILU : ISD::AVGFLOORU);
return DAG.getNode(Opcode, dl, Op.getValueType(), Op.getOperand(1),
Op.getOperand(2));
}
case Intrinsic::aarch64_neon_saddlp:
case Intrinsic::aarch64_neon_uaddlp: {
unsigned Opcode = IntNo == Intrinsic::aarch64_neon_uaddlp
? AArch64ISD::UADDLP
: AArch64ISD::SADDLP;
return DAG.getNode(Opcode, dl, Op.getValueType(), Op.getOperand(1));
}
case Intrinsic::aarch64_neon_sdot:
case Intrinsic::aarch64_neon_udot:
case Intrinsic::aarch64_sve_sdot:
case Intrinsic::aarch64_sve_udot: {
unsigned Opcode = (IntNo == Intrinsic::aarch64_neon_udot ||
IntNo == Intrinsic::aarch64_sve_udot)
? AArch64ISD::UDOT
: AArch64ISD::SDOT;
return DAG.getNode(Opcode, dl, Op.getValueType(), Op.getOperand(1),
Op.getOperand(2), Op.getOperand(3));
}
case Intrinsic::aarch64_neon_usdot:
case Intrinsic::aarch64_sve_usdot: {
return DAG.getNode(AArch64ISD::USDOT, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
}
case Intrinsic::get_active_lane_mask: {
SDValue ID =
DAG.getTargetConstant(Intrinsic::aarch64_sve_whilelo, dl, MVT::i64);
EVT VT = Op.getValueType();
if (VT.isScalableVector())
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, ID, Op.getOperand(1),
Op.getOperand(2));
// We can use the SVE whilelo instruction to lower this intrinsic by
// creating the appropriate sequence of scalable vector operations and
// then extracting a fixed-width subvector from the scalable vector.
EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT);
EVT WhileVT = ContainerVT.changeElementType(MVT::i1);
SDValue Mask = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, WhileVT, ID,
Op.getOperand(1), Op.getOperand(2));
SDValue MaskAsInt = DAG.getNode(ISD::SIGN_EXTEND, dl, ContainerVT, Mask);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, MaskAsInt,
DAG.getVectorIdxConstant(0, dl));
}
case Intrinsic::aarch64_neon_saddlv:
case Intrinsic::aarch64_neon_uaddlv: {
EVT OpVT = Op.getOperand(1).getValueType();
EVT ResVT = Op.getValueType();
assert(
((ResVT == MVT::i32 && (OpVT == MVT::v8i8 || OpVT == MVT::v16i8 ||
OpVT == MVT::v8i16 || OpVT == MVT::v4i16)) ||
(ResVT == MVT::i64 && (OpVT == MVT::v4i32 || OpVT == MVT::v2i32))) &&
"Unexpected aarch64_neon_u/saddlv type");
(void)OpVT;
// In order to avoid insert_subvector, use v4i32 rather than v2i32.
SDValue ADDLV = DAG.getNode(
IntNo == Intrinsic::aarch64_neon_uaddlv ? AArch64ISD::UADDLV
: AArch64ISD::SADDLV,
dl, ResVT == MVT::i32 ? MVT::v4i32 : MVT::v2i64, Op.getOperand(1));
SDValue EXTRACT_VEC_ELT = DAG.getNode(
ISD::EXTRACT_VECTOR_ELT, dl, ResVT == MVT::i32 ? MVT::i32 : MVT::i64,
ADDLV, DAG.getConstant(0, dl, MVT::i64));
return EXTRACT_VEC_ELT;
}
case Intrinsic::experimental_cttz_elts: {
SDValue CttzOp = Op.getOperand(1);
EVT VT = CttzOp.getValueType();
assert(VT.getVectorElementType() == MVT::i1 && "Expected MVT::i1");
if (VT.isFixedLengthVector()) {
// We can use SVE instructions to lower this intrinsic by first creating
// an SVE predicate register mask from the fixed-width vector.
EVT NewVT = getTypeToTransformTo(*DAG.getContext(), VT);
SDValue Mask = DAG.getNode(ISD::SIGN_EXTEND, dl, NewVT, CttzOp);
CttzOp = convertFixedMaskToScalableVector(Mask, DAG);
}
SDValue NewCttzElts =
DAG.getNode(AArch64ISD::CTTZ_ELTS, dl, MVT::i64, CttzOp);
return DAG.getZExtOrTrunc(NewCttzElts, dl, Op.getValueType());
}
}
}
bool AArch64TargetLowering::shouldExtendGSIndex(EVT VT, EVT &EltTy) const {
if (VT.getVectorElementType() == MVT::i8 ||
VT.getVectorElementType() == MVT::i16) {
EltTy = MVT::i32;
return true;
}
return false;
}
bool AArch64TargetLowering::shouldRemoveExtendFromGSIndex(SDValue Extend,
EVT DataVT) const {
const EVT IndexVT = Extend.getOperand(0).getValueType();
// SVE only supports implicit extension of 32-bit indices.
if (!Subtarget->hasSVE() || IndexVT.getVectorElementType() != MVT::i32)
return false;
// Indices cannot be smaller than the main data type.
if (IndexVT.getScalarSizeInBits() < DataVT.getScalarSizeInBits())
return false;
// Scalable vectors with "vscale * 2" or fewer elements sit within a 64-bit
// element container type, which would violate the previous clause.
return DataVT.isFixedLengthVector() || DataVT.getVectorMinNumElements() > 2;
}
bool AArch64TargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
EVT ExtVT = ExtVal.getValueType();
if (!ExtVT.isScalableVector() && !Subtarget->useSVEForFixedLengthVectors())
return false;
// It may be worth creating extending masked loads if there are multiple
// masked loads using the same predicate. That way we'll end up creating
// extending masked loads that may then get split by the legaliser. This
// results in just one set of predicate unpacks at the start, instead of
// multiple sets of vector unpacks after each load.
if (auto *Ld = dyn_cast<MaskedLoadSDNode>(ExtVal->getOperand(0))) {
if (!isLoadExtLegalOrCustom(ISD::ZEXTLOAD, ExtVT, Ld->getValueType(0))) {
// Disable extending masked loads for fixed-width for now, since the code
// quality doesn't look great.
if (!ExtVT.isScalableVector())
return false;
unsigned NumExtMaskedLoads = 0;
for (auto *U : Ld->getMask()->uses())
if (isa<MaskedLoadSDNode>(U))
NumExtMaskedLoads++;
if (NumExtMaskedLoads <= 1)
return false;
}
}
return true;
}
unsigned getGatherVecOpcode(bool IsScaled, bool IsSigned, bool NeedsExtend) {
std::map<std::tuple<bool, bool, bool>, unsigned> AddrModes = {
{std::make_tuple(/*Scaled*/ false, /*Signed*/ false, /*Extend*/ false),
AArch64ISD::GLD1_MERGE_ZERO},
{std::make_tuple(/*Scaled*/ false, /*Signed*/ false, /*Extend*/ true),
AArch64ISD::GLD1_UXTW_MERGE_ZERO},
{std::make_tuple(/*Scaled*/ false, /*Signed*/ true, /*Extend*/ false),
AArch64ISD::GLD1_MERGE_ZERO},
{std::make_tuple(/*Scaled*/ false, /*Signed*/ true, /*Extend*/ true),
AArch64ISD::GLD1_SXTW_MERGE_ZERO},
{std::make_tuple(/*Scaled*/ true, /*Signed*/ false, /*Extend*/ false),
AArch64ISD::GLD1_SCALED_MERGE_ZERO},
{std::make_tuple(/*Scaled*/ true, /*Signed*/ false, /*Extend*/ true),
AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO},
{std::make_tuple(/*Scaled*/ true, /*Signed*/ true, /*Extend*/ false),
AArch64ISD::GLD1_SCALED_MERGE_ZERO},
{std::make_tuple(/*Scaled*/ true, /*Signed*/ true, /*Extend*/ true),
AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO},
};
auto Key = std::make_tuple(IsScaled, IsSigned, NeedsExtend);
return AddrModes.find(Key)->second;
}
unsigned getSignExtendedGatherOpcode(unsigned Opcode) {
switch (Opcode) {
default:
llvm_unreachable("unimplemented opcode");
return Opcode;
case AArch64ISD::GLD1_MERGE_ZERO:
return AArch64ISD::GLD1S_MERGE_ZERO;
case AArch64ISD::GLD1_IMM_MERGE_ZERO:
return AArch64ISD::GLD1S_IMM_MERGE_ZERO;
case AArch64ISD::GLD1_UXTW_MERGE_ZERO:
return AArch64ISD::GLD1S_UXTW_MERGE_ZERO;
case AArch64ISD::GLD1_SXTW_MERGE_ZERO:
return AArch64ISD::GLD1S_SXTW_MERGE_ZERO;
case AArch64ISD::GLD1_SCALED_MERGE_ZERO:
return AArch64ISD::GLD1S_SCALED_MERGE_ZERO;
case AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO:
return AArch64ISD::GLD1S_UXTW_SCALED_MERGE_ZERO;
case AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO:
return AArch64ISD::GLD1S_SXTW_SCALED_MERGE_ZERO;
}
}
SDValue AArch64TargetLowering::LowerMGATHER(SDValue Op,
SelectionDAG &DAG) const {
MaskedGatherSDNode *MGT = cast<MaskedGatherSDNode>(Op);
SDLoc DL(Op);
SDValue Chain = MGT->getChain();
SDValue PassThru = MGT->getPassThru();
SDValue Mask = MGT->getMask();
SDValue BasePtr = MGT->getBasePtr();
SDValue Index = MGT->getIndex();
SDValue Scale = MGT->getScale();
EVT VT = Op.getValueType();
EVT MemVT = MGT->getMemoryVT();
ISD::LoadExtType ExtType = MGT->getExtensionType();
ISD::MemIndexType IndexType = MGT->getIndexType();
// SVE supports zero (and so undef) passthrough values only, everything else
// must be handled manually by an explicit select on the load's output.
if (!PassThru->isUndef() && !isZerosVector(PassThru.getNode())) {
SDValue Ops[] = {Chain, DAG.getUNDEF(VT), Mask, BasePtr, Index, Scale};
SDValue Load =
DAG.getMaskedGather(MGT->getVTList(), MemVT, DL, Ops,
MGT->getMemOperand(), IndexType, ExtType);
SDValue Select = DAG.getSelect(DL, VT, Mask, Load, PassThru);
return DAG.getMergeValues({Select, Load.getValue(1)}, DL);
}
bool IsScaled = MGT->isIndexScaled();
bool IsSigned = MGT->isIndexSigned();
// SVE supports an index scaled by sizeof(MemVT.elt) only, everything else
// must be calculated before hand.
uint64_t ScaleVal = Scale->getAsZExtVal();
if (IsScaled && ScaleVal != MemVT.getScalarStoreSize()) {
assert(isPowerOf2_64(ScaleVal) && "Expecting power-of-two types");
EVT IndexVT = Index.getValueType();
Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index,
DAG.getConstant(Log2_32(ScaleVal), DL, IndexVT));
Scale = DAG.getTargetConstant(1, DL, Scale.getValueType());
SDValue Ops[] = {Chain, PassThru, Mask, BasePtr, Index, Scale};
return DAG.getMaskedGather(MGT->getVTList(), MemVT, DL, Ops,
MGT->getMemOperand(), IndexType, ExtType);
}
// Lower fixed length gather to a scalable equivalent.
if (VT.isFixedLengthVector()) {
assert(Subtarget->useSVEForFixedLengthVectors() &&
"Cannot lower when not using SVE for fixed vectors!");
// NOTE: Handle floating-point as if integer then bitcast the result.
EVT DataVT = VT.changeVectorElementTypeToInteger();
MemVT = MemVT.changeVectorElementTypeToInteger();
// Find the smallest integer fixed length vector we can use for the gather.
EVT PromotedVT = VT.changeVectorElementType(MVT::i32);
if (DataVT.getVectorElementType() == MVT::i64 ||
Index.getValueType().getVectorElementType() == MVT::i64 ||
Mask.getValueType().getVectorElementType() == MVT::i64)
PromotedVT = VT.changeVectorElementType(MVT::i64);
// Promote vector operands except for passthrough, which we know is either
// undef or zero, and thus best constructed directly.
unsigned ExtOpcode = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
Index = DAG.getNode(ExtOpcode, DL, PromotedVT, Index);
Mask = DAG.getNode(ISD::SIGN_EXTEND, DL, PromotedVT, Mask);
// A promoted result type forces the need for an extending load.
if (PromotedVT != DataVT && ExtType == ISD::NON_EXTLOAD)
ExtType = ISD::EXTLOAD;
EVT ContainerVT = getContainerForFixedLengthVector(DAG, PromotedVT);
// Convert fixed length vector operands to scalable.
MemVT = ContainerVT.changeVectorElementType(MemVT.getVectorElementType());
Index = convertToScalableVector(DAG, ContainerVT, Index);
Mask = convertFixedMaskToScalableVector(Mask, DAG);
PassThru = PassThru->isUndef() ? DAG.getUNDEF(ContainerVT)
: DAG.getConstant(0, DL, ContainerVT);
// Emit equivalent scalable vector gather.
SDValue Ops[] = {Chain, PassThru, Mask, BasePtr, Index, Scale};
SDValue Load =
DAG.getMaskedGather(DAG.getVTList(ContainerVT, MVT::Other), MemVT, DL,
Ops, MGT->getMemOperand(), IndexType, ExtType);
// Extract fixed length data then convert to the required result type.
SDValue Result = convertFromScalableVector(DAG, PromotedVT, Load);
Result = DAG.getNode(ISD::TRUNCATE, DL, DataVT, Result);
if (VT.isFloatingPoint())
Result = DAG.getNode(ISD::BITCAST, DL, VT, Result);
return DAG.getMergeValues({Result, Load.getValue(1)}, DL);
}
// Everything else is legal.
return Op;
}
SDValue AArch64TargetLowering::LowerMSCATTER(SDValue Op,
SelectionDAG &DAG) const {
MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(Op);
SDLoc DL(Op);
SDValue Chain = MSC->getChain();
SDValue StoreVal = MSC->getValue();
SDValue Mask = MSC->getMask();
SDValue BasePtr = MSC->getBasePtr();
SDValue Index = MSC->getIndex();
SDValue Scale = MSC->getScale();
EVT VT = StoreVal.getValueType();
EVT MemVT = MSC->getMemoryVT();
ISD::MemIndexType IndexType = MSC->getIndexType();
bool Truncating = MSC->isTruncatingStore();
bool IsScaled = MSC->isIndexScaled();
bool IsSigned = MSC->isIndexSigned();
// SVE supports an index scaled by sizeof(MemVT.elt) only, everything else
// must be calculated before hand.
uint64_t ScaleVal = Scale->getAsZExtVal();
if (IsScaled && ScaleVal != MemVT.getScalarStoreSize()) {
assert(isPowerOf2_64(ScaleVal) && "Expecting power-of-two types");
EVT IndexVT = Index.getValueType();
Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index,
DAG.getConstant(Log2_32(ScaleVal), DL, IndexVT));
Scale = DAG.getTargetConstant(1, DL, Scale.getValueType());
SDValue Ops[] = {Chain, StoreVal, Mask, BasePtr, Index, Scale};
return DAG.getMaskedScatter(MSC->getVTList(), MemVT, DL, Ops,
MSC->getMemOperand(), IndexType, Truncating);
}
// Lower fixed length scatter to a scalable equivalent.
if (VT.isFixedLengthVector()) {
assert(Subtarget->useSVEForFixedLengthVectors() &&
"Cannot lower when not using SVE for fixed vectors!");
// Once bitcast we treat floating-point scatters as if integer.
if (VT.isFloatingPoint()) {
VT = VT.changeVectorElementTypeToInteger();
MemVT = MemVT.changeVectorElementTypeToInteger();
StoreVal = DAG.getNode(ISD::BITCAST, DL, VT, StoreVal);
}
// Find the smallest integer fixed length vector we can use for the scatter.
EVT PromotedVT = VT.changeVectorElementType(MVT::i32);
if (VT.getVectorElementType() == MVT::i64 ||
Index.getValueType().getVectorElementType() == MVT::i64 ||
Mask.getValueType().getVectorElementType() == MVT::i64)
PromotedVT = VT.changeVectorElementType(MVT::i64);
// Promote vector operands.
unsigned ExtOpcode = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
Index = DAG.getNode(ExtOpcode, DL, PromotedVT, Index);
Mask = DAG.getNode(ISD::SIGN_EXTEND, DL, PromotedVT, Mask);
StoreVal = DAG.getNode(ISD::ANY_EXTEND, DL, PromotedVT, StoreVal);
// A promoted value type forces the need for a truncating store.
if (PromotedVT != VT)
Truncating = true;
EVT ContainerVT = getContainerForFixedLengthVector(DAG, PromotedVT);
// Convert fixed length vector operands to scalable.
MemVT = ContainerVT.changeVectorElementType(MemVT.getVectorElementType());
Index = convertToScalableVector(DAG, ContainerVT, Index);
Mask = convertFixedMaskToScalableVector(Mask, DAG);
StoreVal = convertToScalableVector(DAG, ContainerVT, StoreVal);
// Emit equivalent scalable vector scatter.
SDValue Ops[] = {Chain, StoreVal, Mask, BasePtr, Index, Scale};
return DAG.getMaskedScatter(MSC->getVTList(), MemVT, DL, Ops,
MSC->getMemOperand(), IndexType, Truncating);
}
// Everything else is legal.
return Op;
}
SDValue AArch64TargetLowering::LowerMLOAD(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
MaskedLoadSDNode *LoadNode = cast<MaskedLoadSDNode>(Op);
assert(LoadNode && "Expected custom lowering of a masked load node");
EVT VT = Op->getValueType(0);
if (useSVEForFixedLengthVectorVT(VT, /*OverrideNEON=*/true))
return LowerFixedLengthVectorMLoadToSVE(Op, DAG);
SDValue PassThru = LoadNode->getPassThru();
SDValue Mask = LoadNode->getMask();
if (PassThru->isUndef() || isZerosVector(PassThru.getNode()))
return Op;
SDValue Load = DAG.getMaskedLoad(
VT, DL, LoadNode->getChain(), LoadNode->getBasePtr(),
LoadNode->getOffset(), Mask, DAG.getUNDEF(VT), LoadNode->getMemoryVT(),
LoadNode->getMemOperand(), LoadNode->getAddressingMode(),
LoadNode->getExtensionType());
SDValue Result = DAG.getSelect(DL, VT, Mask, Load, PassThru);
return DAG.getMergeValues({Result, Load.getValue(1)}, DL);
}
// Custom lower trunc store for v4i8 vectors, since it is promoted to v4i16.
static SDValue LowerTruncateVectorStore(SDLoc DL, StoreSDNode *ST,
EVT VT, EVT MemVT,
SelectionDAG &DAG) {
assert(VT.isVector() && "VT should be a vector type");
assert(MemVT == MVT::v4i8 && VT == MVT::v4i16);
SDValue Value = ST->getValue();
// It first extend the promoted v4i16 to v8i16, truncate to v8i8, and extract
// the word lane which represent the v4i8 subvector. It optimizes the store
// to:
//
// xtn v0.8b, v0.8h
// str s0, [x0]
SDValue Undef = DAG.getUNDEF(MVT::i16);
SDValue UndefVec = DAG.getBuildVector(MVT::v4i16, DL,
{Undef, Undef, Undef, Undef});
SDValue TruncExt = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i16,
Value, UndefVec);
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::v8i8, TruncExt);
Trunc = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Trunc);
SDValue ExtractTrunc = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32,
Trunc, DAG.getConstant(0, DL, MVT::i64));
return DAG.getStore(ST->getChain(), DL, ExtractTrunc,
ST->getBasePtr(), ST->getMemOperand());
}
// Custom lowering for any store, vector or scalar and/or default or with
// a truncate operations. Currently only custom lower truncate operation
// from vector v4i16 to v4i8 or volatile stores of i128.
SDValue AArch64TargetLowering::LowerSTORE(SDValue Op,
SelectionDAG &DAG) const {
SDLoc Dl(Op);
StoreSDNode *StoreNode = cast<StoreSDNode>(Op);
assert (StoreNode && "Can only custom lower store nodes");
SDValue Value = StoreNode->getValue();
EVT VT = Value.getValueType();
EVT MemVT = StoreNode->getMemoryVT();
if (VT.isVector()) {
if (useSVEForFixedLengthVectorVT(
VT,
/*OverrideNEON=*/Subtarget->useSVEForFixedLengthVectors()))
return LowerFixedLengthVectorStoreToSVE(Op, DAG);
unsigned AS = StoreNode->getAddressSpace();
Align Alignment = StoreNode->getAlign();
if (Alignment < MemVT.getStoreSize() &&
!allowsMisalignedMemoryAccesses(MemVT, AS, Alignment,
StoreNode->getMemOperand()->getFlags(),
nullptr)) {
return scalarizeVectorStore(StoreNode, DAG);
}
if (StoreNode->isTruncatingStore() && VT == MVT::v4i16 &&
MemVT == MVT::v4i8) {
return LowerTruncateVectorStore(Dl, StoreNode, VT, MemVT, DAG);
}
// 256 bit non-temporal stores can be lowered to STNP. Do this as part of
// the custom lowering, as there are no un-paired non-temporal stores and
// legalization will break up 256 bit inputs.
ElementCount EC = MemVT.getVectorElementCount();
if (StoreNode->isNonTemporal() && MemVT.getSizeInBits() == 256u &&
EC.isKnownEven() && DAG.getDataLayout().isLittleEndian() &&
(MemVT.getScalarSizeInBits() == 8u ||
MemVT.getScalarSizeInBits() == 16u ||
MemVT.getScalarSizeInBits() == 32u ||
MemVT.getScalarSizeInBits() == 64u)) {
SDValue Lo =
DAG.getNode(ISD::EXTRACT_SUBVECTOR, Dl,
MemVT.getHalfNumVectorElementsVT(*DAG.getContext()),
StoreNode->getValue(), DAG.getConstant(0, Dl, MVT::i64));
SDValue Hi =
DAG.getNode(ISD::EXTRACT_SUBVECTOR, Dl,
MemVT.getHalfNumVectorElementsVT(*DAG.getContext()),
StoreNode->getValue(),
DAG.getConstant(EC.getKnownMinValue() / 2, Dl, MVT::i64));
SDValue Result = DAG.getMemIntrinsicNode(
AArch64ISD::STNP, Dl, DAG.getVTList(MVT::Other),
{StoreNode->getChain(), Lo, Hi, StoreNode->getBasePtr()},
StoreNode->getMemoryVT(), StoreNode->getMemOperand());
return Result;
}
} else if (MemVT == MVT::i128 && StoreNode->isVolatile()) {
return LowerStore128(Op, DAG);
} else if (MemVT == MVT::i64x8) {
SDValue Value = StoreNode->getValue();
assert(Value->getValueType(0) == MVT::i64x8);
SDValue Chain = StoreNode->getChain();
SDValue Base = StoreNode->getBasePtr();
EVT PtrVT = Base.getValueType();
for (unsigned i = 0; i < 8; i++) {
SDValue Part = DAG.getNode(AArch64ISD::LS64_EXTRACT, Dl, MVT::i64,
Value, DAG.getConstant(i, Dl, MVT::i32));
SDValue Ptr = DAG.getNode(ISD::ADD, Dl, PtrVT, Base,
DAG.getConstant(i * 8, Dl, PtrVT));
Chain = DAG.getStore(Chain, Dl, Part, Ptr, StoreNode->getPointerInfo(),
StoreNode->getOriginalAlign());
}
return Chain;
}
return SDValue();
}
/// Lower atomic or volatile 128-bit stores to a single STP instruction.
SDValue AArch64TargetLowering::LowerStore128(SDValue Op,
SelectionDAG &DAG) const {
MemSDNode *StoreNode = cast<MemSDNode>(Op);
assert(StoreNode->getMemoryVT() == MVT::i128);
assert(StoreNode->isVolatile() || StoreNode->isAtomic());
bool IsStoreRelease =
StoreNode->getMergedOrdering() == AtomicOrdering::Release;
if (StoreNode->isAtomic())
assert((Subtarget->hasFeature(AArch64::FeatureLSE2) &&
Subtarget->hasFeature(AArch64::FeatureRCPC3) && IsStoreRelease) ||
StoreNode->getMergedOrdering() == AtomicOrdering::Unordered ||
StoreNode->getMergedOrdering() == AtomicOrdering::Monotonic);
SDValue Value = (StoreNode->getOpcode() == ISD::STORE ||
StoreNode->getOpcode() == ISD::ATOMIC_STORE)
? StoreNode->getOperand(1)
: StoreNode->getOperand(2);
SDLoc DL(Op);
auto StoreValue = DAG.SplitScalar(Value, DL, MVT::i64, MVT::i64);
unsigned Opcode = IsStoreRelease ? AArch64ISD::STILP : AArch64ISD::STP;
if (DAG.getDataLayout().isBigEndian())
std::swap(StoreValue.first, StoreValue.second);
SDValue Result = DAG.getMemIntrinsicNode(
Opcode, DL, DAG.getVTList(MVT::Other),
{StoreNode->getChain(), StoreValue.first, StoreValue.second,
StoreNode->getBasePtr()},
StoreNode->getMemoryVT(), StoreNode->getMemOperand());
return Result;
}
SDValue AArch64TargetLowering::LowerLOAD(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
LoadSDNode *LoadNode = cast<LoadSDNode>(Op);
assert(LoadNode && "Expected custom lowering of a load node");
if (LoadNode->getMemoryVT() == MVT::i64x8) {
SmallVector<SDValue, 8> Ops;
SDValue Base = LoadNode->getBasePtr();
SDValue Chain = LoadNode->getChain();
EVT PtrVT = Base.getValueType();
for (unsigned i = 0; i < 8; i++) {
SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Base,
DAG.getConstant(i * 8, DL, PtrVT));
SDValue Part = DAG.getLoad(MVT::i64, DL, Chain, Ptr,
LoadNode->getPointerInfo(),
LoadNode->getOriginalAlign());
Ops.push_back(Part);
Chain = SDValue(Part.getNode(), 1);
}
SDValue Loaded = DAG.getNode(AArch64ISD::LS64_BUILD, DL, MVT::i64x8, Ops);
return DAG.getMergeValues({Loaded, Chain}, DL);
}
// Custom lowering for extending v4i8 vector loads.
EVT VT = Op->getValueType(0);
assert((VT == MVT::v4i16 || VT == MVT::v4i32) && "Expected v4i16 or v4i32");
if (LoadNode->getMemoryVT() != MVT::v4i8)
return SDValue();
// Avoid generating unaligned loads.
if (Subtarget->requiresStrictAlign() && LoadNode->getAlign() < Align(4))
return SDValue();
unsigned ExtType;
if (LoadNode->getExtensionType() == ISD::SEXTLOAD)
ExtType = ISD::SIGN_EXTEND;
else if (LoadNode->getExtensionType() == ISD::ZEXTLOAD ||
LoadNode->getExtensionType() == ISD::EXTLOAD)
ExtType = ISD::ZERO_EXTEND;
else
return SDValue();
SDValue Load = DAG.getLoad(MVT::f32, DL, LoadNode->getChain(),
LoadNode->getBasePtr(), MachinePointerInfo());
SDValue Chain = Load.getValue(1);
SDValue Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f32, Load);
SDValue BC = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Vec);
SDValue Ext = DAG.getNode(ExtType, DL, MVT::v8i16, BC);
Ext = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, Ext,
DAG.getConstant(0, DL, MVT::i64));
if (VT == MVT::v4i32)
Ext = DAG.getNode(ExtType, DL, MVT::v4i32, Ext);
return DAG.getMergeValues({Ext, Chain}, DL);
}
SDValue AArch64TargetLowering::LowerVECTOR_COMPRESS(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
SDValue Vec = Op.getOperand(0);
SDValue Mask = Op.getOperand(1);
SDValue Passthru = Op.getOperand(2);
EVT VecVT = Vec.getValueType();
EVT MaskVT = Mask.getValueType();
EVT ElmtVT = VecVT.getVectorElementType();
const bool IsFixedLength = VecVT.isFixedLengthVector();
const bool HasPassthru = !Passthru.isUndef();
unsigned MinElmts = VecVT.getVectorElementCount().getKnownMinValue();
EVT FixedVecVT = MVT::getVectorVT(ElmtVT.getSimpleVT(), MinElmts);
assert(VecVT.isVector() && "Input to VECTOR_COMPRESS must be vector.");
if (!Subtarget->isSVEAvailable())
return SDValue();
if (IsFixedLength && VecVT.getSizeInBits().getFixedValue() > 128)
return SDValue();
// Only <vscale x {4|2} x {i32|i64}> supported for compact.
if (MinElmts != 2 && MinElmts != 4)
return SDValue();
// We can use the SVE register containing the NEON vector in its lowest bits.
if (IsFixedLength) {
EVT ScalableVecVT =
MVT::getScalableVectorVT(ElmtVT.getSimpleVT(), MinElmts);
EVT ScalableMaskVT = MVT::getScalableVectorVT(
MaskVT.getVectorElementType().getSimpleVT(), MinElmts);
Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ScalableVecVT,
DAG.getUNDEF(ScalableVecVT), Vec,
DAG.getConstant(0, DL, MVT::i64));
Mask = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ScalableMaskVT,
DAG.getUNDEF(ScalableMaskVT), Mask,
DAG.getConstant(0, DL, MVT::i64));
Mask = DAG.getNode(ISD::TRUNCATE, DL,
ScalableMaskVT.changeVectorElementType(MVT::i1), Mask);
Passthru = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ScalableVecVT,
DAG.getUNDEF(ScalableVecVT), Passthru,
DAG.getConstant(0, DL, MVT::i64));
VecVT = Vec.getValueType();
MaskVT = Mask.getValueType();
}
// Get legal type for compact instruction
EVT ContainerVT = getSVEContainerType(VecVT);
EVT CastVT = VecVT.changeVectorElementTypeToInteger();
// Convert to i32 or i64 for smaller types, as these are the only supported
// sizes for compact.
if (ContainerVT != VecVT) {
Vec = DAG.getBitcast(CastVT, Vec);
Vec = DAG.getNode(ISD::ANY_EXTEND, DL, ContainerVT, Vec);
}
SDValue Compressed = DAG.getNode(
ISD::INTRINSIC_WO_CHAIN, DL, Vec.getValueType(),
DAG.getConstant(Intrinsic::aarch64_sve_compact, DL, MVT::i64), Mask, Vec);
// compact fills with 0s, so if our passthru is all 0s, do nothing here.
if (HasPassthru && !ISD::isConstantSplatVectorAllZeros(Passthru.getNode())) {
SDValue Offset = DAG.getNode(
ISD::INTRINSIC_WO_CHAIN, DL, MVT::i64,
DAG.getConstant(Intrinsic::aarch64_sve_cntp, DL, MVT::i64), Mask, Mask);
SDValue IndexMask = DAG.getNode(
ISD::INTRINSIC_WO_CHAIN, DL, MaskVT,
DAG.getConstant(Intrinsic::aarch64_sve_whilelo, DL, MVT::i64),
DAG.getConstant(0, DL, MVT::i64), Offset);
Compressed =
DAG.getNode(ISD::VSELECT, DL, VecVT, IndexMask, Compressed, Passthru);
}
// Extracting from a legal SVE type before truncating produces better code.
if (IsFixedLength) {
Compressed = DAG.getNode(
ISD::EXTRACT_SUBVECTOR, DL,
FixedVecVT.changeVectorElementType(ContainerVT.getVectorElementType()),
Compressed, DAG.getConstant(0, DL, MVT::i64));
CastVT = FixedVecVT.changeVectorElementTypeToInteger();
VecVT = FixedVecVT;
}
// If we changed the element type before, we need to convert it back.
if (ContainerVT != VecVT) {
Compressed = DAG.getNode(ISD::TRUNCATE, DL, CastVT, Compressed);
Compressed = DAG.getBitcast(VecVT, Compressed);
}
return Compressed;
}
// Generate SUBS and CSEL for integer abs.
SDValue AArch64TargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const {
MVT VT = Op.getSimpleValueType();
if (VT.isVector())
return LowerToPredicatedOp(Op, DAG, AArch64ISD::ABS_MERGE_PASSTHRU);
SDLoc DL(Op);
SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
Op.getOperand(0));
// Generate SUBS & CSEL.
SDValue Cmp =
DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32),
Op.getOperand(0), DAG.getConstant(0, DL, VT));
return DAG.getNode(AArch64ISD::CSEL, DL, VT, Op.getOperand(0), Neg,
DAG.getConstant(AArch64CC::PL, DL, MVT::i32),
Cmp.getValue(1));
}
static SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) {
SDValue Chain = Op.getOperand(0);
SDValue Cond = Op.getOperand(1);
SDValue Dest = Op.getOperand(2);
AArch64CC::CondCode CC;
if (SDValue Cmp = emitConjunction(DAG, Cond, CC)) {
SDLoc dl(Op);
SDValue CCVal = DAG.getConstant(CC, dl, MVT::i32);
return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
Cmp);
}
return SDValue();
}
// Treat FSHR with constant shifts as legal operation, otherwise it is expanded
// FSHL is converted to FSHR before deciding what to do with it
static SDValue LowerFunnelShift(SDValue Op, SelectionDAG &DAG) {
SDValue Shifts = Op.getOperand(2);
// Check if the shift amount is a constant
// If opcode is FSHL, convert it to FSHR
if (auto *ShiftNo = dyn_cast<ConstantSDNode>(Shifts)) {
SDLoc DL(Op);
MVT VT = Op.getSimpleValueType();
if (Op.getOpcode() == ISD::FSHL) {
unsigned int NewShiftNo =
VT.getFixedSizeInBits() - ShiftNo->getZExtValue();
return DAG.getNode(
ISD::FSHR, DL, VT, Op.getOperand(0), Op.getOperand(1),
DAG.getConstant(NewShiftNo, DL, Shifts.getValueType()));
} else if (Op.getOpcode() == ISD::FSHR) {
return Op;
}
}
return SDValue();
}
static SDValue LowerFLDEXP(SDValue Op, SelectionDAG &DAG) {
SDValue X = Op.getOperand(0);
EVT XScalarTy = X.getValueType();
SDValue Exp = Op.getOperand(1);
SDLoc DL(Op);
EVT XVT, ExpVT;
switch (Op.getSimpleValueType().SimpleTy) {
default:
return SDValue();
case MVT::bf16:
case MVT::f16:
X = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, X);
[[fallthrough]];
case MVT::f32:
XVT = MVT::nxv4f32;
ExpVT = MVT::nxv4i32;
break;
case MVT::f64:
XVT = MVT::nxv2f64;
ExpVT = MVT::nxv2i64;
Exp = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Exp);
break;
}
SDValue Zero = DAG.getConstant(0, DL, MVT::i64);
SDValue VX =
DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, XVT, DAG.getUNDEF(XVT), X, Zero);
SDValue VExp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ExpVT,
DAG.getUNDEF(ExpVT), Exp, Zero);
SDValue VPg = getPTrue(DAG, DL, XVT.changeVectorElementType(MVT::i1),
AArch64SVEPredPattern::all);
SDValue FScale =
DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XVT,
DAG.getConstant(Intrinsic::aarch64_sve_fscale, DL, MVT::i64),
VPg, VX, VExp);
SDValue Final =
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, X.getValueType(), FScale, Zero);
if (X.getValueType() != XScalarTy)
Final = DAG.getNode(ISD::FP_ROUND, DL, XScalarTy, Final,
DAG.getIntPtrConstant(1, SDLoc(Op)));
return Final;
}
SDValue AArch64TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
SelectionDAG &DAG) const {
// Note: x18 cannot be used for the Nest parameter on Windows and macOS.
if (Subtarget->isTargetDarwin() || Subtarget->isTargetWindows())
report_fatal_error(
"ADJUST_TRAMPOLINE operation is only supported on Linux.");
return Op.getOperand(0);
}
SDValue AArch64TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
SelectionDAG &DAG) const {
// Note: x18 cannot be used for the Nest parameter on Windows and macOS.
if (Subtarget->isTargetDarwin() || Subtarget->isTargetWindows())
report_fatal_error("INIT_TRAMPOLINE operation is only supported on Linux.");
SDValue Chain = Op.getOperand(0);
SDValue Trmp = Op.getOperand(1); // trampoline
SDValue FPtr = Op.getOperand(2); // nested function
SDValue Nest = Op.getOperand(3); // 'nest' parameter value
SDLoc dl(Op);
EVT PtrVT = getPointerTy(DAG.getDataLayout());
Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Ty = IntPtrTy;
Entry.Node = Trmp;
Args.push_back(Entry);
Entry.Node = DAG.getConstant(20, dl, MVT::i64);
Args.push_back(Entry);
Entry.Node = FPtr;
Args.push_back(Entry);
Entry.Node = Nest;
Args.push_back(Entry);
// Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
CallingConv::C, Type::getVoidTy(*DAG.getContext()),
DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
return CallResult.second;
}
SDValue AArch64TargetLowering::LowerOperation(SDValue Op,
SelectionDAG &DAG) const {
LLVM_DEBUG(dbgs() << "Custom lowering: ");
LLVM_DEBUG(Op.dump());
switch (Op.getOpcode()) {
default:
llvm_unreachable("unimplemented operand");
return SDValue();
case ISD::BITCAST:
return LowerBITCAST(Op, DAG);
case ISD::GlobalAddress:
return LowerGlobalAddress(Op, DAG);
case ISD::GlobalTLSAddress:
return LowerGlobalTLSAddress(Op, DAG);
case ISD::PtrAuthGlobalAddress:
return LowerPtrAuthGlobalAddress(Op, DAG);
case ISD::ADJUST_TRAMPOLINE:
return LowerADJUST_TRAMPOLINE(Op, DAG);
case ISD::INIT_TRAMPOLINE:
return LowerINIT_TRAMPOLINE(Op, DAG);
case ISD::SETCC:
case ISD::STRICT_FSETCC:
case ISD::STRICT_FSETCCS:
return LowerSETCC(Op, DAG);
case ISD::SETCCCARRY:
return LowerSETCCCARRY(Op, DAG);
case ISD::BRCOND:
return LowerBRCOND(Op, DAG);
case ISD::BR_CC:
return LowerBR_CC(Op, DAG);
case ISD::SELECT:
return LowerSELECT(Op, DAG);
case ISD::SELECT_CC:
return LowerSELECT_CC(Op, DAG);
case ISD::JumpTable:
return LowerJumpTable(Op, DAG);
case ISD::BR_JT:
return LowerBR_JT(Op, DAG);
case ISD::BRIND:
return LowerBRIND(Op, DAG);
case ISD::ConstantPool:
return LowerConstantPool(Op, DAG);
case ISD::BlockAddress:
return LowerBlockAddress(Op, DAG);
case ISD::VASTART:
return LowerVASTART(Op, DAG);
case ISD::VACOPY:
return LowerVACOPY(Op, DAG);
case ISD::VAARG:
return LowerVAARG(Op, DAG);
case ISD::UADDO_CARRY:
return lowerADDSUBO_CARRY(Op, DAG, AArch64ISD::ADCS, false /*unsigned*/);
case ISD::USUBO_CARRY:
return lowerADDSUBO_CARRY(Op, DAG, AArch64ISD::SBCS, false /*unsigned*/);
case ISD::SADDO_CARRY:
return lowerADDSUBO_CARRY(Op, DAG, AArch64ISD::ADCS, true /*signed*/);
case ISD::SSUBO_CARRY:
return lowerADDSUBO_CARRY(Op, DAG, AArch64ISD::SBCS, true /*signed*/);
case ISD::SADDO:
case ISD::UADDO:
case ISD::SSUBO:
case ISD::USUBO:
case ISD::SMULO:
case ISD::UMULO:
return LowerXALUO(Op, DAG);
case ISD::FADD:
return LowerToPredicatedOp(Op, DAG, AArch64ISD::FADD_PRED);
case ISD::FSUB:
return LowerToPredicatedOp(Op, DAG, AArch64ISD::FSUB_PRED);
case ISD::FMUL:
return LowerToPredicatedOp(Op, DAG, AArch64ISD::FMUL_PRED);
case ISD::FMA:
return LowerToPredicatedOp(Op, DAG, AArch64ISD::FMA_PRED);
case ISD::FDIV:
return LowerToPredicatedOp(Op, DAG, AArch64ISD::FDIV_PRED);
case ISD::FNEG:
return LowerToPredicatedOp(Op, DAG, AArch64ISD::FNEG_MERGE_PASSTHRU);
case ISD::FCEIL:
return LowerToPredicatedOp(Op, DAG, AArch64ISD::FCEIL_MERGE_PASSTHRU);
case ISD::FFLOOR:
return LowerToPredicatedOp(Op, DAG, AArch64ISD::FFLOOR_MERGE_PASSTHRU);
case ISD::FNEARBYINT:
return LowerToPredicatedOp(Op, DAG, AArch64ISD::FNEARBYINT_MERGE_PASSTHRU);
case ISD::FRINT:
return LowerToPredicatedOp(Op, DAG, AArch64ISD::FRINT_MERGE_PASSTHRU);
case ISD::FROUND:
return LowerToPredicatedOp(Op, DAG, AArch64ISD::FROUND_MERGE_PASSTHRU);
case ISD::FROUNDEVEN:
return LowerToPredicatedOp(Op, DAG, AArch64ISD::FROUNDEVEN_MERGE_PASSTHRU);
case ISD::FTRUNC:
return LowerToPredicatedOp(Op, DAG, AArch64ISD::FTRUNC_MERGE_PASSTHRU);
case ISD::FSQRT:
return LowerToPredicatedOp(Op, DAG, AArch64ISD::FSQRT_MERGE_PASSTHRU);
case ISD::FABS:
return LowerToPredicatedOp(Op, DAG, AArch64ISD::FABS_MERGE_PASSTHRU);
case ISD::FP_ROUND:
case ISD::STRICT_FP_ROUND:
return LowerFP_ROUND(Op, DAG);
case ISD::FP_EXTEND:
return LowerFP_EXTEND(Op, DAG);
case ISD::FRAMEADDR:
return LowerFRAMEADDR(Op, DAG);
case ISD::SPONENTRY:
return LowerSPONENTRY(Op, DAG);
case ISD::RETURNADDR:
return LowerRETURNADDR(Op, DAG);
case ISD::ADDROFRETURNADDR:
return LowerADDROFRETURNADDR(Op, DAG);
case ISD::CONCAT_VECTORS:
return LowerCONCAT_VECTORS(Op, DAG);
case ISD::INSERT_VECTOR_ELT:
return LowerINSERT_VECTOR_ELT(Op, DAG);
case ISD::EXTRACT_VECTOR_ELT:
return LowerEXTRACT_VECTOR_ELT(Op, DAG);
case ISD::BUILD_VECTOR:
return LowerBUILD_VECTOR(Op, DAG);
case ISD::ZERO_EXTEND_VECTOR_INREG:
return LowerZERO_EXTEND_VECTOR_INREG(Op, DAG);
case ISD::VECTOR_SHUFFLE:
return LowerVECTOR_SHUFFLE(Op, DAG);
case ISD::SPLAT_VECTOR:
return LowerSPLAT_VECTOR(Op, DAG);
case ISD::EXTRACT_SUBVECTOR:
return LowerEXTRACT_SUBVECTOR(Op, DAG);
case ISD::INSERT_SUBVECTOR:
return LowerINSERT_SUBVECTOR(Op, DAG);
case ISD::SDIV:
case ISD::UDIV:
return LowerDIV(Op, DAG);
case ISD::SMIN:
case ISD::UMIN:
case ISD::SMAX:
case ISD::UMAX:
return LowerMinMax(Op, DAG);
case ISD::SRA:
case ISD::SRL:
case ISD::SHL:
return LowerVectorSRA_SRL_SHL(Op, DAG);
case ISD::SHL_PARTS:
case ISD::SRL_PARTS:
case ISD::SRA_PARTS:
return LowerShiftParts(Op, DAG);
case ISD::CTPOP:
case ISD::PARITY:
return LowerCTPOP_PARITY(Op, DAG);
case ISD::FCOPYSIGN:
return LowerFCOPYSIGN(Op, DAG);
case ISD::OR:
return LowerVectorOR(Op, DAG);
case ISD::XOR:
return LowerXOR(Op, DAG);
case ISD::PREFETCH:
return LowerPREFETCH(Op, DAG);
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP:
case ISD::STRICT_SINT_TO_FP:
case ISD::STRICT_UINT_TO_FP:
return LowerINT_TO_FP(Op, DAG);
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
case ISD::STRICT_FP_TO_SINT:
case ISD::STRICT_FP_TO_UINT:
return LowerFP_TO_INT(Op, DAG);
case ISD::FP_TO_SINT_SAT:
case ISD::FP_TO_UINT_SAT:
return LowerFP_TO_INT_SAT(Op, DAG);
case ISD::FSINCOS:
return LowerFSINCOS(Op, DAG);
case ISD::GET_ROUNDING:
return LowerGET_ROUNDING(Op, DAG);
case ISD::SET_ROUNDING:
return LowerSET_ROUNDING(Op, DAG);
case ISD::GET_FPMODE:
return LowerGET_FPMODE(Op, DAG);
case ISD::SET_FPMODE:
return LowerSET_FPMODE(Op, DAG);
case ISD::RESET_FPMODE:
return LowerRESET_FPMODE(Op, DAG);
case ISD::MUL:
return LowerMUL(Op, DAG);
case ISD::MULHS:
return LowerToPredicatedOp(Op, DAG, AArch64ISD::MULHS_PRED);
case ISD::MULHU:
return LowerToPredicatedOp(Op, DAG, AArch64ISD::MULHU_PRED);
case ISD::INTRINSIC_W_CHAIN:
return LowerINTRINSIC_W_CHAIN(Op, DAG);
case ISD::INTRINSIC_WO_CHAIN:
return LowerINTRINSIC_WO_CHAIN(Op, DAG);
case ISD::INTRINSIC_VOID:
return LowerINTRINSIC_VOID(Op, DAG);
case ISD::ATOMIC_STORE:
if (cast<MemSDNode>(Op)->getMemoryVT() == MVT::i128) {
assert(Subtarget->hasLSE2() || Subtarget->hasRCPC3());
return LowerStore128(Op, DAG);
}
return SDValue();
case ISD::STORE:
return LowerSTORE(Op, DAG);
case ISD::MSTORE:
return LowerFixedLengthVectorMStoreToSVE(Op, DAG);
case ISD::MGATHER:
return LowerMGATHER(Op, DAG);
case ISD::MSCATTER:
return LowerMSCATTER(Op, DAG);
case ISD::VECREDUCE_SEQ_FADD:
return LowerVECREDUCE_SEQ_FADD(Op, DAG);
case ISD::VECREDUCE_ADD:
case ISD::VECREDUCE_AND:
case ISD::VECREDUCE_OR:
case ISD::VECREDUCE_XOR:
case ISD::VECREDUCE_SMAX:
case ISD::VECREDUCE_SMIN:
case ISD::VECREDUCE_UMAX:
case ISD::VECREDUCE_UMIN:
case ISD::VECREDUCE_FADD:
case ISD::VECREDUCE_FMAX:
case ISD::VECREDUCE_FMIN:
case ISD::VECREDUCE_FMAXIMUM:
case ISD::VECREDUCE_FMINIMUM:
return LowerVECREDUCE(Op, DAG);
case ISD::ATOMIC_LOAD_AND:
return LowerATOMIC_LOAD_AND(Op, DAG);
case ISD::DYNAMIC_STACKALLOC:
return LowerDYNAMIC_STACKALLOC(Op, DAG);
case ISD::VSCALE:
return LowerVSCALE(Op, DAG);
case ISD::VECTOR_COMPRESS:
return LowerVECTOR_COMPRESS(Op, DAG);
case ISD::ANY_EXTEND:
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
return LowerFixedLengthVectorIntExtendToSVE(Op, DAG);
case ISD::SIGN_EXTEND_INREG: {
// Only custom lower when ExtraVT has a legal byte based element type.
EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
EVT ExtraEltVT = ExtraVT.getVectorElementType();
if ((ExtraEltVT != MVT::i8) && (ExtraEltVT != MVT::i16) &&
(ExtraEltVT != MVT::i32) && (ExtraEltVT != MVT::i64))
return SDValue();
return LowerToPredicatedOp(Op, DAG,
AArch64ISD::SIGN_EXTEND_INREG_MERGE_PASSTHRU);
}
case ISD::TRUNCATE:
return LowerTRUNCATE(Op, DAG);
case ISD::MLOAD:
return LowerMLOAD(Op, DAG);
case ISD::LOAD:
if (useSVEForFixedLengthVectorVT(Op.getValueType(),
!Subtarget->isNeonAvailable()))
return LowerFixedLengthVectorLoadToSVE(Op, DAG);
return LowerLOAD(Op, DAG);
case ISD::ADD:
case ISD::AND:
case ISD::SUB:
return LowerToScalableOp(Op, DAG);
case ISD::FMAXIMUM:
return LowerToPredicatedOp(Op, DAG, AArch64ISD::FMAX_PRED);
case ISD::FMAXNUM:
return LowerToPredicatedOp(Op, DAG, AArch64ISD::FMAXNM_PRED);
case ISD::FMINIMUM:
return LowerToPredicatedOp(Op, DAG, AArch64ISD::FMIN_PRED);
case ISD::FMINNUM:
return LowerToPredicatedOp(Op, DAG, AArch64ISD::FMINNM_PRED);
case ISD::VSELECT:
return LowerFixedLengthVectorSelectToSVE(Op, DAG);
case ISD::ABS:
return LowerABS(Op, DAG);
case ISD::ABDS:
return LowerToPredicatedOp(Op, DAG, AArch64ISD::ABDS_PRED);
case ISD::ABDU:
return LowerToPredicatedOp(Op, DAG, AArch64ISD::ABDU_PRED);
case ISD::AVGFLOORS:
return LowerAVG(Op, DAG, AArch64ISD::HADDS_PRED);
case ISD::AVGFLOORU:
return LowerAVG(Op, DAG, AArch64ISD::HADDU_PRED);
case ISD::AVGCEILS:
return LowerAVG(Op, DAG, AArch64ISD::RHADDS_PRED);
case ISD::AVGCEILU:
return LowerAVG(Op, DAG, AArch64ISD::RHADDU_PRED);
case ISD::BITREVERSE:
return LowerBitreverse(Op, DAG);
case ISD::BSWAP:
return LowerToPredicatedOp(Op, DAG, AArch64ISD::BSWAP_MERGE_PASSTHRU);
case ISD::CTLZ:
return LowerToPredicatedOp(Op, DAG, AArch64ISD::CTLZ_MERGE_PASSTHRU);
case ISD::CTTZ:
return LowerCTTZ(Op, DAG);
case ISD::VECTOR_SPLICE:
return LowerVECTOR_SPLICE(Op, DAG);
case ISD::VECTOR_DEINTERLEAVE:
return LowerVECTOR_DEINTERLEAVE(Op, DAG);
case ISD::VECTOR_INTERLEAVE:
return LowerVECTOR_INTERLEAVE(Op, DAG);
case ISD::LRINT:
case ISD::LLRINT:
if (Op.getValueType().isVector())
return LowerVectorXRINT(Op, DAG);
[[fallthrough]];
case ISD::LROUND:
case ISD::LLROUND: {
assert((Op.getOperand(0).getValueType() == MVT::f16 ||
Op.getOperand(0).getValueType() == MVT::bf16) &&
"Expected custom lowering of rounding operations only for f16");
SDLoc DL(Op);
SDValue Ext = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0));
return DAG.getNode(Op.getOpcode(), DL, Op.getValueType(), Ext);
}
case ISD::STRICT_LROUND:
case ISD::STRICT_LLROUND:
case ISD::STRICT_LRINT:
case ISD::STRICT_LLRINT: {
assert((Op.getOperand(1).getValueType() == MVT::f16 ||
Op.getOperand(1).getValueType() == MVT::bf16) &&
"Expected custom lowering of rounding operations only for f16");
SDLoc DL(Op);
SDValue Ext = DAG.getNode(ISD::STRICT_FP_EXTEND, DL, {MVT::f32, MVT::Other},
{Op.getOperand(0), Op.getOperand(1)});
return DAG.getNode(Op.getOpcode(), DL, {Op.getValueType(), MVT::Other},
{Ext.getValue(1), Ext.getValue(0)});
}
case ISD::WRITE_REGISTER: {
assert(Op.getOperand(2).getValueType() == MVT::i128 &&
"WRITE_REGISTER custom lowering is only for 128-bit sysregs");
SDLoc DL(Op);
SDValue Chain = Op.getOperand(0);
SDValue SysRegName = Op.getOperand(1);
std::pair<SDValue, SDValue> Pair =
DAG.SplitScalar(Op.getOperand(2), DL, MVT::i64, MVT::i64);
// chain = MSRR(chain, sysregname, lo, hi)
SDValue Result = DAG.getNode(AArch64ISD::MSRR, DL, MVT::Other, Chain,
SysRegName, Pair.first, Pair.second);
return Result;
}
case ISD::FSHL:
case ISD::FSHR:
return LowerFunnelShift(Op, DAG);
case ISD::FLDEXP:
return LowerFLDEXP(Op, DAG);
case ISD::EXPERIMENTAL_VECTOR_HISTOGRAM:
return LowerVECTOR_HISTOGRAM(Op, DAG);
}
}
bool AArch64TargetLowering::mergeStoresAfterLegalization(EVT VT) const {
return !Subtarget->useSVEForFixedLengthVectors();
}
bool AArch64TargetLowering::useSVEForFixedLengthVectorVT(
EVT VT, bool OverrideNEON) const {
if (!VT.isFixedLengthVector() || !VT.isSimple())
return false;
// Don't use SVE for vectors we cannot scalarize if required.
switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
// Fixed length predicates should be promoted to i8.
// NOTE: This is consistent with how NEON (and thus 64/128bit vectors) work.
case MVT::i1:
default:
return false;
case MVT::i8:
case MVT::i16:
case MVT::i32:
case MVT::i64:
case MVT::f16:
case MVT::f32:
case MVT::f64:
break;
}
// NEON-sized vectors can be emulated using SVE instructions.
if (OverrideNEON && (VT.is128BitVector() || VT.is64BitVector()))
return Subtarget->isSVEorStreamingSVEAvailable();
// Ensure NEON MVTs only belong to a single register class.
if (VT.getFixedSizeInBits() <= 128)
return false;
// Ensure wider than NEON code generation is enabled.
if (!Subtarget->useSVEForFixedLengthVectors())
return false;
// Don't use SVE for types that don't fit.
if (VT.getFixedSizeInBits() > Subtarget->getMinSVEVectorSizeInBits())
return false;
// TODO: Perhaps an artificial restriction, but worth having whilst getting
// the base fixed length SVE support in place.
if (!VT.isPow2VectorType())
return false;
return true;
}
//===----------------------------------------------------------------------===//
// Calling Convention Implementation
//===----------------------------------------------------------------------===//
static unsigned getIntrinsicID(const SDNode *N) {
unsigned Opcode = N->getOpcode();
switch (Opcode) {
default:
return Intrinsic::not_intrinsic;
case ISD::INTRINSIC_WO_CHAIN: {
unsigned IID = N->getConstantOperandVal(0);
if (IID < Intrinsic::num_intrinsics)
return IID;
return Intrinsic::not_intrinsic;
}
}
}
bool AArch64TargetLowering::isReassocProfitable(SelectionDAG &DAG, SDValue N0,
SDValue N1) const {
if (!N0.hasOneUse())
return false;
unsigned IID = getIntrinsicID(N1.getNode());
// Avoid reassociating expressions that can be lowered to smlal/umlal.
if (IID == Intrinsic::aarch64_neon_umull ||
N1.getOpcode() == AArch64ISD::UMULL ||
IID == Intrinsic::aarch64_neon_smull ||
N1.getOpcode() == AArch64ISD::SMULL)
return N0.getOpcode() != ISD::ADD;
return true;
}
/// Selects the correct CCAssignFn for a given CallingConvention value.
CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
bool IsVarArg) const {
switch (CC) {
default:
report_fatal_error("Unsupported calling convention.");
case CallingConv::GHC:
return CC_AArch64_GHC;
case CallingConv::PreserveNone:
// The VarArg implementation makes assumptions about register
// argument passing that do not hold for preserve_none, so we
// instead fall back to C argument passing.
// The non-vararg case is handled in the CC function itself.
if (!IsVarArg)
return CC_AArch64_Preserve_None;
[[fallthrough]];
case CallingConv::C:
case CallingConv::Fast:
case CallingConv::PreserveMost:
case CallingConv::PreserveAll:
case CallingConv::CXX_FAST_TLS:
case CallingConv::Swift:
case CallingConv::SwiftTail:
case CallingConv::Tail:
case CallingConv::GRAAL:
if (Subtarget->isTargetWindows()) {
if (IsVarArg) {
if (Subtarget->isWindowsArm64EC())
return CC_AArch64_Arm64EC_VarArg;
return CC_AArch64_Win64_VarArg;
}
return CC_AArch64_Win64PCS;
}
if (!Subtarget->isTargetDarwin())
return CC_AArch64_AAPCS;
if (!IsVarArg)
return CC_AArch64_DarwinPCS;
return Subtarget->isTargetILP32() ? CC_AArch64_DarwinPCS_ILP32_VarArg
: CC_AArch64_DarwinPCS_VarArg;
case CallingConv::Win64:
if (IsVarArg) {
if (Subtarget->isWindowsArm64EC())
return CC_AArch64_Arm64EC_VarArg;
return CC_AArch64_Win64_VarArg;
}
return CC_AArch64_Win64PCS;
case CallingConv::CFGuard_Check:
if (Subtarget->isWindowsArm64EC())
return CC_AArch64_Arm64EC_CFGuard_Check;
return CC_AArch64_Win64_CFGuard_Check;
case CallingConv::AArch64_VectorCall:
case CallingConv::AArch64_SVE_VectorCall:
case CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0:
case CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2:
return CC_AArch64_AAPCS;
case CallingConv::ARM64EC_Thunk_X64:
return CC_AArch64_Arm64EC_Thunk;
case CallingConv::ARM64EC_Thunk_Native:
return CC_AArch64_Arm64EC_Thunk_Native;
}
}
CCAssignFn *
AArch64TargetLowering::CCAssignFnForReturn(CallingConv::ID CC) const {
switch (CC) {
default:
return RetCC_AArch64_AAPCS;
case CallingConv::ARM64EC_Thunk_X64:
return RetCC_AArch64_Arm64EC_Thunk;
case CallingConv::CFGuard_Check:
if (Subtarget->isWindowsArm64EC())
return RetCC_AArch64_Arm64EC_CFGuard_Check;
return RetCC_AArch64_AAPCS;
}
}
static bool isPassedInFPR(EVT VT) {
return VT.isFixedLengthVector() ||
(VT.isFloatingPoint() && !VT.isScalableVector());
}
SDValue AArch64TargetLowering::LowerFormalArguments(
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
MachineFunction &MF = DAG.getMachineFunction();
const Function &F = MF.getFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
bool IsWin64 =
Subtarget->isCallingConvWin64(F.getCallingConv(), F.isVarArg());
bool StackViaX4 = CallConv == CallingConv::ARM64EC_Thunk_X64 ||
(isVarArg && Subtarget->isWindowsArm64EC());
AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
SmallVector<ISD::OutputArg, 4> Outs;
GetReturnInfo(CallConv, F.getReturnType(), F.getAttributes(), Outs,
DAG.getTargetLoweringInfo(), MF.getDataLayout());
if (any_of(Outs, [](ISD::OutputArg &Out){ return Out.VT.isScalableVector(); }))
FuncInfo->setIsSVECC(true);
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
DenseMap<unsigned, SDValue> CopiedRegs;
CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
// At this point, Ins[].VT may already be promoted to i32. To correctly
// handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
// i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
// Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here
// we use a special version of AnalyzeFormalArguments to pass in ValVT and
// LocVT.
unsigned NumArgs = Ins.size();
Function::const_arg_iterator CurOrigArg = F.arg_begin();
unsigned CurArgIdx = 0;
for (unsigned i = 0; i != NumArgs; ++i) {
MVT ValVT = Ins[i].VT;
if (Ins[i].isOrigArg()) {
std::advance(CurOrigArg, Ins[i].getOrigArgIndex() - CurArgIdx);
CurArgIdx = Ins[i].getOrigArgIndex();
// Get type of the original argument.
EVT ActualVT = getValueType(DAG.getDataLayout(), CurOrigArg->getType(),
/*AllowUnknown*/ true);
MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other;
// If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
ValVT = MVT::i8;
else if (ActualMVT == MVT::i16)
ValVT = MVT::i16;
}
bool UseVarArgCC = false;
if (IsWin64)
UseVarArgCC = isVarArg;
CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, UseVarArgCC);
bool Res =
AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo);
assert(!Res && "Call operand has unhandled type");
(void)Res;
}
SMEAttrs Attrs(MF.getFunction());
bool IsLocallyStreaming =
!Attrs.hasStreamingInterface() && Attrs.hasStreamingBody();
assert(Chain.getOpcode() == ISD::EntryToken && "Unexpected Chain value");
SDValue Glue = Chain.getValue(1);
SmallVector<SDValue, 16> ArgValues;
unsigned ExtraArgLocs = 0;
for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i - ExtraArgLocs];
if (Ins[i].Flags.isByVal()) {
// Byval is used for HFAs in the PCS, but the system should work in a
// non-compliant manner for larger structs.
EVT PtrVT = getPointerTy(DAG.getDataLayout());
int Size = Ins[i].Flags.getByValSize();
unsigned NumRegs = (Size + 7) / 8;
// FIXME: This works on big-endian for composite byvals, which are the common
// case. It should also work for fundamental types too.
unsigned FrameIdx =
MFI.CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false);
SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrVT);
InVals.push_back(FrameIdxN);
continue;
}
if (Ins[i].Flags.isSwiftAsync())
MF.getInfo<AArch64FunctionInfo>()->setHasSwiftAsyncContext(true);
SDValue ArgValue;
if (VA.isRegLoc()) {
// Arguments stored in registers.
EVT RegVT = VA.getLocVT();
const TargetRegisterClass *RC;
if (RegVT == MVT::i32)
RC = &AArch64::GPR32RegClass;
else if (RegVT == MVT::i64)
RC = &AArch64::GPR64RegClass;
else if (RegVT == MVT::f16 || RegVT == MVT::bf16)
RC = &AArch64::FPR16RegClass;
else if (RegVT == MVT::f32)
RC = &AArch64::FPR32RegClass;
else if (RegVT == MVT::f64 || RegVT.is64BitVector())
RC = &AArch64::FPR64RegClass;
else if (RegVT == MVT::f128 || RegVT.is128BitVector())
RC = &AArch64::FPR128RegClass;
else if (RegVT.isScalableVector() &&
RegVT.getVectorElementType() == MVT::i1) {
FuncInfo->setIsSVECC(true);
RC = &AArch64::PPRRegClass;
} else if (RegVT == MVT::aarch64svcount) {
FuncInfo->setIsSVECC(true);
RC = &AArch64::PPRRegClass;
} else if (RegVT.isScalableVector()) {
FuncInfo->setIsSVECC(true);
RC = &AArch64::ZPRRegClass;
} else
llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
// Transform the arguments in physical registers into virtual ones.
Register Reg = MF.addLiveIn(VA.getLocReg(), RC);
if (IsLocallyStreaming) {
// LocallyStreamingFunctions must insert the SMSTART in the correct
// position, so we use Glue to ensure no instructions can be scheduled
// between the chain of:
// t0: ch,glue = EntryNode
// t1: res,ch,glue = CopyFromReg
// ...
// tn: res,ch,glue = CopyFromReg t(n-1), ..
// t(n+1): ch, glue = SMSTART t0:0, ...., tn:2
// ^^^^^^
// This will be the new Chain/Root node.
ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT, Glue);
Glue = ArgValue.getValue(2);
if (isPassedInFPR(ArgValue.getValueType())) {
ArgValue =
DAG.getNode(AArch64ISD::COALESCER_BARRIER, DL,
DAG.getVTList(ArgValue.getValueType(), MVT::Glue),
{ArgValue, Glue});
Glue = ArgValue.getValue(1);
}
} else
ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
// If this is an 8, 16 or 32-bit value, it is really passed promoted
// to 64 bits. Insert an assert[sz]ext to capture this, then
// truncate to the right size.
switch (VA.getLocInfo()) {
default:
llvm_unreachable("Unknown loc info!");
case CCValAssign::Full:
break;
case CCValAssign::Indirect:
assert(
(VA.getValVT().isScalableVT() || Subtarget->isWindowsArm64EC()) &&
"Indirect arguments should be scalable on most subtargets");
break;
case CCValAssign::BCvt:
ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue);
break;
case CCValAssign::AExt:
case CCValAssign::SExt:
case CCValAssign::ZExt:
break;
case CCValAssign::AExtUpper:
ArgValue = DAG.getNode(ISD::SRL, DL, RegVT, ArgValue,
DAG.getConstant(32, DL, RegVT));
ArgValue = DAG.getZExtOrTrunc(ArgValue, DL, VA.getValVT());
break;
}
} else { // VA.isRegLoc()
assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem");
unsigned ArgOffset = VA.getLocMemOffset();
unsigned ArgSize = (VA.getLocInfo() == CCValAssign::Indirect
? VA.getLocVT().getSizeInBits()
: VA.getValVT().getSizeInBits()) / 8;
uint32_t BEAlign = 0;
if (!Subtarget->isLittleEndian() && ArgSize < 8 &&
!Ins[i].Flags.isInConsecutiveRegs())
BEAlign = 8 - ArgSize;
SDValue FIN;
MachinePointerInfo PtrInfo;
if (StackViaX4) {
// In both the ARM64EC varargs convention and the thunk convention,
// arguments on the stack are accessed relative to x4, not sp. In
// the thunk convention, there's an additional offset of 32 bytes
// to account for the shadow store.
unsigned ObjOffset = ArgOffset + BEAlign;
if (CallConv == CallingConv::ARM64EC_Thunk_X64)
ObjOffset += 32;
Register VReg = MF.addLiveIn(AArch64::X4, &AArch64::GPR64RegClass);
SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
FIN = DAG.getNode(ISD::ADD, DL, MVT::i64, Val,
DAG.getConstant(ObjOffset, DL, MVT::i64));
PtrInfo = MachinePointerInfo::getUnknownStack(MF);
} else {
int FI = MFI.CreateFixedObject(ArgSize, ArgOffset + BEAlign, true);
// Create load nodes to retrieve arguments from the stack.
FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
}
// For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
MVT MemVT = VA.getValVT();
switch (VA.getLocInfo()) {
default:
break;
case CCValAssign::Trunc:
case CCValAssign::BCvt:
MemVT = VA.getLocVT();
break;
case CCValAssign::Indirect:
assert((VA.getValVT().isScalableVector() ||
Subtarget->isWindowsArm64EC()) &&
"Indirect arguments should be scalable on most subtargets");
MemVT = VA.getLocVT();
break;
case CCValAssign::SExt:
ExtType = ISD::SEXTLOAD;
break;
case CCValAssign::ZExt:
ExtType = ISD::ZEXTLOAD;
break;
case CCValAssign::AExt:
ExtType = ISD::EXTLOAD;
break;
}
ArgValue = DAG.getExtLoad(ExtType, DL, VA.getLocVT(), Chain, FIN, PtrInfo,
MemVT);
}
if (VA.getLocInfo() == CCValAssign::Indirect) {
assert((VA.getValVT().isScalableVT() ||
Subtarget->isWindowsArm64EC()) &&
"Indirect arguments should be scalable on most subtargets");
uint64_t PartSize = VA.getValVT().getStoreSize().getKnownMinValue();
unsigned NumParts = 1;
if (Ins[i].Flags.isInConsecutiveRegs()) {
while (!Ins[i + NumParts - 1].Flags.isInConsecutiveRegsLast())
++NumParts;
}
MVT PartLoad = VA.getValVT();
SDValue Ptr = ArgValue;
// Ensure we generate all loads for each tuple part, whilst updating the
// pointer after each load correctly using vscale.
while (NumParts > 0) {
ArgValue = DAG.getLoad(PartLoad, DL, Chain, Ptr, MachinePointerInfo());
InVals.push_back(ArgValue);
NumParts--;
if (NumParts > 0) {
SDValue BytesIncrement;
if (PartLoad.isScalableVector()) {
BytesIncrement = DAG.getVScale(
DL, Ptr.getValueType(),
APInt(Ptr.getValueSizeInBits().getFixedValue(), PartSize));
} else {
BytesIncrement = DAG.getConstant(
APInt(Ptr.getValueSizeInBits().getFixedValue(), PartSize), DL,
Ptr.getValueType());
}
Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
BytesIncrement, SDNodeFlags::NoUnsignedWrap);
ExtraArgLocs++;
i++;
}
}
} else {
if (Subtarget->isTargetILP32() && Ins[i].Flags.isPointer())
ArgValue = DAG.getNode(ISD::AssertZext, DL, ArgValue.getValueType(),
ArgValue, DAG.getValueType(MVT::i32));
// i1 arguments are zero-extended to i8 by the caller. Emit a
// hint to reflect this.
if (Ins[i].isOrigArg()) {
Argument *OrigArg = F.getArg(Ins[i].getOrigArgIndex());
if (OrigArg->getType()->isIntegerTy(1)) {
if (!Ins[i].Flags.isZExt()) {
ArgValue = DAG.getNode(AArch64ISD::ASSERT_ZEXT_BOOL, DL,
ArgValue.getValueType(), ArgValue);
}
}
}
InVals.push_back(ArgValue);
}
}
assert((ArgLocs.size() + ExtraArgLocs) == Ins.size());
// Insert the SMSTART if this is a locally streaming function and
// make sure it is Glued to the last CopyFromReg value.
if (IsLocallyStreaming) {
SDValue PStateSM;
if (Attrs.hasStreamingCompatibleInterface()) {
PStateSM = getRuntimePStateSM(DAG, Chain, DL, MVT::i64);
Register Reg = MF.getRegInfo().createVirtualRegister(
getRegClassFor(PStateSM.getValueType().getSimpleVT()));
FuncInfo->setPStateSMReg(Reg);
Chain = DAG.getCopyToReg(Chain, DL, Reg, PStateSM);
Chain = changeStreamingMode(DAG, DL, /*Enable*/ true, Chain, Glue,
AArch64SME::IfCallerIsNonStreaming, PStateSM);
} else
Chain = changeStreamingMode(DAG, DL, /*Enable*/ true, Chain, Glue,
AArch64SME::Always);
// Ensure that the SMSTART happens after the CopyWithChain such that its
// chain result is used.
for (unsigned I=0; I<InVals.size(); ++I) {
Register Reg = MF.getRegInfo().createVirtualRegister(
getRegClassFor(InVals[I].getValueType().getSimpleVT()));
Chain = DAG.getCopyToReg(Chain, DL, Reg, InVals[I]);
InVals[I] = DAG.getCopyFromReg(Chain, DL, Reg,
InVals[I].getValueType());
}
}
// varargs
if (isVarArg) {
if (!Subtarget->isTargetDarwin() || IsWin64) {
// The AAPCS variadic function ABI is identical to the non-variadic
// one. As a result there may be more arguments in registers and we should
// save them for future reference.
// Win64 variadic functions also pass arguments in registers, but all float
// arguments are passed in integer registers.
saveVarArgRegisters(CCInfo, DAG, DL, Chain);
}
// This will point to the next argument passed via stack.
unsigned VarArgsOffset = CCInfo.getStackSize();
// We currently pass all varargs at 8-byte alignment, or 4 for ILP32
VarArgsOffset = alignTo(VarArgsOffset, Subtarget->isTargetILP32() ? 4 : 8);
FuncInfo->setVarArgsStackOffset(VarArgsOffset);
FuncInfo->setVarArgsStackIndex(
MFI.CreateFixedObject(4, VarArgsOffset, true));
if (MFI.hasMustTailInVarArgFunc()) {
SmallVector<MVT, 2> RegParmTypes;
RegParmTypes.push_back(MVT::i64);
RegParmTypes.push_back(MVT::f128);
// Compute the set of forwarded registers. The rest are scratch.
SmallVectorImpl<ForwardedRegister> &Forwards =
FuncInfo->getForwardedMustTailRegParms();
CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes,
CC_AArch64_AAPCS);
// Conservatively forward X8, since it might be used for aggregate return.
if (!CCInfo.isAllocated(AArch64::X8)) {
Register X8VReg = MF.addLiveIn(AArch64::X8, &AArch64::GPR64RegClass);
Forwards.push_back(ForwardedRegister(X8VReg, AArch64::X8, MVT::i64));
}
}
}
// On Windows, InReg pointers must be returned, so record the pointer in a
// virtual register at the start of the function so it can be returned in the
// epilogue.
if (IsWin64 || F.getCallingConv() == CallingConv::ARM64EC_Thunk_X64) {
for (unsigned I = 0, E = Ins.size(); I != E; ++I) {
if ((F.getCallingConv() == CallingConv::ARM64EC_Thunk_X64 ||
Ins[I].Flags.isInReg()) &&
Ins[I].Flags.isSRet()) {
assert(!FuncInfo->getSRetReturnReg());
MVT PtrTy = getPointerTy(DAG.getDataLayout());
Register Reg =
MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy));
FuncInfo->setSRetReturnReg(Reg);
SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[I]);
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
break;
}
}
}
unsigned StackArgSize = CCInfo.getStackSize();
bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
// This is a non-standard ABI so by fiat I say we're allowed to make full
// use of the stack area to be popped, which must be aligned to 16 bytes in
// any case:
StackArgSize = alignTo(StackArgSize, 16);
// If we're expected to restore the stack (e.g. fastcc) then we'll be adding
// a multiple of 16.
FuncInfo->setArgumentStackToRestore(StackArgSize);
// This realignment carries over to the available bytes below. Our own
// callers will guarantee the space is free by giving an aligned value to
// CALLSEQ_START.
}
// Even if we're not expected to free up the space, it's useful to know how
// much is there while considering tail calls (because we can reuse it).
FuncInfo->setBytesInStackArgArea(StackArgSize);
if (Subtarget->hasCustomCallingConv())
Subtarget->getRegisterInfo()->UpdateCustomCalleeSavedRegs(MF);
// Create a 16 Byte TPIDR2 object. The dynamic buffer
// will be expanded and stored in the static object later using a pseudonode.
if (SMEAttrs(MF.getFunction()).hasZAState()) {
TPIDR2Object &TPIDR2 = FuncInfo->getTPIDR2Obj();
TPIDR2.FrameIndex = MFI.CreateStackObject(16, Align(16), false);
SDValue SVL = DAG.getNode(AArch64ISD::RDSVL, DL, MVT::i64,
DAG.getConstant(1, DL, MVT::i32));
SDValue Buffer;
if (!Subtarget->isTargetWindows() && !hasInlineStackProbe(MF)) {
Buffer = DAG.getNode(AArch64ISD::ALLOCATE_ZA_BUFFER, DL,
DAG.getVTList(MVT::i64, MVT::Other), {Chain, SVL});
} else {
SDValue Size = DAG.getNode(ISD::MUL, DL, MVT::i64, SVL, SVL);
Buffer = DAG.getNode(ISD::DYNAMIC_STACKALLOC, DL,
DAG.getVTList(MVT::i64, MVT::Other),
{Chain, Size, DAG.getConstant(1, DL, MVT::i64)});
MFI.CreateVariableSizedObject(Align(16), nullptr);
}
Chain = DAG.getNode(
AArch64ISD::INIT_TPIDR2OBJ, DL, DAG.getVTList(MVT::Other),
{/*Chain*/ Buffer.getValue(1), /*Buffer ptr*/ Buffer.getValue(0)});
}
if (CallConv == CallingConv::PreserveNone) {
for (const ISD::InputArg &I : Ins) {
if (I.Flags.isSwiftSelf() || I.Flags.isSwiftError() ||
I.Flags.isSwiftAsync()) {
MachineFunction &MF = DAG.getMachineFunction();
DAG.getContext()->diagnose(DiagnosticInfoUnsupported(
MF.getFunction(),
"Swift attributes can't be used with preserve_none",
DL.getDebugLoc()));
break;
}
}
}
return Chain;
}
void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo,
SelectionDAG &DAG,
const SDLoc &DL,
SDValue &Chain) const {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
auto PtrVT = getPointerTy(DAG.getDataLayout());
Function &F = MF.getFunction();
bool IsWin64 =
Subtarget->isCallingConvWin64(F.getCallingConv(), F.isVarArg());
SmallVector<SDValue, 8> MemOps;
auto GPRArgRegs = AArch64::getGPRArgRegs();
unsigned NumGPRArgRegs = GPRArgRegs.size();
if (Subtarget->isWindowsArm64EC()) {
// In the ARM64EC ABI, only x0-x3 are used to pass arguments to varargs
// functions.
NumGPRArgRegs = 4;
}
unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(GPRArgRegs);
unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR);
int GPRIdx = 0;
if (GPRSaveSize != 0) {
if (IsWin64) {
GPRIdx = MFI.CreateFixedObject(GPRSaveSize, -(int)GPRSaveSize, false);
if (GPRSaveSize & 15)
// The extra size here, if triggered, will always be 8.
MFI.CreateFixedObject(16 - (GPRSaveSize & 15), -(int)alignTo(GPRSaveSize, 16), false);
} else
GPRIdx = MFI.CreateStackObject(GPRSaveSize, Align(8), false);
SDValue FIN;
if (Subtarget->isWindowsArm64EC()) {
// With the Arm64EC ABI, we reserve the save area as usual, but we
// compute its address relative to x4. For a normal AArch64->AArch64
// call, x4 == sp on entry, but calls from an entry thunk can pass in a
// different address.
Register VReg = MF.addLiveIn(AArch64::X4, &AArch64::GPR64RegClass);
SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
FIN = DAG.getNode(ISD::SUB, DL, MVT::i64, Val,
DAG.getConstant(GPRSaveSize, DL, MVT::i64));
} else {
FIN = DAG.getFrameIndex(GPRIdx, PtrVT);
}
for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) {
Register VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass);
SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
SDValue Store =
DAG.getStore(Val.getValue(1), DL, Val, FIN,
IsWin64 ? MachinePointerInfo::getFixedStack(
MF, GPRIdx, (i - FirstVariadicGPR) * 8)
: MachinePointerInfo::getStack(MF, i * 8));
MemOps.push_back(Store);
FIN =
DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getConstant(8, DL, PtrVT));
}
}
FuncInfo->setVarArgsGPRIndex(GPRIdx);
FuncInfo->setVarArgsGPRSize(GPRSaveSize);
if (Subtarget->hasFPARMv8() && !IsWin64) {
auto FPRArgRegs = AArch64::getFPRArgRegs();
const unsigned NumFPRArgRegs = FPRArgRegs.size();
unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(FPRArgRegs);
unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
int FPRIdx = 0;
if (FPRSaveSize != 0) {
FPRIdx = MFI.CreateStackObject(FPRSaveSize, Align(16), false);
SDValue FIN = DAG.getFrameIndex(FPRIdx, PtrVT);
for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
Register VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass);
SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN,
MachinePointerInfo::getStack(MF, i * 16));
MemOps.push_back(Store);
FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
DAG.getConstant(16, DL, PtrVT));
}
}
FuncInfo->setVarArgsFPRIndex(FPRIdx);
FuncInfo->setVarArgsFPRSize(FPRSaveSize);
}
if (!MemOps.empty()) {
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
}
}
/// LowerCallResult - Lower the result values of a call into the
/// appropriate copies out of appropriate physical registers.
SDValue AArch64TargetLowering::LowerCallResult(
SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<CCValAssign> &RVLocs, const SDLoc &DL,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
SDValue ThisVal, bool RequiresSMChange) const {
DenseMap<unsigned, SDValue> CopiedRegs;
// Copy all of the result registers out of their specified physreg.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign VA = RVLocs[i];
// Pass 'this' value directly from the argument to return value, to avoid
// reg unit interference
if (i == 0 && isThisReturn) {
assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 &&
"unexpected return calling convention register assignment");
InVals.push_back(ThisVal);
continue;
}
// Avoid copying a physreg twice since RegAllocFast is incompetent and only
// allows one use of a physreg per block.
SDValue Val = CopiedRegs.lookup(VA.getLocReg());
if (!Val) {
Val =
DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InGlue);
Chain = Val.getValue(1);
InGlue = Val.getValue(2);
CopiedRegs[VA.getLocReg()] = Val;
}
switch (VA.getLocInfo()) {
default:
llvm_unreachable("Unknown loc info!");
case CCValAssign::Full:
break;
case CCValAssign::BCvt:
Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
break;
case CCValAssign::AExtUpper:
Val = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), Val,
DAG.getConstant(32, DL, VA.getLocVT()));
[[fallthrough]];
case CCValAssign::AExt:
[[fallthrough]];
case CCValAssign::ZExt:
Val = DAG.getZExtOrTrunc(Val, DL, VA.getValVT());
break;
}
if (RequiresSMChange && isPassedInFPR(VA.getValVT()))
Val = DAG.getNode(AArch64ISD::COALESCER_BARRIER, DL, Val.getValueType(),
Val);
InVals.push_back(Val);
}
return Chain;
}
/// Return true if the calling convention is one that we can guarantee TCO for.
static bool canGuaranteeTCO(CallingConv::ID CC, bool GuaranteeTailCalls) {
return (CC == CallingConv::Fast && GuaranteeTailCalls) ||
CC == CallingConv::Tail || CC == CallingConv::SwiftTail;
}
/// Return true if we might ever do TCO for calls with this calling convention.
static bool mayTailCallThisCC(CallingConv::ID CC) {
switch (CC) {
case CallingConv::C:
case CallingConv::AArch64_SVE_VectorCall:
case CallingConv::PreserveMost:
case CallingConv::PreserveAll:
case CallingConv::PreserveNone:
case CallingConv::Swift:
case CallingConv::SwiftTail:
case CallingConv::Tail:
case CallingConv::Fast:
return true;
default:
return false;
}
}
/// Return true if the call convention supports varargs
/// Currently only those that pass varargs like the C
/// calling convention does are eligible
/// Calling conventions listed in this function must also
/// be properly handled in AArch64Subtarget::isCallingConvWin64
static bool callConvSupportsVarArgs(CallingConv::ID CC) {
switch (CC) {
case CallingConv::C:
case CallingConv::PreserveNone:
return true;
default:
return false;
}
}
static void analyzeCallOperands(const AArch64TargetLowering &TLI,
const AArch64Subtarget *Subtarget,
const TargetLowering::CallLoweringInfo &CLI,
CCState &CCInfo) {
const SelectionDAG &DAG = CLI.DAG;
CallingConv::ID CalleeCC = CLI.CallConv;
bool IsVarArg = CLI.IsVarArg;
const SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
bool IsCalleeWin64 = Subtarget->isCallingConvWin64(CalleeCC, IsVarArg);
// For Arm64EC thunks, allocate 32 extra bytes at the bottom of the stack
// for the shadow store.
if (CalleeCC == CallingConv::ARM64EC_Thunk_X64)
CCInfo.AllocateStack(32, Align(16));
unsigned NumArgs = Outs.size();
for (unsigned i = 0; i != NumArgs; ++i) {
MVT ArgVT = Outs[i].VT;
ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
bool UseVarArgCC = false;
if (IsVarArg) {
// On Windows, the fixed arguments in a vararg call are passed in GPRs
// too, so use the vararg CC to force them to integer registers.
if (IsCalleeWin64) {
UseVarArgCC = true;
} else {
UseVarArgCC = !Outs[i].IsFixed;
}
}
if (!UseVarArgCC) {
// Get type of the original argument.
EVT ActualVT =
TLI.getValueType(DAG.getDataLayout(), CLI.Args[Outs[i].OrigArgIndex].Ty,
/*AllowUnknown*/ true);
MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ArgVT;
// If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
ArgVT = MVT::i8;
else if (ActualMVT == MVT::i16)
ArgVT = MVT::i16;
}
CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CalleeCC, UseVarArgCC);
bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
assert(!Res && "Call operand has unhandled type");
(void)Res;
}
}
bool AArch64TargetLowering::isEligibleForTailCallOptimization(
const CallLoweringInfo &CLI) const {
CallingConv::ID CalleeCC = CLI.CallConv;
if (!mayTailCallThisCC(CalleeCC))
return false;
SDValue Callee = CLI.Callee;
bool IsVarArg = CLI.IsVarArg;
const SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
const SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
const SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
const SelectionDAG &DAG = CLI.DAG;
MachineFunction &MF = DAG.getMachineFunction();
const Function &CallerF = MF.getFunction();
CallingConv::ID CallerCC = CallerF.getCallingConv();
// SME Streaming functions are not eligible for TCO as they may require
// the streaming mode or ZA to be restored after returning from the call.
SMEAttrs CallerAttrs(MF.getFunction());
auto CalleeAttrs = CLI.CB ? SMEAttrs(*CLI.CB) : SMEAttrs(SMEAttrs::Normal);
if (CallerAttrs.requiresSMChange(CalleeAttrs) ||
CallerAttrs.requiresLazySave(CalleeAttrs) ||
CallerAttrs.hasStreamingBody())
return false;
// Functions using the C or Fast calling convention that have an SVE signature
// preserve more registers and should assume the SVE_VectorCall CC.
// The check for matching callee-saved regs will determine whether it is
// eligible for TCO.
if ((CallerCC == CallingConv::C || CallerCC == CallingConv::Fast) &&
MF.getInfo<AArch64FunctionInfo>()->isSVECC())
CallerCC = CallingConv::AArch64_SVE_VectorCall;
bool CCMatch = CallerCC == CalleeCC;
// When using the Windows calling convention on a non-windows OS, we want
// to back up and restore X18 in such functions; we can't do a tail call
// from those functions.
if (CallerCC == CallingConv::Win64 && !Subtarget->isTargetWindows() &&
CalleeCC != CallingConv::Win64)
return false;
// Byval parameters hand the function a pointer directly into the stack area
// we want to reuse during a tail call. Working around this *is* possible (see
// X86) but less efficient and uglier in LowerCall.
for (Function::const_arg_iterator i = CallerF.arg_begin(),
e = CallerF.arg_end();
i != e; ++i) {
if (i->hasByValAttr())
return false;
// On Windows, "inreg" attributes signify non-aggregate indirect returns.
// In this case, it is necessary to save/restore X0 in the callee. Tail
// call opt interferes with this. So we disable tail call opt when the
// caller has an argument with "inreg" attribute.
// FIXME: Check whether the callee also has an "inreg" argument.
if (i->hasInRegAttr())
return false;
}
if (canGuaranteeTCO(CalleeCC, getTargetMachine().Options.GuaranteedTailCallOpt))
return CCMatch;
// Externally-defined functions with weak linkage should not be
// tail-called on AArch64 when the OS does not support dynamic
// pre-emption of symbols, as the AAELF spec requires normal calls
// to undefined weak functions to be replaced with a NOP or jump to the
// next instruction. The behaviour of branch instructions in this
// situation (as used for tail calls) is implementation-defined, so we
// cannot rely on the linker replacing the tail call with a return.
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
const GlobalValue *GV = G->getGlobal();
const Triple &TT = getTargetMachine().getTargetTriple();
if (GV->hasExternalWeakLinkage() &&
(!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
return false;
}
// Now we search for cases where we can use a tail call without changing the
// ABI. Sibcall is used in some places (particularly gcc) to refer to this
// concept.
// I want anyone implementing a new calling convention to think long and hard
// about this assert.
if (IsVarArg && !callConvSupportsVarArgs(CalleeCC))
report_fatal_error("Unsupported variadic calling convention");
LLVMContext &C = *DAG.getContext();
// Check that the call results are passed in the same way.
if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
CCAssignFnForCall(CalleeCC, IsVarArg),
CCAssignFnForCall(CallerCC, IsVarArg)))
return false;
// The callee has to preserve all registers the caller needs to preserve.
const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
if (!CCMatch) {
const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
if (Subtarget->hasCustomCallingConv()) {
TRI->UpdateCustomCallPreservedMask(MF, &CallerPreserved);
TRI->UpdateCustomCallPreservedMask(MF, &CalleePreserved);
}
if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
return false;
}
// Nothing more to check if the callee is taking no arguments
if (Outs.empty())
return true;
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, C);
analyzeCallOperands(*this, Subtarget, CLI, CCInfo);
if (IsVarArg && !(CLI.CB && CLI.CB->isMustTailCall())) {
// When we are musttail, additional checks have been done and we can safely ignore this check
// At least two cases here: if caller is fastcc then we can't have any
// memory arguments (we'd be expected to clean up the stack afterwards). If
// caller is C then we could potentially use its argument area.
// FIXME: for now we take the most conservative of these in both cases:
// disallow all variadic memory operands.
for (const CCValAssign &ArgLoc : ArgLocs)
if (!ArgLoc.isRegLoc())
return false;
}
const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
// If any of the arguments is passed indirectly, it must be SVE, so the
// 'getBytesInStackArgArea' is not sufficient to determine whether we need to
// allocate space on the stack. That is why we determine this explicitly here
// the call cannot be a tailcall.
if (llvm::any_of(ArgLocs, [&](CCValAssign &A) {
assert((A.getLocInfo() != CCValAssign::Indirect ||
A.getValVT().isScalableVector() ||
Subtarget->isWindowsArm64EC()) &&
"Expected value to be scalable");
return A.getLocInfo() == CCValAssign::Indirect;
}))
return false;
// If the stack arguments for this call do not fit into our own save area then
// the call cannot be made tail.
if (CCInfo.getStackSize() > FuncInfo->getBytesInStackArgArea())
return false;
const MachineRegisterInfo &MRI = MF.getRegInfo();
if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
return false;
return true;
}
SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
SelectionDAG &DAG,
MachineFrameInfo &MFI,
int ClobberedFI) const {
SmallVector<SDValue, 8> ArgChains;
int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;
// Include the original chain at the beginning of the list. When this is
// used by target LowerCall hooks, this helps legalize find the
// CALLSEQ_BEGIN node.
ArgChains.push_back(Chain);
// Add a chain value for each stack argument corresponding
for (SDNode *U : DAG.getEntryNode().getNode()->uses())
if (LoadSDNode *L = dyn_cast<LoadSDNode>(U))
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
if (FI->getIndex() < 0) {
int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
int64_t InLastByte = InFirstByte;
InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;
if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
(FirstByte <= InFirstByte && InFirstByte <= LastByte))
ArgChains.push_back(SDValue(L, 1));
}
// Build a tokenfactor for all the chains.
return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
}
bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
bool TailCallOpt) const {
return (CallCC == CallingConv::Fast && TailCallOpt) ||
CallCC == CallingConv::Tail || CallCC == CallingConv::SwiftTail;
}
// Check if the value is zero-extended from i1 to i8
static bool checkZExtBool(SDValue Arg, const SelectionDAG &DAG) {
unsigned SizeInBits = Arg.getValueType().getSizeInBits();
if (SizeInBits < 8)
return false;
APInt RequredZero(SizeInBits, 0xFE);
KnownBits Bits = DAG.computeKnownBits(Arg, 4);
bool ZExtBool = (Bits.Zero & RequredZero) == RequredZero;
return ZExtBool;
}
void AArch64TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
SDNode *Node) const {
// Live-in physreg copies that are glued to SMSTART are applied as
// implicit-def's in the InstrEmitter. Here we remove them, allowing the
// register allocator to pass call args in callee saved regs, without extra
// copies to avoid these fake clobbers of actually-preserved GPRs.
if (MI.getOpcode() == AArch64::MSRpstatesvcrImm1 ||
MI.getOpcode() == AArch64::MSRpstatePseudo) {
for (unsigned I = MI.getNumOperands() - 1; I > 0; --I)
if (MachineOperand &MO = MI.getOperand(I);
MO.isReg() && MO.isImplicit() && MO.isDef() &&
(AArch64::GPR32RegClass.contains(MO.getReg()) ||
AArch64::GPR64RegClass.contains(MO.getReg())))
MI.removeOperand(I);
// The SVE vector length can change when entering/leaving streaming mode.
if (MI.getOperand(0).getImm() == AArch64SVCR::SVCRSM ||
MI.getOperand(0).getImm() == AArch64SVCR::SVCRSMZA) {
MI.addOperand(MachineOperand::CreateReg(AArch64::VG, /*IsDef=*/false,
/*IsImplicit=*/true));
MI.addOperand(MachineOperand::CreateReg(AArch64::VG, /*IsDef=*/true,
/*IsImplicit=*/true));
}
}
// Add an implicit use of 'VG' for ADDXri/SUBXri, which are instructions that
// have nothing to do with VG, were it not that they are used to materialise a
// frame-address. If they contain a frame-index to a scalable vector, this
// will likely require an ADDVL instruction to materialise the address, thus
// reading VG.
const MachineFunction &MF = *MI.getMF();
if (MF.getInfo<AArch64FunctionInfo>()->hasStreamingModeChanges() &&
(MI.getOpcode() == AArch64::ADDXri ||
MI.getOpcode() == AArch64::SUBXri)) {
const MachineOperand &MO = MI.getOperand(1);
if (MO.isFI() && MF.getFrameInfo().getStackID(MO.getIndex()) ==
TargetStackID::ScalableVector)
MI.addOperand(MachineOperand::CreateReg(AArch64::VG, /*IsDef=*/false,
/*IsImplicit=*/true));
}
}
SDValue AArch64TargetLowering::changeStreamingMode(SelectionDAG &DAG, SDLoc DL,
bool Enable, SDValue Chain,
SDValue InGlue,
unsigned Condition,
SDValue PStateSM) const {
MachineFunction &MF = DAG.getMachineFunction();
AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
FuncInfo->setHasStreamingModeChanges(true);
const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
SDValue RegMask = DAG.getRegisterMask(TRI->getSMStartStopCallPreservedMask());
SDValue MSROp =
DAG.getTargetConstant((int32_t)AArch64SVCR::SVCRSM, DL, MVT::i32);
SDValue ConditionOp = DAG.getTargetConstant(Condition, DL, MVT::i64);
SmallVector<SDValue> Ops = {Chain, MSROp, ConditionOp};
if (Condition != AArch64SME::Always) {
assert(PStateSM && "PStateSM should be defined");
Ops.push_back(PStateSM);
}
Ops.push_back(RegMask);
if (InGlue)
Ops.push_back(InGlue);
unsigned Opcode = Enable ? AArch64ISD::SMSTART : AArch64ISD::SMSTOP;
return DAG.getNode(Opcode, DL, DAG.getVTList(MVT::Other, MVT::Glue), Ops);
}
static unsigned getSMCondition(const SMEAttrs &CallerAttrs,
const SMEAttrs &CalleeAttrs) {
if (!CallerAttrs.hasStreamingCompatibleInterface() ||
CallerAttrs.hasStreamingBody())
return AArch64SME::Always;
if (CalleeAttrs.hasNonStreamingInterface())
return AArch64SME::IfCallerIsStreaming;
if (CalleeAttrs.hasStreamingInterface())
return AArch64SME::IfCallerIsNonStreaming;
llvm_unreachable("Unsupported attributes");
}
/// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain,
/// and add input and output parameter nodes.
SDValue
AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
SDLoc &DL = CLI.DL;
SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
SDValue Chain = CLI.Chain;
SDValue Callee = CLI.Callee;
bool &IsTailCall = CLI.IsTailCall;
CallingConv::ID &CallConv = CLI.CallConv;
bool IsVarArg = CLI.IsVarArg;
MachineFunction &MF = DAG.getMachineFunction();
MachineFunction::CallSiteInfo CSInfo;
bool IsThisReturn = false;
AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
bool IsCFICall = CLI.CB && CLI.CB->isIndirectCall() && CLI.CFIType;
bool IsSibCall = false;
bool GuardWithBTI = false;
if (CLI.CB && CLI.CB->hasFnAttr(Attribute::ReturnsTwice) &&
!Subtarget->noBTIAtReturnTwice()) {
GuardWithBTI = FuncInfo->branchTargetEnforcement();
}
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
if (IsVarArg) {
unsigned NumArgs = Outs.size();
for (unsigned i = 0; i != NumArgs; ++i) {
if (!Outs[i].IsFixed && Outs[i].VT.isScalableVector())
report_fatal_error("Passing SVE types to variadic functions is "
"currently not supported");
}
}
analyzeCallOperands(*this, Subtarget, CLI, CCInfo);
CCAssignFn *RetCC = CCAssignFnForReturn(CallConv);
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
CCState RetCCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
RetCCInfo.AnalyzeCallResult(Ins, RetCC);
// Check callee args/returns for SVE registers and set calling convention
// accordingly.
if (CallConv == CallingConv::C || CallConv == CallingConv::Fast) {
auto HasSVERegLoc = [](CCValAssign &Loc) {
if (!Loc.isRegLoc())
return false;
return AArch64::ZPRRegClass.contains(Loc.getLocReg()) ||
AArch64::PPRRegClass.contains(Loc.getLocReg());
};
if (any_of(RVLocs, HasSVERegLoc) || any_of(ArgLocs, HasSVERegLoc))
CallConv = CallingConv::AArch64_SVE_VectorCall;
}
if (IsTailCall) {
// Check if it's really possible to do a tail call.
IsTailCall = isEligibleForTailCallOptimization(CLI);
// A sibling call is one where we're under the usual C ABI and not planning
// to change that but can still do a tail call:
if (!TailCallOpt && IsTailCall && CallConv != CallingConv::Tail &&
CallConv != CallingConv::SwiftTail)
IsSibCall = true;
if (IsTailCall)
++NumTailCalls;
}
if (!IsTailCall && CLI.CB && CLI.CB->isMustTailCall())
report_fatal_error("failed to perform tail call elimination on a call "
"site marked musttail");
// Get a count of how many bytes are to be pushed on the stack.
unsigned NumBytes = CCInfo.getStackSize();
if (IsSibCall) {
// Since we're not changing the ABI to make this a tail call, the memory
// operands are already available in the caller's incoming argument space.
NumBytes = 0;
}
// FPDiff is the byte offset of the call's argument area from the callee's.
// Stores to callee stack arguments will be placed in FixedStackSlots offset
// by this amount for a tail call. In a sibling call it must be 0 because the
// caller will deallocate the entire stack and the callee still expects its
// arguments to begin at SP+0. Completely unused for non-tail calls.
int FPDiff = 0;
if (IsTailCall && !IsSibCall) {
unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
// Since callee will pop argument stack as a tail call, we must keep the
// popped size 16-byte aligned.
NumBytes = alignTo(NumBytes, 16);
// FPDiff will be negative if this tail call requires more space than we
// would automatically have in our incoming argument space. Positive if we
// can actually shrink the stack.
FPDiff = NumReusableBytes - NumBytes;
// Update the required reserved area if this is the tail call requiring the
// most argument stack space.
if (FPDiff < 0 && FuncInfo->getTailCallReservedStack() < (unsigned)-FPDiff)
FuncInfo->setTailCallReservedStack(-FPDiff);
// The stack pointer must be 16-byte aligned at all times it's used for a
// memory operation, which in practice means at *all* times and in
// particular across call boundaries. Therefore our own arguments started at
// a 16-byte aligned SP and the delta applied for the tail call should
// satisfy the same constraint.
assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
}
// Determine whether we need any streaming mode changes.
SMEAttrs CalleeAttrs, CallerAttrs(MF.getFunction());
if (CLI.CB)
CalleeAttrs = SMEAttrs(*CLI.CB);
else if (auto *ES = dyn_cast<ExternalSymbolSDNode>(CLI.Callee))
CalleeAttrs = SMEAttrs(ES->getSymbol());
auto DescribeCallsite =
[&](OptimizationRemarkAnalysis &R) -> OptimizationRemarkAnalysis & {
R << "call from '" << ore::NV("Caller", MF.getName()) << "' to '";
if (auto *ES = dyn_cast<ExternalSymbolSDNode>(CLI.Callee))
R << ore::NV("Callee", ES->getSymbol());
else if (CLI.CB && CLI.CB->getCalledFunction())
R << ore::NV("Callee", CLI.CB->getCalledFunction()->getName());
else
R << "unknown callee";
R << "'";
return R;
};
bool RequiresLazySave = CallerAttrs.requiresLazySave(CalleeAttrs);
if (RequiresLazySave) {
const TPIDR2Object &TPIDR2 = FuncInfo->getTPIDR2Obj();
MachinePointerInfo MPI =
MachinePointerInfo::getStack(MF, TPIDR2.FrameIndex);
SDValue TPIDR2ObjAddr = DAG.getFrameIndex(
TPIDR2.FrameIndex,
DAG.getTargetLoweringInfo().getFrameIndexTy(DAG.getDataLayout()));
SDValue NumZaSaveSlicesAddr =
DAG.getNode(ISD::ADD, DL, TPIDR2ObjAddr.getValueType(), TPIDR2ObjAddr,
DAG.getConstant(8, DL, TPIDR2ObjAddr.getValueType()));
SDValue NumZaSaveSlices = DAG.getNode(AArch64ISD::RDSVL, DL, MVT::i64,
DAG.getConstant(1, DL, MVT::i32));
Chain = DAG.getTruncStore(Chain, DL, NumZaSaveSlices, NumZaSaveSlicesAddr,
MPI, MVT::i16);
Chain = DAG.getNode(
ISD::INTRINSIC_VOID, DL, MVT::Other, Chain,
DAG.getConstant(Intrinsic::aarch64_sme_set_tpidr2, DL, MVT::i32),
TPIDR2ObjAddr);
OptimizationRemarkEmitter ORE(&MF.getFunction());
ORE.emit([&]() {
auto R = CLI.CB ? OptimizationRemarkAnalysis("sme", "SMELazySaveZA",
CLI.CB)
: OptimizationRemarkAnalysis("sme", "SMELazySaveZA",
&MF.getFunction());
return DescribeCallsite(R) << " sets up a lazy save for ZA";
});
}
SDValue PStateSM;
bool RequiresSMChange = CallerAttrs.requiresSMChange(CalleeAttrs);
if (RequiresSMChange) {
if (CallerAttrs.hasStreamingInterfaceOrBody())
PStateSM = DAG.getConstant(1, DL, MVT::i64);
else if (CallerAttrs.hasNonStreamingInterface())
PStateSM = DAG.getConstant(0, DL, MVT::i64);
else
PStateSM = getRuntimePStateSM(DAG, Chain, DL, MVT::i64);
OptimizationRemarkEmitter ORE(&MF.getFunction());
ORE.emit([&]() {
auto R = CLI.CB ? OptimizationRemarkAnalysis("sme", "SMETransition",
CLI.CB)
: OptimizationRemarkAnalysis("sme", "SMETransition",
&MF.getFunction());
DescribeCallsite(R) << " requires a streaming mode transition";
return R;
});
}
SDValue ZTFrameIdx;
MachineFrameInfo &MFI = MF.getFrameInfo();
bool ShouldPreserveZT0 = CallerAttrs.requiresPreservingZT0(CalleeAttrs);
// If the caller has ZT0 state which will not be preserved by the callee,
// spill ZT0 before the call.
if (ShouldPreserveZT0) {
unsigned ZTObj = MFI.CreateSpillStackObject(64, Align(16));
ZTFrameIdx = DAG.getFrameIndex(
ZTObj,
DAG.getTargetLoweringInfo().getFrameIndexTy(DAG.getDataLayout()));
Chain = DAG.getNode(AArch64ISD::SAVE_ZT, DL, DAG.getVTList(MVT::Other),
{Chain, DAG.getConstant(0, DL, MVT::i32), ZTFrameIdx});
}
// If caller shares ZT0 but the callee is not shared ZA, we need to stop
// PSTATE.ZA before the call if there is no lazy-save active.
bool DisableZA = CallerAttrs.requiresDisablingZABeforeCall(CalleeAttrs);
assert((!DisableZA || !RequiresLazySave) &&
"Lazy-save should have PSTATE.SM=1 on entry to the function");
if (DisableZA)
Chain = DAG.getNode(
AArch64ISD::SMSTOP, DL, MVT::Other, Chain,
DAG.getTargetConstant((int32_t)(AArch64SVCR::SVCRZA), DL, MVT::i32),
DAG.getConstant(AArch64SME::Always, DL, MVT::i64));
// Adjust the stack pointer for the new arguments...
// These operations are automatically eliminated by the prolog/epilog pass
if (!IsSibCall)
Chain = DAG.getCALLSEQ_START(Chain, IsTailCall ? 0 : NumBytes, 0, DL);
SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP,
getPointerTy(DAG.getDataLayout()));
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
SmallSet<unsigned, 8> RegsUsed;
SmallVector<SDValue, 8> MemOpChains;
auto PtrVT = getPointerTy(DAG.getDataLayout());
if (IsVarArg && CLI.CB && CLI.CB->isMustTailCall()) {
const auto &Forwards = FuncInfo->getForwardedMustTailRegParms();
for (const auto &F : Forwards) {
SDValue Val = DAG.getCopyFromReg(Chain, DL, F.VReg, F.VT);
RegsToPass.emplace_back(F.PReg, Val);
}
}
// Walk the register/memloc assignments, inserting copies/loads.
unsigned ExtraArgLocs = 0;
for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i - ExtraArgLocs];
SDValue Arg = OutVals[i];
ISD::ArgFlagsTy Flags = Outs[i].Flags;
// Promote the value if needed.
switch (VA.getLocInfo()) {
default:
llvm_unreachable("Unknown loc info!");
case CCValAssign::Full:
break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
break;
case CCValAssign::AExt:
if (Outs[i].ArgVT == MVT::i1) {
// AAPCS requires i1 to be zero-extended to 8-bits by the caller.
//
// Check if we actually have to do this, because the value may
// already be zero-extended.
//
// We cannot just emit a (zext i8 (trunc (assert-zext i8)))
// and rely on DAGCombiner to fold this, because the following
// (anyext i32) is combined with (zext i8) in DAG.getNode:
//
// (ext (zext x)) -> (zext x)
//
// This will give us (zext i32), which we cannot remove, so
// try to check this beforehand.
if (!checkZExtBool(Arg, DAG)) {
Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg);
}
}
Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
break;
case CCValAssign::AExtUpper:
assert(VA.getValVT() == MVT::i32 && "only expect 32 -> 64 upper bits");
Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
Arg = DAG.getNode(ISD::SHL, DL, VA.getLocVT(), Arg,
DAG.getConstant(32, DL, VA.getLocVT()));
break;
case CCValAssign::BCvt:
Arg = DAG.getBitcast(VA.getLocVT(), Arg);
break;
case CCValAssign::Trunc:
Arg = DAG.getZExtOrTrunc(Arg, DL, VA.getLocVT());
break;
case CCValAssign::FPExt:
Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
break;
case CCValAssign::Indirect:
bool isScalable = VA.getValVT().isScalableVT();
assert((isScalable || Subtarget->isWindowsArm64EC()) &&
"Indirect arguments should be scalable on most subtargets");
uint64_t StoreSize = VA.getValVT().getStoreSize().getKnownMinValue();
uint64_t PartSize = StoreSize;
unsigned NumParts = 1;
if (Outs[i].Flags.isInConsecutiveRegs()) {
while (!Outs[i + NumParts - 1].Flags.isInConsecutiveRegsLast())
++NumParts;
StoreSize *= NumParts;
}
Type *Ty = EVT(VA.getValVT()).getTypeForEVT(*DAG.getContext());
Align Alignment = DAG.getDataLayout().getPrefTypeAlign(Ty);
MachineFrameInfo &MFI = MF.getFrameInfo();
int FI = MFI.CreateStackObject(StoreSize, Alignment, false);
if (isScalable)
MFI.setStackID(FI, TargetStackID::ScalableVector);
MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
SDValue Ptr = DAG.getFrameIndex(
FI, DAG.getTargetLoweringInfo().getFrameIndexTy(DAG.getDataLayout()));
SDValue SpillSlot = Ptr;
// Ensure we generate all stores for each tuple part, whilst updating the
// pointer after each store correctly using vscale.
while (NumParts) {
SDValue Store = DAG.getStore(Chain, DL, OutVals[i], Ptr, MPI);
MemOpChains.push_back(Store);
NumParts--;
if (NumParts > 0) {
SDValue BytesIncrement;
if (isScalable) {
BytesIncrement = DAG.getVScale(
DL, Ptr.getValueType(),
APInt(Ptr.getValueSizeInBits().getFixedValue(), PartSize));
} else {
BytesIncrement = DAG.getConstant(
APInt(Ptr.getValueSizeInBits().getFixedValue(), PartSize), DL,
Ptr.getValueType());
}
MPI = MachinePointerInfo(MPI.getAddrSpace());
Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
BytesIncrement, SDNodeFlags::NoUnsignedWrap);
ExtraArgLocs++;
i++;
}
}
Arg = SpillSlot;
break;
}
if (VA.isRegLoc()) {
if (i == 0 && Flags.isReturned() && !Flags.isSwiftSelf() &&
Outs[0].VT == MVT::i64) {
assert(VA.getLocVT() == MVT::i64 &&
"unexpected calling convention register assignment");
assert(!Ins.empty() && Ins[0].VT == MVT::i64 &&
"unexpected use of 'returned'");
IsThisReturn = true;
}
if (RegsUsed.count(VA.getLocReg())) {
// If this register has already been used then we're trying to pack
// parts of an [N x i32] into an X-register. The extension type will
// take care of putting the two halves in the right place but we have to
// combine them.
SDValue &Bits =
llvm::find_if(RegsToPass,
[=](const std::pair<unsigned, SDValue> &Elt) {
return Elt.first == VA.getLocReg();
})
->second;
Bits = DAG.getNode(ISD::OR, DL, Bits.getValueType(), Bits, Arg);
// Call site info is used for function's parameter entry value
// tracking. For now we track only simple cases when parameter
// is transferred through whole register.
llvm::erase_if(CSInfo.ArgRegPairs,
[&VA](MachineFunction::ArgRegPair ArgReg) {
return ArgReg.Reg == VA.getLocReg();
});
} else {
// Add an extra level of indirection for streaming mode changes by
// using a pseudo copy node that cannot be rematerialised between a
// smstart/smstop and the call by the simple register coalescer.
if (RequiresSMChange && isPassedInFPR(Arg.getValueType()))
Arg = DAG.getNode(AArch64ISD::COALESCER_BARRIER, DL,
Arg.getValueType(), Arg);
RegsToPass.emplace_back(VA.getLocReg(), Arg);
RegsUsed.insert(VA.getLocReg());
const TargetOptions &Options = DAG.getTarget().Options;
if (Options.EmitCallSiteInfo)
CSInfo.ArgRegPairs.emplace_back(VA.getLocReg(), i);
}
} else {
assert(VA.isMemLoc());
SDValue DstAddr;
MachinePointerInfo DstInfo;
// FIXME: This works on big-endian for composite byvals, which are the
// common case. It should also work for fundamental types too.
uint32_t BEAlign = 0;
unsigned OpSize;
if (VA.getLocInfo() == CCValAssign::Indirect ||
VA.getLocInfo() == CCValAssign::Trunc)
OpSize = VA.getLocVT().getFixedSizeInBits();
else
OpSize = Flags.isByVal() ? Flags.getByValSize() * 8
: VA.getValVT().getSizeInBits();
OpSize = (OpSize + 7) / 8;
if (!Subtarget->isLittleEndian() && !Flags.isByVal() &&
!Flags.isInConsecutiveRegs()) {
if (OpSize < 8)
BEAlign = 8 - OpSize;
}
unsigned LocMemOffset = VA.getLocMemOffset();
int32_t Offset = LocMemOffset + BEAlign;
SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
if (IsTailCall) {
Offset = Offset + FPDiff;
int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
DstAddr = DAG.getFrameIndex(FI, PtrVT);
DstInfo = MachinePointerInfo::getFixedStack(MF, FI);
// Make sure any stack arguments overlapping with where we're storing
// are loaded before this eventual operation. Otherwise they'll be
// clobbered.
Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
} else {
SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
DstAddr = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset);
}
if (Outs[i].Flags.isByVal()) {
SDValue SizeNode =
DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i64);
SDValue Cpy = DAG.getMemcpy(
Chain, DL, DstAddr, Arg, SizeNode,
Outs[i].Flags.getNonZeroByValAlign(),
/*isVol = */ false, /*AlwaysInline = */ false,
/*CI=*/nullptr, std::nullopt, DstInfo, MachinePointerInfo());
MemOpChains.push_back(Cpy);
} else {
// Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already
// promoted to a legal register type i32, we should truncate Arg back to
// i1/i8/i16.
if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 ||
VA.getValVT() == MVT::i16)
Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo);
MemOpChains.push_back(Store);
}
}
}
if (IsVarArg && Subtarget->isWindowsArm64EC()) {
SDValue ParamPtr = StackPtr;
if (IsTailCall) {
// Create a dummy object at the top of the stack that can be used to get
// the SP after the epilogue
int FI = MF.getFrameInfo().CreateFixedObject(1, FPDiff, true);
ParamPtr = DAG.getFrameIndex(FI, PtrVT);
}
// For vararg calls, the Arm64EC ABI requires values in x4 and x5
// describing the argument list. x4 contains the address of the
// first stack parameter. x5 contains the size in bytes of all parameters
// passed on the stack.
RegsToPass.emplace_back(AArch64::X4, ParamPtr);
RegsToPass.emplace_back(AArch64::X5,
DAG.getConstant(NumBytes, DL, MVT::i64));
}
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
SDValue InGlue;
if (RequiresSMChange) {
if (!Subtarget->isTargetDarwin() || Subtarget->hasSVE()) {
Chain = DAG.getNode(AArch64ISD::VG_SAVE, DL,
DAG.getVTList(MVT::Other, MVT::Glue), Chain);
InGlue = Chain.getValue(1);
}
SDValue NewChain = changeStreamingMode(
DAG, DL, CalleeAttrs.hasStreamingInterface(), Chain, InGlue,
getSMCondition(CallerAttrs, CalleeAttrs), PStateSM);
Chain = NewChain.getValue(0);
InGlue = NewChain.getValue(1);
}
// Build a sequence of copy-to-reg nodes chained together with token chain
// and flag operands which copy the outgoing args into the appropriate regs.
for (auto &RegToPass : RegsToPass) {
Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
RegToPass.second, InGlue);
InGlue = Chain.getValue(1);
}
// If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
// direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
// node so that legalize doesn't hack it.
if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
auto GV = G->getGlobal();
unsigned OpFlags =
Subtarget->classifyGlobalFunctionReference(GV, getTargetMachine());
if (OpFlags & AArch64II::MO_GOT) {
Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
} else {
const GlobalValue *GV = G->getGlobal();
Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
}
} else if (auto *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
bool UseGot = (getTargetMachine().getCodeModel() == CodeModel::Large &&
Subtarget->isTargetMachO()) ||
MF.getFunction().getParent()->getRtLibUseGOT();
const char *Sym = S->getSymbol();
if (UseGot) {
Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, AArch64II::MO_GOT);
Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
} else {
Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, 0);
}
}
// We don't usually want to end the call-sequence here because we would tidy
// the frame up *after* the call, however in the ABI-changing tail-call case
// we've carefully laid out the parameters so that when sp is reset they'll be
// in the correct location.
if (IsTailCall && !IsSibCall) {
Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL);
InGlue = Chain.getValue(1);
}
unsigned Opc = IsTailCall ? AArch64ISD::TC_RETURN : AArch64ISD::CALL;
std::vector<SDValue> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
// Calls with operand bundle "clang.arc.attachedcall" are special. They should
// be expanded to the call, directly followed by a special marker sequence and
// a call to an ObjC library function. Use CALL_RVMARKER to do that.
if (CLI.CB && objcarc::hasAttachedCallOpBundle(CLI.CB)) {
assert(!IsTailCall &&
"tail calls cannot be marked with clang.arc.attachedcall");
Opc = AArch64ISD::CALL_RVMARKER;
// Add a target global address for the retainRV/claimRV runtime function
// just before the call target.
Function *ARCFn = *objcarc::getAttachedARCFunction(CLI.CB);
auto GA = DAG.getTargetGlobalAddress(ARCFn, DL, PtrVT);
Ops.insert(Ops.begin() + 1, GA);
} else if (CallConv == CallingConv::ARM64EC_Thunk_X64) {
Opc = AArch64ISD::CALL_ARM64EC_TO_X64;
} else if (GuardWithBTI) {
Opc = AArch64ISD::CALL_BTI;
}
if (IsTailCall) {
// Each tail call may have to adjust the stack by a different amount, so
// this information must travel along with the operation for eventual
// consumption by emitEpilogue.
Ops.push_back(
DAG.getSignedConstant(FPDiff, DL, MVT::i32, /*isTarget=*/true));
}
if (CLI.PAI) {
const uint64_t Key = CLI.PAI->Key;
assert((Key == AArch64PACKey::IA || Key == AArch64PACKey::IB) &&
"Invalid auth call key");
// Split the discriminator into address/integer components.
SDValue AddrDisc, IntDisc;
std::tie(IntDisc, AddrDisc) =
extractPtrauthBlendDiscriminators(CLI.PAI->Discriminator, &DAG);
if (Opc == AArch64ISD::CALL_RVMARKER)
Opc = AArch64ISD::AUTH_CALL_RVMARKER;
else
Opc = IsTailCall ? AArch64ISD::AUTH_TC_RETURN : AArch64ISD::AUTH_CALL;
Ops.push_back(DAG.getTargetConstant(Key, DL, MVT::i32));
Ops.push_back(IntDisc);
Ops.push_back(AddrDisc);
}
// Add argument registers to the end of the list so that they are known live
// into the call.
for (auto &RegToPass : RegsToPass)
Ops.push_back(DAG.getRegister(RegToPass.first,
RegToPass.second.getValueType()));
// Add a register mask operand representing the call-preserved registers.
const uint32_t *Mask;
const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
if (IsThisReturn) {
// For 'this' returns, use the X0-preserving mask if applicable
Mask = TRI->getThisReturnPreservedMask(MF, CallConv);
if (!Mask) {
IsThisReturn = false;
Mask = TRI->getCallPreservedMask(MF, CallConv);
}
} else
Mask = TRI->getCallPreservedMask(MF, CallConv);
if (Subtarget->hasCustomCallingConv())
TRI->UpdateCustomCallPreservedMask(MF, &Mask);
if (TRI->isAnyArgRegReserved(MF))
TRI->emitReservedArgRegCallError(MF);
assert(Mask && "Missing call preserved mask for calling convention");
Ops.push_back(DAG.getRegisterMask(Mask));
if (InGlue.getNode())
Ops.push_back(InGlue);
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
// If we're doing a tall call, use a TC_RETURN here rather than an
// actual call instruction.
if (IsTailCall) {
MF.getFrameInfo().setHasTailCall();
SDValue Ret = DAG.getNode(Opc, DL, NodeTys, Ops);
if (IsCFICall)
Ret.getNode()->setCFIType(CLI.CFIType->getZExtValue());
DAG.addNoMergeSiteInfo(Ret.getNode(), CLI.NoMerge);
DAG.addCallSiteInfo(Ret.getNode(), std::move(CSInfo));
return Ret;
}
// Returns a chain and a flag for retval copy to use.
Chain = DAG.getNode(Opc, DL, NodeTys, Ops);
if (IsCFICall)
Chain.getNode()->setCFIType(CLI.CFIType->getZExtValue());
DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
InGlue = Chain.getValue(1);
DAG.addCallSiteInfo(Chain.getNode(), std::move(CSInfo));
uint64_t CalleePopBytes =
DoesCalleeRestoreStack(CallConv, TailCallOpt) ? alignTo(NumBytes, 16) : 0;
Chain = DAG.getCALLSEQ_END(Chain, NumBytes, CalleePopBytes, InGlue, DL);
InGlue = Chain.getValue(1);
// Handle result values, copying them out of physregs into vregs that we
// return.
SDValue Result = LowerCallResult(
Chain, InGlue, CallConv, IsVarArg, RVLocs, DL, DAG, InVals, IsThisReturn,
IsThisReturn ? OutVals[0] : SDValue(), RequiresSMChange);
if (!Ins.empty())
InGlue = Result.getValue(Result->getNumValues() - 1);
if (RequiresSMChange) {
assert(PStateSM && "Expected a PStateSM to be set");
Result = changeStreamingMode(
DAG, DL, !CalleeAttrs.hasStreamingInterface(), Result, InGlue,
getSMCondition(CallerAttrs, CalleeAttrs), PStateSM);
if (!Subtarget->isTargetDarwin() || Subtarget->hasSVE()) {
InGlue = Result.getValue(1);
Result =
DAG.getNode(AArch64ISD::VG_RESTORE, DL,
DAG.getVTList(MVT::Other, MVT::Glue), {Result, InGlue});
}
}
if (CallerAttrs.requiresEnablingZAAfterCall(CalleeAttrs))
// Unconditionally resume ZA.
Result = DAG.getNode(
AArch64ISD::SMSTART, DL, MVT::Other, Result,
DAG.getTargetConstant((int32_t)(AArch64SVCR::SVCRZA), DL, MVT::i32),
DAG.getConstant(AArch64SME::Always, DL, MVT::i64));
if (ShouldPreserveZT0)
Result =
DAG.getNode(AArch64ISD::RESTORE_ZT, DL, DAG.getVTList(MVT::Other),
{Result, DAG.getConstant(0, DL, MVT::i32), ZTFrameIdx});
if (RequiresLazySave) {
// Conditionally restore the lazy save using a pseudo node.
TPIDR2Object &TPIDR2 = FuncInfo->getTPIDR2Obj();
SDValue RegMask = DAG.getRegisterMask(
TRI->SMEABISupportRoutinesCallPreservedMaskFromX0());
SDValue RestoreRoutine = DAG.getTargetExternalSymbol(
"__arm_tpidr2_restore", getPointerTy(DAG.getDataLayout()));
SDValue TPIDR2_EL0 = DAG.getNode(
ISD::INTRINSIC_W_CHAIN, DL, MVT::i64, Result,
DAG.getConstant(Intrinsic::aarch64_sme_get_tpidr2, DL, MVT::i32));
// Copy the address of the TPIDR2 block into X0 before 'calling' the
// RESTORE_ZA pseudo.
SDValue Glue;
SDValue TPIDR2Block = DAG.getFrameIndex(
TPIDR2.FrameIndex,
DAG.getTargetLoweringInfo().getFrameIndexTy(DAG.getDataLayout()));
Result = DAG.getCopyToReg(Result, DL, AArch64::X0, TPIDR2Block, Glue);
Result =
DAG.getNode(AArch64ISD::RESTORE_ZA, DL, MVT::Other,
{Result, TPIDR2_EL0, DAG.getRegister(AArch64::X0, MVT::i64),
RestoreRoutine, RegMask, Result.getValue(1)});
// Finally reset the TPIDR2_EL0 register to 0.
Result = DAG.getNode(
ISD::INTRINSIC_VOID, DL, MVT::Other, Result,
DAG.getConstant(Intrinsic::aarch64_sme_set_tpidr2, DL, MVT::i32),
DAG.getConstant(0, DL, MVT::i64));
TPIDR2.Uses++;
}
if (RequiresSMChange || RequiresLazySave || ShouldPreserveZT0) {
for (unsigned I = 0; I < InVals.size(); ++I) {
// The smstart/smstop is chained as part of the call, but when the
// resulting chain is discarded (which happens when the call is not part
// of a chain, e.g. a call to @llvm.cos()), we need to ensure the
// smstart/smstop is chained to the result value. We can do that by doing
// a vreg -> vreg copy.
Register Reg = MF.getRegInfo().createVirtualRegister(
getRegClassFor(InVals[I].getValueType().getSimpleVT()));
SDValue X = DAG.getCopyToReg(Result, DL, Reg, InVals[I]);
InVals[I] = DAG.getCopyFromReg(X, DL, Reg,
InVals[I].getValueType());
}
}
if (CallConv == CallingConv::PreserveNone) {
for (const ISD::OutputArg &O : Outs) {
if (O.Flags.isSwiftSelf() || O.Flags.isSwiftError() ||
O.Flags.isSwiftAsync()) {
MachineFunction &MF = DAG.getMachineFunction();
DAG.getContext()->diagnose(DiagnosticInfoUnsupported(
MF.getFunction(),
"Swift attributes can't be used with preserve_none",
DL.getDebugLoc()));
break;
}
}
}
return Result;
}
bool AArch64TargetLowering::CanLowerReturn(
CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
CCAssignFn *RetCC = CCAssignFnForReturn(CallConv);
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
return CCInfo.CheckReturn(Outs, RetCC);
}
SDValue
AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SDLoc &DL, SelectionDAG &DAG) const {
auto &MF = DAG.getMachineFunction();
auto *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
CCAssignFn *RetCC = CCAssignFnForReturn(CallConv);
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, isVarArg, MF, RVLocs, *DAG.getContext());
CCInfo.AnalyzeReturn(Outs, RetCC);
// Copy the result values into the output registers.
SDValue Glue;
SmallVector<std::pair<unsigned, SDValue>, 4> RetVals;
SmallSet<unsigned, 4> RegsUsed;
for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size();
++i, ++realRVLocIdx) {
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
SDValue Arg = OutVals[realRVLocIdx];
switch (VA.getLocInfo()) {
default:
llvm_unreachable("Unknown loc info!");
case CCValAssign::Full:
if (Outs[i].ArgVT == MVT::i1) {
// AAPCS requires i1 to be zero-extended to i8 by the producer of the
// value. This is strictly redundant on Darwin (which uses "zeroext
// i1"), but will be optimised out before ISel.
Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
}
break;
case CCValAssign::BCvt:
Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
break;
case CCValAssign::AExt:
case CCValAssign::ZExt:
Arg = DAG.getZExtOrTrunc(Arg, DL, VA.getLocVT());
break;
case CCValAssign::AExtUpper:
assert(VA.getValVT() == MVT::i32 && "only expect 32 -> 64 upper bits");
Arg = DAG.getZExtOrTrunc(Arg, DL, VA.getLocVT());
Arg = DAG.getNode(ISD::SHL, DL, VA.getLocVT(), Arg,
DAG.getConstant(32, DL, VA.getLocVT()));
break;
}
if (RegsUsed.count(VA.getLocReg())) {
SDValue &Bits =
llvm::find_if(RetVals, [=](const std::pair<unsigned, SDValue> &Elt) {
return Elt.first == VA.getLocReg();
})->second;
Bits = DAG.getNode(ISD::OR, DL, Bits.getValueType(), Bits, Arg);
} else {
RetVals.emplace_back(VA.getLocReg(), Arg);
RegsUsed.insert(VA.getLocReg());
}
}
const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
// Emit SMSTOP before returning from a locally streaming function
SMEAttrs FuncAttrs(MF.getFunction());
if (FuncAttrs.hasStreamingBody() && !FuncAttrs.hasStreamingInterface()) {
if (FuncAttrs.hasStreamingCompatibleInterface()) {
Register Reg = FuncInfo->getPStateSMReg();
assert(Reg.isValid() && "PStateSM Register is invalid");
SDValue PStateSM = DAG.getCopyFromReg(Chain, DL, Reg, MVT::i64);
Chain = changeStreamingMode(DAG, DL, /*Enable*/ false, Chain,
/*Glue*/ SDValue(),
AArch64SME::IfCallerIsNonStreaming, PStateSM);
} else
Chain = changeStreamingMode(DAG, DL, /*Enable*/ false, Chain,
/*Glue*/ SDValue(), AArch64SME::Always);
Glue = Chain.getValue(1);
}
SmallVector<SDValue, 4> RetOps(1, Chain);
for (auto &RetVal : RetVals) {
if (FuncAttrs.hasStreamingBody() && !FuncAttrs.hasStreamingInterface() &&
isPassedInFPR(RetVal.second.getValueType()))
RetVal.second = DAG.getNode(AArch64ISD::COALESCER_BARRIER, DL,
RetVal.second.getValueType(), RetVal.second);
Chain = DAG.getCopyToReg(Chain, DL, RetVal.first, RetVal.second, Glue);
Glue = Chain.getValue(1);
RetOps.push_back(
DAG.getRegister(RetVal.first, RetVal.second.getValueType()));
}
// Windows AArch64 ABIs require that for returning structs by value we copy
// the sret argument into X0 for the return.
// We saved the argument into a virtual register in the entry block,
// so now we copy the value out and into X0.
if (unsigned SRetReg = FuncInfo->getSRetReturnReg()) {
SDValue Val = DAG.getCopyFromReg(RetOps[0], DL, SRetReg,
getPointerTy(MF.getDataLayout()));
unsigned RetValReg = AArch64::X0;
if (CallConv == CallingConv::ARM64EC_Thunk_X64)
RetValReg = AArch64::X8;
Chain = DAG.getCopyToReg(Chain, DL, RetValReg, Val, Glue);
Glue = Chain.getValue(1);
RetOps.push_back(
DAG.getRegister(RetValReg, getPointerTy(DAG.getDataLayout())));
}
const MCPhysReg *I = TRI->getCalleeSavedRegsViaCopy(&MF);
if (I) {
for (; *I; ++I) {
if (AArch64::GPR64RegClass.contains(*I))
RetOps.push_back(DAG.getRegister(*I, MVT::i64));
else if (AArch64::FPR64RegClass.contains(*I))
RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
else
llvm_unreachable("Unexpected register class in CSRsViaCopy!");
}
}
RetOps[0] = Chain; // Update chain.
// Add the glue if we have it.
if (Glue.getNode())
RetOps.push_back(Glue);
if (CallConv == CallingConv::ARM64EC_Thunk_X64) {
// ARM64EC entry thunks use a special return sequence: instead of a regular
// "ret" instruction, they need to explicitly call the emulator.
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDValue Arm64ECRetDest =
DAG.getExternalSymbol("__os_arm64x_dispatch_ret", PtrVT);
Arm64ECRetDest =
getAddr(cast<ExternalSymbolSDNode>(Arm64ECRetDest), DAG, 0);
Arm64ECRetDest = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Arm64ECRetDest,
MachinePointerInfo());
RetOps.insert(RetOps.begin() + 1, Arm64ECRetDest);
RetOps.insert(RetOps.begin() + 2, DAG.getTargetConstant(0, DL, MVT::i32));
return DAG.getNode(AArch64ISD::TC_RETURN, DL, MVT::Other, RetOps);
}
return DAG.getNode(AArch64ISD::RET_GLUE, DL, MVT::Other, RetOps);
}
//===----------------------------------------------------------------------===//
// Other Lowering Code
//===----------------------------------------------------------------------===//
SDValue AArch64TargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty,
SelectionDAG &DAG,
unsigned Flag) const {
return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty,
N->getOffset(), Flag);
}
SDValue AArch64TargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty,
SelectionDAG &DAG,
unsigned Flag) const {
return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
}
SDValue AArch64TargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty,
SelectionDAG &DAG,
unsigned Flag) const {
return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
N->getOffset(), Flag);
}
SDValue AArch64TargetLowering::getTargetNode(BlockAddressSDNode* N, EVT Ty,
SelectionDAG &DAG,
unsigned Flag) const {
return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
}
SDValue AArch64TargetLowering::getTargetNode(ExternalSymbolSDNode *N, EVT Ty,
SelectionDAG &DAG,
unsigned Flag) const {
return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
}
// (loadGOT sym)
template <class NodeTy>
SDValue AArch64TargetLowering::getGOT(NodeTy *N, SelectionDAG &DAG,
unsigned Flags) const {
LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getGOT\n");
SDLoc DL(N);
EVT Ty = getPointerTy(DAG.getDataLayout());
SDValue GotAddr = getTargetNode(N, Ty, DAG, AArch64II::MO_GOT | Flags);
// FIXME: Once remat is capable of dealing with instructions with register
// operands, expand this into two nodes instead of using a wrapper node.
if (DAG.getMachineFunction()
.getInfo<AArch64FunctionInfo>()
->hasELFSignedGOT())
return SDValue(DAG.getMachineNode(AArch64::LOADgotAUTH, DL, Ty, GotAddr),
0);
return DAG.getNode(AArch64ISD::LOADgot, DL, Ty, GotAddr);
}
// (wrapper %highest(sym), %higher(sym), %hi(sym), %lo(sym))
template <class NodeTy>
SDValue AArch64TargetLowering::getAddrLarge(NodeTy *N, SelectionDAG &DAG,
unsigned Flags) const {
LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddrLarge\n");
SDLoc DL(N);
EVT Ty = getPointerTy(DAG.getDataLayout());
const unsigned char MO_NC = AArch64II::MO_NC;
return DAG.getNode(
AArch64ISD::WrapperLarge, DL, Ty,
getTargetNode(N, Ty, DAG, AArch64II::MO_G3 | Flags),
getTargetNode(N, Ty, DAG, AArch64II::MO_G2 | MO_NC | Flags),
getTargetNode(N, Ty, DAG, AArch64II::MO_G1 | MO_NC | Flags),
getTargetNode(N, Ty, DAG, AArch64II::MO_G0 | MO_NC | Flags));
}
// (addlow (adrp %hi(sym)) %lo(sym))
template <class NodeTy>
SDValue AArch64TargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
unsigned Flags) const {
LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddr\n");
SDLoc DL(N);
EVT Ty = getPointerTy(DAG.getDataLayout());
SDValue Hi = getTargetNode(N, Ty, DAG, AArch64II::MO_PAGE | Flags);
SDValue Lo = getTargetNode(N, Ty, DAG,
AArch64II::MO_PAGEOFF | AArch64II::MO_NC | Flags);
SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, Ty, Hi);
return DAG.getNode(AArch64ISD::ADDlow, DL, Ty, ADRP, Lo);
}
// (adr sym)
template <class NodeTy>
SDValue AArch64TargetLowering::getAddrTiny(NodeTy *N, SelectionDAG &DAG,
unsigned Flags) const {
LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddrTiny\n");
SDLoc DL(N);
EVT Ty = getPointerTy(DAG.getDataLayout());
SDValue Sym = getTargetNode(N, Ty, DAG, Flags);
return DAG.getNode(AArch64ISD::ADR, DL, Ty, Sym);
}
SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op,
SelectionDAG &DAG) const {
GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
const GlobalValue *GV = GN->getGlobal();
unsigned OpFlags = Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
if (OpFlags != AArch64II::MO_NO_FLAG)
assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 &&
"unexpected offset in global node");
// This also catches the large code model case for Darwin, and tiny code
// model with got relocations.
if ((OpFlags & AArch64II::MO_GOT) != 0) {
return getGOT(GN, DAG, OpFlags);
}
SDValue Result;
if (getTargetMachine().getCodeModel() == CodeModel::Large &&
!getTargetMachine().isPositionIndependent()) {
Result = getAddrLarge(GN, DAG, OpFlags);
} else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) {
Result = getAddrTiny(GN, DAG, OpFlags);
} else {
Result = getAddr(GN, DAG, OpFlags);
}
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDLoc DL(GN);
if (OpFlags & (AArch64II::MO_DLLIMPORT | AArch64II::MO_COFFSTUB))
Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
MachinePointerInfo::getGOT(DAG.getMachineFunction()));
return Result;
}
/// Convert a TLS address reference into the correct sequence of loads
/// and calls to compute the variable's address (for Darwin, currently) and
/// return an SDValue containing the final node.
/// Darwin only has one TLS scheme which must be capable of dealing with the
/// fully general situation, in the worst case. This means:
/// + "extern __thread" declaration.
/// + Defined in a possibly unknown dynamic library.
///
/// The general system is that each __thread variable has a [3 x i64] descriptor
/// which contains information used by the runtime to calculate the address. The
/// only part of this the compiler needs to know about is the first xword, which
/// contains a function pointer that must be called with the address of the
/// entire descriptor in "x0".
///
/// Since this descriptor may be in a different unit, in general even the
/// descriptor must be accessed via an indirect load. The "ideal" code sequence
/// is:
/// adrp x0, _var@TLVPPAGE
/// ldr x0, [x0, _var@TLVPPAGEOFF] ; x0 now contains address of descriptor
/// ldr x1, [x0] ; x1 contains 1st entry of descriptor,
/// ; the function pointer
/// blr x1 ; Uses descriptor address in x0
/// ; Address of _var is now in x0.
///
/// If the address of _var's descriptor *is* known to the linker, then it can
/// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for
/// a slight efficiency gain.
SDValue
AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op,
SelectionDAG &DAG) const {
assert(Subtarget->isTargetDarwin() &&
"This function expects a Darwin target");
SDLoc DL(Op);
MVT PtrVT = getPointerTy(DAG.getDataLayout());
MVT PtrMemVT = getPointerMemTy(DAG.getDataLayout());
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
SDValue TLVPAddr =
DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr);
// The first entry in the descriptor is a function pointer that we must call
// to obtain the address of the variable.
SDValue Chain = DAG.getEntryNode();
SDValue FuncTLVGet = DAG.getLoad(
PtrMemVT, DL, Chain, DescAddr,
MachinePointerInfo::getGOT(DAG.getMachineFunction()),
Align(PtrMemVT.getSizeInBits() / 8),
MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
Chain = FuncTLVGet.getValue(1);
// Extend loaded pointer if necessary (i.e. if ILP32) to DAG pointer.
FuncTLVGet = DAG.getZExtOrTrunc(FuncTLVGet, DL, PtrVT);
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
MFI.setAdjustsStack(true);
// TLS calls preserve all registers except those that absolutely must be
// trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
// silly).
const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
const uint32_t *Mask = TRI->getTLSCallPreservedMask();
if (Subtarget->hasCustomCallingConv())
TRI->UpdateCustomCallPreservedMask(DAG.getMachineFunction(), &Mask);
// Finally, we can make the call. This is just a degenerate version of a
// normal AArch64 call node: x0 takes the address of the descriptor, and
// returns the address of the variable in this thread.
Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue());
unsigned Opcode = AArch64ISD::CALL;
SmallVector<SDValue, 8> Ops;
Ops.push_back(Chain);
Ops.push_back(FuncTLVGet);
// With ptrauth-calls, the tlv access thunk pointer is authenticated (IA, 0).
if (DAG.getMachineFunction().getFunction().hasFnAttribute("ptrauth-calls")) {
Opcode = AArch64ISD::AUTH_CALL;
Ops.push_back(DAG.getTargetConstant(AArch64PACKey::IA, DL, MVT::i32));
Ops.push_back(DAG.getTargetConstant(0, DL, MVT::i64)); // Integer Disc.
Ops.push_back(DAG.getRegister(AArch64::NoRegister, MVT::i64)); // Addr Disc.
}
Ops.push_back(DAG.getRegister(AArch64::X0, MVT::i64));
Ops.push_back(DAG.getRegisterMask(Mask));
Ops.push_back(Chain.getValue(1));
Chain = DAG.getNode(Opcode, DL, DAG.getVTList(MVT::Other, MVT::Glue), Ops);
return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1));
}
/// Convert a thread-local variable reference into a sequence of instructions to
/// compute the variable's address for the local exec TLS model of ELF targets.
/// The sequence depends on the maximum TLS area size.
SDValue AArch64TargetLowering::LowerELFTLSLocalExec(const GlobalValue *GV,
SDValue ThreadBase,
const SDLoc &DL,
SelectionDAG &DAG) const {
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDValue TPOff, Addr;
switch (DAG.getTarget().Options.TLSSize) {
default:
llvm_unreachable("Unexpected TLS size");
case 12: {
// mrs x0, TPIDR_EL0
// add x0, x0, :tprel_lo12:a
SDValue Var = DAG.getTargetGlobalAddress(
GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_PAGEOFF);
return SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase,
Var,
DAG.getTargetConstant(0, DL, MVT::i32)),
0);
}
case 24: {
// mrs x0, TPIDR_EL0
// add x0, x0, :tprel_hi12:a
// add x0, x0, :tprel_lo12_nc:a
SDValue HiVar = DAG.getTargetGlobalAddress(
GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
SDValue LoVar = DAG.getTargetGlobalAddress(
GV, DL, PtrVT, 0,
AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
Addr = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase,
HiVar,
DAG.getTargetConstant(0, DL, MVT::i32)),
0);
return SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, Addr,
LoVar,
DAG.getTargetConstant(0, DL, MVT::i32)),
0);
}
case 32: {
// mrs x1, TPIDR_EL0
// movz x0, #:tprel_g1:a
// movk x0, #:tprel_g0_nc:a
// add x0, x1, x0
SDValue HiVar = DAG.getTargetGlobalAddress(
GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G1);
SDValue LoVar = DAG.getTargetGlobalAddress(
GV, DL, PtrVT, 0,
AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC);
TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar,
DAG.getTargetConstant(16, DL, MVT::i32)),
0);
TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, LoVar,
DAG.getTargetConstant(0, DL, MVT::i32)),
0);
return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
}
case 48: {
// mrs x1, TPIDR_EL0
// movz x0, #:tprel_g2:a
// movk x0, #:tprel_g1_nc:a
// movk x0, #:tprel_g0_nc:a
// add x0, x1, x0
SDValue HiVar = DAG.getTargetGlobalAddress(
GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G2);
SDValue MiVar = DAG.getTargetGlobalAddress(
GV, DL, PtrVT, 0,
AArch64II::MO_TLS | AArch64II::MO_G1 | AArch64II::MO_NC);
SDValue LoVar = DAG.getTargetGlobalAddress(
GV, DL, PtrVT, 0,
AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC);
TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar,
DAG.getTargetConstant(32, DL, MVT::i32)),
0);
TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, MiVar,
DAG.getTargetConstant(16, DL, MVT::i32)),
0);
TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, LoVar,
DAG.getTargetConstant(0, DL, MVT::i32)),
0);
return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
}
}
}
/// When accessing thread-local variables under either the general-dynamic or
/// local-dynamic system, we make a "TLS-descriptor" call. The variable will
/// have a descriptor, accessible via a PC-relative ADRP, and whose first entry
/// is a function pointer to carry out the resolution.
///
/// The sequence is:
/// adrp x0, :tlsdesc:var
/// ldr x1, [x0, #:tlsdesc_lo12:var]
/// add x0, x0, #:tlsdesc_lo12:var
/// .tlsdesccall var
/// blr x1
/// (TPIDR_EL0 offset now in x0)
///
/// The above sequence must be produced unscheduled, to enable the linker to
/// optimize/relax this sequence.
/// Therefore, a pseudo-instruction (TLSDESC_CALLSEQ) is used to represent the
/// above sequence, and expanded really late in the compilation flow, to ensure
/// the sequence is produced as per above.
SDValue AArch64TargetLowering::LowerELFTLSDescCallSeq(SDValue SymAddr,
const SDLoc &DL,
SelectionDAG &DAG) const {
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDValue Chain = DAG.getEntryNode();
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
Chain =
DAG.getNode(AArch64ISD::TLSDESC_CALLSEQ, DL, NodeTys, {Chain, SymAddr});
SDValue Glue = Chain.getValue(1);
return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
}
SDValue
AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op,
SelectionDAG &DAG) const {
assert(Subtarget->isTargetELF() && "This function expects an ELF target");
const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
if (!EnableAArch64ELFLocalDynamicTLSGeneration) {
if (Model == TLSModel::LocalDynamic)
Model = TLSModel::GeneralDynamic;
}
if (getTargetMachine().getCodeModel() == CodeModel::Large &&
Model != TLSModel::LocalExec)
report_fatal_error("ELF TLS only supported in small memory model or "
"in local exec TLS model");
// Different choices can be made for the maximum size of the TLS area for a
// module. For the small address model, the default TLS size is 16MiB and the
// maximum TLS size is 4GiB.
// FIXME: add tiny and large code model support for TLS access models other
// than local exec. We currently generate the same code as small for tiny,
// which may be larger than needed.
SDValue TPOff;
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDLoc DL(Op);
const GlobalValue *GV = GA->getGlobal();
SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
if (Model == TLSModel::LocalExec) {
return LowerELFTLSLocalExec(GV, ThreadBase, DL, DAG);
} else if (Model == TLSModel::InitialExec) {
TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff);
} else if (Model == TLSModel::LocalDynamic) {
// Local-dynamic accesses proceed in two phases. A general-dynamic TLS
// descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
// the beginning of the module's TLS region, followed by a DTPREL offset
// calculation.
// These accesses will need deduplicating if there's more than one.
AArch64FunctionInfo *MFI =
DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
MFI->incNumLocalDynamicTLSAccesses();
// The call needs a relocation too for linker relaxation. It doesn't make
// sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
// the address.
SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
AArch64II::MO_TLS);
// Now we can calculate the offset from TPIDR_EL0 to this module's
// thread-local area.
TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
// Now use :dtprel_whatever: operations to calculate this variable's offset
// in its thread-storage area.
SDValue HiVar = DAG.getTargetGlobalAddress(
GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
SDValue LoVar = DAG.getTargetGlobalAddress(
GV, DL, MVT::i64, 0,
AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, HiVar,
DAG.getTargetConstant(0, DL, MVT::i32)),
0);
TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, LoVar,
DAG.getTargetConstant(0, DL, MVT::i32)),
0);
} else if (Model == TLSModel::GeneralDynamic) {
// The call needs a relocation too for linker relaxation. It doesn't make
// sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
// the address.
SDValue SymAddr =
DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
// Finally we can make a call to calculate the offset from tpidr_el0.
TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
} else
llvm_unreachable("Unsupported ELF TLS access model");
return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
}
SDValue
AArch64TargetLowering::LowerWindowsGlobalTLSAddress(SDValue Op,
SelectionDAG &DAG) const {
assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");
SDValue Chain = DAG.getEntryNode();
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDLoc DL(Op);
SDValue TEB = DAG.getRegister(AArch64::X18, MVT::i64);
// Load the ThreadLocalStoragePointer from the TEB
// A pointer to the TLS array is located at offset 0x58 from the TEB.
SDValue TLSArray =
DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x58, DL));
TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo());
Chain = TLSArray.getValue(1);
// Load the TLS index from the C runtime;
// This does the same as getAddr(), but without having a GlobalAddressSDNode.
// This also does the same as LOADgot, but using a generic i32 load,
// while LOADgot only loads i64.
SDValue TLSIndexHi =
DAG.getTargetExternalSymbol("_tls_index", PtrVT, AArch64II::MO_PAGE);
SDValue TLSIndexLo = DAG.getTargetExternalSymbol(
"_tls_index", PtrVT, AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, TLSIndexHi);
SDValue TLSIndex =
DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, TLSIndexLo);
TLSIndex = DAG.getLoad(MVT::i32, DL, Chain, TLSIndex, MachinePointerInfo());
Chain = TLSIndex.getValue(1);
// The pointer to the thread's TLS data area is at the TLS Index scaled by 8
// offset into the TLSArray.
TLSIndex = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TLSIndex);
SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
DAG.getConstant(3, DL, PtrVT));
SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
MachinePointerInfo());
Chain = TLS.getValue(1);
const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
const GlobalValue *GV = GA->getGlobal();
SDValue TGAHi = DAG.getTargetGlobalAddress(
GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
SDValue TGALo = DAG.getTargetGlobalAddress(
GV, DL, PtrVT, 0,
AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
// Add the offset from the start of the .tls section (section base).
SDValue Addr =
SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TLS, TGAHi,
DAG.getTargetConstant(0, DL, MVT::i32)),
0);
Addr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, Addr, TGALo);
return Addr;
}
SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
SelectionDAG &DAG) const {
const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
if (DAG.getTarget().useEmulatedTLS())
return LowerToTLSEmulatedModel(GA, DAG);
if (Subtarget->isTargetDarwin())
return LowerDarwinGlobalTLSAddress(Op, DAG);
if (Subtarget->isTargetELF())
return LowerELFGlobalTLSAddress(Op, DAG);
if (Subtarget->isTargetWindows())
return LowerWindowsGlobalTLSAddress(Op, DAG);
llvm_unreachable("Unexpected platform trying to use TLS");
}
//===----------------------------------------------------------------------===//
// PtrAuthGlobalAddress lowering
//
// We have 3 lowering alternatives to choose from:
// - MOVaddrPAC: similar to MOVaddr, with added PAC.
// If the GV doesn't need a GOT load (i.e., is locally defined)
// materialize the pointer using adrp+add+pac. See LowerMOVaddrPAC.
//
// - LOADgotPAC: similar to LOADgot, with added PAC.
// If the GV needs a GOT load, materialize the pointer using the usual
// GOT adrp+ldr, +pac. Pointers in GOT are assumed to be not signed, the GOT
// section is assumed to be read-only (for example, via relro mechanism). See
// LowerMOVaddrPAC.
//
// - LOADauthptrstatic: similar to LOADgot, but use a
// special stub slot instead of a GOT slot.
// Load a signed pointer for symbol 'sym' from a stub slot named
// 'sym$auth_ptr$key$disc' filled by dynamic linker during relocation
// resolving. This usually lowers to adrp+ldr, but also emits an entry into
// .data with an @AUTH relocation. See LowerLOADauthptrstatic.
//
// All 3 are pseudos that are expand late to longer sequences: this lets us
// provide integrity guarantees on the to-be-signed intermediate values.
//
// LOADauthptrstatic is undesirable because it requires a large section filled
// with often similarly-signed pointers, making it a good harvesting target.
// Thus, it's only used for ptrauth references to extern_weak to avoid null
// checks.
static SDValue LowerPtrAuthGlobalAddressStatically(
SDValue TGA, SDLoc DL, EVT VT, AArch64PACKey::ID KeyC,
SDValue Discriminator, SDValue AddrDiscriminator, SelectionDAG &DAG) {
const auto *TGN = cast<GlobalAddressSDNode>(TGA.getNode());
assert(TGN->getGlobal()->hasExternalWeakLinkage());
// Offsets and extern_weak don't mix well: ptrauth aside, you'd get the
// offset alone as a pointer if the symbol wasn't available, which would
// probably break null checks in users. Ptrauth complicates things further:
// error out.
if (TGN->getOffset() != 0)
report_fatal_error(
"unsupported non-zero offset in weak ptrauth global reference");
if (!isNullConstant(AddrDiscriminator))
report_fatal_error("unsupported weak addr-div ptrauth global");
SDValue Key = DAG.getTargetConstant(KeyC, DL, MVT::i32);
return SDValue(DAG.getMachineNode(AArch64::LOADauthptrstatic, DL, MVT::i64,
{TGA, Key, Discriminator}),
0);
}
SDValue
AArch64TargetLowering::LowerPtrAuthGlobalAddress(SDValue Op,
SelectionDAG &DAG) const {
SDValue Ptr = Op.getOperand(0);
uint64_t KeyC = Op.getConstantOperandVal(1);
SDValue AddrDiscriminator = Op.getOperand(2);
uint64_t DiscriminatorC = Op.getConstantOperandVal(3);
EVT VT = Op.getValueType();
SDLoc DL(Op);
if (KeyC > AArch64PACKey::LAST)
report_fatal_error("key in ptrauth global out of range [0, " +
Twine((int)AArch64PACKey::LAST) + "]");
// Blend only works if the integer discriminator is 16-bit wide.
if (!isUInt<16>(DiscriminatorC))
report_fatal_error(
"constant discriminator in ptrauth global out of range [0, 0xffff]");
// Choosing between 3 lowering alternatives is target-specific.
if (!Subtarget->isTargetELF() && !Subtarget->isTargetMachO())
report_fatal_error("ptrauth global lowering only supported on MachO/ELF");
int64_t PtrOffsetC = 0;
if (Ptr.getOpcode() == ISD::ADD) {
PtrOffsetC = Ptr.getConstantOperandVal(1);
Ptr = Ptr.getOperand(0);
}
const auto *PtrN = cast<GlobalAddressSDNode>(Ptr.getNode());
const GlobalValue *PtrGV = PtrN->getGlobal();
// Classify the reference to determine whether it needs a GOT load.
const unsigned OpFlags =
Subtarget->ClassifyGlobalReference(PtrGV, getTargetMachine());
const bool NeedsGOTLoad = ((OpFlags & AArch64II::MO_GOT) != 0);
assert(((OpFlags & (~AArch64II::MO_GOT)) == 0) &&
"unsupported non-GOT op flags on ptrauth global reference");
// Fold any offset into the GV; our pseudos expect it there.
PtrOffsetC += PtrN->getOffset();
SDValue TPtr = DAG.getTargetGlobalAddress(PtrGV, DL, VT, PtrOffsetC,
/*TargetFlags=*/0);
assert(PtrN->getTargetFlags() == 0 &&
"unsupported target flags on ptrauth global");
SDValue Key = DAG.getTargetConstant(KeyC, DL, MVT::i32);
SDValue Discriminator = DAG.getTargetConstant(DiscriminatorC, DL, MVT::i64);
SDValue TAddrDiscriminator = !isNullConstant(AddrDiscriminator)
? AddrDiscriminator
: DAG.getRegister(AArch64::XZR, MVT::i64);
// No GOT load needed -> MOVaddrPAC
if (!NeedsGOTLoad) {
assert(!PtrGV->hasExternalWeakLinkage() && "extern_weak should use GOT");
return SDValue(
DAG.getMachineNode(AArch64::MOVaddrPAC, DL, MVT::i64,
{TPtr, Key, TAddrDiscriminator, Discriminator}),
0);
}
// GOT load -> LOADgotPAC
// Note that we disallow extern_weak refs to avoid null checks later.
if (!PtrGV->hasExternalWeakLinkage())
return SDValue(
DAG.getMachineNode(AArch64::LOADgotPAC, DL, MVT::i64,
{TPtr, Key, TAddrDiscriminator, Discriminator}),
0);
// extern_weak ref -> LOADauthptrstatic
return LowerPtrAuthGlobalAddressStatically(
TPtr, DL, VT, (AArch64PACKey::ID)KeyC, Discriminator, AddrDiscriminator,
DAG);
}
// Looks through \param Val to determine the bit that can be used to
// check the sign of the value. It returns the unextended value and
// the sign bit position.
std::pair<SDValue, uint64_t> lookThroughSignExtension(SDValue Val) {
if (Val.getOpcode() == ISD::SIGN_EXTEND_INREG)
return {Val.getOperand(0),
cast<VTSDNode>(Val.getOperand(1))->getVT().getFixedSizeInBits() -
1};
if (Val.getOpcode() == ISD::SIGN_EXTEND)
return {Val.getOperand(0),
Val.getOperand(0)->getValueType(0).getFixedSizeInBits() - 1};
return {Val, Val.getValueSizeInBits() - 1};
}
SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
SDValue LHS = Op.getOperand(2);
SDValue RHS = Op.getOperand(3);
SDValue Dest = Op.getOperand(4);
SDLoc dl(Op);
MachineFunction &MF = DAG.getMachineFunction();
// Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z instructions
// will not be produced, as they are conditional branch instructions that do
// not set flags.
bool ProduceNonFlagSettingCondBr =
!MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening);
// Handle f128 first, since lowering it will result in comparing the return
// value of a libcall against zero, which is just what the rest of LowerBR_CC
// is expecting to deal with.
if (LHS.getValueType() == MVT::f128) {
softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl, LHS, RHS);
// If softenSetCCOperands returned a scalar, we need to compare the result
// against zero to select between true and false values.
if (!RHS.getNode()) {
RHS = DAG.getConstant(0, dl, LHS.getValueType());
CC = ISD::SETNE;
}
}
// Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
// instruction.
if (ISD::isOverflowIntrOpRes(LHS) && isOneConstant(RHS) &&
(CC == ISD::SETEQ || CC == ISD::SETNE)) {
// Only lower legal XALUO ops.
if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
return SDValue();
// The actual operation with overflow check.
AArch64CC::CondCode OFCC;
SDValue Value, Overflow;
std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG);
if (CC == ISD::SETNE)
OFCC = getInvertedCondCode(OFCC);
SDValue CCVal = DAG.getConstant(OFCC, dl, MVT::i32);
return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
Overflow);
}
if (LHS.getValueType().isInteger()) {
assert((LHS.getValueType() == RHS.getValueType()) &&
(LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
// If the RHS of the comparison is zero, we can potentially fold this
// to a specialized branch.
const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
if (RHSC && RHSC->getZExtValue() == 0 && ProduceNonFlagSettingCondBr) {
if (CC == ISD::SETEQ) {
// See if we can use a TBZ to fold in an AND as well.
// TBZ has a smaller branch displacement than CBZ. If the offset is
// out of bounds, a late MI-layer pass rewrites branches.
// 403.gcc is an example that hits this case.
if (LHS.getOpcode() == ISD::AND &&
isa<ConstantSDNode>(LHS.getOperand(1)) &&
isPowerOf2_64(LHS.getConstantOperandVal(1))) {
SDValue Test = LHS.getOperand(0);
uint64_t Mask = LHS.getConstantOperandVal(1);
return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test,
DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
Dest);
}
return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest);
} else if (CC == ISD::SETNE) {
// See if we can use a TBZ to fold in an AND as well.
// TBZ has a smaller branch displacement than CBZ. If the offset is
// out of bounds, a late MI-layer pass rewrites branches.
// 403.gcc is an example that hits this case.
if (LHS.getOpcode() == ISD::AND &&
isa<ConstantSDNode>(LHS.getOperand(1)) &&
isPowerOf2_64(LHS.getConstantOperandVal(1))) {
SDValue Test = LHS.getOperand(0);
uint64_t Mask = LHS.getConstantOperandVal(1);
return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test,
DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
Dest);
}
return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest);
} else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) {
// Don't combine AND since emitComparison converts the AND to an ANDS
// (a.k.a. TST) and the test in the test bit and branch instruction
// becomes redundant. This would also increase register pressure.
uint64_t SignBitPos;
std::tie(LHS, SignBitPos) = lookThroughSignExtension(LHS);
return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS,
DAG.getConstant(SignBitPos, dl, MVT::i64), Dest);
}
}
if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT &&
LHS.getOpcode() != ISD::AND && ProduceNonFlagSettingCondBr) {
// Don't combine AND since emitComparison converts the AND to an ANDS
// (a.k.a. TST) and the test in the test bit and branch instruction
// becomes redundant. This would also increase register pressure.
uint64_t SignBitPos;
std::tie(LHS, SignBitPos) = lookThroughSignExtension(LHS);
return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS,
DAG.getConstant(SignBitPos, dl, MVT::i64), Dest);
}
SDValue CCVal;
SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
Cmp);
}
assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::bf16 ||
LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
// Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
// clean. Some of them require two branches to implement.
SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
AArch64CC::CondCode CC1, CC2;
changeFPCCToAArch64CC(CC, CC1, CC2);
SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
SDValue BR1 =
DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp);
if (CC2 != AArch64CC::AL) {
SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val,
Cmp);
}
return BR1;
}
SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op,
SelectionDAG &DAG) const {
if (!Subtarget->isNeonAvailable() &&
!Subtarget->useSVEForFixedLengthVectors())
return SDValue();
EVT VT = Op.getValueType();
EVT IntVT = VT.changeTypeToInteger();
SDLoc DL(Op);
SDValue In1 = Op.getOperand(0);
SDValue In2 = Op.getOperand(1);
EVT SrcVT = In2.getValueType();
if (!SrcVT.bitsEq(VT))
In2 = DAG.getFPExtendOrRound(In2, DL, VT);
if (VT.isScalableVector())
IntVT =
getPackedSVEVectorVT(VT.getVectorElementType().changeTypeToInteger());
if (VT.isFixedLengthVector() &&
useSVEForFixedLengthVectorVT(VT, !Subtarget->isNeonAvailable())) {
EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT);
In1 = convertToScalableVector(DAG, ContainerVT, In1);
In2 = convertToScalableVector(DAG, ContainerVT, In2);
SDValue Res = DAG.getNode(ISD::FCOPYSIGN, DL, ContainerVT, In1, In2);
return convertFromScalableVector(DAG, VT, Res);
}
auto BitCast = [this](EVT VT, SDValue Op, SelectionDAG &DAG) {
if (VT.isScalableVector())
return getSVESafeBitCast(VT, Op, DAG);
return DAG.getBitcast(VT, Op);
};
SDValue VecVal1, VecVal2;
EVT VecVT;
auto SetVecVal = [&](int Idx = -1) {
if (!VT.isVector()) {
VecVal1 =
DAG.getTargetInsertSubreg(Idx, DL, VecVT, DAG.getUNDEF(VecVT), In1);
VecVal2 =
DAG.getTargetInsertSubreg(Idx, DL, VecVT, DAG.getUNDEF(VecVT), In2);
} else {
VecVal1 = BitCast(VecVT, In1, DAG);
VecVal2 = BitCast(VecVT, In2, DAG);
}
};
if (VT.isVector()) {
VecVT = IntVT;
SetVecVal();
} else if (VT == MVT::f64) {
VecVT = MVT::v2i64;
SetVecVal(AArch64::dsub);
} else if (VT == MVT::f32) {
VecVT = MVT::v4i32;
SetVecVal(AArch64::ssub);
} else if (VT == MVT::f16 || VT == MVT::bf16) {
VecVT = MVT::v8i16;
SetVecVal(AArch64::hsub);
} else {
llvm_unreachable("Invalid type for copysign!");
}
unsigned BitWidth = In1.getScalarValueSizeInBits();
SDValue SignMaskV = DAG.getConstant(~APInt::getSignMask(BitWidth), DL, VecVT);
// We want to materialize a mask with every bit but the high bit set, but the
// AdvSIMD immediate moves cannot materialize that in a single instruction for
// 64-bit elements. Instead, materialize all bits set and then negate that.
if (VT == MVT::f64 || VT == MVT::v2f64) {
SignMaskV = DAG.getConstant(APInt::getAllOnes(BitWidth), DL, VecVT);
SignMaskV = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, SignMaskV);
SignMaskV = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, SignMaskV);
SignMaskV = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, SignMaskV);
}
SDValue BSP =
DAG.getNode(AArch64ISD::BSP, DL, VecVT, SignMaskV, VecVal1, VecVal2);
if (VT == MVT::f16 || VT == MVT::bf16)
return DAG.getTargetExtractSubreg(AArch64::hsub, DL, VT, BSP);
if (VT == MVT::f32)
return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, BSP);
if (VT == MVT::f64)
return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, BSP);
return BitCast(VT, BSP, DAG);
}
SDValue AArch64TargetLowering::LowerCTPOP_PARITY(SDValue Op,
SelectionDAG &DAG) const {
if (DAG.getMachineFunction().getFunction().hasFnAttribute(
Attribute::NoImplicitFloat))
return SDValue();
EVT VT = Op.getValueType();
if (VT.isScalableVector() ||
useSVEForFixedLengthVectorVT(VT, !Subtarget->isNeonAvailable()))
return LowerToPredicatedOp(Op, DAG, AArch64ISD::CTPOP_MERGE_PASSTHRU);
if (!Subtarget->isNeonAvailable())
return SDValue();
bool IsParity = Op.getOpcode() == ISD::PARITY;
SDValue Val = Op.getOperand(0);
SDLoc DL(Op);
// for i32, general parity function using EORs is more efficient compared to
// using floating point
if (VT == MVT::i32 && IsParity)
return SDValue();
// If there is no CNT instruction available, GPR popcount can
// be more efficiently lowered to the following sequence that uses
// AdvSIMD registers/instructions as long as the copies to/from
// the AdvSIMD registers are cheap.
// FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd
// CNT V0.8B, V0.8B // 8xbyte pop-counts
// ADDV B0, V0.8B // sum 8xbyte pop-counts
// UMOV X0, V0.B[0] // copy byte result back to integer reg
if (VT == MVT::i32 || VT == MVT::i64) {
if (VT == MVT::i32)
Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val);
Val = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val);
SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, Val);
SDValue UaddLV = DAG.getNode(AArch64ISD::UADDLV, DL, MVT::v4i32, CtPop);
UaddLV = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, UaddLV,
DAG.getConstant(0, DL, MVT::i64));
if (IsParity)
UaddLV = DAG.getNode(ISD::AND, DL, MVT::i32, UaddLV,
DAG.getConstant(1, DL, MVT::i32));
if (VT == MVT::i64)
UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV);
return UaddLV;
} else if (VT == MVT::i128) {
Val = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Val);
SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v16i8, Val);
SDValue UaddLV = DAG.getNode(AArch64ISD::UADDLV, DL, MVT::v4i32, CtPop);
UaddLV = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, UaddLV,
DAG.getConstant(0, DL, MVT::i64));
if (IsParity)
UaddLV = DAG.getNode(ISD::AND, DL, MVT::i32, UaddLV,
DAG.getConstant(1, DL, MVT::i32));
return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i128, UaddLV);
}
assert(!IsParity && "ISD::PARITY of vector types not supported");
assert((VT == MVT::v1i64 || VT == MVT::v2i64 || VT == MVT::v2i32 ||
VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) &&
"Unexpected type for custom ctpop lowering");
EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
Val = DAG.getBitcast(VT8Bit, Val);
Val = DAG.getNode(ISD::CTPOP, DL, VT8Bit, Val);
if (Subtarget->hasDotProd() && VT.getScalarSizeInBits() != 16 &&
VT.getVectorNumElements() >= 2) {
EVT DT = VT == MVT::v2i64 ? MVT::v4i32 : VT;
SDValue Zeros = DAG.getConstant(0, DL, DT);
SDValue Ones = DAG.getConstant(1, DL, VT8Bit);
if (VT == MVT::v2i64) {
Val = DAG.getNode(AArch64ISD::UDOT, DL, DT, Zeros, Ones, Val);
Val = DAG.getNode(AArch64ISD::UADDLP, DL, VT, Val);
} else if (VT == MVT::v2i32) {
Val = DAG.getNode(AArch64ISD::UDOT, DL, DT, Zeros, Ones, Val);
} else if (VT == MVT::v4i32) {
Val = DAG.getNode(AArch64ISD::UDOT, DL, DT, Zeros, Ones, Val);
} else {
llvm_unreachable("Unexpected type for custom ctpop lowering");
}
return Val;
}
// Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds.
unsigned EltSize = 8;
unsigned NumElts = VT.is64BitVector() ? 8 : 16;
while (EltSize != VT.getScalarSizeInBits()) {
EltSize *= 2;
NumElts /= 2;
MVT WidenVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), NumElts);
Val = DAG.getNode(AArch64ISD::UADDLP, DL, WidenVT, Val);
}
return Val;
}
SDValue AArch64TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
assert(VT.isScalableVector() ||
useSVEForFixedLengthVectorVT(
VT, /*OverrideNEON=*/Subtarget->useSVEForFixedLengthVectors()));
SDLoc DL(Op);
SDValue RBIT = DAG.getNode(ISD::BITREVERSE, DL, VT, Op.getOperand(0));
return DAG.getNode(ISD::CTLZ, DL, VT, RBIT);
}
SDValue AArch64TargetLowering::LowerMinMax(SDValue Op,
SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
SDLoc DL(Op);
unsigned Opcode = Op.getOpcode();
ISD::CondCode CC;
switch (Opcode) {
default:
llvm_unreachable("Wrong instruction");
case ISD::SMAX:
CC = ISD::SETGT;
break;
case ISD::SMIN:
CC = ISD::SETLT;
break;
case ISD::UMAX:
CC = ISD::SETUGT;
break;
case ISD::UMIN:
CC = ISD::SETULT;
break;
}
if (VT.isScalableVector() ||
useSVEForFixedLengthVectorVT(
VT, /*OverrideNEON=*/Subtarget->useSVEForFixedLengthVectors())) {
switch (Opcode) {
default:
llvm_unreachable("Wrong instruction");
case ISD::SMAX:
return LowerToPredicatedOp(Op, DAG, AArch64ISD::SMAX_PRED);
case ISD::SMIN:
return LowerToPredicatedOp(Op, DAG, AArch64ISD::SMIN_PRED);
case ISD::UMAX:
return LowerToPredicatedOp(Op, DAG, AArch64ISD::UMAX_PRED);
case ISD::UMIN:
return LowerToPredicatedOp(Op, DAG, AArch64ISD::UMIN_PRED);
}
}
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
SDValue Cond = DAG.getSetCC(DL, VT, Op0, Op1, CC);
return DAG.getSelect(DL, VT, Cond, Op0, Op1);
}
SDValue AArch64TargetLowering::LowerBitreverse(SDValue Op,
SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
if (VT.isScalableVector() ||
useSVEForFixedLengthVectorVT(
VT, /*OverrideNEON=*/Subtarget->useSVEForFixedLengthVectors()))
return LowerToPredicatedOp(Op, DAG, AArch64ISD::BITREVERSE_MERGE_PASSTHRU);
SDLoc DL(Op);
SDValue REVB;
MVT VST;
switch (VT.getSimpleVT().SimpleTy) {
default:
llvm_unreachable("Invalid type for bitreverse!");
case MVT::v2i32: {
VST = MVT::v8i8;
REVB = DAG.getNode(AArch64ISD::REV32, DL, VST, Op.getOperand(0));
break;
}
case MVT::v4i32: {
VST = MVT::v16i8;
REVB = DAG.getNode(AArch64ISD::REV32, DL, VST, Op.getOperand(0));
break;
}
case MVT::v1i64: {
VST = MVT::v8i8;
REVB = DAG.getNode(AArch64ISD::REV64, DL, VST, Op.getOperand(0));
break;
}
case MVT::v2i64: {
VST = MVT::v16i8;
REVB = DAG.getNode(AArch64ISD::REV64, DL, VST, Op.getOperand(0));
break;
}
}
return DAG.getNode(AArch64ISD::NVCAST, DL, VT,
DAG.getNode(ISD::BITREVERSE, DL, VST, REVB));
}
// Check whether the continuous comparison sequence.
static bool
isOrXorChain(SDValue N, unsigned &Num,
SmallVector<std::pair<SDValue, SDValue>, 16> &WorkList) {
if (Num == MaxXors)
return false;
// Skip the one-use zext
if (N->getOpcode() == ISD::ZERO_EXTEND && N->hasOneUse())
N = N->getOperand(0);
// The leaf node must be XOR
if (N->getOpcode() == ISD::XOR) {
WorkList.push_back(std::make_pair(N->getOperand(0), N->getOperand(1)));
Num++;
return true;
}
// All the non-leaf nodes must be OR.
if (N->getOpcode() != ISD::OR || !N->hasOneUse())
return false;
if (isOrXorChain(N->getOperand(0), Num, WorkList) &&
isOrXorChain(N->getOperand(1), Num, WorkList))
return true;
return false;
}
// Transform chains of ORs and XORs, which usually outlined by memcmp/bmp.
static SDValue performOrXorChainCombine(SDNode *N, SelectionDAG &DAG) {
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
SDLoc DL(N);
EVT VT = N->getValueType(0);
SmallVector<std::pair<SDValue, SDValue>, 16> WorkList;
// Only handle integer compares.
if (N->getOpcode() != ISD::SETCC)
return SDValue();
ISD::CondCode Cond = cast<CondCodeSDNode>(N->getOperand(2))->get();
// Try to express conjunction "cmp 0 (or (xor A0 A1) (xor B0 B1))" as:
// sub A0, A1; ccmp B0, B1, 0, eq; cmp inv(Cond) flag
unsigned NumXors = 0;
if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && isNullConstant(RHS) &&
LHS->getOpcode() == ISD::OR && LHS->hasOneUse() &&
isOrXorChain(LHS, NumXors, WorkList)) {
SDValue XOR0, XOR1;
std::tie(XOR0, XOR1) = WorkList[0];
unsigned LogicOp = (Cond == ISD::SETEQ) ? ISD::AND : ISD::OR;
SDValue Cmp = DAG.getSetCC(DL, VT, XOR0, XOR1, Cond);
for (unsigned I = 1; I < WorkList.size(); I++) {
std::tie(XOR0, XOR1) = WorkList[I];
SDValue CmpChain = DAG.getSetCC(DL, VT, XOR0, XOR1, Cond);
Cmp = DAG.getNode(LogicOp, DL, VT, Cmp, CmpChain);
}
// Exit early by inverting the condition, which help reduce indentations.
return Cmp;
}
return SDValue();
}
SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
if (Op.getValueType().isVector())
return LowerVSETCC(Op, DAG);
bool IsStrict = Op->isStrictFPOpcode();
bool IsSignaling = Op.getOpcode() == ISD::STRICT_FSETCCS;
unsigned OpNo = IsStrict ? 1 : 0;
SDValue Chain;
if (IsStrict)
Chain = Op.getOperand(0);
SDValue LHS = Op.getOperand(OpNo + 0);
SDValue RHS = Op.getOperand(OpNo + 1);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(OpNo + 2))->get();
SDLoc dl(Op);
// We chose ZeroOrOneBooleanContents, so use zero and one.
EVT VT = Op.getValueType();
SDValue TVal = DAG.getConstant(1, dl, VT);
SDValue FVal = DAG.getConstant(0, dl, VT);
// Handle f128 first, since one possible outcome is a normal integer
// comparison which gets picked up by the next if statement.
if (LHS.getValueType() == MVT::f128) {
softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl, LHS, RHS, Chain,
IsSignaling);
// If softenSetCCOperands returned a scalar, use it.
if (!RHS.getNode()) {
assert(LHS.getValueType() == Op.getValueType() &&
"Unexpected setcc expansion!");
return IsStrict ? DAG.getMergeValues({LHS, Chain}, dl) : LHS;
}
}
if (LHS.getValueType().isInteger()) {
simplifySetCCIntoEq(CC, LHS, RHS, DAG, dl);
SDValue CCVal;
SDValue Cmp = getAArch64Cmp(
LHS, RHS, ISD::getSetCCInverse(CC, LHS.getValueType()), CCVal, DAG, dl);
// Note that we inverted the condition above, so we reverse the order of
// the true and false operands here. This will allow the setcc to be
// matched to a single CSINC instruction.
SDValue Res = DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp);
return IsStrict ? DAG.getMergeValues({Res, Chain}, dl) : Res;
}
// Now we know we're dealing with FP values.
assert(LHS.getValueType() == MVT::bf16 || LHS.getValueType() == MVT::f16 ||
LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
// If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead
// and do the comparison.
SDValue Cmp;
if (IsStrict)
Cmp = emitStrictFPComparison(LHS, RHS, dl, DAG, Chain, IsSignaling);
else
Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
AArch64CC::CondCode CC1, CC2;
changeFPCCToAArch64CC(CC, CC1, CC2);
SDValue Res;
if (CC2 == AArch64CC::AL) {
changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, LHS.getValueType()), CC1,
CC2);
SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
// Note that we inverted the condition above, so we reverse the order of
// the true and false operands here. This will allow the setcc to be
// matched to a single CSINC instruction.
Res = DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp);
} else {
// Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
// totally clean. Some of them require two CSELs to implement. As is in
// this case, we emit the first CSEL and then emit a second using the output
// of the first as the RHS. We're effectively OR'ing the two CC's together.
// FIXME: It would be nice if we could match the two CSELs to two CSINCs.
SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
SDValue CS1 =
DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
Res = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
}
return IsStrict ? DAG.getMergeValues({Res, Cmp.getValue(1)}, dl) : Res;
}
SDValue AArch64TargetLowering::LowerSETCCCARRY(SDValue Op,
SelectionDAG &DAG) const {
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
EVT VT = LHS.getValueType();
if (VT != MVT::i32 && VT != MVT::i64)
return SDValue();
SDLoc DL(Op);
SDValue Carry = Op.getOperand(2);
// SBCS uses a carry not a borrow so the carry flag should be inverted first.
SDValue InvCarry = valueToCarryFlag(Carry, DAG, true);
SDValue Cmp = DAG.getNode(AArch64ISD::SBCS, DL, DAG.getVTList(VT, MVT::Glue),
LHS, RHS, InvCarry);
EVT OpVT = Op.getValueType();
SDValue TVal = DAG.getConstant(1, DL, OpVT);
SDValue FVal = DAG.getConstant(0, DL, OpVT);
ISD::CondCode Cond = cast<CondCodeSDNode>(Op.getOperand(3))->get();
ISD::CondCode CondInv = ISD::getSetCCInverse(Cond, VT);
SDValue CCVal =
DAG.getConstant(changeIntCCToAArch64CC(CondInv), DL, MVT::i32);
// Inputs are swapped because the condition is inverted. This will allow
// matching with a single CSINC instruction.
return DAG.getNode(AArch64ISD::CSEL, DL, OpVT, FVal, TVal, CCVal,
Cmp.getValue(1));
}
SDValue AArch64TargetLowering::LowerSELECT_CC(ISD::CondCode CC, SDValue LHS,
SDValue RHS, SDValue TVal,
SDValue FVal, const SDLoc &dl,
SelectionDAG &DAG) const {
// Handle f128 first, because it will result in a comparison of some RTLIB
// call result against zero.
if (LHS.getValueType() == MVT::f128) {
softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl, LHS, RHS);
// If softenSetCCOperands returned a scalar, we need to compare the result
// against zero to select between true and false values.
if (!RHS.getNode()) {
RHS = DAG.getConstant(0, dl, LHS.getValueType());
CC = ISD::SETNE;
}
}
// Also handle f16, for which we need to do a f32 comparison.
if ((LHS.getValueType() == MVT::f16 && !Subtarget->hasFullFP16()) ||
LHS.getValueType() == MVT::bf16) {
LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS);
RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS);
}
// Next, handle integers.
if (LHS.getValueType().isInteger()) {
assert((LHS.getValueType() == RHS.getValueType()) &&
(LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
// Check for sign pattern (SELECT_CC setgt, iN lhs, -1, 1, -1) and transform
// into (OR (ASR lhs, N-1), 1), which requires less instructions for the
// supported types.
if (CC == ISD::SETGT && RHSC && RHSC->isAllOnes() && CTVal && CFVal &&
CTVal->isOne() && CFVal->isAllOnes() &&
LHS.getValueType() == TVal.getValueType()) {
EVT VT = LHS.getValueType();
SDValue Shift =
DAG.getNode(ISD::SRA, dl, VT, LHS,
DAG.getConstant(VT.getSizeInBits() - 1, dl, VT));
return DAG.getNode(ISD::OR, dl, VT, Shift, DAG.getConstant(1, dl, VT));
}
// Check for SMAX(lhs, 0) and SMIN(lhs, 0) patterns.
// (SELECT_CC setgt, lhs, 0, lhs, 0) -> (BIC lhs, (SRA lhs, typesize-1))
// (SELECT_CC setlt, lhs, 0, lhs, 0) -> (AND lhs, (SRA lhs, typesize-1))
// Both require less instructions than compare and conditional select.
if ((CC == ISD::SETGT || CC == ISD::SETLT) && LHS == TVal &&
RHSC && RHSC->isZero() && CFVal && CFVal->isZero() &&
LHS.getValueType() == RHS.getValueType()) {
EVT VT = LHS.getValueType();
SDValue Shift =
DAG.getNode(ISD::SRA, dl, VT, LHS,
DAG.getConstant(VT.getSizeInBits() - 1, dl, VT));
if (CC == ISD::SETGT)
Shift = DAG.getNOT(dl, Shift, VT);
return DAG.getNode(ISD::AND, dl, VT, LHS, Shift);
}
unsigned Opcode = AArch64ISD::CSEL;
// If both the TVal and the FVal are constants, see if we can swap them in
// order to for a CSINV or CSINC out of them.
if (CTVal && CFVal && CTVal->isAllOnes() && CFVal->isZero()) {
std::swap(TVal, FVal);
std::swap(CTVal, CFVal);
CC = ISD::getSetCCInverse(CC, LHS.getValueType());
} else if (CTVal && CFVal && CTVal->isOne() && CFVal->isZero()) {
std::swap(TVal, FVal);
std::swap(CTVal, CFVal);
CC = ISD::getSetCCInverse(CC, LHS.getValueType());
} else if (TVal.getOpcode() == ISD::XOR) {
// If TVal is a NOT we want to swap TVal and FVal so that we can match
// with a CSINV rather than a CSEL.
if (isAllOnesConstant(TVal.getOperand(1))) {
std::swap(TVal, FVal);
std::swap(CTVal, CFVal);
CC = ISD::getSetCCInverse(CC, LHS.getValueType());
}
} else if (TVal.getOpcode() == ISD::SUB) {
// If TVal is a negation (SUB from 0) we want to swap TVal and FVal so
// that we can match with a CSNEG rather than a CSEL.
if (isNullConstant(TVal.getOperand(0))) {
std::swap(TVal, FVal);
std::swap(CTVal, CFVal);
CC = ISD::getSetCCInverse(CC, LHS.getValueType());
}
} else if (CTVal && CFVal) {
const int64_t TrueVal = CTVal->getSExtValue();
const int64_t FalseVal = CFVal->getSExtValue();
bool Swap = false;
// If both TVal and FVal are constants, see if FVal is the
// inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC
// instead of a CSEL in that case.
if (TrueVal == ~FalseVal) {
Opcode = AArch64ISD::CSINV;
} else if (FalseVal > std::numeric_limits<int64_t>::min() &&
TrueVal == -FalseVal) {
Opcode = AArch64ISD::CSNEG;
} else if (TVal.getValueType() == MVT::i32) {
// If our operands are only 32-bit wide, make sure we use 32-bit
// arithmetic for the check whether we can use CSINC. This ensures that
// the addition in the check will wrap around properly in case there is
// an overflow (which would not be the case if we do the check with
// 64-bit arithmetic).
const uint32_t TrueVal32 = CTVal->getZExtValue();
const uint32_t FalseVal32 = CFVal->getZExtValue();
if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) {
Opcode = AArch64ISD::CSINC;
if (TrueVal32 > FalseVal32) {
Swap = true;
}
}
} else {
// 64-bit check whether we can use CSINC.
const uint64_t TrueVal64 = TrueVal;
const uint64_t FalseVal64 = FalseVal;
if ((TrueVal64 == FalseVal64 + 1) || (TrueVal64 + 1 == FalseVal64)) {
Opcode = AArch64ISD::CSINC;
if (TrueVal > FalseVal) {
Swap = true;
}
}
}
// Swap TVal and FVal if necessary.
if (Swap) {
std::swap(TVal, FVal);
std::swap(CTVal, CFVal);
CC = ISD::getSetCCInverse(CC, LHS.getValueType());
}
if (Opcode != AArch64ISD::CSEL) {
// Drop FVal since we can get its value by simply inverting/negating
// TVal.
FVal = TVal;
}
}
// Avoid materializing a constant when possible by reusing a known value in
// a register. However, don't perform this optimization if the known value
// is one, zero or negative one in the case of a CSEL. We can always
// materialize these values using CSINC, CSEL and CSINV with wzr/xzr as the
// FVal, respectively.
ConstantSDNode *RHSVal = dyn_cast<ConstantSDNode>(RHS);
if (Opcode == AArch64ISD::CSEL && RHSVal && !RHSVal->isOne() &&
!RHSVal->isZero() && !RHSVal->isAllOnes()) {
AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
// Transform "a == C ? C : x" to "a == C ? a : x" and "a != C ? x : C" to
// "a != C ? x : a" to avoid materializing C.
if (CTVal && CTVal == RHSVal && AArch64CC == AArch64CC::EQ)
TVal = LHS;
else if (CFVal && CFVal == RHSVal && AArch64CC == AArch64CC::NE)
FVal = LHS;
} else if (Opcode == AArch64ISD::CSNEG && RHSVal && RHSVal->isOne()) {
assert (CTVal && CFVal && "Expected constant operands for CSNEG.");
// Use a CSINV to transform "a == C ? 1 : -1" to "a == C ? a : -1" to
// avoid materializing C.
AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
if (CTVal == RHSVal && AArch64CC == AArch64CC::EQ) {
Opcode = AArch64ISD::CSINV;
TVal = LHS;
FVal = DAG.getConstant(0, dl, FVal.getValueType());
}
}
SDValue CCVal;
SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
EVT VT = TVal.getValueType();
return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp);
}
// Now we know we're dealing with FP values.
assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 ||
LHS.getValueType() == MVT::f64);
assert(LHS.getValueType() == RHS.getValueType());
EVT VT = TVal.getValueType();
SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
// Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
// clean. Some of them require two CSELs to implement.
AArch64CC::CondCode CC1, CC2;
changeFPCCToAArch64CC(CC, CC1, CC2);
if (DAG.getTarget().Options.UnsafeFPMath) {
// Transform "a == 0.0 ? 0.0 : x" to "a == 0.0 ? a : x" and
// "a != 0.0 ? x : 0.0" to "a != 0.0 ? x : a" to avoid materializing 0.0.
ConstantFPSDNode *RHSVal = dyn_cast<ConstantFPSDNode>(RHS);
if (RHSVal && RHSVal->isZero()) {
ConstantFPSDNode *CFVal = dyn_cast<ConstantFPSDNode>(FVal);
ConstantFPSDNode *CTVal = dyn_cast<ConstantFPSDNode>(TVal);
if ((CC == ISD::SETEQ || CC == ISD::SETOEQ || CC == ISD::SETUEQ) &&
CTVal && CTVal->isZero() && TVal.getValueType() == LHS.getValueType())
TVal = LHS;
else if ((CC == ISD::SETNE || CC == ISD::SETONE || CC == ISD::SETUNE) &&
CFVal && CFVal->isZero() &&
FVal.getValueType() == LHS.getValueType())
FVal = LHS;
}
}
// Emit first, and possibly only, CSEL.
SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
// If we need a second CSEL, emit it, using the output of the first as the
// RHS. We're effectively OR'ing the two CC's together.
if (CC2 != AArch64CC::AL) {
SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
}
// Otherwise, return the output of the first CSEL.
return CS1;
}
SDValue AArch64TargetLowering::LowerVECTOR_SPLICE(SDValue Op,
SelectionDAG &DAG) const {
EVT Ty = Op.getValueType();
auto Idx = Op.getConstantOperandAPInt(2);
int64_t IdxVal = Idx.getSExtValue();
assert(Ty.isScalableVector() &&
"Only expect scalable vectors for custom lowering of VECTOR_SPLICE");
// We can use the splice instruction for certain index values where we are
// able to efficiently generate the correct predicate. The index will be
// inverted and used directly as the input to the ptrue instruction, i.e.
// -1 -> vl1, -2 -> vl2, etc. The predicate will then be reversed to get the
// splice predicate. However, we can only do this if we can guarantee that
// there are enough elements in the vector, hence we check the index <= min
// number of elements.
std::optional<unsigned> PredPattern;
if (Ty.isScalableVector() && IdxVal < 0 &&
(PredPattern = getSVEPredPatternFromNumElements(std::abs(IdxVal))) !=
std::nullopt) {
SDLoc DL(Op);
// Create a predicate where all but the last -IdxVal elements are false.
EVT PredVT = Ty.changeVectorElementType(MVT::i1);
SDValue Pred = getPTrue(DAG, DL, PredVT, *PredPattern);
Pred = DAG.getNode(ISD::VECTOR_REVERSE, DL, PredVT, Pred);
// Now splice the two inputs together using the predicate.
return DAG.getNode(AArch64ISD::SPLICE, DL, Ty, Pred, Op.getOperand(0),
Op.getOperand(1));
}
// We can select to an EXT instruction when indexing the first 256 bytes.
unsigned BlockSize = AArch64::SVEBitsPerBlock / Ty.getVectorMinNumElements();
if (IdxVal >= 0 && (IdxVal * BlockSize / 8) < 256)
return Op;
return SDValue();
}
SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op,
SelectionDAG &DAG) const {
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
SDValue TVal = Op.getOperand(2);
SDValue FVal = Op.getOperand(3);
SDLoc DL(Op);
return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
}
SDValue AArch64TargetLowering::LowerSELECT(SDValue Op,
SelectionDAG &DAG) const {
SDValue CCVal = Op->getOperand(0);
SDValue TVal = Op->getOperand(1);
SDValue FVal = Op->getOperand(2);
SDLoc DL(Op);
EVT Ty = Op.getValueType();
if (Ty == MVT::aarch64svcount) {
TVal = DAG.getNode(ISD::BITCAST, DL, MVT::nxv16i1, TVal);
FVal = DAG.getNode(ISD::BITCAST, DL, MVT::nxv16i1, FVal);
SDValue Sel =
DAG.getNode(ISD::SELECT, DL, MVT::nxv16i1, CCVal, TVal, FVal);
return DAG.getNode(ISD::BITCAST, DL, Ty, Sel);
}
if (Ty.isScalableVector()) {
MVT PredVT = MVT::getVectorVT(MVT::i1, Ty.getVectorElementCount());
SDValue SplatPred = DAG.getNode(ISD::SPLAT_VECTOR, DL, PredVT, CCVal);
return DAG.getNode(ISD::VSELECT, DL, Ty, SplatPred, TVal, FVal);
}
if (useSVEForFixedLengthVectorVT(Ty, !Subtarget->isNeonAvailable())) {
// FIXME: Ideally this would be the same as above using i1 types, however
// for the moment we can't deal with fixed i1 vector types properly, so
// instead extend the predicate to a result type sized integer vector.
MVT SplatValVT = MVT::getIntegerVT(Ty.getScalarSizeInBits());
MVT PredVT = MVT::getVectorVT(SplatValVT, Ty.getVectorElementCount());
SDValue SplatVal = DAG.getSExtOrTrunc(CCVal, DL, SplatValVT);
SDValue SplatPred = DAG.getNode(ISD::SPLAT_VECTOR, DL, PredVT, SplatVal);
return DAG.getNode(ISD::VSELECT, DL, Ty, SplatPred, TVal, FVal);
}
// Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select
// instruction.
if (ISD::isOverflowIntrOpRes(CCVal)) {
// Only lower legal XALUO ops.
if (!DAG.getTargetLoweringInfo().isTypeLegal(CCVal->getValueType(0)))
return SDValue();
AArch64CC::CondCode OFCC;
SDValue Value, Overflow;
std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CCVal.getValue(0), DAG);
SDValue CCVal = DAG.getConstant(OFCC, DL, MVT::i32);
return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal,
CCVal, Overflow);
}
// Lower it the same way as we would lower a SELECT_CC node.
ISD::CondCode CC;
SDValue LHS, RHS;
if (CCVal.getOpcode() == ISD::SETCC) {
LHS = CCVal.getOperand(0);
RHS = CCVal.getOperand(1);
CC = cast<CondCodeSDNode>(CCVal.getOperand(2))->get();
} else {
LHS = CCVal;
RHS = DAG.getConstant(0, DL, CCVal.getValueType());
CC = ISD::SETNE;
}
// If we are lowering a f16 and we do not have fullf16, convert to a f32 in
// order to use FCSELSrrr
if ((Ty == MVT::f16 || Ty == MVT::bf16) && !Subtarget->hasFullFP16()) {
TVal = DAG.getTargetInsertSubreg(AArch64::hsub, DL, MVT::f32,
DAG.getUNDEF(MVT::f32), TVal);
FVal = DAG.getTargetInsertSubreg(AArch64::hsub, DL, MVT::f32,
DAG.getUNDEF(MVT::f32), FVal);
}
SDValue Res = LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
if ((Ty == MVT::f16 || Ty == MVT::bf16) && !Subtarget->hasFullFP16()) {
return DAG.getTargetExtractSubreg(AArch64::hsub, DL, Ty, Res);
}
return Res;
}
SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op,
SelectionDAG &DAG) const {
// Jump table entries as PC relative offsets. No additional tweaking
// is necessary here. Just get the address of the jump table.
JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
CodeModel::Model CM = getTargetMachine().getCodeModel();
if (CM == CodeModel::Large && !getTargetMachine().isPositionIndependent() &&
!Subtarget->isTargetMachO())
return getAddrLarge(JT, DAG);
if (CM == CodeModel::Tiny)
return getAddrTiny(JT, DAG);
return getAddr(JT, DAG);
}
SDValue AArch64TargetLowering::LowerBR_JT(SDValue Op,
SelectionDAG &DAG) const {
// Jump table entries as PC relative offsets. No additional tweaking
// is necessary here. Just get the address of the jump table.
SDLoc DL(Op);
SDValue JT = Op.getOperand(1);
SDValue Entry = Op.getOperand(2);
int JTI = cast<JumpTableSDNode>(JT.getNode())->getIndex();
auto *AFI = DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
AFI->setJumpTableEntryInfo(JTI, 4, nullptr);
// With aarch64-jump-table-hardening, we only expand the jump table dispatch
// sequence later, to guarantee the integrity of the intermediate values.
if (DAG.getMachineFunction().getFunction().hasFnAttribute(
"aarch64-jump-table-hardening")) {
CodeModel::Model CM = getTargetMachine().getCodeModel();
if (Subtarget->isTargetMachO()) {
if (CM != CodeModel::Small && CM != CodeModel::Large)
report_fatal_error("Unsupported code-model for hardened jump-table");
} else {
// Note that COFF support would likely also need JUMP_TABLE_DEBUG_INFO.
assert(Subtarget->isTargetELF() &&
"jump table hardening only supported on MachO/ELF");
if (CM != CodeModel::Small)
report_fatal_error("Unsupported code-model for hardened jump-table");
}
SDValue X16Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, AArch64::X16,
Entry, SDValue());
SDNode *B = DAG.getMachineNode(AArch64::BR_JumpTable, DL, MVT::Other,
DAG.getTargetJumpTable(JTI, MVT::i32),
X16Copy.getValue(0), X16Copy.getValue(1));
return SDValue(B, 0);
}
SDNode *Dest =
DAG.getMachineNode(AArch64::JumpTableDest32, DL, MVT::i64, MVT::i64, JT,
Entry, DAG.getTargetJumpTable(JTI, MVT::i32));
SDValue JTInfo = DAG.getJumpTableDebugInfo(JTI, Op.getOperand(0), DL);
return DAG.getNode(ISD::BRIND, DL, MVT::Other, JTInfo, SDValue(Dest, 0));
}
SDValue AArch64TargetLowering::LowerBRIND(SDValue Op, SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
SDValue Dest = Op.getOperand(1);
// BR_JT is lowered to BRIND, but the later lowering is specific to indirectbr
// Skip over the jump-table BRINDs, where the destination is JumpTableDest32.
if (Dest->isMachineOpcode() &&
Dest->getMachineOpcode() == AArch64::JumpTableDest32)
return SDValue();
const MachineFunction &MF = DAG.getMachineFunction();
std::optional<uint16_t> BADisc =
Subtarget->getPtrAuthBlockAddressDiscriminatorIfEnabled(MF.getFunction());
if (!BADisc)
return SDValue();
SDLoc DL(Op);
SDValue Disc = DAG.getTargetConstant(*BADisc, DL, MVT::i64);
SDValue Key = DAG.getTargetConstant(AArch64PACKey::IA, DL, MVT::i32);
SDValue AddrDisc = DAG.getRegister(AArch64::XZR, MVT::i64);
SDNode *BrA = DAG.getMachineNode(AArch64::BRA, DL, MVT::Other,
{Dest, Key, Disc, AddrDisc, Chain});
return SDValue(BrA, 0);
}
SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op,
SelectionDAG &DAG) const {
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
CodeModel::Model CM = getTargetMachine().getCodeModel();
if (CM == CodeModel::Large) {
// Use the GOT for the large code model on iOS.
if (Subtarget->isTargetMachO()) {
return getGOT(CP, DAG);
}
if (!getTargetMachine().isPositionIndependent())
return getAddrLarge(CP, DAG);
} else if (CM == CodeModel::Tiny) {
return getAddrTiny(CP, DAG);
}
return getAddr(CP, DAG);
}
SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op,
SelectionDAG &DAG) const {
BlockAddressSDNode *BAN = cast<BlockAddressSDNode>(Op);
const BlockAddress *BA = BAN->getBlockAddress();
if (std::optional<uint16_t> BADisc =
Subtarget->getPtrAuthBlockAddressDiscriminatorIfEnabled(
*BA->getFunction())) {
SDLoc DL(Op);
// This isn't cheap, but BRIND is rare.
SDValue TargetBA = DAG.getTargetBlockAddress(BA, BAN->getValueType(0));
SDValue Disc = DAG.getTargetConstant(*BADisc, DL, MVT::i64);
SDValue Key = DAG.getTargetConstant(AArch64PACKey::IA, DL, MVT::i32);
SDValue AddrDisc = DAG.getRegister(AArch64::XZR, MVT::i64);
SDNode *MOV =
DAG.getMachineNode(AArch64::MOVaddrPAC, DL, {MVT::Other, MVT::Glue},
{TargetBA, Key, AddrDisc, Disc});
return DAG.getCopyFromReg(SDValue(MOV, 0), DL, AArch64::X16, MVT::i64,
SDValue(MOV, 1));
}
CodeModel::Model CM = getTargetMachine().getCodeModel();
if (CM == CodeModel::Large && !Subtarget->isTargetMachO()) {
if (!getTargetMachine().isPositionIndependent())
return getAddrLarge(BAN, DAG);
} else if (CM == CodeModel::Tiny) {
return getAddrTiny(BAN, DAG);
}
return getAddr(BAN, DAG);
}
SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op,
SelectionDAG &DAG) const {
AArch64FunctionInfo *FuncInfo =
DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
SDLoc DL(Op);
SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(),
getPointerTy(DAG.getDataLayout()));
FR = DAG.getZExtOrTrunc(FR, DL, getPointerMemTy(DAG.getDataLayout()));
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
MachinePointerInfo(SV));
}
SDValue AArch64TargetLowering::LowerWin64_VASTART(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
SDLoc DL(Op);
SDValue FR;
if (Subtarget->isWindowsArm64EC()) {
// With the Arm64EC ABI, we compute the address of the varargs save area
// relative to x4. For a normal AArch64->AArch64 call, x4 == sp on entry,
// but calls from an entry thunk can pass in a different address.
Register VReg = MF.addLiveIn(AArch64::X4, &AArch64::GPR64RegClass);
SDValue Val = DAG.getCopyFromReg(DAG.getEntryNode(), DL, VReg, MVT::i64);
uint64_t StackOffset;
if (FuncInfo->getVarArgsGPRSize() > 0)
StackOffset = -(uint64_t)FuncInfo->getVarArgsGPRSize();
else
StackOffset = FuncInfo->getVarArgsStackOffset();
FR = DAG.getNode(ISD::ADD, DL, MVT::i64, Val,
DAG.getConstant(StackOffset, DL, MVT::i64));
} else {
FR = DAG.getFrameIndex(FuncInfo->getVarArgsGPRSize() > 0
? FuncInfo->getVarArgsGPRIndex()
: FuncInfo->getVarArgsStackIndex(),
getPointerTy(DAG.getDataLayout()));
}
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
MachinePointerInfo(SV));
}
SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op,
SelectionDAG &DAG) const {
// The layout of the va_list struct is specified in the AArch64 Procedure Call
// Standard, section B.3.
MachineFunction &MF = DAG.getMachineFunction();
AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
unsigned PtrSize = Subtarget->isTargetILP32() ? 4 : 8;
auto PtrMemVT = getPointerMemTy(DAG.getDataLayout());
auto PtrVT = getPointerTy(DAG.getDataLayout());
SDLoc DL(Op);
SDValue Chain = Op.getOperand(0);
SDValue VAList = Op.getOperand(1);
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
SmallVector<SDValue, 4> MemOps;
// void *__stack at offset 0
unsigned Offset = 0;
SDValue Stack = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), PtrVT);
Stack = DAG.getZExtOrTrunc(Stack, DL, PtrMemVT);
MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
MachinePointerInfo(SV), Align(PtrSize)));
// void *__gr_top at offset 8 (4 on ILP32)
Offset += PtrSize;
int GPRSize = FuncInfo->getVarArgsGPRSize();
if (GPRSize > 0) {
SDValue GRTop, GRTopAddr;
GRTopAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
DAG.getConstant(Offset, DL, PtrVT));
GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), PtrVT);
GRTop = DAG.getNode(ISD::ADD, DL, PtrVT, GRTop,
DAG.getSignedConstant(GPRSize, DL, PtrVT));
GRTop = DAG.getZExtOrTrunc(GRTop, DL, PtrMemVT);
MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
MachinePointerInfo(SV, Offset),
Align(PtrSize)));
}
// void *__vr_top at offset 16 (8 on ILP32)
Offset += PtrSize;
int FPRSize = FuncInfo->getVarArgsFPRSize();
if (FPRSize > 0) {
SDValue VRTop, VRTopAddr;
VRTopAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
DAG.getConstant(Offset, DL, PtrVT));
VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), PtrVT);
VRTop = DAG.getNode(ISD::ADD, DL, PtrVT, VRTop,
DAG.getSignedConstant(FPRSize, DL, PtrVT));
VRTop = DAG.getZExtOrTrunc(VRTop, DL, PtrMemVT);
MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
MachinePointerInfo(SV, Offset),
Align(PtrSize)));
}
// int __gr_offs at offset 24 (12 on ILP32)
Offset += PtrSize;
SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
DAG.getConstant(Offset, DL, PtrVT));
MemOps.push_back(
DAG.getStore(Chain, DL, DAG.getSignedConstant(-GPRSize, DL, MVT::i32),
GROffsAddr, MachinePointerInfo(SV, Offset), Align(4)));
// int __vr_offs at offset 28 (16 on ILP32)
Offset += 4;
SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
DAG.getConstant(Offset, DL, PtrVT));
MemOps.push_back(
DAG.getStore(Chain, DL, DAG.getSignedConstant(-FPRSize, DL, MVT::i32),
VROffsAddr, MachinePointerInfo(SV, Offset), Align(4)));
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
}
SDValue AArch64TargetLowering::LowerVASTART(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
Function &F = MF.getFunction();
if (Subtarget->isCallingConvWin64(F.getCallingConv(), F.isVarArg()))
return LowerWin64_VASTART(Op, DAG);
else if (Subtarget->isTargetDarwin())
return LowerDarwin_VASTART(Op, DAG);
else
return LowerAAPCS_VASTART(Op, DAG);
}
SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op,
SelectionDAG &DAG) const {
// AAPCS has three pointers and two ints (= 32 bytes), Darwin has single
// pointer.
SDLoc DL(Op);
unsigned PtrSize = Subtarget->isTargetILP32() ? 4 : 8;
unsigned VaListSize =
(Subtarget->isTargetDarwin() || Subtarget->isTargetWindows())
? PtrSize
: Subtarget->isTargetILP32() ? 20 : 32;
const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
return DAG.getMemcpy(Op.getOperand(0), DL, Op.getOperand(1), Op.getOperand(2),
DAG.getConstant(VaListSize, DL, MVT::i32),
Align(PtrSize), false, false, /*CI=*/nullptr,
std::nullopt, MachinePointerInfo(DestSV),
MachinePointerInfo(SrcSV));
}
SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
assert(Subtarget->isTargetDarwin() &&
"automatic va_arg instruction only works on Darwin");
const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
EVT VT = Op.getValueType();
SDLoc DL(Op);
SDValue Chain = Op.getOperand(0);
SDValue Addr = Op.getOperand(1);
MaybeAlign Align(Op.getConstantOperandVal(3));
unsigned MinSlotSize = Subtarget->isTargetILP32() ? 4 : 8;
auto PtrVT = getPointerTy(DAG.getDataLayout());
auto PtrMemVT = getPointerMemTy(DAG.getDataLayout());
SDValue VAList =
DAG.getLoad(PtrMemVT, DL, Chain, Addr, MachinePointerInfo(V));
Chain = VAList.getValue(1);
VAList = DAG.getZExtOrTrunc(VAList, DL, PtrVT);
if (VT.isScalableVector())
report_fatal_error("Passing SVE types to variadic functions is "
"currently not supported");
if (Align && *Align > MinSlotSize) {
VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
DAG.getConstant(Align->value() - 1, DL, PtrVT));
VAList = DAG.getNode(ISD::AND, DL, PtrVT, VAList,
DAG.getConstant(-(int64_t)Align->value(), DL, PtrVT));
}
Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
unsigned ArgSize = DAG.getDataLayout().getTypeAllocSize(ArgTy);
// Scalar integer and FP values smaller than 64 bits are implicitly extended
// up to 64 bits. At the very least, we have to increase the striding of the
// vaargs list to match this, and for FP values we need to introduce
// FP_ROUND nodes as well.
if (VT.isInteger() && !VT.isVector())
ArgSize = std::max(ArgSize, MinSlotSize);
bool NeedFPTrunc = false;
if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) {
ArgSize = 8;
NeedFPTrunc = true;
}
// Increment the pointer, VAList, to the next vaarg
SDValue VANext = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
DAG.getConstant(ArgSize, DL, PtrVT));
VANext = DAG.getZExtOrTrunc(VANext, DL, PtrMemVT);
// Store the incremented VAList to the legalized pointer
SDValue APStore =
DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V));
// Load the actual argument out of the pointer VAList
if (NeedFPTrunc) {
// Load the value as an f64.
SDValue WideFP =
DAG.getLoad(MVT::f64, DL, APStore, VAList, MachinePointerInfo());
// Round the value down to an f32.
SDValue NarrowFP =
DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0),
DAG.getIntPtrConstant(1, DL, /*isTarget=*/true));
SDValue Ops[] = { NarrowFP, WideFP.getValue(1) };
// Merge the rounded value with the chain output of the load.
return DAG.getMergeValues(Ops, DL);
}
return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo());
}
SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op,
SelectionDAG &DAG) const {
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
MFI.setFrameAddressIsTaken(true);
EVT VT = Op.getValueType();
SDLoc DL(Op);
unsigned Depth = Op.getConstantOperandVal(0);
SDValue FrameAddr =
DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, MVT::i64);
while (Depth--)
FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr,
MachinePointerInfo());
if (Subtarget->isTargetILP32())
FrameAddr = DAG.getNode(ISD::AssertZext, DL, MVT::i64, FrameAddr,
DAG.getValueType(VT));
return FrameAddr;
}
SDValue AArch64TargetLowering::LowerSPONENTRY(SDValue Op,
SelectionDAG &DAG) const {
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
EVT VT = getPointerTy(DAG.getDataLayout());
SDLoc DL(Op);
int FI = MFI.CreateFixedObject(4, 0, false);
return DAG.getFrameIndex(FI, VT);
}
#define GET_REGISTER_MATCHER
#include "AArch64GenAsmMatcher.inc"
// FIXME? Maybe this could be a TableGen attribute on some registers and
// this table could be generated automatically from RegInfo.
Register AArch64TargetLowering::
getRegisterByName(const char* RegName, LLT VT, const MachineFunction &MF) const {
Register Reg = MatchRegisterName(RegName);
if (AArch64::X1 <= Reg && Reg <= AArch64::X28) {
const AArch64RegisterInfo *MRI = Subtarget->getRegisterInfo();
unsigned DwarfRegNum = MRI->getDwarfRegNum(Reg, false);
if (!Subtarget->isXRegisterReserved(DwarfRegNum) &&
!MRI->isReservedReg(MF, Reg))
Reg = 0;
}
if (Reg)
return Reg;
report_fatal_error(Twine("Invalid register name \""
+ StringRef(RegName) + "\"."));
}
SDValue AArch64TargetLowering::LowerADDROFRETURNADDR(SDValue Op,
SelectionDAG &DAG) const {
DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
EVT VT = Op.getValueType();
SDLoc DL(Op);
SDValue FrameAddr =
DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT);
SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout()));
return DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset);
}
SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
MFI.setReturnAddressIsTaken(true);
EVT VT = Op.getValueType();
SDLoc DL(Op);
unsigned Depth = Op.getConstantOperandVal(0);
SDValue ReturnAddress;
if (Depth) {
SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout()));
ReturnAddress = DAG.getLoad(
VT, DL, DAG.getEntryNode(),
DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), MachinePointerInfo());
} else {
// Return LR, which contains the return address. Mark it an implicit
// live-in.
Register Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass);
ReturnAddress = DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
}
// The XPACLRI instruction assembles to a hint-space instruction before
// Armv8.3-A therefore this instruction can be safely used for any pre
// Armv8.3-A architectures. On Armv8.3-A and onwards XPACI is available so use
// that instead.
SDNode *St;
if (Subtarget->hasPAuth()) {
St = DAG.getMachineNode(AArch64::XPACI, DL, VT, ReturnAddress);
} else {
// XPACLRI operates on LR therefore we must move the operand accordingly.
SDValue Chain =
DAG.getCopyToReg(DAG.getEntryNode(), DL, AArch64::LR, ReturnAddress);
St = DAG.getMachineNode(AArch64::XPACLRI, DL, VT, Chain);
}
return SDValue(St, 0);
}
/// LowerShiftParts - Lower SHL_PARTS/SRA_PARTS/SRL_PARTS, which returns two
/// i32 values and take a 2 x i32 value to shift plus a shift amount.
SDValue AArch64TargetLowering::LowerShiftParts(SDValue Op,
SelectionDAG &DAG) const {
SDValue Lo, Hi;
expandShiftParts(Op.getNode(), Lo, Hi, DAG);
return DAG.getMergeValues({Lo, Hi}, SDLoc(Op));
}
bool AArch64TargetLowering::isOffsetFoldingLegal(
const GlobalAddressSDNode *GA) const {
// Offsets are folded in the DAG combine rather than here so that we can
// intelligently choose an offset based on the uses.
return false;
}
bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
bool OptForSize) const {
bool IsLegal = false;
// We can materialize #0.0 as fmov $Rd, XZR for 64-bit, 32-bit cases, and
// 16-bit case when target has full fp16 support.
// We encode bf16 bit patterns as if they were fp16. This results in very
// strange looking assembly but should populate the register with appropriate
// values. Let's say we wanted to encode 0xR3FC0 which is 1.5 in BF16. We will
// end up encoding this as the imm8 0x7f. This imm8 will be expanded to the
// FP16 1.9375 which shares the same bit pattern as BF16 1.5.
// FIXME: We should be able to handle f128 as well with a clever lowering.
const APInt ImmInt = Imm.bitcastToAPInt();
if (VT == MVT::f64)
IsLegal = AArch64_AM::getFP64Imm(ImmInt) != -1 || Imm.isPosZero();
else if (VT == MVT::f32)
IsLegal = AArch64_AM::getFP32Imm(ImmInt) != -1 || Imm.isPosZero();
else if (VT == MVT::f16 || VT == MVT::bf16)
IsLegal =
(Subtarget->hasFullFP16() && AArch64_AM::getFP16Imm(ImmInt) != -1) ||
Imm.isPosZero();
// If we can not materialize in immediate field for fmov, check if the
// value can be encoded as the immediate operand of a logical instruction.
// The immediate value will be created with either MOVZ, MOVN, or ORR.
// TODO: fmov h0, w0 is also legal, however we don't have an isel pattern to
// generate that fmov.
if (!IsLegal && (VT == MVT::f64 || VT == MVT::f32)) {
// The cost is actually exactly the same for mov+fmov vs. adrp+ldr;
// however the mov+fmov sequence is always better because of the reduced
// cache pressure. The timings are still the same if you consider
// movw+movk+fmov vs. adrp+ldr (it's one instruction longer, but the
// movw+movk is fused). So we limit up to 2 instrdduction at most.
SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn;
AArch64_IMM::expandMOVImm(ImmInt.getZExtValue(), VT.getSizeInBits(), Insn);
assert(Insn.size() <= 4 &&
"Should be able to build any value with at most 4 moves");
unsigned Limit = (OptForSize ? 1 : (Subtarget->hasFuseLiterals() ? 4 : 2));
IsLegal = Insn.size() <= Limit;
}
LLVM_DEBUG(dbgs() << (IsLegal ? "Legal " : "Illegal ") << VT
<< " imm value: "; Imm.dump(););
return IsLegal;
}
//===----------------------------------------------------------------------===//
// AArch64 Optimization Hooks
//===----------------------------------------------------------------------===//
static SDValue getEstimate(const AArch64Subtarget *ST, unsigned Opcode,
SDValue Operand, SelectionDAG &DAG,
int &ExtraSteps) {
EVT VT = Operand.getValueType();
if ((ST->hasNEON() &&
(VT == MVT::f64 || VT == MVT::v1f64 || VT == MVT::v2f64 ||
VT == MVT::f32 || VT == MVT::v1f32 || VT == MVT::v2f32 ||
VT == MVT::v4f32)) ||
(ST->hasSVE() &&
(VT == MVT::nxv8f16 || VT == MVT::nxv4f32 || VT == MVT::nxv2f64))) {
if (ExtraSteps == TargetLoweringBase::ReciprocalEstimate::Unspecified) {
// For the reciprocal estimates, convergence is quadratic, so the number
// of digits is doubled after each iteration. In ARMv8, the accuracy of
// the initial estimate is 2^-8. Thus the number of extra steps to refine
// the result for float (23 mantissa bits) is 2 and for double (52
// mantissa bits) is 3.
constexpr unsigned AccurateBits = 8;
unsigned DesiredBits = APFloat::semanticsPrecision(VT.getFltSemantics());
ExtraSteps = DesiredBits <= AccurateBits
? 0
: Log2_64_Ceil(DesiredBits) - Log2_64_Ceil(AccurateBits);
}
return DAG.getNode(Opcode, SDLoc(Operand), VT, Operand);
}
return SDValue();
}
SDValue
AArch64TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
const DenormalMode &Mode) const {
SDLoc DL(Op);
EVT VT = Op.getValueType();
EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
}
SDValue
AArch64TargetLowering::getSqrtResultForDenormInput(SDValue Op,
SelectionDAG &DAG) const {
return Op;
}
SDValue AArch64TargetLowering::getSqrtEstimate(SDValue Operand,
SelectionDAG &DAG, int Enabled,
int &ExtraSteps,
bool &UseOneConst,
bool Reciprocal) const {
if (Enabled == ReciprocalEstimate::Enabled ||
(Enabled == ReciprocalEstimate::Unspecified && Subtarget->useRSqrt()))
if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRSQRTE, Operand,
DAG, ExtraSteps)) {
SDLoc DL(Operand);
EVT VT = Operand.getValueType();
SDNodeFlags Flags = SDNodeFlags::AllowReassociation;
// Newton reciprocal square root iteration: E * 0.5 * (3 - X * E^2)
// AArch64 reciprocal square root iteration instruction: 0.5 * (3 - M * N)
for (int i = ExtraSteps; i > 0; --i) {
SDValue Step = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Estimate,
Flags);
Step = DAG.getNode(AArch64ISD::FRSQRTS, DL, VT, Operand, Step, Flags);
Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, Flags);
}
if (!Reciprocal)
Estimate = DAG.getNode(ISD::FMUL, DL, VT, Operand, Estimate, Flags);
ExtraSteps = 0;
return Estimate;
}
return SDValue();
}
SDValue AArch64TargetLowering::getRecipEstimate(SDValue Operand,
SelectionDAG &DAG, int Enabled,
int &ExtraSteps) const {
if (Enabled == ReciprocalEstimate::Enabled)
if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRECPE, Operand,
DAG, ExtraSteps)) {
SDLoc DL(Operand);
EVT VT = Operand.getValueType();
SDNodeFlags Flags = SDNodeFlags::AllowReassociation;
// Newton reciprocal iteration: E * (2 - X * E)
// AArch64 reciprocal iteration instruction: (2 - M * N)
for (int i = ExtraSteps; i > 0; --i) {
SDValue Step = DAG.getNode(AArch64ISD::FRECPS, DL, VT, Operand,
Estimate, Flags);
Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, Flags);
}
ExtraSteps = 0;
return Estimate;
}
return SDValue();
}
//===----------------------------------------------------------------------===//
// AArch64 Inline Assembly Support
//===----------------------------------------------------------------------===//
// Table of Constraints
// TODO: This is the current set of constraints supported by ARM for the
// compiler, not all of them may make sense.
//
// r - A general register
// w - An FP/SIMD register of some size in the range v0-v31
// x - An FP/SIMD register of some size in the range v0-v15
// I - Constant that can be used with an ADD instruction
// J - Constant that can be used with a SUB instruction
// K - Constant that can be used with a 32-bit logical instruction
// L - Constant that can be used with a 64-bit logical instruction
// M - Constant that can be used as a 32-bit MOV immediate
// N - Constant that can be used as a 64-bit MOV immediate
// Q - A memory reference with base register and no offset
// S - A symbolic address
// Y - Floating point constant zero
// Z - Integer constant zero
//
// Note that general register operands will be output using their 64-bit x
// register name, whatever the size of the variable, unless the asm operand
// is prefixed by the %w modifier. Floating-point and SIMD register operands
// will be output with the v prefix unless prefixed by the %b, %h, %s, %d or
// %q modifier.
const char *AArch64TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
// At this point, we have to lower this constraint to something else, so we
// lower it to an "r" or "w". However, by doing this we will force the result
// to be in register, while the X constraint is much more permissive.
//
// Although we are correct (we are free to emit anything, without
// constraints), we might break use cases that would expect us to be more
// efficient and emit something else.
if (!Subtarget->hasFPARMv8())
return "r";
if (ConstraintVT.isFloatingPoint())
return "w";
if (ConstraintVT.isVector() &&
(ConstraintVT.getSizeInBits() == 64 ||
ConstraintVT.getSizeInBits() == 128))
return "w";
return "r";
}
enum class PredicateConstraint { Uph, Upl, Upa };
// Returns a {Reg, RegisterClass} tuple if the constraint is
// a specific predicate register.
//
// For some constraint like "{pn3}" the default path in
// TargetLowering::getRegForInlineAsmConstraint() leads it to determine that a
// suitable register class for this register is "PPRorPNR", after which it
// determines that nxv16i1 is an appropriate type for the constraint, which is
// not what we want. The code here pre-empts this by matching the register
// explicitly.
static std::optional<std::pair<unsigned, const TargetRegisterClass *>>
parsePredicateRegAsConstraint(StringRef Constraint) {
if (!Constraint.starts_with('{') || !Constraint.ends_with('}') ||
Constraint[1] != 'p')
return std::nullopt;
Constraint = Constraint.substr(2, Constraint.size() - 3);
bool IsPredicateAsCount = Constraint.starts_with("n");
if (IsPredicateAsCount)
Constraint = Constraint.drop_front(1);
unsigned V;
if (Constraint.getAsInteger(10, V) || V > 31)
return std::nullopt;
if (IsPredicateAsCount)
return std::make_pair(AArch64::PN0 + V, &AArch64::PNRRegClass);
else
return std::make_pair(AArch64::P0 + V, &AArch64::PPRRegClass);
}
static std::optional<PredicateConstraint>
parsePredicateConstraint(StringRef Constraint) {
return StringSwitch<std::optional<PredicateConstraint>>(Constraint)
.Case("Uph", PredicateConstraint::Uph)
.Case("Upl", PredicateConstraint::Upl)
.Case("Upa", PredicateConstraint::Upa)
.Default(std::nullopt);
}
static const TargetRegisterClass *
getPredicateRegisterClass(PredicateConstraint Constraint, EVT VT) {
if (VT != MVT::aarch64svcount &&
(!VT.isScalableVector() || VT.getVectorElementType() != MVT::i1))
return nullptr;
switch (Constraint) {
case PredicateConstraint::Uph:
return VT == MVT::aarch64svcount ? &AArch64::PNR_p8to15RegClass
: &AArch64::PPR_p8to15RegClass;
case PredicateConstraint::Upl:
return VT == MVT::aarch64svcount ? &AArch64::PNR_3bRegClass
: &AArch64::PPR_3bRegClass;
case PredicateConstraint::Upa:
return VT == MVT::aarch64svcount ? &AArch64::PNRRegClass
: &AArch64::PPRRegClass;
}
llvm_unreachable("Missing PredicateConstraint!");
}
enum class ReducedGprConstraint { Uci, Ucj };
static std::optional<ReducedGprConstraint>
parseReducedGprConstraint(StringRef Constraint) {
return StringSwitch<std::optional<ReducedGprConstraint>>(Constraint)
.Case("Uci", ReducedGprConstraint::Uci)
.Case("Ucj", ReducedGprConstraint::Ucj)
.Default(std::nullopt);
}
static const TargetRegisterClass *
getReducedGprRegisterClass(ReducedGprConstraint Constraint, EVT VT) {
if (!VT.isScalarInteger() || VT.getFixedSizeInBits() > 64)
return nullptr;
switch (Constraint) {
case ReducedGprConstraint::Uci:
return &AArch64::MatrixIndexGPR32_8_11RegClass;
case ReducedGprConstraint::Ucj:
return &AArch64::MatrixIndexGPR32_12_15RegClass;
}
llvm_unreachable("Missing ReducedGprConstraint!");
}
// The set of cc code supported is from
// https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html#Flag-Output-Operands
static AArch64CC::CondCode parseConstraintCode(llvm::StringRef Constraint) {
AArch64CC::CondCode Cond = StringSwitch<AArch64CC::CondCode>(Constraint)
.Case("{@cchi}", AArch64CC::HI)
.Case("{@cccs}", AArch64CC::HS)
.Case("{@cclo}", AArch64CC::LO)
.Case("{@ccls}", AArch64CC::LS)
.Case("{@cccc}", AArch64CC::LO)
.Case("{@cceq}", AArch64CC::EQ)
.Case("{@ccgt}", AArch64CC::GT)
.Case("{@ccge}", AArch64CC::GE)
.Case("{@cclt}", AArch64CC::LT)
.Case("{@ccle}", AArch64CC::LE)
.Case("{@cchs}", AArch64CC::HS)
.Case("{@ccne}", AArch64CC::NE)
.Case("{@ccvc}", AArch64CC::VC)
.Case("{@ccpl}", AArch64CC::PL)
.Case("{@ccvs}", AArch64CC::VS)
.Case("{@ccmi}", AArch64CC::MI)
.Default(AArch64CC::Invalid);
return Cond;
}
/// Helper function to create 'CSET', which is equivalent to 'CSINC <Wd>, WZR,
/// WZR, invert(<cond>)'.
static SDValue getSETCC(AArch64CC::CondCode CC, SDValue NZCV, const SDLoc &DL,
SelectionDAG &DAG) {
return DAG.getNode(
AArch64ISD::CSINC, DL, MVT::i32, DAG.getConstant(0, DL, MVT::i32),
DAG.getConstant(0, DL, MVT::i32),
DAG.getConstant(getInvertedCondCode(CC), DL, MVT::i32), NZCV);
}
// Lower @cc flag output via getSETCC.
SDValue AArch64TargetLowering::LowerAsmOutputForConstraint(
SDValue &Chain, SDValue &Glue, const SDLoc &DL,
const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
AArch64CC::CondCode Cond = parseConstraintCode(OpInfo.ConstraintCode);
if (Cond == AArch64CC::Invalid)
return SDValue();
// The output variable should be a scalar integer.
if (OpInfo.ConstraintVT.isVector() || !OpInfo.ConstraintVT.isInteger() ||
OpInfo.ConstraintVT.getSizeInBits() < 8)
report_fatal_error("Flag output operand is of invalid type");
// Get NZCV register. Only update chain when copyfrom is glued.
if (Glue.getNode()) {
Glue = DAG.getCopyFromReg(Chain, DL, AArch64::NZCV, MVT::i32, Glue);
Chain = Glue.getValue(1);
} else
Glue = DAG.getCopyFromReg(Chain, DL, AArch64::NZCV, MVT::i32);
// Extract CC code.
SDValue CC = getSETCC(Cond, Glue, DL, DAG);
SDValue Result;
// Truncate or ZERO_EXTEND based on value types.
if (OpInfo.ConstraintVT.getSizeInBits() <= 32)
Result = DAG.getNode(ISD::TRUNCATE, DL, OpInfo.ConstraintVT, CC);
else
Result = DAG.getNode(ISD::ZERO_EXTEND, DL, OpInfo.ConstraintVT, CC);
return Result;
}
/// getConstraintType - Given a constraint letter, return the type of
/// constraint it is for this target.
AArch64TargetLowering::ConstraintType
AArch64TargetLowering::getConstraintType(StringRef Constraint) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
default:
break;
case 'x':
case 'w':
case 'y':
return C_RegisterClass;
// An address with a single base register. Due to the way we
// currently handle addresses it is the same as 'r'.
case 'Q':
return C_Memory;
case 'I':
case 'J':
case 'K':
case 'L':
case 'M':
case 'N':
case 'Y':
case 'Z':
return C_Immediate;
case 'z':
case 'S': // A symbol or label reference with a constant offset
return C_Other;
}
} else if (parsePredicateConstraint(Constraint))
return C_RegisterClass;
else if (parseReducedGprConstraint(Constraint))
return C_RegisterClass;
else if (parseConstraintCode(Constraint) != AArch64CC::Invalid)
return C_Other;
return TargetLowering::getConstraintType(Constraint);
}
/// Examine constraint type and operand type and determine a weight value.
/// This object must already have been set up with the operand type
/// and the current alternative constraint selected.
TargetLowering::ConstraintWeight
AArch64TargetLowering::getSingleConstraintMatchWeight(
AsmOperandInfo &info, const char *constraint) const {
ConstraintWeight weight = CW_Invalid;
Value *CallOperandVal = info.CallOperandVal;
// If we don't have a value, we can't do a match,
// but allow it at the lowest weight.
if (!CallOperandVal)
return CW_Default;
Type *type = CallOperandVal->getType();
// Look at the constraint type.
switch (*constraint) {
default:
weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
break;
case 'x':
case 'w':
case 'y':
if (type->isFloatingPointTy() || type->isVectorTy())
weight = CW_Register;
break;
case 'z':
weight = CW_Constant;
break;
case 'U':
if (parsePredicateConstraint(constraint) ||
parseReducedGprConstraint(constraint))
weight = CW_Register;
break;
}
return weight;
}
std::pair<unsigned, const TargetRegisterClass *>
AArch64TargetLowering::getRegForInlineAsmConstraint(
const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
case 'r':
if (VT.isScalableVector())
return std::make_pair(0U, nullptr);
if (Subtarget->hasLS64() && VT.getSizeInBits() == 512)
return std::make_pair(0U, &AArch64::GPR64x8ClassRegClass);
if (VT.getFixedSizeInBits() == 64)
return std::make_pair(0U, &AArch64::GPR64commonRegClass);
return std::make_pair(0U, &AArch64::GPR32commonRegClass);
case 'w': {
if (!Subtarget->hasFPARMv8())
break;
if (VT.isScalableVector()) {
if (VT.getVectorElementType() != MVT::i1)
return std::make_pair(0U, &AArch64::ZPRRegClass);
return std::make_pair(0U, nullptr);
}
if (VT == MVT::Other)
break;
uint64_t VTSize = VT.getFixedSizeInBits();
if (VTSize == 16)
return std::make_pair(0U, &AArch64::FPR16RegClass);
if (VTSize == 32)
return std::make_pair(0U, &AArch64::FPR32RegClass);
if (VTSize == 64)
return std::make_pair(0U, &AArch64::FPR64RegClass);
if (VTSize == 128)
return std::make_pair(0U, &AArch64::FPR128RegClass);
break;
}
// The instructions that this constraint is designed for can
// only take 128-bit registers so just use that regclass.
case 'x':
if (!Subtarget->hasFPARMv8())
break;
if (VT.isScalableVector())
return std::make_pair(0U, &AArch64::ZPR_4bRegClass);
if (VT.getSizeInBits() == 128)
return std::make_pair(0U, &AArch64::FPR128_loRegClass);
break;
case 'y':
if (!Subtarget->hasFPARMv8())
break;
if (VT.isScalableVector())
return std::make_pair(0U, &AArch64::ZPR_3bRegClass);
break;
}
} else {
if (const auto P = parsePredicateRegAsConstraint(Constraint))
return *P;
if (const auto PC = parsePredicateConstraint(Constraint))
if (const auto *RegClass = getPredicateRegisterClass(*PC, VT))
return std::make_pair(0U, RegClass);
if (const auto RGC = parseReducedGprConstraint(Constraint))
if (const auto *RegClass = getReducedGprRegisterClass(*RGC, VT))
return std::make_pair(0U, RegClass);
}
if (StringRef("{cc}").equals_insensitive(Constraint) ||
parseConstraintCode(Constraint) != AArch64CC::Invalid)
return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass);
if (Constraint == "{za}") {
return std::make_pair(unsigned(AArch64::ZA), &AArch64::MPRRegClass);
}
if (Constraint == "{zt0}") {
return std::make_pair(unsigned(AArch64::ZT0), &AArch64::ZTRRegClass);
}
// Use the default implementation in TargetLowering to convert the register
// constraint into a member of a register class.
std::pair<unsigned, const TargetRegisterClass *> Res;
Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
// Not found as a standard register?
if (!Res.second) {
unsigned Size = Constraint.size();
if ((Size == 4 || Size == 5) && Constraint[0] == '{' &&
tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') {
int RegNo;
bool Failed = Constraint.slice(2, Size - 1).getAsInteger(10, RegNo);
if (!Failed && RegNo >= 0 && RegNo <= 31) {
// v0 - v31 are aliases of q0 - q31 or d0 - d31 depending on size.
// By default we'll emit v0-v31 for this unless there's a modifier where
// we'll emit the correct register as well.
if (VT != MVT::Other && VT.getSizeInBits() == 64) {
Res.first = AArch64::FPR64RegClass.getRegister(RegNo);
Res.second = &AArch64::FPR64RegClass;
} else {
Res.first = AArch64::FPR128RegClass.getRegister(RegNo);
Res.second = &AArch64::FPR128RegClass;
}
}
}
}
if (Res.second && !Subtarget->hasFPARMv8() &&
!AArch64::GPR32allRegClass.hasSubClassEq(Res.second) &&
!AArch64::GPR64allRegClass.hasSubClassEq(Res.second))
return std::make_pair(0U, nullptr);
return Res;
}
EVT AArch64TargetLowering::getAsmOperandValueType(const DataLayout &DL,
llvm::Type *Ty,
bool AllowUnknown) const {
if (Subtarget->hasLS64() && Ty->isIntegerTy(512))
return EVT(MVT::i64x8);
return TargetLowering::getAsmOperandValueType(DL, Ty, AllowUnknown);
}
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
/// vector. If it is invalid, don't add anything to Ops.
void AArch64TargetLowering::LowerAsmOperandForConstraint(
SDValue Op, StringRef Constraint, std::vector<SDValue> &Ops,
SelectionDAG &DAG) const {
SDValue Result;
// Currently only support length 1 constraints.
if (Constraint.size() != 1)
return;
char ConstraintLetter = Constraint[0];
switch (ConstraintLetter) {
default:
break;
// This set of constraints deal with valid constants for various instructions.
// Validate and return a target constant for them if we can.
case 'z': {
// 'z' maps to xzr or wzr so it needs an input of 0.
if (!isNullConstant(Op))
return;
if (Op.getValueType() == MVT::i64)
Result = DAG.getRegister(AArch64::XZR, MVT::i64);
else
Result = DAG.getRegister(AArch64::WZR, MVT::i32);
break;
}
case 'S':
// Use the generic code path for "s". In GCC's aarch64 port, "S" is
// supported for PIC while "s" isn't, making "s" less useful. We implement
// "S" but not "s".
TargetLowering::LowerAsmOperandForConstraint(Op, "s", Ops, DAG);
break;
case 'I':
case 'J':
case 'K':
case 'L':
case 'M':
case 'N':
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
if (!C)
return;
// Grab the value and do some validation.
uint64_t CVal = C->getZExtValue();
switch (ConstraintLetter) {
// The I constraint applies only to simple ADD or SUB immediate operands:
// i.e. 0 to 4095 with optional shift by 12
// The J constraint applies only to ADD or SUB immediates that would be
// valid when negated, i.e. if [an add pattern] were to be output as a SUB
// instruction [or vice versa], in other words -1 to -4095 with optional
// left shift by 12.
case 'I':
if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal))
break;
return;
case 'J': {
uint64_t NVal = -C->getSExtValue();
if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) {
CVal = C->getSExtValue();
break;
}
return;
}
// The K and L constraints apply *only* to logical immediates, including
// what used to be the MOVI alias for ORR (though the MOVI alias has now
// been removed and MOV should be used). So these constraints have to
// distinguish between bit patterns that are valid 32-bit or 64-bit
// "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but
// not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice
// versa.
case 'K':
if (AArch64_AM::isLogicalImmediate(CVal, 32))
break;
return;
case 'L':
if (AArch64_AM::isLogicalImmediate(CVal, 64))
break;
return;
// The M and N constraints are a superset of K and L respectively, for use
// with the MOV (immediate) alias. As well as the logical immediates they
// also match 32 or 64-bit immediates that can be loaded either using a
// *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca
// (M) or 64-bit 0x1234000000000000 (N) etc.
// As a note some of this code is liberally stolen from the asm parser.
case 'M': {
if (!isUInt<32>(CVal))
return;
if (AArch64_AM::isLogicalImmediate(CVal, 32))
break;
if ((CVal & 0xFFFF) == CVal)
break;
if ((CVal & 0xFFFF0000ULL) == CVal)
break;
uint64_t NCVal = ~(uint32_t)CVal;
if ((NCVal & 0xFFFFULL) == NCVal)
break;
if ((NCVal & 0xFFFF0000ULL) == NCVal)
break;
return;
}
case 'N': {
if (AArch64_AM::isLogicalImmediate(CVal, 64))
break;
if ((CVal & 0xFFFFULL) == CVal)
break;
if ((CVal & 0xFFFF0000ULL) == CVal)
break;
if ((CVal & 0xFFFF00000000ULL) == CVal)
break;
if ((CVal & 0xFFFF000000000000ULL) == CVal)
break;
uint64_t NCVal = ~CVal;
if ((NCVal & 0xFFFFULL) == NCVal)
break;
if ((NCVal & 0xFFFF0000ULL) == NCVal)
break;
if ((NCVal & 0xFFFF00000000ULL) == NCVal)
break;
if ((NCVal & 0xFFFF000000000000ULL) == NCVal)
break;
return;
}
default:
return;
}
// All assembler immediates are 64-bit integers.
Result = DAG.getTargetConstant(CVal, SDLoc(Op), MVT::i64);
break;
}
if (Result.getNode()) {
Ops.push_back(Result);
return;
}
return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
}
//===----------------------------------------------------------------------===//
// AArch64 Advanced SIMD Support
//===----------------------------------------------------------------------===//
/// WidenVector - Given a value in the V64 register class, produce the
/// equivalent value in the V128 register class.
static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) {
EVT VT = V64Reg.getValueType();
unsigned NarrowSize = VT.getVectorNumElements();
MVT EltTy = VT.getVectorElementType().getSimpleVT();
MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
SDLoc DL(V64Reg);
return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy),
V64Reg, DAG.getConstant(0, DL, MVT::i64));
}
/// getExtFactor - Determine the adjustment factor for the position when
/// generating an "extract from vector registers" instruction.
static unsigned getExtFactor(SDValue &V) {
EVT EltType = V.getValueType().getVectorElementType();
return EltType.getSizeInBits() / 8;
}
// Check if a vector is built from one vector via extracted elements of
// another together with an AND mask, ensuring that all elements fit
// within range. This can be reconstructed using AND and NEON's TBL1.
SDValue ReconstructShuffleWithRuntimeMask(SDValue Op, SelectionDAG &DAG) {
assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
SDLoc dl(Op);
EVT VT = Op.getValueType();
assert(!VT.isScalableVector() &&
"Scalable vectors cannot be used with ISD::BUILD_VECTOR");
// Can only recreate a shuffle with 16xi8 or 8xi8 elements, as they map
// directly to TBL1.
if (VT != MVT::v16i8 && VT != MVT::v8i8)
return SDValue();
unsigned NumElts = VT.getVectorNumElements();
assert((NumElts == 8 || NumElts == 16) &&
"Need to have exactly 8 or 16 elements in vector.");
SDValue SourceVec;
SDValue MaskSourceVec;
SmallVector<SDValue, 16> AndMaskConstants;
for (unsigned i = 0; i < NumElts; ++i) {
SDValue V = Op.getOperand(i);
if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
return SDValue();
SDValue OperandSourceVec = V.getOperand(0);
if (!SourceVec)
SourceVec = OperandSourceVec;
else if (SourceVec != OperandSourceVec)
return SDValue();
// This only looks at shuffles with elements that are
// a) truncated by a constant AND mask extracted from a mask vector, or
// b) extracted directly from a mask vector.
SDValue MaskSource = V.getOperand(1);
if (MaskSource.getOpcode() == ISD::AND) {
if (!isa<ConstantSDNode>(MaskSource.getOperand(1)))
return SDValue();
AndMaskConstants.push_back(MaskSource.getOperand(1));
MaskSource = MaskSource->getOperand(0);
} else if (!AndMaskConstants.empty()) {
// Either all or no operands should have an AND mask.
return SDValue();
}
// An ANY_EXTEND may be inserted between the AND and the source vector
// extraction. We don't care about that, so we can just skip it.
if (MaskSource.getOpcode() == ISD::ANY_EXTEND)
MaskSource = MaskSource.getOperand(0);
if (MaskSource.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
return SDValue();
SDValue MaskIdx = MaskSource.getOperand(1);
if (!isa<ConstantSDNode>(MaskIdx) ||
!cast<ConstantSDNode>(MaskIdx)->getConstantIntValue()->equalsInt(i))
return SDValue();
// We only apply this if all elements come from the same vector with the
// same vector type.
if (!MaskSourceVec) {
MaskSourceVec = MaskSource->getOperand(0);
if (MaskSourceVec.getValueType() != VT)
return SDValue();
} else if (MaskSourceVec != MaskSource->getOperand(0)) {
return SDValue();
}
}
// We need a v16i8 for TBL, so we extend the source with a placeholder vector
// for v8i8 to get a v16i8. As the pattern we are replacing is extract +
// insert, we know that the index in the mask must be smaller than the number
// of elements in the source, or we would have an out-of-bounds access.
if (NumElts == 8)
SourceVec = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v16i8, SourceVec,
DAG.getUNDEF(VT));
// Preconditions met, so we can use a vector (AND +) TBL to build this vector.
if (!AndMaskConstants.empty())
MaskSourceVec = DAG.getNode(ISD::AND, dl, VT, MaskSourceVec,
DAG.getBuildVector(VT, dl, AndMaskConstants));
return DAG.getNode(
ISD::INTRINSIC_WO_CHAIN, dl, VT,
DAG.getConstant(Intrinsic::aarch64_neon_tbl1, dl, MVT::i32), SourceVec,
MaskSourceVec);
}
// Gather data to see if the operation can be modelled as a
// shuffle in combination with VEXTs.
SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op,
SelectionDAG &DAG) const {
assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
LLVM_DEBUG(dbgs() << "AArch64TargetLowering::ReconstructShuffle\n");
SDLoc dl(Op);
EVT VT = Op.getValueType();
assert(!VT.isScalableVector() &&
"Scalable vectors cannot be used with ISD::BUILD_VECTOR");
unsigned NumElts = VT.getVectorNumElements();
struct ShuffleSourceInfo {
SDValue Vec;
unsigned MinElt;
unsigned MaxElt;
// We may insert some combination of BITCASTs and VEXT nodes to force Vec to
// be compatible with the shuffle we intend to construct. As a result
// ShuffleVec will be some sliding window into the original Vec.
SDValue ShuffleVec;
// Code should guarantee that element i in Vec starts at element "WindowBase
// + i * WindowScale in ShuffleVec".
int WindowBase;
int WindowScale;
ShuffleSourceInfo(SDValue Vec)
: Vec(Vec), MinElt(std::numeric_limits<unsigned>::max()), MaxElt(0),
ShuffleVec(Vec), WindowBase(0), WindowScale(1) {}
bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
};
// First gather all vectors used as an immediate source for this BUILD_VECTOR
// node.
SmallVector<ShuffleSourceInfo, 2> Sources;
for (unsigned i = 0; i < NumElts; ++i) {
SDValue V = Op.getOperand(i);
if (V.isUndef())
continue;
else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
!isa<ConstantSDNode>(V.getOperand(1)) ||
V.getOperand(0).getValueType().isScalableVector()) {
LLVM_DEBUG(
dbgs() << "Reshuffle failed: "
"a shuffle can only come from building a vector from "
"various elements of other fixed-width vectors, provided "
"their indices are constant\n");
return SDValue();
}
// Add this element source to the list if it's not already there.
SDValue SourceVec = V.getOperand(0);
auto Source = find(Sources, SourceVec);
if (Source == Sources.end())
Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
// Update the minimum and maximum lane number seen.
unsigned EltNo = V.getConstantOperandVal(1);
Source->MinElt = std::min(Source->MinElt, EltNo);
Source->MaxElt = std::max(Source->MaxElt, EltNo);
}
// If we have 3 or 4 sources, try to generate a TBL, which will at least be
// better than moving to/from gpr registers for larger vectors.
if ((Sources.size() == 3 || Sources.size() == 4) && NumElts > 4) {
// Construct a mask for the tbl. We may need to adjust the index for types
// larger than i8.
SmallVector<unsigned, 16> Mask;
unsigned OutputFactor = VT.getScalarSizeInBits() / 8;
for (unsigned I = 0; I < NumElts; ++I) {
SDValue V = Op.getOperand(I);
if (V.isUndef()) {
for (unsigned OF = 0; OF < OutputFactor; OF++)
Mask.push_back(-1);
continue;
}
// Set the Mask lanes adjusted for the size of the input and output
// lanes. The Mask is always i8, so it will set OutputFactor lanes per
// output element, adjusted in their positions per input and output types.
unsigned Lane = V.getConstantOperandVal(1);
for (unsigned S = 0; S < Sources.size(); S++) {
if (V.getOperand(0) == Sources[S].Vec) {
unsigned InputSize = Sources[S].Vec.getScalarValueSizeInBits();
unsigned InputBase = 16 * S + Lane * InputSize / 8;
for (unsigned OF = 0; OF < OutputFactor; OF++)
Mask.push_back(InputBase + OF);
break;
}
}
}
// Construct the tbl3/tbl4 out of an intrinsic, the sources converted to
// v16i8, and the TBLMask
SmallVector<SDValue, 16> TBLOperands;
TBLOperands.push_back(DAG.getConstant(Sources.size() == 3
? Intrinsic::aarch64_neon_tbl3
: Intrinsic::aarch64_neon_tbl4,
dl, MVT::i32));
for (unsigned i = 0; i < Sources.size(); i++) {
SDValue Src = Sources[i].Vec;
EVT SrcVT = Src.getValueType();
Src = DAG.getBitcast(SrcVT.is64BitVector() ? MVT::v8i8 : MVT::v16i8, Src);
assert((SrcVT.is64BitVector() || SrcVT.is128BitVector()) &&
"Expected a legally typed vector");
if (SrcVT.is64BitVector())
Src = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v16i8, Src,
DAG.getUNDEF(MVT::v8i8));
TBLOperands.push_back(Src);
}
SmallVector<SDValue, 16> TBLMask;
for (unsigned i = 0; i < Mask.size(); i++)
TBLMask.push_back(DAG.getConstant(Mask[i], dl, MVT::i32));
assert((Mask.size() == 8 || Mask.size() == 16) &&
"Expected a v8i8 or v16i8 Mask");
TBLOperands.push_back(
DAG.getBuildVector(Mask.size() == 8 ? MVT::v8i8 : MVT::v16i8, dl, TBLMask));
SDValue Shuffle =
DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl,
Mask.size() == 8 ? MVT::v8i8 : MVT::v16i8, TBLOperands);
return DAG.getBitcast(VT, Shuffle);
}
if (Sources.size() > 2) {
LLVM_DEBUG(dbgs() << "Reshuffle failed: currently only do something "
<< "sensible when at most two source vectors are "
<< "involved\n");
return SDValue();
}
// Find out the smallest element size among result and two sources, and use
// it as element size to build the shuffle_vector.
EVT SmallestEltTy = VT.getVectorElementType();
for (auto &Source : Sources) {
EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
if (SrcEltTy.bitsLT(SmallestEltTy)) {
SmallestEltTy = SrcEltTy;
}
}
unsigned ResMultiplier =
VT.getScalarSizeInBits() / SmallestEltTy.getFixedSizeInBits();
uint64_t VTSize = VT.getFixedSizeInBits();
NumElts = VTSize / SmallestEltTy.getFixedSizeInBits();
EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
// If the source vector is too wide or too narrow, we may nevertheless be able
// to construct a compatible shuffle either by concatenating it with UNDEF or
// extracting a suitable range of elements.
for (auto &Src : Sources) {
EVT SrcVT = Src.ShuffleVec.getValueType();
TypeSize SrcVTSize = SrcVT.getSizeInBits();
if (SrcVTSize == TypeSize::getFixed(VTSize))
continue;
// This stage of the search produces a source with the same element type as
// the original, but with a total width matching the BUILD_VECTOR output.
EVT EltVT = SrcVT.getVectorElementType();
unsigned NumSrcElts = VTSize / EltVT.getFixedSizeInBits();
EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
if (SrcVTSize.getFixedValue() < VTSize) {
assert(2 * SrcVTSize == VTSize);
// We can pad out the smaller vector for free, so if it's part of a
// shuffle...
Src.ShuffleVec =
DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
DAG.getUNDEF(Src.ShuffleVec.getValueType()));
continue;
}
if (SrcVTSize.getFixedValue() != 2 * VTSize) {
LLVM_DEBUG(
dbgs() << "Reshuffle failed: result vector too small to extract\n");
return SDValue();
}
if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
LLVM_DEBUG(
dbgs() << "Reshuffle failed: span too large for a VEXT to cope\n");
return SDValue();
}
if (Src.MinElt >= NumSrcElts) {
// The extraction can just take the second half
Src.ShuffleVec =
DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
DAG.getConstant(NumSrcElts, dl, MVT::i64));
Src.WindowBase = -NumSrcElts;
} else if (Src.MaxElt < NumSrcElts) {
// The extraction can just take the first half
Src.ShuffleVec =
DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
DAG.getConstant(0, dl, MVT::i64));
} else {
// An actual VEXT is needed
SDValue VEXTSrc1 =
DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
DAG.getConstant(0, dl, MVT::i64));
SDValue VEXTSrc2 =
DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
DAG.getConstant(NumSrcElts, dl, MVT::i64));
unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1);
if (!SrcVT.is64BitVector()) {
LLVM_DEBUG(
dbgs() << "Reshuffle failed: don't know how to lower AArch64ISD::EXT "
"for SVE vectors.");
return SDValue();
}
Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1,
VEXTSrc2,
DAG.getConstant(Imm, dl, MVT::i32));
Src.WindowBase = -Src.MinElt;
}
}
// Another possible incompatibility occurs from the vector element types. We
// can fix this by bitcasting the source vectors to the same type we intend
// for the shuffle.
for (auto &Src : Sources) {
EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
if (SrcEltTy == SmallestEltTy)
continue;
assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
if (DAG.getDataLayout().isBigEndian()) {
Src.ShuffleVec =
DAG.getNode(AArch64ISD::NVCAST, dl, ShuffleVT, Src.ShuffleVec);
} else {
Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
}
Src.WindowScale =
SrcEltTy.getFixedSizeInBits() / SmallestEltTy.getFixedSizeInBits();
Src.WindowBase *= Src.WindowScale;
}
// Final check before we try to actually produce a shuffle.
LLVM_DEBUG(for (auto Src
: Sources)
assert(Src.ShuffleVec.getValueType() == ShuffleVT););
// The stars all align, our next step is to produce the mask for the shuffle.
SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits();
for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
SDValue Entry = Op.getOperand(i);
if (Entry.isUndef())
continue;
auto Src = find(Sources, Entry.getOperand(0));
int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
// EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
// trunc. So only std::min(SrcBits, DestBits) actually get defined in this
// segment.
EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
int BitsDefined = std::min(OrigEltTy.getScalarSizeInBits(),
VT.getScalarSizeInBits());
int LanesDefined = BitsDefined / BitsPerShuffleLane;
// This source is expected to fill ResMultiplier lanes of the final shuffle,
// starting at the appropriate offset.
int *LaneMask = &Mask[i * ResMultiplier];
int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
ExtractBase += NumElts * (Src - Sources.begin());
for (int j = 0; j < LanesDefined; ++j)
LaneMask[j] = ExtractBase + j;
}
// Final check before we try to produce nonsense...
if (!isShuffleMaskLegal(Mask, ShuffleVT)) {
LLVM_DEBUG(dbgs() << "Reshuffle failed: illegal shuffle mask\n");
return SDValue();
}
SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
for (unsigned i = 0; i < Sources.size(); ++i)
ShuffleOps[i] = Sources[i].ShuffleVec;
SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
ShuffleOps[1], Mask);
SDValue V;
if (DAG.getDataLayout().isBigEndian()) {
V = DAG.getNode(AArch64ISD::NVCAST, dl, VT, Shuffle);
} else {
V = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
}
LLVM_DEBUG(dbgs() << "Reshuffle, creating node: "; Shuffle.dump();
dbgs() << "Reshuffle, creating node: "; V.dump(););
return V;
}
// check if an EXT instruction can handle the shuffle mask when the
// vector sources of the shuffle are the same.
static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
unsigned NumElts = VT.getVectorNumElements();
// Assume that the first shuffle index is not UNDEF. Fail if it is.
if (M[0] < 0)
return false;
Imm = M[0];
// If this is a VEXT shuffle, the immediate value is the index of the first
// element. The other shuffle indices must be the successive elements after
// the first one.
unsigned ExpectedElt = Imm;
for (unsigned i = 1; i < NumElts; ++i) {
// Increment the expected index. If it wraps around, just follow it
// back to index zero and keep going.
++ExpectedElt;
if (ExpectedElt == NumElts)
ExpectedElt = 0;
if (M[i] < 0)
continue; // ignore UNDEF indices
if (ExpectedElt != static_cast<unsigned>(M[i]))
return false;
}
return true;
}
// Detect patterns of a0,a1,a2,a3,b0,b1,b2,b3,c0,c1,c2,c3,d0,d1,d2,d3 from
// v4i32s. This is really a truncate, which we can construct out of (legal)
// concats and truncate nodes.
static SDValue ReconstructTruncateFromBuildVector(SDValue V, SelectionDAG &DAG) {
if (V.getValueType() != MVT::v16i8)
return SDValue();
assert(V.getNumOperands() == 16 && "Expected 16 operands on the BUILDVECTOR");
for (unsigned X = 0; X < 4; X++) {
// Check the first item in each group is an extract from lane 0 of a v4i32
// or v4i16.
SDValue BaseExt = V.getOperand(X * 4);
if (BaseExt.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
(BaseExt.getOperand(0).getValueType() != MVT::v4i16 &&
BaseExt.getOperand(0).getValueType() != MVT::v4i32) ||
!isa<ConstantSDNode>(BaseExt.getOperand(1)) ||
BaseExt.getConstantOperandVal(1) != 0)
return SDValue();
SDValue Base = BaseExt.getOperand(0);
// And check the other items are extracts from the same vector.
for (unsigned Y = 1; Y < 4; Y++) {
SDValue Ext = V.getOperand(X * 4 + Y);
if (Ext.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
Ext.getOperand(0) != Base ||
!isa<ConstantSDNode>(Ext.getOperand(1)) ||
Ext.getConstantOperandVal(1) != Y)
return SDValue();
}
}
// Turn the buildvector into a series of truncates and concates, which will
// become uzip1's. Any v4i32s we found get truncated to v4i16, which are
// concat together to produce 2 v8i16. These are both truncated and concat
// together.
SDLoc DL(V);
SDValue Trunc[4] = {
V.getOperand(0).getOperand(0), V.getOperand(4).getOperand(0),
V.getOperand(8).getOperand(0), V.getOperand(12).getOperand(0)};
for (SDValue &V : Trunc)
if (V.getValueType() == MVT::v4i32)
V = DAG.getNode(ISD::TRUNCATE, DL, MVT::v4i16, V);
SDValue Concat0 =
DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i16, Trunc[0], Trunc[1]);
SDValue Concat1 =
DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i16, Trunc[2], Trunc[3]);
SDValue Trunc0 = DAG.getNode(ISD::TRUNCATE, DL, MVT::v8i8, Concat0);
SDValue Trunc1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::v8i8, Concat1);
return DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, Trunc0, Trunc1);
}
/// Check if a vector shuffle corresponds to a DUP instructions with a larger
/// element width than the vector lane type. If that is the case the function
/// returns true and writes the value of the DUP instruction lane operand into
/// DupLaneOp
static bool isWideDUPMask(ArrayRef<int> M, EVT VT, unsigned BlockSize,
unsigned &DupLaneOp) {
assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
"Only possible block sizes for wide DUP are: 16, 32, 64");
if (BlockSize <= VT.getScalarSizeInBits())
return false;
if (BlockSize % VT.getScalarSizeInBits() != 0)
return false;
if (VT.getSizeInBits() % BlockSize != 0)
return false;
size_t SingleVecNumElements = VT.getVectorNumElements();
size_t NumEltsPerBlock = BlockSize / VT.getScalarSizeInBits();
size_t NumBlocks = VT.getSizeInBits() / BlockSize;
// We are looking for masks like
// [0, 1, 0, 1] or [2, 3, 2, 3] or [4, 5, 6, 7, 4, 5, 6, 7] where any element
// might be replaced by 'undefined'. BlockIndices will eventually contain
// lane indices of the duplicated block (i.e. [0, 1], [2, 3] and [4, 5, 6, 7]
// for the above examples)
SmallVector<int, 8> BlockElts(NumEltsPerBlock, -1);
for (size_t BlockIndex = 0; BlockIndex < NumBlocks; BlockIndex++)
for (size_t I = 0; I < NumEltsPerBlock; I++) {
int Elt = M[BlockIndex * NumEltsPerBlock + I];
if (Elt < 0)
continue;
// For now we don't support shuffles that use the second operand
if ((unsigned)Elt >= SingleVecNumElements)
return false;
if (BlockElts[I] < 0)
BlockElts[I] = Elt;
else if (BlockElts[I] != Elt)
return false;
}
// We found a candidate block (possibly with some undefs). It must be a
// sequence of consecutive integers starting with a value divisible by
// NumEltsPerBlock with some values possibly replaced by undef-s.
// Find first non-undef element
auto FirstRealEltIter = find_if(BlockElts, [](int Elt) { return Elt >= 0; });
assert(FirstRealEltIter != BlockElts.end() &&
"Shuffle with all-undefs must have been caught by previous cases, "
"e.g. isSplat()");
if (FirstRealEltIter == BlockElts.end()) {
DupLaneOp = 0;
return true;
}
// Index of FirstRealElt in BlockElts
size_t FirstRealIndex = FirstRealEltIter - BlockElts.begin();
if ((unsigned)*FirstRealEltIter < FirstRealIndex)
return false;
// BlockElts[0] must have the following value if it isn't undef:
size_t Elt0 = *FirstRealEltIter - FirstRealIndex;
// Check the first element
if (Elt0 % NumEltsPerBlock != 0)
return false;
// Check that the sequence indeed consists of consecutive integers (modulo
// undefs)
for (size_t I = 0; I < NumEltsPerBlock; I++)
if (BlockElts[I] >= 0 && (unsigned)BlockElts[I] != Elt0 + I)
return false;
DupLaneOp = Elt0 / NumEltsPerBlock;
return true;
}
// check if an EXT instruction can handle the shuffle mask when the
// vector sources of the shuffle are different.
static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT,
unsigned &Imm) {
// Look for the first non-undef element.
const int *FirstRealElt = find_if(M, [](int Elt) { return Elt >= 0; });
// Benefit form APInt to handle overflow when calculating expected element.
unsigned NumElts = VT.getVectorNumElements();
unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1, /*isSigned=*/false,
/*implicitTrunc=*/true);
// The following shuffle indices must be the successive elements after the
// first real element.
bool FoundWrongElt = std::any_of(FirstRealElt + 1, M.end(), [&](int Elt) {
return Elt != ExpectedElt++ && Elt != -1;
});
if (FoundWrongElt)
return false;
// The index of an EXT is the first element if it is not UNDEF.
// Watch out for the beginning UNDEFs. The EXT index should be the expected
// value of the first element. E.g.
// <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
// <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
// ExpectedElt is the last mask index plus 1.
Imm = ExpectedElt.getZExtValue();
// There are two difference cases requiring to reverse input vectors.
// For example, for vector <4 x i32> we have the following cases,
// Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
// Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
// For both cases, we finally use mask <5, 6, 7, 0>, which requires
// to reverse two input vectors.
if (Imm < NumElts)
ReverseEXT = true;
else
Imm -= NumElts;
return true;
}
/// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
unsigned NumElts = VT.getVectorNumElements();
if (NumElts % 2 != 0)
return false;
WhichResult = (M[0] == 0 ? 0 : 1);
unsigned Idx = WhichResult * NumElts / 2;
for (unsigned i = 0; i != NumElts; i += 2) {
if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
(M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx))
return false;
Idx += 1;
}
return true;
}
/// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
unsigned Half = VT.getVectorNumElements() / 2;
WhichResult = (M[0] == 0 ? 0 : 1);
for (unsigned j = 0; j != 2; ++j) {
unsigned Idx = WhichResult;
for (unsigned i = 0; i != Half; ++i) {
int MIdx = M[i + j * Half];
if (MIdx >= 0 && (unsigned)MIdx != Idx)
return false;
Idx += 2;
}
}
return true;
}
/// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
unsigned NumElts = VT.getVectorNumElements();
if (NumElts % 2 != 0)
return false;
WhichResult = (M[0] == 0 ? 0 : 1);
for (unsigned i = 0; i < NumElts; i += 2) {
if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
(M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult))
return false;
}
return true;
}
static bool isINSMask(ArrayRef<int> M, int NumInputElements,
bool &DstIsLeft, int &Anomaly) {
if (M.size() != static_cast<size_t>(NumInputElements))
return false;
int NumLHSMatch = 0, NumRHSMatch = 0;
int LastLHSMismatch = -1, LastRHSMismatch = -1;
for (int i = 0; i < NumInputElements; ++i) {
if (M[i] == -1) {
++NumLHSMatch;
++NumRHSMatch;
continue;
}
if (M[i] == i)
++NumLHSMatch;
else
LastLHSMismatch = i;
if (M[i] == i + NumInputElements)
++NumRHSMatch;
else
LastRHSMismatch = i;
}
if (NumLHSMatch == NumInputElements - 1) {
DstIsLeft = true;
Anomaly = LastLHSMismatch;
return true;
} else if (NumRHSMatch == NumInputElements - 1) {
DstIsLeft = false;
Anomaly = LastRHSMismatch;
return true;
}
return false;
}
static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) {
if (VT.getSizeInBits() != 128)
return false;
unsigned NumElts = VT.getVectorNumElements();
for (int I = 0, E = NumElts / 2; I != E; I++) {
if (Mask[I] != I)
return false;
}
int Offset = NumElts / 2;
for (int I = NumElts / 2, E = NumElts; I != E; I++) {
if (Mask[I] != I + SplitLHS * Offset)
return false;
}
return true;
}
static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) {
SDLoc DL(Op);
EVT VT = Op.getValueType();
SDValue V0 = Op.getOperand(0);
SDValue V1 = Op.getOperand(1);
ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();
if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() ||
VT.getVectorElementType() != V1.getValueType().getVectorElementType())
return SDValue();
bool SplitV0 = V0.getValueSizeInBits() == 128;
if (!isConcatMask(Mask, VT, SplitV0))
return SDValue();
EVT CastVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
if (SplitV0) {
V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0,
DAG.getConstant(0, DL, MVT::i64));
}
if (V1.getValueSizeInBits() == 128) {
V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1,
DAG.getConstant(0, DL, MVT::i64));
}
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1);
}
/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
/// the specified operations to build the shuffle. ID is the perfect-shuffle
//ID, V1 and V2 are the original shuffle inputs. PFEntry is the Perfect shuffle
//table entry and LHS/RHS are the immediate inputs for this stage of the
//shuffle.
static SDValue GeneratePerfectShuffle(unsigned ID, SDValue V1,
SDValue V2, unsigned PFEntry, SDValue LHS,
SDValue RHS, SelectionDAG &DAG,
const SDLoc &dl) {
unsigned OpNum = (PFEntry >> 26) & 0x0F;
unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1);
unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1);
enum {
OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
OP_VREV,
OP_VDUP0,
OP_VDUP1,
OP_VDUP2,
OP_VDUP3,
OP_VEXT1,
OP_VEXT2,
OP_VEXT3,
OP_VUZPL, // VUZP, left result
OP_VUZPR, // VUZP, right result
OP_VZIPL, // VZIP, left result
OP_VZIPR, // VZIP, right result
OP_VTRNL, // VTRN, left result
OP_VTRNR, // VTRN, right result
OP_MOVLANE // Move lane. RHSID is the lane to move into
};
if (OpNum == OP_COPY) {
if (LHSID == (1 * 9 + 2) * 9 + 3)
return LHS;
assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!");
return RHS;
}
if (OpNum == OP_MOVLANE) {
// Decompose a PerfectShuffle ID to get the Mask for lane Elt
auto getPFIDLane = [](unsigned ID, int Elt) -> int {
assert(Elt < 4 && "Expected Perfect Lanes to be less than 4");
Elt = 3 - Elt;
while (Elt > 0) {
ID /= 9;
Elt--;
}
return (ID % 9 == 8) ? -1 : ID % 9;
};
// For OP_MOVLANE shuffles, the RHSID represents the lane to move into. We
// get the lane to move from the PFID, which is always from the
// original vectors (V1 or V2).
SDValue OpLHS = GeneratePerfectShuffle(
LHSID, V1, V2, PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
EVT VT = OpLHS.getValueType();
assert(RHSID < 8 && "Expected a lane index for RHSID!");
unsigned ExtLane = 0;
SDValue Input;
// OP_MOVLANE are either D movs (if bit 0x4 is set) or S movs. D movs
// convert into a higher type.
if (RHSID & 0x4) {
int MaskElt = getPFIDLane(ID, (RHSID & 0x01) << 1) >> 1;
if (MaskElt == -1)
MaskElt = (getPFIDLane(ID, ((RHSID & 0x01) << 1) + 1) - 1) >> 1;
assert(MaskElt >= 0 && "Didn't expect an undef movlane index!");
ExtLane = MaskElt < 2 ? MaskElt : (MaskElt - 2);
Input = MaskElt < 2 ? V1 : V2;
if (VT.getScalarSizeInBits() == 16) {
Input = DAG.getBitcast(MVT::v2f32, Input);
OpLHS = DAG.getBitcast(MVT::v2f32, OpLHS);
} else {
assert(VT.getScalarSizeInBits() == 32 &&
"Expected 16 or 32 bit shuffle elemements");
Input = DAG.getBitcast(MVT::v2f64, Input);
OpLHS = DAG.getBitcast(MVT::v2f64, OpLHS);
}
} else {
int MaskElt = getPFIDLane(ID, RHSID);
assert(MaskElt >= 0 && "Didn't expect an undef movlane index!");
ExtLane = MaskElt < 4 ? MaskElt : (MaskElt - 4);
Input = MaskElt < 4 ? V1 : V2;
// Be careful about creating illegal types. Use f16 instead of i16.
if (VT == MVT::v4i16) {
Input = DAG.getBitcast(MVT::v4f16, Input);
OpLHS = DAG.getBitcast(MVT::v4f16, OpLHS);
}
}
SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
Input.getValueType().getVectorElementType(),
Input, DAG.getVectorIdxConstant(ExtLane, dl));
SDValue Ins =
DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, Input.getValueType(), OpLHS,
Ext, DAG.getVectorIdxConstant(RHSID & 0x3, dl));
return DAG.getBitcast(VT, Ins);
}
SDValue OpLHS, OpRHS;
OpLHS = GeneratePerfectShuffle(LHSID, V1, V2, PerfectShuffleTable[LHSID], LHS,
RHS, DAG, dl);
OpRHS = GeneratePerfectShuffle(RHSID, V1, V2, PerfectShuffleTable[RHSID], LHS,
RHS, DAG, dl);
EVT VT = OpLHS.getValueType();
switch (OpNum) {
default:
llvm_unreachable("Unknown shuffle opcode!");
case OP_VREV:
// VREV divides the vector in half and swaps within the half.
if (VT.getVectorElementType() == MVT::i32 ||
VT.getVectorElementType() == MVT::f32)
return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS);
// vrev <4 x i16> -> REV32
if (VT.getVectorElementType() == MVT::i16 ||
VT.getVectorElementType() == MVT::f16 ||
VT.getVectorElementType() == MVT::bf16)
return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS);
// vrev <4 x i8> -> REV16
assert(VT.getVectorElementType() == MVT::i8);
return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS);
case OP_VDUP0:
case OP_VDUP1:
case OP_VDUP2:
case OP_VDUP3: {
EVT EltTy = VT.getVectorElementType();
unsigned Opcode;
if (EltTy == MVT::i8)
Opcode = AArch64ISD::DUPLANE8;
else if (EltTy == MVT::i16 || EltTy == MVT::f16 || EltTy == MVT::bf16)
Opcode = AArch64ISD::DUPLANE16;
else if (EltTy == MVT::i32 || EltTy == MVT::f32)
Opcode = AArch64ISD::DUPLANE32;
else if (EltTy == MVT::i64 || EltTy == MVT::f64)
Opcode = AArch64ISD::DUPLANE64;
else
llvm_unreachable("Invalid vector element type?");
if (VT.getSizeInBits() == 64)
OpLHS = WidenVector(OpLHS, DAG);
SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, dl, MVT::i64);
return DAG.getNode(Opcode, dl, VT, OpLHS, Lane);
}
case OP_VEXT1:
case OP_VEXT2:
case OP_VEXT3: {
unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS);
return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS,
DAG.getConstant(Imm, dl, MVT::i32));
}
case OP_VUZPL:
return DAG.getNode(AArch64ISD::UZP1, dl, VT, OpLHS, OpRHS);
case OP_VUZPR:
return DAG.getNode(AArch64ISD::UZP2, dl, VT, OpLHS, OpRHS);
case OP_VZIPL:
return DAG.getNode(AArch64ISD::ZIP1, dl, VT, OpLHS, OpRHS);
case OP_VZIPR:
return DAG.getNode(AArch64ISD::ZIP2, dl, VT, OpLHS, OpRHS);
case OP_VTRNL:
return DAG.getNode(AArch64ISD::TRN1, dl, VT, OpLHS, OpRHS);
case OP_VTRNR:
return DAG.getNode(AArch64ISD::TRN2, dl, VT, OpLHS, OpRHS);
}
}
static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask,
SelectionDAG &DAG) {
// Check to see if we can use the TBL instruction.
SDValue V1 = Op.getOperand(0);
SDValue V2 = Op.getOperand(1);
SDLoc DL(Op);
EVT EltVT = Op.getValueType().getVectorElementType();
unsigned BytesPerElt = EltVT.getSizeInBits() / 8;
bool Swap = false;
if (V1.isUndef() || isZerosVector(V1.getNode())) {
std::swap(V1, V2);
Swap = true;
}
// If the V2 source is undef or zero then we can use a tbl1, as tbl1 will fill
// out of range values with 0s. We do need to make sure that any out-of-range
// values are really out-of-range for a v16i8 vector.
bool IsUndefOrZero = V2.isUndef() || isZerosVector(V2.getNode());
MVT IndexVT = MVT::v8i8;
unsigned IndexLen = 8;
if (Op.getValueSizeInBits() == 128) {
IndexVT = MVT::v16i8;
IndexLen = 16;
}
SmallVector<SDValue, 8> TBLMask;
for (int Val : ShuffleMask) {
for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
unsigned Offset = Byte + Val * BytesPerElt;
if (Swap)
Offset = Offset < IndexLen ? Offset + IndexLen : Offset - IndexLen;
if (IsUndefOrZero && Offset >= IndexLen)
Offset = 255;
TBLMask.push_back(DAG.getConstant(Offset, DL, MVT::i32));
}
}
SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1);
SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2);
SDValue Shuffle;
if (IsUndefOrZero) {
if (IndexLen == 8)
V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst);
Shuffle = DAG.getNode(
ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
DAG.getBuildVector(IndexVT, DL, ArrayRef(TBLMask.data(), IndexLen)));
} else {
if (IndexLen == 8) {
V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst);
Shuffle = DAG.getNode(
ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
DAG.getBuildVector(IndexVT, DL, ArrayRef(TBLMask.data(), IndexLen)));
} else {
// FIXME: We cannot, for the moment, emit a TBL2 instruction because we
// cannot currently represent the register constraints on the input
// table registers.
// Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst,
// DAG.getBuildVector(IndexVT, DL, &TBLMask[0],
// IndexLen));
Shuffle = DAG.getNode(
ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
DAG.getConstant(Intrinsic::aarch64_neon_tbl2, DL, MVT::i32), V1Cst,
V2Cst,
DAG.getBuildVector(IndexVT, DL, ArrayRef(TBLMask.data(), IndexLen)));
}
}
return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle);
}
static unsigned getDUPLANEOp(EVT EltType) {
if (EltType == MVT::i8)
return AArch64ISD::DUPLANE8;
if (EltType == MVT::i16 || EltType == MVT::f16 || EltType == MVT::bf16)
return AArch64ISD::DUPLANE16;
if (EltType == MVT::i32 || EltType == MVT::f32)
return AArch64ISD::DUPLANE32;
if (EltType == MVT::i64 || EltType == MVT::f64)
return AArch64ISD::DUPLANE64;
llvm_unreachable("Invalid vector element type?");
}
static SDValue constructDup(SDValue V, int Lane, SDLoc dl, EVT VT,
unsigned Opcode, SelectionDAG &DAG) {
// Try to eliminate a bitcasted extract subvector before a DUPLANE.
auto getScaledOffsetDup = [](SDValue BitCast, int &LaneC, MVT &CastVT) {
// Match: dup (bitcast (extract_subv X, C)), LaneC
if (BitCast.getOpcode() != ISD::BITCAST ||
BitCast.getOperand(0).getOpcode() != ISD::EXTRACT_SUBVECTOR)
return false;
// The extract index must align in the destination type. That may not
// happen if the bitcast is from narrow to wide type.
SDValue Extract = BitCast.getOperand(0);
unsigned ExtIdx = Extract.getConstantOperandVal(1);
unsigned SrcEltBitWidth = Extract.getScalarValueSizeInBits();
unsigned ExtIdxInBits = ExtIdx * SrcEltBitWidth;
unsigned CastedEltBitWidth = BitCast.getScalarValueSizeInBits();
if (ExtIdxInBits % CastedEltBitWidth != 0)
return false;
// Can't handle cases where vector size is not 128-bit
if (!Extract.getOperand(0).getValueType().is128BitVector())
return false;
// Update the lane value by offsetting with the scaled extract index.
LaneC += ExtIdxInBits / CastedEltBitWidth;
// Determine the casted vector type of the wide vector input.
// dup (bitcast (extract_subv X, C)), LaneC --> dup (bitcast X), LaneC'
// Examples:
// dup (bitcast (extract_subv v2f64 X, 1) to v2f32), 1 --> dup v4f32 X, 3
// dup (bitcast (extract_subv v16i8 X, 8) to v4i16), 1 --> dup v8i16 X, 5
unsigned SrcVecNumElts =
Extract.getOperand(0).getValueSizeInBits() / CastedEltBitWidth;
CastVT = MVT::getVectorVT(BitCast.getSimpleValueType().getScalarType(),
SrcVecNumElts);
return true;
};
MVT CastVT;
if (getScaledOffsetDup(V, Lane, CastVT)) {
V = DAG.getBitcast(CastVT, V.getOperand(0).getOperand(0));
} else if (V.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
V.getOperand(0).getValueType().is128BitVector()) {
// The lane is incremented by the index of the extract.
// Example: dup v2f32 (extract v4f32 X, 2), 1 --> dup v4f32 X, 3
Lane += V.getConstantOperandVal(1);
V = V.getOperand(0);
} else if (V.getOpcode() == ISD::CONCAT_VECTORS) {
// The lane is decremented if we are splatting from the 2nd operand.
// Example: dup v4i32 (concat v2i32 X, v2i32 Y), 3 --> dup v4i32 Y, 1
unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2;
Lane -= Idx * VT.getVectorNumElements() / 2;
V = WidenVector(V.getOperand(Idx), DAG);
} else if (VT.getSizeInBits() == 64) {
// Widen the operand to 128-bit register with undef.
V = WidenVector(V, DAG);
}
return DAG.getNode(Opcode, dl, VT, V, DAG.getConstant(Lane, dl, MVT::i64));
}
// Return true if we can get a new shuffle mask by checking the parameter mask
// array to test whether every two adjacent mask values are continuous and
// starting from an even number.
static bool isWideTypeMask(ArrayRef<int> M, EVT VT,
SmallVectorImpl<int> &NewMask) {
unsigned NumElts = VT.getVectorNumElements();
if (NumElts % 2 != 0)
return false;
NewMask.clear();
for (unsigned i = 0; i < NumElts; i += 2) {
int M0 = M[i];
int M1 = M[i + 1];
// If both elements are undef, new mask is undef too.
if (M0 == -1 && M1 == -1) {
NewMask.push_back(-1);
continue;
}
if (M0 == -1 && M1 != -1 && (M1 % 2) == 1) {
NewMask.push_back(M1 / 2);
continue;
}
if (M0 != -1 && (M0 % 2) == 0 && ((M0 + 1) == M1 || M1 == -1)) {
NewMask.push_back(M0 / 2);
continue;
}
NewMask.clear();
return false;
}
assert(NewMask.size() == NumElts / 2 && "Incorrect size for mask!");
return true;
}
// Try to widen element type to get a new mask value for a better permutation
// sequence, so that we can use NEON shuffle instructions, such as zip1/2,
// UZP1/2, TRN1/2, REV, INS, etc.
// For example:
// shufflevector <4 x i32> %a, <4 x i32> %b,
// <4 x i32> <i32 6, i32 7, i32 2, i32 3>
// is equivalent to:
// shufflevector <2 x i64> %a, <2 x i64> %b, <2 x i32> <i32 3, i32 1>
// Finally, we can get:
// mov v0.d[0], v1.d[1]
static SDValue tryWidenMaskForShuffle(SDValue Op, SelectionDAG &DAG) {
SDLoc DL(Op);
EVT VT = Op.getValueType();
EVT ScalarVT = VT.getVectorElementType();
unsigned ElementSize = ScalarVT.getFixedSizeInBits();
SDValue V0 = Op.getOperand(0);
SDValue V1 = Op.getOperand(1);
ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();
// If combining adjacent elements, like two i16's -> i32, two i32's -> i64 ...
// We need to make sure the wider element type is legal. Thus, ElementSize
// should be not larger than 32 bits, and i1 type should also be excluded.
if (ElementSize > 32 || ElementSize == 1)
return SDValue();
SmallVector<int, 8> NewMask;
if (isWideTypeMask(Mask, VT, NewMask)) {
MVT NewEltVT = VT.isFloatingPoint()
? MVT::getFloatingPointVT(ElementSize * 2)
: MVT::getIntegerVT(ElementSize * 2);
MVT NewVT = MVT::getVectorVT(NewEltVT, VT.getVectorNumElements() / 2);
if (DAG.getTargetLoweringInfo().isTypeLegal(NewVT)) {
V0 = DAG.getBitcast(NewVT, V0);
V1 = DAG.getBitcast(NewVT, V1);
return DAG.getBitcast(VT,
DAG.getVectorShuffle(NewVT, DL, V0, V1, NewMask));
}
}
return SDValue();
}
// Try to fold shuffle (tbl2, tbl2) into a single tbl4.
static SDValue tryToConvertShuffleOfTbl2ToTbl4(SDValue Op,
ArrayRef<int> ShuffleMask,
SelectionDAG &DAG) {
SDValue Tbl1 = Op->getOperand(0);
SDValue Tbl2 = Op->getOperand(1);
SDLoc dl(Op);
SDValue Tbl2ID =
DAG.getTargetConstant(Intrinsic::aarch64_neon_tbl2, dl, MVT::i64);
EVT VT = Op.getValueType();
if (Tbl1->getOpcode() != ISD::INTRINSIC_WO_CHAIN ||
Tbl1->getOperand(0) != Tbl2ID ||
Tbl2->getOpcode() != ISD::INTRINSIC_WO_CHAIN ||
Tbl2->getOperand(0) != Tbl2ID)
return SDValue();
if (Tbl1->getValueType(0) != MVT::v16i8 ||
Tbl2->getValueType(0) != MVT::v16i8)
return SDValue();
SDValue Mask1 = Tbl1->getOperand(3);
SDValue Mask2 = Tbl2->getOperand(3);
SmallVector<SDValue, 16> TBLMaskParts(16, SDValue());
for (unsigned I = 0; I < 16; I++) {
if (ShuffleMask[I] < 16)
TBLMaskParts[I] = Mask1->getOperand(ShuffleMask[I]);
else {
auto *C =
dyn_cast<ConstantSDNode>(Mask2->getOperand(ShuffleMask[I] - 16));
if (!C)
return SDValue();
TBLMaskParts[I] = DAG.getConstant(C->getSExtValue() + 32, dl, MVT::i32);
}
}
SDValue TBLMask = DAG.getBuildVector(VT, dl, TBLMaskParts);
SDValue ID =
DAG.getTargetConstant(Intrinsic::aarch64_neon_tbl4, dl, MVT::i64);
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v16i8,
{ID, Tbl1->getOperand(1), Tbl1->getOperand(2),
Tbl2->getOperand(1), Tbl2->getOperand(2), TBLMask});
}
// Baseline legalization for ZERO_EXTEND_VECTOR_INREG will blend-in zeros,
// but we don't have an appropriate instruction,
// so custom-lower it as ZIP1-with-zeros.
SDValue
AArch64TargetLowering::LowerZERO_EXTEND_VECTOR_INREG(SDValue Op,
SelectionDAG &DAG) const {
SDLoc dl(Op);
EVT VT = Op.getValueType();
SDValue SrcOp = Op.getOperand(0);
EVT SrcVT = SrcOp.getValueType();
assert(VT.getScalarSizeInBits() % SrcVT.getScalarSizeInBits() == 0 &&
"Unexpected extension factor.");
unsigned Scale = VT.getScalarSizeInBits() / SrcVT.getScalarSizeInBits();
// FIXME: support multi-step zipping?
if (Scale != 2)
return SDValue();
SDValue Zeros = DAG.getConstant(0, dl, SrcVT);
return DAG.getBitcast(VT,
DAG.getNode(AArch64ISD::ZIP1, dl, SrcVT, SrcOp, Zeros));
}
SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
SelectionDAG &DAG) const {
SDLoc dl(Op);
EVT VT = Op.getValueType();
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
if (useSVEForFixedLengthVectorVT(VT, !Subtarget->isNeonAvailable()))
return LowerFixedLengthVECTOR_SHUFFLEToSVE(Op, DAG);
// Convert shuffles that are directly supported on NEON to target-specific
// DAG nodes, instead of keeping them as shuffles and matching them again
// during code selection. This is more efficient and avoids the possibility
// of inconsistencies between legalization and selection.
ArrayRef<int> ShuffleMask = SVN->getMask();
SDValue V1 = Op.getOperand(0);
SDValue V2 = Op.getOperand(1);
assert(V1.getValueType() == VT && "Unexpected VECTOR_SHUFFLE type!");
assert(ShuffleMask.size() == VT.getVectorNumElements() &&
"Unexpected VECTOR_SHUFFLE mask size!");
if (SDValue Res = tryToConvertShuffleOfTbl2ToTbl4(Op, ShuffleMask, DAG))
return Res;
if (SVN->isSplat()) {
int Lane = SVN->getSplatIndex();
// If this is undef splat, generate it via "just" vdup, if possible.
if (Lane == -1)
Lane = 0;
if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(),
V1.getOperand(0));
// Test if V1 is a BUILD_VECTOR and the lane being referenced is a non-
// constant. If so, we can just reference the lane's definition directly.
if (V1.getOpcode() == ISD::BUILD_VECTOR &&
!isa<ConstantSDNode>(V1.getOperand(Lane)))
return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane));
// Otherwise, duplicate from the lane of the input vector.
unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType());
return constructDup(V1, Lane, dl, VT, Opcode, DAG);
}
// Check if the mask matches a DUP for a wider element
for (unsigned LaneSize : {64U, 32U, 16U}) {
unsigned Lane = 0;
if (isWideDUPMask(ShuffleMask, VT, LaneSize, Lane)) {
unsigned Opcode = LaneSize == 64 ? AArch64ISD::DUPLANE64
: LaneSize == 32 ? AArch64ISD::DUPLANE32
: AArch64ISD::DUPLANE16;
// Cast V1 to an integer vector with required lane size
MVT NewEltTy = MVT::getIntegerVT(LaneSize);
unsigned NewEltCount = VT.getSizeInBits() / LaneSize;
MVT NewVecTy = MVT::getVectorVT(NewEltTy, NewEltCount);
V1 = DAG.getBitcast(NewVecTy, V1);
// Constuct the DUP instruction
V1 = constructDup(V1, Lane, dl, NewVecTy, Opcode, DAG);
// Cast back to the original type
return DAG.getBitcast(VT, V1);
}
}
unsigned NumElts = VT.getVectorNumElements();
unsigned EltSize = VT.getScalarSizeInBits();
if (isREVMask(ShuffleMask, EltSize, NumElts, 64))
return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2);
if (isREVMask(ShuffleMask, EltSize, NumElts, 32))
return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2);
if (isREVMask(ShuffleMask, EltSize, NumElts, 16))
return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2);
if (((NumElts == 8 && EltSize == 16) || (NumElts == 16 && EltSize == 8)) &&
ShuffleVectorInst::isReverseMask(ShuffleMask, ShuffleMask.size())) {
SDValue Rev = DAG.getNode(AArch64ISD::REV64, dl, VT, V1);
return DAG.getNode(AArch64ISD::EXT, dl, VT, Rev, Rev,
DAG.getConstant(8, dl, MVT::i32));
}
bool ReverseEXT = false;
unsigned Imm;
if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) {
if (ReverseEXT)
std::swap(V1, V2);
Imm *= getExtFactor(V1);
return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2,
DAG.getConstant(Imm, dl, MVT::i32));
} else if (V2->isUndef() && isSingletonEXTMask(ShuffleMask, VT, Imm)) {
Imm *= getExtFactor(V1);
return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1,
DAG.getConstant(Imm, dl, MVT::i32));
}
unsigned WhichResult;
if (isZIPMask(ShuffleMask, NumElts, WhichResult)) {
unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
}
if (isUZPMask(ShuffleMask, NumElts, WhichResult)) {
unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
}
if (isTRNMask(ShuffleMask, NumElts, WhichResult)) {
unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
}
if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
}
if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
}
if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
}
if (SDValue Concat = tryFormConcatFromShuffle(Op, DAG))
return Concat;
bool DstIsLeft;
int Anomaly;
int NumInputElements = V1.getValueType().getVectorNumElements();
if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) {
SDValue DstVec = DstIsLeft ? V1 : V2;
SDValue DstLaneV = DAG.getConstant(Anomaly, dl, MVT::i64);
SDValue SrcVec = V1;
int SrcLane = ShuffleMask[Anomaly];
if (SrcLane >= NumInputElements) {
SrcVec = V2;
SrcLane -= NumElts;
}
SDValue SrcLaneV = DAG.getConstant(SrcLane, dl, MVT::i64);
EVT ScalarVT = VT.getVectorElementType();
if (ScalarVT.getFixedSizeInBits() < 32 && ScalarVT.isInteger())
ScalarVT = MVT::i32;
return DAG.getNode(
ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV),
DstLaneV);
}
if (SDValue NewSD = tryWidenMaskForShuffle(Op, DAG))
return NewSD;
// If the shuffle is not directly supported and it has 4 elements, use
// the PerfectShuffle-generated table to synthesize it from other shuffles.
if (NumElts == 4) {
unsigned PFIndexes[4];
for (unsigned i = 0; i != 4; ++i) {
if (ShuffleMask[i] < 0)
PFIndexes[i] = 8;
else
PFIndexes[i] = ShuffleMask[i];
}
// Compute the index in the perfect shuffle table.
unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
PFIndexes[2] * 9 + PFIndexes[3];
unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
return GeneratePerfectShuffle(PFTableIndex, V1, V2, PFEntry, V1, V2, DAG,
dl);
}
return GenerateTBL(Op, ShuffleMask, DAG);
}
SDValue AArch64TargetLowering::LowerSPLAT_VECTOR(SDValue Op,
SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
if (useSVEForFixedLengthVectorVT(VT, !Subtarget->isNeonAvailable()))
return LowerToScalableOp(Op, DAG);
assert(VT.isScalableVector() && VT.getVectorElementType() == MVT::i1 &&
"Unexpected vector type!");
// We can handle the constant cases during isel.
if (isa<ConstantSDNode>(Op.getOperand(0)))
return Op;
// There isn't a natural way to handle the general i1 case, so we use some
// trickery with whilelo.
SDLoc DL(Op);
SDValue SplatVal = DAG.getAnyExtOrTrunc(Op.getOperand(0), DL, MVT::i64);
SplatVal = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, SplatVal,
DAG.getValueType(MVT::i1));
SDValue ID =
DAG.getTargetConstant(Intrinsic::aarch64_sve_whilelo, DL, MVT::i64);
SDValue Zero = DAG.getConstant(0, DL, MVT::i64);
if (VT == MVT::nxv1i1)
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::nxv1i1,
DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, MVT::nxv2i1, ID,
Zero, SplatVal),
Zero);
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, ID, Zero, SplatVal);
}
SDValue AArch64TargetLowering::LowerDUPQLane(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT VT = Op.getValueType();
if (!isTypeLegal(VT) || !VT.isScalableVector())
return SDValue();
// Current lowering only supports the SVE-ACLE types.
if (VT.getSizeInBits().getKnownMinValue() != AArch64::SVEBitsPerBlock)
return SDValue();
// The DUPQ operation is independent of element type so normalise to i64s.
SDValue Idx128 = Op.getOperand(2);
// DUPQ can be used when idx is in range.
auto *CIdx = dyn_cast<ConstantSDNode>(Idx128);
if (CIdx && (CIdx->getZExtValue() <= 3)) {
SDValue CI = DAG.getTargetConstant(CIdx->getZExtValue(), DL, MVT::i64);
return DAG.getNode(AArch64ISD::DUPLANE128, DL, VT, Op.getOperand(1), CI);
}
SDValue V = DAG.getNode(ISD::BITCAST, DL, MVT::nxv2i64, Op.getOperand(1));
// The ACLE says this must produce the same result as:
// svtbl(data, svadd_x(svptrue_b64(),
// svand_x(svptrue_b64(), svindex_u64(0, 1), 1),
// index * 2))
SDValue One = DAG.getConstant(1, DL, MVT::i64);
SDValue SplatOne = DAG.getNode(ISD::SPLAT_VECTOR, DL, MVT::nxv2i64, One);
// create the vector 0,1,0,1,...
SDValue SV = DAG.getStepVector(DL, MVT::nxv2i64);
SV = DAG.getNode(ISD::AND, DL, MVT::nxv2i64, SV, SplatOne);
// create the vector idx64,idx64+1,idx64,idx64+1,...
SDValue Idx64 = DAG.getNode(ISD::ADD, DL, MVT::i64, Idx128, Idx128);
SDValue SplatIdx64 = DAG.getNode(ISD::SPLAT_VECTOR, DL, MVT::nxv2i64, Idx64);
SDValue ShuffleMask = DAG.getNode(ISD::ADD, DL, MVT::nxv2i64, SV, SplatIdx64);
// create the vector Val[idx64],Val[idx64+1],Val[idx64],Val[idx64+1],...
SDValue TBL = DAG.getNode(AArch64ISD::TBL, DL, MVT::nxv2i64, V, ShuffleMask);
return DAG.getNode(ISD::BITCAST, DL, VT, TBL);
}
static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits,
APInt &UndefBits) {
EVT VT = BVN->getValueType(0);
APInt SplatBits, SplatUndef;
unsigned SplatBitSize;
bool HasAnyUndefs;
if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
unsigned NumSplats = VT.getSizeInBits() / SplatBitSize;
for (unsigned i = 0; i < NumSplats; ++i) {
CnstBits <<= SplatBitSize;
UndefBits <<= SplatBitSize;
CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits());
UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits());
}
return true;
}
return false;
}
// Try 64-bit splatted SIMD immediate.
static SDValue tryAdvSIMDModImm64(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
const APInt &Bits) {
if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
EVT VT = Op.getValueType();
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v2i64 : MVT::f64;
if (AArch64_AM::isAdvSIMDModImmType10(Value)) {
Value = AArch64_AM::encodeAdvSIMDModImmType10(Value);
SDLoc dl(Op);
SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
DAG.getConstant(Value, dl, MVT::i32));
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
}
}
return SDValue();
}
// Try 32-bit splatted SIMD immediate.
static SDValue tryAdvSIMDModImm32(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
const APInt &Bits,
const SDValue *LHS = nullptr) {
EVT VT = Op.getValueType();
if (VT.isFixedLengthVector() &&
!DAG.getSubtarget<AArch64Subtarget>().isNeonAvailable())
return SDValue();
if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
bool isAdvSIMDModImm = false;
uint64_t Shift;
if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType1(Value))) {
Value = AArch64_AM::encodeAdvSIMDModImmType1(Value);
Shift = 0;
}
else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType2(Value))) {
Value = AArch64_AM::encodeAdvSIMDModImmType2(Value);
Shift = 8;
}
else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType3(Value))) {
Value = AArch64_AM::encodeAdvSIMDModImmType3(Value);
Shift = 16;
}
else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType4(Value))) {
Value = AArch64_AM::encodeAdvSIMDModImmType4(Value);
Shift = 24;
}
if (isAdvSIMDModImm) {
SDLoc dl(Op);
SDValue Mov;
if (LHS)
Mov = DAG.getNode(NewOp, dl, MovTy,
DAG.getNode(AArch64ISD::NVCAST, dl, MovTy, *LHS),
DAG.getConstant(Value, dl, MVT::i32),
DAG.getConstant(Shift, dl, MVT::i32));
else
Mov = DAG.getNode(NewOp, dl, MovTy,
DAG.getConstant(Value, dl, MVT::i32),
DAG.getConstant(Shift, dl, MVT::i32));
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
}
}
return SDValue();
}
// Try 16-bit splatted SIMD immediate.
static SDValue tryAdvSIMDModImm16(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
const APInt &Bits,
const SDValue *LHS = nullptr) {
EVT VT = Op.getValueType();
if (VT.isFixedLengthVector() &&
!DAG.getSubtarget<AArch64Subtarget>().isNeonAvailable())
return SDValue();
if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
bool isAdvSIMDModImm = false;
uint64_t Shift;
if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType5(Value))) {
Value = AArch64_AM::encodeAdvSIMDModImmType5(Value);
Shift = 0;
}
else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType6(Value))) {
Value = AArch64_AM::encodeAdvSIMDModImmType6(Value);
Shift = 8;
}
if (isAdvSIMDModImm) {
SDLoc dl(Op);
SDValue Mov;
if (LHS)
Mov = DAG.getNode(NewOp, dl, MovTy,
DAG.getNode(AArch64ISD::NVCAST, dl, MovTy, *LHS),
DAG.getConstant(Value, dl, MVT::i32),
DAG.getConstant(Shift, dl, MVT::i32));
else
Mov = DAG.getNode(NewOp, dl, MovTy,
DAG.getConstant(Value, dl, MVT::i32),
DAG.getConstant(Shift, dl, MVT::i32));
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
}
}
return SDValue();
}
// Try 32-bit splatted SIMD immediate with shifted ones.
static SDValue tryAdvSIMDModImm321s(unsigned NewOp, SDValue Op,
SelectionDAG &DAG, const APInt &Bits) {
if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
EVT VT = Op.getValueType();
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
bool isAdvSIMDModImm = false;
uint64_t Shift;
if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType7(Value))) {
Value = AArch64_AM::encodeAdvSIMDModImmType7(Value);
Shift = 264;
}
else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType8(Value))) {
Value = AArch64_AM::encodeAdvSIMDModImmType8(Value);
Shift = 272;
}
if (isAdvSIMDModImm) {
SDLoc dl(Op);
SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
DAG.getConstant(Value, dl, MVT::i32),
DAG.getConstant(Shift, dl, MVT::i32));
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
}
}
return SDValue();
}
// Try 8-bit splatted SIMD immediate.
static SDValue tryAdvSIMDModImm8(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
const APInt &Bits) {
if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
EVT VT = Op.getValueType();
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8;
if (AArch64_AM::isAdvSIMDModImmType9(Value)) {
Value = AArch64_AM::encodeAdvSIMDModImmType9(Value);
SDLoc dl(Op);
SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
DAG.getConstant(Value, dl, MVT::i32));
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
}
}
return SDValue();
}
// Try FP splatted SIMD immediate.
static SDValue tryAdvSIMDModImmFP(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
const APInt &Bits) {
if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
EVT VT = Op.getValueType();
bool isWide = (VT.getSizeInBits() == 128);
MVT MovTy;
bool isAdvSIMDModImm = false;
if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType11(Value))) {
Value = AArch64_AM::encodeAdvSIMDModImmType11(Value);
MovTy = isWide ? MVT::v4f32 : MVT::v2f32;
}
else if (isWide &&
(isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType12(Value))) {
Value = AArch64_AM::encodeAdvSIMDModImmType12(Value);
MovTy = MVT::v2f64;
}
if (isAdvSIMDModImm) {
SDLoc dl(Op);
SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
DAG.getConstant(Value, dl, MVT::i32));
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
}
}
return SDValue();
}
// Specialized code to quickly find if PotentialBVec is a BuildVector that
// consists of only the same constant int value, returned in reference arg
// ConstVal
static bool isAllConstantBuildVector(const SDValue &PotentialBVec,
uint64_t &ConstVal) {
BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec);
if (!Bvec)
return false;
ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0));
if (!FirstElt)
return false;
EVT VT = Bvec->getValueType(0);
unsigned NumElts = VT.getVectorNumElements();
for (unsigned i = 1; i < NumElts; ++i)
if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt)
return false;
ConstVal = FirstElt->getZExtValue();
return true;
}
static bool isAllInactivePredicate(SDValue N) {
// Look through cast.
while (N.getOpcode() == AArch64ISD::REINTERPRET_CAST)
N = N.getOperand(0);
return ISD::isConstantSplatVectorAllZeros(N.getNode());
}
static bool isAllActivePredicate(SelectionDAG &DAG, SDValue N) {
unsigned NumElts = N.getValueType().getVectorMinNumElements();
// Look through cast.
while (N.getOpcode() == AArch64ISD::REINTERPRET_CAST) {
N = N.getOperand(0);
// When reinterpreting from a type with fewer elements the "new" elements
// are not active, so bail if they're likely to be used.
if (N.getValueType().getVectorMinNumElements() < NumElts)
return false;
}
if (ISD::isConstantSplatVectorAllOnes(N.getNode()))
return true;
// "ptrue p.<ty>, all" can be considered all active when <ty> is the same size
// or smaller than the implicit element type represented by N.
// NOTE: A larger element count implies a smaller element type.
if (N.getOpcode() == AArch64ISD::PTRUE &&
N.getConstantOperandVal(0) == AArch64SVEPredPattern::all)
return N.getValueType().getVectorMinNumElements() >= NumElts;
// If we're compiling for a specific vector-length, we can check if the
// pattern's VL equals that of the scalable vector at runtime.
if (N.getOpcode() == AArch64ISD::PTRUE) {
const auto &Subtarget = DAG.getSubtarget<AArch64Subtarget>();
unsigned MinSVESize = Subtarget.getMinSVEVectorSizeInBits();
unsigned MaxSVESize = Subtarget.getMaxSVEVectorSizeInBits();
if (MaxSVESize && MinSVESize == MaxSVESize) {
unsigned VScale = MaxSVESize / AArch64::SVEBitsPerBlock;
unsigned PatNumElts =
getNumElementsFromSVEPredPattern(N.getConstantOperandVal(0));
return PatNumElts == (NumElts * VScale);
}
}
return false;
}
// Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)),
// to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a
// BUILD_VECTORs with constant element C1, C2 is a constant, and:
// - for the SLI case: C1 == ~(Ones(ElemSizeInBits) << C2)
// - for the SRI case: C1 == ~(Ones(ElemSizeInBits) >> C2)
// The (or (lsl Y, C2), (and X, BvecC1)) case is also handled.
static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) {
EVT VT = N->getValueType(0);
if (!VT.isVector())
return SDValue();
SDLoc DL(N);
SDValue And;
SDValue Shift;
SDValue FirstOp = N->getOperand(0);
unsigned FirstOpc = FirstOp.getOpcode();
SDValue SecondOp = N->getOperand(1);
unsigned SecondOpc = SecondOp.getOpcode();
// Is one of the operands an AND or a BICi? The AND may have been optimised to
// a BICi in order to use an immediate instead of a register.
// Is the other operand an shl or lshr? This will have been turned into:
// AArch64ISD::VSHL vector, #shift or AArch64ISD::VLSHR vector, #shift
// or (AArch64ISD::SHL_PRED || AArch64ISD::SRL_PRED) mask, vector, #shiftVec.
if ((FirstOpc == ISD::AND || FirstOpc == AArch64ISD::BICi) &&
(SecondOpc == AArch64ISD::VSHL || SecondOpc == AArch64ISD::VLSHR ||
SecondOpc == AArch64ISD::SHL_PRED ||
SecondOpc == AArch64ISD::SRL_PRED)) {
And = FirstOp;
Shift = SecondOp;
} else if ((SecondOpc == ISD::AND || SecondOpc == AArch64ISD::BICi) &&
(FirstOpc == AArch64ISD::VSHL || FirstOpc == AArch64ISD::VLSHR ||
FirstOpc == AArch64ISD::SHL_PRED ||
FirstOpc == AArch64ISD::SRL_PRED)) {
And = SecondOp;
Shift = FirstOp;
} else
return SDValue();
bool IsAnd = And.getOpcode() == ISD::AND;
bool IsShiftRight = Shift.getOpcode() == AArch64ISD::VLSHR ||
Shift.getOpcode() == AArch64ISD::SRL_PRED;
bool ShiftHasPredOp = Shift.getOpcode() == AArch64ISD::SHL_PRED ||
Shift.getOpcode() == AArch64ISD::SRL_PRED;
// Is the shift amount constant and are all lanes active?
uint64_t C2;
if (ShiftHasPredOp) {
if (!isAllActivePredicate(DAG, Shift.getOperand(0)))
return SDValue();
APInt C;
if (!ISD::isConstantSplatVector(Shift.getOperand(2).getNode(), C))
return SDValue();
C2 = C.getZExtValue();
} else if (ConstantSDNode *C2node =
dyn_cast<ConstantSDNode>(Shift.getOperand(1)))
C2 = C2node->getZExtValue();
else
return SDValue();
APInt C1AsAPInt;
unsigned ElemSizeInBits = VT.getScalarSizeInBits();
if (IsAnd) {
// Is the and mask vector all constant?
if (!ISD::isConstantSplatVector(And.getOperand(1).getNode(), C1AsAPInt))
return SDValue();
} else {
// Reconstruct the corresponding AND immediate from the two BICi immediates.
ConstantSDNode *C1nodeImm = dyn_cast<ConstantSDNode>(And.getOperand(1));
ConstantSDNode *C1nodeShift = dyn_cast<ConstantSDNode>(And.getOperand(2));
assert(C1nodeImm && C1nodeShift);
C1AsAPInt = ~(C1nodeImm->getAPIntValue() << C1nodeShift->getAPIntValue());
C1AsAPInt = C1AsAPInt.zextOrTrunc(ElemSizeInBits);
}
// Is C1 == ~(Ones(ElemSizeInBits) << C2) or
// C1 == ~(Ones(ElemSizeInBits) >> C2), taking into account
// how much one can shift elements of a particular size?
if (C2 > ElemSizeInBits)
return SDValue();
APInt RequiredC1 = IsShiftRight ? APInt::getHighBitsSet(ElemSizeInBits, C2)
: APInt::getLowBitsSet(ElemSizeInBits, C2);
if (C1AsAPInt != RequiredC1)
return SDValue();
SDValue X = And.getOperand(0);
SDValue Y = ShiftHasPredOp ? Shift.getOperand(1) : Shift.getOperand(0);
SDValue Imm = ShiftHasPredOp ? DAG.getTargetConstant(C2, DL, MVT::i32)
: Shift.getOperand(1);
unsigned Inst = IsShiftRight ? AArch64ISD::VSRI : AArch64ISD::VSLI;
SDValue ResultSLI = DAG.getNode(Inst, DL, VT, X, Y, Imm);
LLVM_DEBUG(dbgs() << "aarch64-lower: transformed: \n");
LLVM_DEBUG(N->dump(&DAG));
LLVM_DEBUG(dbgs() << "into: \n");
LLVM_DEBUG(ResultSLI->dump(&DAG));
++NumShiftInserts;
return ResultSLI;
}
/// Try to lower the construction of a pointer alias mask to a WHILEWR.
/// The mask's enabled lanes represent the elements that will not overlap across
/// one loop iteration. This tries to match:
/// or (splat (setcc_lt (sub ptrA, ptrB), -(element_size - 1))),
/// (get_active_lane_mask 0, (div (sub ptrA, ptrB), element_size))
SDValue tryWhileWRFromOR(SDValue Op, SelectionDAG &DAG,
const AArch64Subtarget &Subtarget) {
if (!Subtarget.hasSVE2())
return SDValue();
SDValue LaneMask = Op.getOperand(0);
SDValue Splat = Op.getOperand(1);
if (Splat.getOpcode() != ISD::SPLAT_VECTOR)
std::swap(LaneMask, Splat);
if (LaneMask.getOpcode() != ISD::INTRINSIC_WO_CHAIN ||
LaneMask.getConstantOperandVal(0) != Intrinsic::get_active_lane_mask ||
Splat.getOpcode() != ISD::SPLAT_VECTOR)
return SDValue();
SDValue Cmp = Splat.getOperand(0);
if (Cmp.getOpcode() != ISD::SETCC)
return SDValue();
CondCodeSDNode *Cond = cast<CondCodeSDNode>(Cmp.getOperand(2));
auto ComparatorConst = dyn_cast<ConstantSDNode>(Cmp.getOperand(1));
if (!ComparatorConst || ComparatorConst->getSExtValue() > 0 ||
Cond->get() != ISD::CondCode::SETLT)
return SDValue();
unsigned CompValue = std::abs(ComparatorConst->getSExtValue());
unsigned EltSize = CompValue + 1;
if (!isPowerOf2_64(EltSize) || EltSize > 8)
return SDValue();
SDValue Diff = Cmp.getOperand(0);
if (Diff.getOpcode() != ISD::SUB || Diff.getValueType() != MVT::i64)
return SDValue();
if (!isNullConstant(LaneMask.getOperand(1)) ||
(EltSize != 1 && LaneMask.getOperand(2).getOpcode() != ISD::SRA))
return SDValue();
// The number of elements that alias is calculated by dividing the positive
// difference between the pointers by the element size. An alias mask for i8
// elements omits the division because it would just divide by 1
if (EltSize > 1) {
SDValue DiffDiv = LaneMask.getOperand(2);
auto DiffDivConst = dyn_cast<ConstantSDNode>(DiffDiv.getOperand(1));
if (!DiffDivConst || DiffDivConst->getZExtValue() != Log2_64(EltSize))
return SDValue();
if (EltSize > 2) {
// When masking i32 or i64 elements, the positive value of the
// possibly-negative difference comes from a select of the difference if
// it's positive, otherwise the difference plus the element size if it's
// negative: pos_diff = diff < 0 ? (diff + 7) : diff
SDValue Select = DiffDiv.getOperand(0);
// Make sure the difference is being compared by the select
if (Select.getOpcode() != ISD::SELECT_CC || Select.getOperand(3) != Diff)
return SDValue();
// Make sure it's checking if the difference is less than 0
if (!isNullConstant(Select.getOperand(1)) ||
cast<CondCodeSDNode>(Select.getOperand(4))->get() !=
ISD::CondCode::SETLT)
return SDValue();
// An add creates a positive value from the negative difference
SDValue Add = Select.getOperand(2);
if (Add.getOpcode() != ISD::ADD || Add.getOperand(0) != Diff)
return SDValue();
if (auto *AddConst = dyn_cast<ConstantSDNode>(Add.getOperand(1));
!AddConst || AddConst->getZExtValue() != EltSize - 1)
return SDValue();
} else {
// When masking i16 elements, this positive value comes from adding the
// difference's sign bit to the difference itself. This is equivalent to
// the 32 bit and 64 bit case: pos_diff = diff + sign_bit (diff)
SDValue Add = DiffDiv.getOperand(0);
if (Add.getOpcode() != ISD::ADD || Add.getOperand(0) != Diff)
return SDValue();
// A logical right shift by 63 extracts the sign bit from the difference
SDValue Shift = Add.getOperand(1);
if (Shift.getOpcode() != ISD::SRL || Shift.getOperand(0) != Diff)
return SDValue();
if (auto *ShiftConst = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
!ShiftConst || ShiftConst->getZExtValue() != 63)
return SDValue();
}
} else if (LaneMask.getOperand(2) != Diff)
return SDValue();
SDValue StorePtr = Diff.getOperand(0);
SDValue ReadPtr = Diff.getOperand(1);
unsigned IntrinsicID = 0;
switch (EltSize) {
case 1:
IntrinsicID = Intrinsic::aarch64_sve_whilewr_b;
break;
case 2:
IntrinsicID = Intrinsic::aarch64_sve_whilewr_h;
break;
case 4:
IntrinsicID = Intrinsic::aarch64_sve_whilewr_s;
break;
case 8:
IntrinsicID = Intrinsic::aarch64_sve_whilewr_d;
break;
default:
return SDValue();
}
SDLoc DL(Op);
SDValue ID = DAG.getConstant(IntrinsicID, DL, MVT::i32);
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(), ID,
StorePtr, ReadPtr);
}
SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
SelectionDAG &DAG) const {
if (SDValue SV =
tryWhileWRFromOR(Op, DAG, DAG.getSubtarget<AArch64Subtarget>()))
return SV;
if (useSVEForFixedLengthVectorVT(Op.getValueType(),
!Subtarget->isNeonAvailable()))
return LowerToScalableOp(Op, DAG);
// Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2))
if (SDValue Res = tryLowerToSLI(Op.getNode(), DAG))
return Res;
EVT VT = Op.getValueType();
if (VT.isScalableVector())
return Op;
SDValue LHS = Op.getOperand(0);
BuildVectorSDNode *BVN =
dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
if (!BVN) {
// OR commutes, so try swapping the operands.
LHS = Op.getOperand(1);
BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
}
if (!BVN)
return Op;
APInt DefBits(VT.getSizeInBits(), 0);
APInt UndefBits(VT.getSizeInBits(), 0);
if (resolveBuildVector(BVN, DefBits, UndefBits)) {
SDValue NewOp;
if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::ORRi, Op, DAG,
DefBits, &LHS)) ||
(NewOp = tryAdvSIMDModImm16(AArch64ISD::ORRi, Op, DAG,
DefBits, &LHS)))
return NewOp;
if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::ORRi, Op, DAG,
UndefBits, &LHS)) ||
(NewOp = tryAdvSIMDModImm16(AArch64ISD::ORRi, Op, DAG,
UndefBits, &LHS)))
return NewOp;
}
// We can always fall back to a non-immediate OR.
return Op;
}
// Normalize the operands of BUILD_VECTOR. The value of constant operands will
// be truncated to fit element width.
static SDValue NormalizeBuildVector(SDValue Op,
SelectionDAG &DAG) {
assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
SDLoc dl(Op);
EVT VT = Op.getValueType();
EVT EltTy= VT.getVectorElementType();
if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16)
return Op;
SmallVector<SDValue, 16> Ops;
for (SDValue Lane : Op->ops()) {
// For integer vectors, type legalization would have promoted the
// operands already. Otherwise, if Op is a floating-point splat
// (with operands cast to integers), then the only possibilities
// are constants and UNDEFs.
if (auto *CstLane = dyn_cast<ConstantSDNode>(Lane)) {
Lane = DAG.getConstant(
CstLane->getAPIntValue().trunc(EltTy.getSizeInBits()).getZExtValue(),
dl, MVT::i32);
} else if (Lane.getNode()->isUndef()) {
Lane = DAG.getUNDEF(MVT::i32);
} else {
assert(Lane.getValueType() == MVT::i32 &&
"Unexpected BUILD_VECTOR operand type");
}
Ops.push_back(Lane);
}
return DAG.getBuildVector(VT, dl, Ops);
}
static SDValue ConstantBuildVector(SDValue Op, SelectionDAG &DAG,
const AArch64Subtarget *ST) {
EVT VT = Op.getValueType();
assert((VT.getSizeInBits() == 64 || VT.getSizeInBits() == 128) &&
"Expected a legal NEON vector");
APInt DefBits(VT.getSizeInBits(), 0);
APInt UndefBits(VT.getSizeInBits(), 0);
BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
if (resolveBuildVector(BVN, DefBits, UndefBits)) {
auto TryMOVIWithBits = [&](APInt DefBits) {
SDValue NewOp;
if ((NewOp =
tryAdvSIMDModImm64(AArch64ISD::MOVIedit, Op, DAG, DefBits)) ||
(NewOp =
tryAdvSIMDModImm32(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
(NewOp =
tryAdvSIMDModImm321s(AArch64ISD::MOVImsl, Op, DAG, DefBits)) ||
(NewOp =
tryAdvSIMDModImm16(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
(NewOp = tryAdvSIMDModImm8(AArch64ISD::MOVI, Op, DAG, DefBits)) ||
(NewOp = tryAdvSIMDModImmFP(AArch64ISD::FMOV, Op, DAG, DefBits)))
return NewOp;
APInt NotDefBits = ~DefBits;
if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::MVNIshift, Op, DAG,
NotDefBits)) ||
(NewOp = tryAdvSIMDModImm321s(AArch64ISD::MVNImsl, Op, DAG,
NotDefBits)) ||
(NewOp =
tryAdvSIMDModImm16(AArch64ISD::MVNIshift, Op, DAG, NotDefBits)))
return NewOp;
return SDValue();
};
if (SDValue R = TryMOVIWithBits(DefBits))
return R;
if (SDValue R = TryMOVIWithBits(UndefBits))
return R;
// See if a fneg of the constant can be materialized with a MOVI, etc
auto TryWithFNeg = [&](APInt DefBits, MVT FVT) {
// FNegate each sub-element of the constant
assert(VT.getSizeInBits() % FVT.getScalarSizeInBits() == 0);
APInt Neg = APInt::getHighBitsSet(FVT.getSizeInBits(), 1)
.zext(VT.getSizeInBits());
APInt NegBits(VT.getSizeInBits(), 0);
unsigned NumElts = VT.getSizeInBits() / FVT.getScalarSizeInBits();
for (unsigned i = 0; i < NumElts; i++)
NegBits |= Neg << (FVT.getScalarSizeInBits() * i);
NegBits = DefBits ^ NegBits;
// Try to create the new constants with MOVI, and if so generate a fneg
// for it.
if (SDValue NewOp = TryMOVIWithBits(NegBits)) {
SDLoc DL(Op);
MVT VFVT = NumElts == 1 ? FVT : MVT::getVectorVT(FVT, NumElts);
return DAG.getNode(
AArch64ISD::NVCAST, DL, VT,
DAG.getNode(ISD::FNEG, DL, VFVT,
DAG.getNode(AArch64ISD::NVCAST, DL, VFVT, NewOp)));
}
return SDValue();
};
SDValue R;
if ((R = TryWithFNeg(DefBits, MVT::f32)) ||
(R = TryWithFNeg(DefBits, MVT::f64)) ||
(ST->hasFullFP16() && (R = TryWithFNeg(DefBits, MVT::f16))))
return R;
}
return SDValue();
}
SDValue AArch64TargetLowering::LowerFixedLengthBuildVectorToSVE(
SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
SDLoc DL(Op);
EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT);
auto *BVN = cast<BuildVectorSDNode>(Op);
if (auto SeqInfo = BVN->isConstantSequence()) {
SDValue Start = DAG.getConstant(SeqInfo->first, DL, ContainerVT);
SDValue Steps = DAG.getStepVector(DL, ContainerVT, SeqInfo->second);
SDValue Seq = DAG.getNode(ISD::ADD, DL, ContainerVT, Start, Steps);
return convertFromScalableVector(DAG, VT, Seq);
}
unsigned NumElems = VT.getVectorNumElements();
if (!VT.isPow2VectorType() || VT.getFixedSizeInBits() > 128 ||
NumElems <= 1 || BVN->isConstant())
return SDValue();
auto IsExtractElt = [](SDValue Op) {
return Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT;
};
// For integer types that are not already in vectors limit to at most four
// elements. This is an arbitrary restriction to avoid many fmovs from GPRs.
if (VT.getScalarType().isInteger() &&
NumElems - count_if(Op->op_values(), IsExtractElt) > 4)
return SDValue();
// Lower (pow2) BUILD_VECTORS that are <= 128-bit to a sequence of ZIP1s.
SDValue ZeroI64 = DAG.getConstant(0, DL, MVT::i64);
SmallVector<SDValue, 16> Intermediates = map_to_vector<16>(
Op->op_values(), [&, Undef = DAG.getUNDEF(ContainerVT)](SDValue Op) {
return Op.isUndef() ? Undef
: DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
ContainerVT, Undef, Op, ZeroI64);
});
ElementCount ZipEC = ContainerVT.getVectorElementCount();
while (Intermediates.size() > 1) {
EVT ZipVT = getPackedSVEVectorVT(ZipEC);
for (unsigned I = 0; I < Intermediates.size(); I += 2) {
SDValue Op0 = DAG.getBitcast(ZipVT, Intermediates[I + 0]);
SDValue Op1 = DAG.getBitcast(ZipVT, Intermediates[I + 1]);
Intermediates[I / 2] =
Op1.isUndef() ? Op0
: DAG.getNode(AArch64ISD::ZIP1, DL, ZipVT, Op0, Op1);
}
Intermediates.resize(Intermediates.size() / 2);
ZipEC = ZipEC.divideCoefficientBy(2);
}
assert(Intermediates.size() == 1);
SDValue Vec = DAG.getBitcast(ContainerVT, Intermediates[0]);
return convertFromScalableVector(DAG, VT, Vec);
}
SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
bool OverrideNEON = !Subtarget->isNeonAvailable() ||
cast<BuildVectorSDNode>(Op)->isConstantSequence();
if (useSVEForFixedLengthVectorVT(VT, OverrideNEON))
return LowerFixedLengthBuildVectorToSVE(Op, DAG);
// Try to build a simple constant vector.
Op = NormalizeBuildVector(Op, DAG);
// Thought this might return a non-BUILD_VECTOR (e.g. CONCAT_VECTORS), if so,
// abort.
if (Op.getOpcode() != ISD::BUILD_VECTOR)
return SDValue();
// Certain vector constants, used to express things like logical NOT and
// arithmetic NEG, are passed through unmodified. This allows special
// patterns for these operations to match, which will lower these constants
// to whatever is proven necessary.
BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
if (BVN->isConstant()) {
if (ConstantSDNode *Const = BVN->getConstantSplatNode()) {
unsigned BitSize = VT.getVectorElementType().getSizeInBits();
APInt Val(BitSize,
Const->getAPIntValue().zextOrTrunc(BitSize).getZExtValue());
if (Val.isZero() || (VT.isInteger() && Val.isAllOnes()))
return Op;
}
if (ConstantFPSDNode *Const = BVN->getConstantFPSplatNode())
if (Const->isZero() && !Const->isNegative())
return Op;
}
if (SDValue V = ConstantBuildVector(Op, DAG, Subtarget))
return V;
// Scan through the operands to find some interesting properties we can
// exploit:
// 1) If only one value is used, we can use a DUP, or
// 2) if only the low element is not undef, we can just insert that, or
// 3) if only one constant value is used (w/ some non-constant lanes),
// we can splat the constant value into the whole vector then fill
// in the non-constant lanes.
// 4) FIXME: If different constant values are used, but we can intelligently
// select the values we'll be overwriting for the non-constant
// lanes such that we can directly materialize the vector
// some other way (MOVI, e.g.), we can be sneaky.
// 5) if all operands are EXTRACT_VECTOR_ELT, check for VUZP.
SDLoc dl(Op);
unsigned NumElts = VT.getVectorNumElements();
bool isOnlyLowElement = true;
bool usesOnlyOneValue = true;
bool usesOnlyOneConstantValue = true;
bool isConstant = true;
bool AllLanesExtractElt = true;
unsigned NumConstantLanes = 0;
unsigned NumDifferentLanes = 0;
unsigned NumUndefLanes = 0;
SDValue Value;
SDValue ConstantValue;
SmallMapVector<SDValue, unsigned, 16> DifferentValueMap;
unsigned ConsecutiveValCount = 0;
SDValue PrevVal;
for (unsigned i = 0; i < NumElts; ++i) {
SDValue V = Op.getOperand(i);
if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
AllLanesExtractElt = false;
if (V.isUndef()) {
++NumUndefLanes;
continue;
}
if (i > 0)
isOnlyLowElement = false;
if (!isIntOrFPConstant(V))
isConstant = false;
if (isIntOrFPConstant(V)) {
++NumConstantLanes;
if (!ConstantValue.getNode())
ConstantValue = V;
else if (ConstantValue != V)
usesOnlyOneConstantValue = false;
}
if (!Value.getNode())
Value = V;
else if (V != Value) {
usesOnlyOneValue = false;
++NumDifferentLanes;
}
if (PrevVal != V) {
ConsecutiveValCount = 0;
PrevVal = V;
}
// Keep different values and its last consecutive count. For example,
//
// t22: v16i8 = build_vector t23, t23, t23, t23, t23, t23, t23, t23,
// t24, t24, t24, t24, t24, t24, t24, t24
// t23 = consecutive count 8
// t24 = consecutive count 8
// ------------------------------------------------------------------
// t22: v16i8 = build_vector t24, t24, t23, t23, t23, t23, t23, t24,
// t24, t24, t24, t24, t24, t24, t24, t24
// t23 = consecutive count 5
// t24 = consecutive count 9
DifferentValueMap[V] = ++ConsecutiveValCount;
}
if (!Value.getNode()) {
LLVM_DEBUG(
dbgs() << "LowerBUILD_VECTOR: value undefined, creating undef node\n");
return DAG.getUNDEF(VT);
}
// Convert BUILD_VECTOR where all elements but the lowest are undef into
// SCALAR_TO_VECTOR, except for when we have a single-element constant vector
// as SimplifyDemandedBits will just turn that back into BUILD_VECTOR.
if (isOnlyLowElement && !(NumElts == 1 && isIntOrFPConstant(Value))) {
LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: only low element used, creating 1 "
"SCALAR_TO_VECTOR node\n");
return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
}
if (AllLanesExtractElt) {
SDNode *Vector = nullptr;
bool Even = false;
bool Odd = false;
// Check whether the extract elements match the Even pattern <0,2,4,...> or
// the Odd pattern <1,3,5,...>.
for (unsigned i = 0; i < NumElts; ++i) {
SDValue V = Op.getOperand(i);
const SDNode *N = V.getNode();
if (!isa<ConstantSDNode>(N->getOperand(1))) {
Even = false;
Odd = false;
break;
}
SDValue N0 = N->getOperand(0);
// All elements are extracted from the same vector.
if (!Vector) {
Vector = N0.getNode();
// Check that the type of EXTRACT_VECTOR_ELT matches the type of
// BUILD_VECTOR.
if (VT.getVectorElementType() !=
N0.getValueType().getVectorElementType())
break;
} else if (Vector != N0.getNode()) {
Odd = false;
Even = false;
break;
}
// Extracted values are either at Even indices <0,2,4,...> or at Odd
// indices <1,3,5,...>.
uint64_t Val = N->getConstantOperandVal(1);
if (Val == 2 * i) {
Even = true;
continue;
}
if (Val - 1 == 2 * i) {
Odd = true;
continue;
}
// Something does not match: abort.
Odd = false;
Even = false;
break;
}
if (Even || Odd) {
SDValue LHS =
DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SDValue(Vector, 0),
DAG.getConstant(0, dl, MVT::i64));
SDValue RHS =
DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SDValue(Vector, 0),
DAG.getConstant(NumElts, dl, MVT::i64));
if (Even && !Odd)
return DAG.getNode(AArch64ISD::UZP1, dl, VT, LHS, RHS);
if (Odd && !Even)
return DAG.getNode(AArch64ISD::UZP2, dl, VT, LHS, RHS);
}
}
// Use DUP for non-constant splats. For f32 constant splats, reduce to
// i32 and try again.
if (usesOnlyOneValue) {
if (!isConstant) {
if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
Value.getValueType() != VT) {
LLVM_DEBUG(
dbgs() << "LowerBUILD_VECTOR: use DUP for non-constant splats\n");
return DAG.getNode(AArch64ISD::DUP, dl, VT, Value);
}
// This is actually a DUPLANExx operation, which keeps everything vectory.
SDValue Lane = Value.getOperand(1);
Value = Value.getOperand(0);
if (Value.getValueSizeInBits() == 64) {
LLVM_DEBUG(
dbgs() << "LowerBUILD_VECTOR: DUPLANE works on 128-bit vectors, "
"widening it\n");
Value = WidenVector(Value, DAG);
}
unsigned Opcode = getDUPLANEOp(VT.getVectorElementType());
return DAG.getNode(Opcode, dl, VT, Value, Lane);
}
if (VT.getVectorElementType().isFloatingPoint()) {
SmallVector<SDValue, 8> Ops;
EVT EltTy = VT.getVectorElementType();
assert ((EltTy == MVT::f16 || EltTy == MVT::bf16 || EltTy == MVT::f32 ||
EltTy == MVT::f64) && "Unsupported floating-point vector type");
LLVM_DEBUG(
dbgs() << "LowerBUILD_VECTOR: float constant splats, creating int "
"BITCASTS, and try again\n");
MVT NewType = MVT::getIntegerVT(EltTy.getSizeInBits());
for (unsigned i = 0; i < NumElts; ++i)
Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i)));
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts);
SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: trying to lower new vector: ";
Val.dump(););
Val = LowerBUILD_VECTOR(Val, DAG);
if (Val.getNode())
return DAG.getNode(ISD::BITCAST, dl, VT, Val);
}
}
// If we need to insert a small number of different non-constant elements and
// the vector width is sufficiently large, prefer using DUP with the common
// value and INSERT_VECTOR_ELT for the different lanes. If DUP is preferred,
// skip the constant lane handling below.
bool PreferDUPAndInsert =
!isConstant && NumDifferentLanes >= 1 &&
NumDifferentLanes < ((NumElts - NumUndefLanes) / 2) &&
NumDifferentLanes >= NumConstantLanes;
// If there was only one constant value used and for more than one lane,
// start by splatting that value, then replace the non-constant lanes. This
// is better than the default, which will perform a separate initialization
// for each lane.
if (!PreferDUPAndInsert && NumConstantLanes > 0 && usesOnlyOneConstantValue) {
// Firstly, try to materialize the splat constant.
SDValue Val = DAG.getSplatBuildVector(VT, dl, ConstantValue);
unsigned BitSize = VT.getScalarSizeInBits();
APInt ConstantValueAPInt(1, 0);
if (auto *C = dyn_cast<ConstantSDNode>(ConstantValue))
ConstantValueAPInt = C->getAPIntValue().zextOrTrunc(BitSize);
if (!isNullConstant(ConstantValue) && !isNullFPConstant(ConstantValue) &&
!ConstantValueAPInt.isAllOnes()) {
Val = ConstantBuildVector(Val, DAG, Subtarget);
if (!Val)
// Otherwise, materialize the constant and splat it.
Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue);
}
// Now insert the non-constant lanes.
for (unsigned i = 0; i < NumElts; ++i) {
SDValue V = Op.getOperand(i);
SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
if (!isIntOrFPConstant(V))
// Note that type legalization likely mucked about with the VT of the
// source operand, so we may have to convert it here before inserting.
Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx);
}
return Val;
}
// This will generate a load from the constant pool.
if (isConstant) {
LLVM_DEBUG(
dbgs() << "LowerBUILD_VECTOR: all elements are constant, use default "
"expansion\n");
return SDValue();
}
// Detect patterns of a0,a1,a2,a3,b0,b1,b2,b3,c0,c1,c2,c3,d0,d1,d2,d3 from
// v4i32s. This is really a truncate, which we can construct out of (legal)
// concats and truncate nodes.
if (SDValue M = ReconstructTruncateFromBuildVector(Op, DAG))
return M;
// Empirical tests suggest this is rarely worth it for vectors of length <= 2.
if (NumElts >= 4) {
if (SDValue Shuffle = ReconstructShuffle(Op, DAG))
return Shuffle;
if (SDValue Shuffle = ReconstructShuffleWithRuntimeMask(Op, DAG))
return Shuffle;
}
if (PreferDUPAndInsert) {
// First, build a constant vector with the common element.
SmallVector<SDValue, 8> Ops(NumElts, Value);
SDValue NewVector = LowerBUILD_VECTOR(DAG.getBuildVector(VT, dl, Ops), DAG);
// Next, insert the elements that do not match the common value.
for (unsigned I = 0; I < NumElts; ++I)
if (Op.getOperand(I) != Value)
NewVector =
DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, NewVector,
Op.getOperand(I), DAG.getConstant(I, dl, MVT::i64));
return NewVector;
}
// If vector consists of two different values, try to generate two DUPs and
// (CONCAT_VECTORS or VECTOR_SHUFFLE).
if (DifferentValueMap.size() == 2 && NumUndefLanes == 0) {
SmallVector<SDValue, 2> Vals;
// Check the consecutive count of the value is the half number of vector
// elements. In this case, we can use CONCAT_VECTORS. For example,
//
// canUseVECTOR_CONCAT = true;
// t22: v16i8 = build_vector t23, t23, t23, t23, t23, t23, t23, t23,
// t24, t24, t24, t24, t24, t24, t24, t24
//
// canUseVECTOR_CONCAT = false;
// t22: v16i8 = build_vector t23, t23, t23, t23, t23, t24, t24, t24,
// t24, t24, t24, t24, t24, t24, t24, t24
bool canUseVECTOR_CONCAT = true;
for (auto Pair : DifferentValueMap) {
// Check different values have same length which is NumElts / 2.
if (Pair.second != NumElts / 2)
canUseVECTOR_CONCAT = false;
Vals.push_back(Pair.first);
}
// If canUseVECTOR_CONCAT is true, we can generate two DUPs and
// CONCAT_VECTORs. For example,
//
// t22: v16i8 = BUILD_VECTOR t23, t23, t23, t23, t23, t23, t23, t23,
// t24, t24, t24, t24, t24, t24, t24, t24
// ==>
// t26: v8i8 = AArch64ISD::DUP t23
// t28: v8i8 = AArch64ISD::DUP t24
// t29: v16i8 = concat_vectors t26, t28
if (canUseVECTOR_CONCAT) {
EVT SubVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
if (isTypeLegal(SubVT) && SubVT.isVector() &&
SubVT.getVectorNumElements() >= 2) {
SmallVector<SDValue, 8> Ops1(NumElts / 2, Vals[0]);
SmallVector<SDValue, 8> Ops2(NumElts / 2, Vals[1]);
SDValue DUP1 =
LowerBUILD_VECTOR(DAG.getBuildVector(SubVT, dl, Ops1), DAG);
SDValue DUP2 =
LowerBUILD_VECTOR(DAG.getBuildVector(SubVT, dl, Ops2), DAG);
SDValue CONCAT_VECTORS =
DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, DUP1, DUP2);
return CONCAT_VECTORS;
}
}
// Let's try to generate VECTOR_SHUFFLE. For example,
//
// t24: v8i8 = BUILD_VECTOR t25, t25, t25, t25, t26, t26, t26, t26
// ==>
// t27: v8i8 = BUILD_VECTOR t26, t26, t26, t26, t26, t26, t26, t26
// t28: v8i8 = BUILD_VECTOR t25, t25, t25, t25, t25, t25, t25, t25
// t29: v8i8 = vector_shuffle<0,1,2,3,12,13,14,15> t27, t28
if (NumElts >= 8) {
SmallVector<int, 16> MaskVec;
// Build mask for VECTOR_SHUFLLE.
SDValue FirstLaneVal = Op.getOperand(0);
for (unsigned i = 0; i < NumElts; ++i) {
SDValue Val = Op.getOperand(i);
if (FirstLaneVal == Val)
MaskVec.push_back(i);
else
MaskVec.push_back(i + NumElts);
}
SmallVector<SDValue, 8> Ops1(NumElts, Vals[0]);
SmallVector<SDValue, 8> Ops2(NumElts, Vals[1]);
SDValue VEC1 = DAG.getBuildVector(VT, dl, Ops1);
SDValue VEC2 = DAG.getBuildVector(VT, dl, Ops2);
SDValue VECTOR_SHUFFLE =
DAG.getVectorShuffle(VT, dl, VEC1, VEC2, MaskVec);
return VECTOR_SHUFFLE;
}
}
// If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
// know the default expansion would otherwise fall back on something even
// worse. For a vector with one or two non-undef values, that's
// scalar_to_vector for the elements followed by a shuffle (provided the
// shuffle is valid for the target) and materialization element by element
// on the stack followed by a load for everything else.
if (!isConstant && !usesOnlyOneValue) {
LLVM_DEBUG(
dbgs() << "LowerBUILD_VECTOR: alternatives failed, creating sequence "
"of INSERT_VECTOR_ELT\n");
SDValue Vec = DAG.getUNDEF(VT);
SDValue Op0 = Op.getOperand(0);
unsigned i = 0;
// Use SCALAR_TO_VECTOR for lane zero to
// a) Avoid a RMW dependency on the full vector register, and
// b) Allow the register coalescer to fold away the copy if the
// value is already in an S or D register, and we're forced to emit an
// INSERT_SUBREG that we can't fold anywhere.
//
// We also allow types like i8 and i16 which are illegal scalar but legal
// vector element types. After type-legalization the inserted value is
// extended (i32) and it is safe to cast them to the vector type by ignoring
// the upper bits of the lowest lane (e.g. v8i8, v4i16).
if (!Op0.isUndef()) {
LLVM_DEBUG(dbgs() << "Creating node for op0, it is not undefined:\n");
Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op0);
++i;
}
LLVM_DEBUG(if (i < NumElts) dbgs()
<< "Creating nodes for the other vector elements:\n";);
for (; i < NumElts; ++i) {
SDValue V = Op.getOperand(i);
if (V.isUndef())
continue;
SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
}
return Vec;
}
LLVM_DEBUG(
dbgs() << "LowerBUILD_VECTOR: use default expansion, failed to find "
"better alternative\n");
return SDValue();
}
SDValue AArch64TargetLowering::LowerCONCAT_VECTORS(SDValue Op,
SelectionDAG &DAG) const {
if (useSVEForFixedLengthVectorVT(Op.getValueType(),
!Subtarget->isNeonAvailable()))
return LowerFixedLengthConcatVectorsToSVE(Op, DAG);
assert(Op.getValueType().isScalableVector() &&
isTypeLegal(Op.getValueType()) &&
"Expected legal scalable vector type!");
if (isTypeLegal(Op.getOperand(0).getValueType())) {
unsigned NumOperands = Op->getNumOperands();
assert(NumOperands > 1 && isPowerOf2_32(NumOperands) &&
"Unexpected number of operands in CONCAT_VECTORS");
if (NumOperands == 2)
return Op;
// Concat each pair of subvectors and pack into the lower half of the array.
SmallVector<SDValue> ConcatOps(Op->ops());
while (ConcatOps.size() > 1) {
for (unsigned I = 0, E = ConcatOps.size(); I != E; I += 2) {
SDValue V1 = ConcatOps[I];
SDValue V2 = ConcatOps[I + 1];
EVT SubVT = V1.getValueType();
EVT PairVT = SubVT.getDoubleNumVectorElementsVT(*DAG.getContext());
ConcatOps[I / 2] =
DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), PairVT, V1, V2);
}
ConcatOps.resize(ConcatOps.size() / 2);
}
return ConcatOps[0];
}
return SDValue();
}
SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
SelectionDAG &DAG) const {
assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!");
if (useSVEForFixedLengthVectorVT(Op.getValueType(),
!Subtarget->isNeonAvailable()))
return LowerFixedLengthInsertVectorElt(Op, DAG);
EVT VT = Op.getOperand(0).getValueType();
if (VT.getScalarType() == MVT::i1) {
EVT VectorVT = getPromotedVTForPredicate(VT);
SDLoc DL(Op);
SDValue ExtendedVector =
DAG.getAnyExtOrTrunc(Op.getOperand(0), DL, VectorVT);
SDValue ExtendedValue =
DAG.getAnyExtOrTrunc(Op.getOperand(1), DL,
VectorVT.getScalarType().getSizeInBits() < 32
? MVT::i32
: VectorVT.getScalarType());
ExtendedVector =
DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VectorVT, ExtendedVector,
ExtendedValue, Op.getOperand(2));
return DAG.getAnyExtOrTrunc(ExtendedVector, DL, VT);
}
// Check for non-constant or out of range lane.
ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(2));
if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
return SDValue();
return Op;
}
SDValue
AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
SelectionDAG &DAG) const {
assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!");
EVT VT = Op.getOperand(0).getValueType();
if (VT.getScalarType() == MVT::i1) {
// We can't directly extract from an SVE predicate; extend it first.
// (This isn't the only possible lowering, but it's straightforward.)
EVT VectorVT = getPromotedVTForPredicate(VT);
SDLoc DL(Op);
SDValue Extend =
DAG.getNode(ISD::ANY_EXTEND, DL, VectorVT, Op.getOperand(0));
MVT ExtractTy = VectorVT == MVT::nxv2i64 ? MVT::i64 : MVT::i32;
SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtractTy,
Extend, Op.getOperand(1));
return DAG.getAnyExtOrTrunc(Extract, DL, Op.getValueType());
}
if (useSVEForFixedLengthVectorVT(VT, !Subtarget->isNeonAvailable()))
return LowerFixedLengthExtractVectorElt(Op, DAG);
// Check for non-constant or out of range lane.
ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(1));
if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
return SDValue();
// Insertion/extraction are legal for V128 types.
if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
VT == MVT::v8f16 || VT == MVT::v8bf16)
return Op;
if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16 &&
VT != MVT::v4bf16)
return SDValue();
// For V64 types, we perform extraction by expanding the value
// to a V128 type and perform the extraction on that.
SDLoc DL(Op);
SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
EVT WideTy = WideVec.getValueType();
EVT ExtrTy = WideTy.getVectorElementType();
if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8)
ExtrTy = MVT::i32;
// For extractions, we just return the result directly.
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec,
Op.getOperand(1));
}
SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
assert(VT.isFixedLengthVector() &&
"Only cases that extract a fixed length vector are supported!");
EVT InVT = Op.getOperand(0).getValueType();
// If we don't have legal types yet, do nothing
if (!isTypeLegal(InVT))
return SDValue();
if (InVT.is128BitVector()) {
assert(VT.is64BitVector() && "Extracting unexpected vector type!");
unsigned Idx = Op.getConstantOperandVal(1);
// This will get lowered to an appropriate EXTRACT_SUBREG in ISel.
if (Idx == 0)
return Op;
// If this is extracting the upper 64-bits of a 128-bit vector, we match
// that directly.
if (Idx * InVT.getScalarSizeInBits() == 64 && Subtarget->isNeonAvailable())
return Op;
}
if (InVT.isScalableVector() ||
useSVEForFixedLengthVectorVT(InVT, !Subtarget->isNeonAvailable())) {
SDLoc DL(Op);
SDValue Vec = Op.getOperand(0);
SDValue Idx = Op.getOperand(1);
EVT PackedVT = getPackedSVEVectorVT(InVT.getVectorElementType());
if (PackedVT != InVT) {
// Pack input into the bottom part of an SVE register and try again.
SDValue Container = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PackedVT,
DAG.getUNDEF(PackedVT), Vec,
DAG.getVectorIdxConstant(0, DL));
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Container, Idx);
}
// This will get matched by custom code during ISelDAGToDAG.
if (isNullConstant(Idx))
return Op;
assert(InVT.isScalableVector() && "Unexpected vector type!");
// Move requested subvector to the start of the vector and try again.
SDValue Splice = DAG.getNode(ISD::VECTOR_SPLICE, DL, InVT, Vec, Vec, Idx);
return convertFromScalableVector(DAG, VT, Splice);
}
return SDValue();
}
SDValue AArch64TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op,
SelectionDAG &DAG) const {
assert(Op.getValueType().isScalableVector() &&
"Only expect to lower inserts into scalable vectors!");
EVT InVT = Op.getOperand(1).getValueType();
unsigned Idx = Op.getConstantOperandVal(2);
SDValue Vec0 = Op.getOperand(0);
SDValue Vec1 = Op.getOperand(1);
SDLoc DL(Op);
EVT VT = Op.getValueType();
if (InVT.isScalableVector()) {
if (!isTypeLegal(VT))
return SDValue();
// Break down insert_subvector into simpler parts.
if (VT.getVectorElementType() == MVT::i1) {
unsigned NumElts = VT.getVectorMinNumElements();
EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
SDValue Lo, Hi;
Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, Vec0,
DAG.getVectorIdxConstant(0, DL));
Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, Vec0,
DAG.getVectorIdxConstant(NumElts / 2, DL));
if (Idx < (NumElts / 2))
Lo = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, HalfVT, Lo, Vec1,
DAG.getVectorIdxConstant(Idx, DL));
else
Hi = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, HalfVT, Hi, Vec1,
DAG.getVectorIdxConstant(Idx - (NumElts / 2), DL));
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
}
// We can select these directly.
if (isTypeLegal(InVT) && Vec0.isUndef())
return Op;
// Ensure the subvector is half the size of the main vector.
if (VT.getVectorElementCount() != (InVT.getVectorElementCount() * 2))
return SDValue();
// Here narrow and wide refers to the vector element types. After "casting"
// both vectors must have the same bit length and so because the subvector
// has fewer elements, those elements need to be bigger.
EVT NarrowVT = getPackedSVEVectorVT(VT.getVectorElementCount());
EVT WideVT = getPackedSVEVectorVT(InVT.getVectorElementCount());
// NOP cast operands to the largest legal vector of the same element count.
if (VT.isFloatingPoint()) {
Vec0 = getSVESafeBitCast(NarrowVT, Vec0, DAG);
Vec1 = getSVESafeBitCast(NarrowVT, Vec1, DAG);
} else {
// Legal integer vectors are already their largest so Vec0 is fine as is.
Vec1 = DAG.getNode(ISD::ANY_EXTEND, DL, WideVT, Vec1);
Vec1 = DAG.getNode(AArch64ISD::NVCAST, DL, NarrowVT, Vec1);
}
// To replace the top/bottom half of vector V with vector SubV we widen the
// preserved half of V, concatenate this to SubV (the order depending on the
// half being replaced) and then narrow the result.
SDValue Narrow;
if (Idx == 0) {
SDValue HiVec0 = DAG.getNode(AArch64ISD::UUNPKHI, DL, WideVT, Vec0);
HiVec0 = DAG.getNode(AArch64ISD::NVCAST, DL, NarrowVT, HiVec0);
Narrow = DAG.getNode(AArch64ISD::UZP1, DL, NarrowVT, Vec1, HiVec0);
} else {
assert(Idx == InVT.getVectorMinNumElements() &&
"Invalid subvector index!");
SDValue LoVec0 = DAG.getNode(AArch64ISD::UUNPKLO, DL, WideVT, Vec0);
LoVec0 = DAG.getNode(AArch64ISD::NVCAST, DL, NarrowVT, LoVec0);
Narrow = DAG.getNode(AArch64ISD::UZP1, DL, NarrowVT, LoVec0, Vec1);
}
return getSVESafeBitCast(VT, Narrow, DAG);
}
if (Idx == 0 && isPackedVectorType(VT, DAG)) {
// This will be matched by custom code during ISelDAGToDAG.
if (Vec0.isUndef())
return Op;
std::optional<unsigned> PredPattern =
getSVEPredPatternFromNumElements(InVT.getVectorNumElements());
auto PredTy = VT.changeVectorElementType(MVT::i1);
SDValue PTrue = getPTrue(DAG, DL, PredTy, *PredPattern);
SDValue ScalableVec1 = convertToScalableVector(DAG, VT, Vec1);
return DAG.getNode(ISD::VSELECT, DL, VT, PTrue, ScalableVec1, Vec0);
}
return SDValue();
}
static bool isPow2Splat(SDValue Op, uint64_t &SplatVal, bool &Negated) {
if (Op.getOpcode() != AArch64ISD::DUP &&
Op.getOpcode() != ISD::SPLAT_VECTOR &&
Op.getOpcode() != ISD::BUILD_VECTOR)
return false;
if (Op.getOpcode() == ISD::BUILD_VECTOR &&
!isAllConstantBuildVector(Op, SplatVal))
return false;
if (Op.getOpcode() != ISD::BUILD_VECTOR &&
!isa<ConstantSDNode>(Op->getOperand(0)))
return false;
SplatVal = Op->getConstantOperandVal(0);
if (Op.getValueType().getVectorElementType() != MVT::i64)
SplatVal = (int32_t)SplatVal;
Negated = false;
if (isPowerOf2_64(SplatVal))
return true;
Negated = true;
if (isPowerOf2_64(-SplatVal)) {
SplatVal = -SplatVal;
return true;
}
return false;
}
SDValue AArch64TargetLowering::LowerDIV(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
SDLoc dl(Op);
if (useSVEForFixedLengthVectorVT(VT, /*OverrideNEON=*/true))
return LowerFixedLengthVectorIntDivideToSVE(Op, DAG);
assert(VT.isScalableVector() && "Expected a scalable vector.");
bool Signed = Op.getOpcode() == ISD::SDIV;
unsigned PredOpcode = Signed ? AArch64ISD::SDIV_PRED : AArch64ISD::UDIV_PRED;
bool Negated;
uint64_t SplatVal;
if (Signed && isPow2Splat(Op.getOperand(1), SplatVal, Negated)) {
SDValue Pg = getPredicateForScalableVector(DAG, dl, VT);
SDValue Res =
DAG.getNode(AArch64ISD::SRAD_MERGE_OP1, dl, VT, Pg, Op->getOperand(0),
DAG.getTargetConstant(Log2_64(SplatVal), dl, MVT::i32));
if (Negated)
Res = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), Res);
return Res;
}
if (VT == MVT::nxv4i32 || VT == MVT::nxv2i64)
return LowerToPredicatedOp(Op, DAG, PredOpcode);
// SVE doesn't have i8 and i16 DIV operations; widen them to 32-bit
// operations, and truncate the result.
EVT WidenedVT;
if (VT == MVT::nxv16i8)
WidenedVT = MVT::nxv8i16;
else if (VT == MVT::nxv8i16)
WidenedVT = MVT::nxv4i32;
else
llvm_unreachable("Unexpected Custom DIV operation");
unsigned UnpkLo = Signed ? AArch64ISD::SUNPKLO : AArch64ISD::UUNPKLO;
unsigned UnpkHi = Signed ? AArch64ISD::SUNPKHI : AArch64ISD::UUNPKHI;
SDValue Op0Lo = DAG.getNode(UnpkLo, dl, WidenedVT, Op.getOperand(0));
SDValue Op1Lo = DAG.getNode(UnpkLo, dl, WidenedVT, Op.getOperand(1));
SDValue Op0Hi = DAG.getNode(UnpkHi, dl, WidenedVT, Op.getOperand(0));
SDValue Op1Hi = DAG.getNode(UnpkHi, dl, WidenedVT, Op.getOperand(1));
SDValue ResultLo = DAG.getNode(Op.getOpcode(), dl, WidenedVT, Op0Lo, Op1Lo);
SDValue ResultHi = DAG.getNode(Op.getOpcode(), dl, WidenedVT, Op0Hi, Op1Hi);
SDValue ResultLoCast = DAG.getNode(AArch64ISD::NVCAST, dl, VT, ResultLo);
SDValue ResultHiCast = DAG.getNode(AArch64ISD::NVCAST, dl, VT, ResultHi);
return DAG.getNode(AArch64ISD::UZP1, dl, VT, ResultLoCast, ResultHiCast);
}
bool AArch64TargetLowering::shouldExpandBuildVectorWithShuffles(
EVT VT, unsigned DefinedValues) const {
if (!Subtarget->isNeonAvailable())
return false;
return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
}
bool AArch64TargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
// Currently no fixed length shuffles that require SVE are legal.
if (useSVEForFixedLengthVectorVT(VT, !Subtarget->isNeonAvailable()))
return false;
if (VT.getVectorNumElements() == 4 &&
(VT.is128BitVector() || VT.is64BitVector())) {
unsigned Cost = getPerfectShuffleCost(M);
if (Cost <= 1)
return true;
}
bool DummyBool;
int DummyInt;
unsigned DummyUnsigned;
unsigned EltSize = VT.getScalarSizeInBits();
unsigned NumElts = VT.getVectorNumElements();
return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
isREVMask(M, EltSize, NumElts, 64) ||
isREVMask(M, EltSize, NumElts, 32) ||
isREVMask(M, EltSize, NumElts, 16) ||
isEXTMask(M, VT, DummyBool, DummyUnsigned) ||
isTRNMask(M, NumElts, DummyUnsigned) ||
isUZPMask(M, NumElts, DummyUnsigned) ||
isZIPMask(M, NumElts, DummyUnsigned) ||
isTRN_v_undef_Mask(M, VT, DummyUnsigned) ||
isUZP_v_undef_Mask(M, VT, DummyUnsigned) ||
isZIP_v_undef_Mask(M, VT, DummyUnsigned) ||
isINSMask(M, NumElts, DummyBool, DummyInt) ||
isConcatMask(M, VT, VT.getSizeInBits() == 128));
}
bool AArch64TargetLowering::isVectorClearMaskLegal(ArrayRef<int> M,
EVT VT) const {
// Just delegate to the generic legality, clear masks aren't special.
return isShuffleMaskLegal(M, VT);
}
/// getVShiftImm - Check if this is a valid build_vector for the immediate
/// operand of a vector shift operation, where all the elements of the
/// build_vector must have the same constant integer value.
static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
// Ignore bit_converts.
while (Op.getOpcode() == ISD::BITCAST)
Op = Op.getOperand(0);
BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
APInt SplatBits, SplatUndef;
unsigned SplatBitSize;
bool HasAnyUndefs;
if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
HasAnyUndefs, ElementBits) ||
SplatBitSize > ElementBits)
return false;
Cnt = SplatBits.getSExtValue();
return true;
}
/// isVShiftLImm - Check if this is a valid build_vector for the immediate
/// operand of a vector shift left operation. That value must be in the range:
/// 0 <= Value < ElementBits for a left shift; or
/// 0 <= Value <= ElementBits for a long left shift.
static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
assert(VT.isVector() && "vector shift count is not a vector type");
int64_t ElementBits = VT.getScalarSizeInBits();
if (!getVShiftImm(Op, ElementBits, Cnt))
return false;
return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
}
/// isVShiftRImm - Check if this is a valid build_vector for the immediate
/// operand of a vector shift right operation. The value must be in the range:
/// 1 <= Value <= ElementBits for a right shift; or
static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, int64_t &Cnt) {
assert(VT.isVector() && "vector shift count is not a vector type");
int64_t ElementBits = VT.getScalarSizeInBits();
if (!getVShiftImm(Op, ElementBits, Cnt))
return false;
return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
}
SDValue AArch64TargetLowering::LowerTRUNCATE(SDValue Op,
SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
if (VT.getScalarType() == MVT::i1) {
// Lower i1 truncate to `(x & 1) != 0`.
SDLoc dl(Op);
EVT OpVT = Op.getOperand(0).getValueType();
SDValue Zero = DAG.getConstant(0, dl, OpVT);
SDValue One = DAG.getConstant(1, dl, OpVT);
SDValue And = DAG.getNode(ISD::AND, dl, OpVT, Op.getOperand(0), One);
return DAG.getSetCC(dl, VT, And, Zero, ISD::SETNE);
}
if (!VT.isVector() || VT.isScalableVector())
return SDValue();
if (useSVEForFixedLengthVectorVT(Op.getOperand(0).getValueType(),
!Subtarget->isNeonAvailable()))
return LowerFixedLengthVectorTruncateToSVE(Op, DAG);
return SDValue();
}
// Check if we can we lower this SRL to a rounding shift instruction. ResVT is
// possibly a truncated type, it tells how many bits of the value are to be
// used.
static bool canLowerSRLToRoundingShiftForVT(SDValue Shift, EVT ResVT,
SelectionDAG &DAG,
unsigned &ShiftValue,
SDValue &RShOperand) {
if (Shift->getOpcode() != ISD::SRL)
return false;
EVT VT = Shift.getValueType();
assert(VT.isScalableVT());
auto ShiftOp1 =
dyn_cast_or_null<ConstantSDNode>(DAG.getSplatValue(Shift->getOperand(1)));
if (!ShiftOp1)
return false;
ShiftValue = ShiftOp1->getZExtValue();
if (ShiftValue < 1 || ShiftValue > ResVT.getScalarSizeInBits())
return false;
SDValue Add = Shift->getOperand(0);
if (Add->getOpcode() != ISD::ADD || !Add->hasOneUse())
return false;
assert(ResVT.getScalarSizeInBits() <= VT.getScalarSizeInBits() &&
"ResVT must be truncated or same type as the shift.");
// Check if an overflow can lead to incorrect results.
uint64_t ExtraBits = VT.getScalarSizeInBits() - ResVT.getScalarSizeInBits();
if (ShiftValue > ExtraBits && !Add->getFlags().hasNoUnsignedWrap())
return false;
auto AddOp1 =
dyn_cast_or_null<ConstantSDNode>(DAG.getSplatValue(Add->getOperand(1)));
if (!AddOp1)
return false;
uint64_t AddValue = AddOp1->getZExtValue();
if (AddValue != 1ULL << (ShiftValue - 1))
return false;
RShOperand = Add->getOperand(0);
return true;
}
SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op,
SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
SDLoc DL(Op);
int64_t Cnt;
if (!Op.getOperand(1).getValueType().isVector())
return Op;
unsigned EltSize = VT.getScalarSizeInBits();
switch (Op.getOpcode()) {
case ISD::SHL:
if (VT.isScalableVector() ||
useSVEForFixedLengthVectorVT(VT, !Subtarget->isNeonAvailable()))
return LowerToPredicatedOp(Op, DAG, AArch64ISD::SHL_PRED);
if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize)
return DAG.getNode(AArch64ISD::VSHL, DL, VT, Op.getOperand(0),
DAG.getConstant(Cnt, DL, MVT::i32));
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
DAG.getConstant(Intrinsic::aarch64_neon_ushl, DL,
MVT::i32),
Op.getOperand(0), Op.getOperand(1));
case ISD::SRA:
case ISD::SRL:
if (VT.isScalableVector() &&
(Subtarget->hasSVE2() ||
(Subtarget->hasSME() && Subtarget->isStreaming()))) {
SDValue RShOperand;
unsigned ShiftValue;
if (canLowerSRLToRoundingShiftForVT(Op, VT, DAG, ShiftValue, RShOperand))
return DAG.getNode(AArch64ISD::URSHR_I_PRED, DL, VT,
getPredicateForVector(DAG, DL, VT), RShOperand,
DAG.getTargetConstant(ShiftValue, DL, MVT::i32));
}
if (VT.isScalableVector() ||
useSVEForFixedLengthVectorVT(VT, !Subtarget->isNeonAvailable())) {
unsigned Opc = Op.getOpcode() == ISD::SRA ? AArch64ISD::SRA_PRED
: AArch64ISD::SRL_PRED;
return LowerToPredicatedOp(Op, DAG, Opc);
}
// Right shift immediate
if (isVShiftRImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize) {
unsigned Opc =
(Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR;
return DAG.getNode(Opc, DL, VT, Op.getOperand(0),
DAG.getConstant(Cnt, DL, MVT::i32), Op->getFlags());
}
// Right shift register. Note, there is not a shift right register
// instruction, but the shift left register instruction takes a signed
// value, where negative numbers specify a right shift.
unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl
: Intrinsic::aarch64_neon_ushl;
// negate the shift amount
SDValue NegShift = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
Op.getOperand(1));
SDValue NegShiftLeft =
DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
DAG.getConstant(Opc, DL, MVT::i32), Op.getOperand(0),
NegShift);
return NegShiftLeft;
}
llvm_unreachable("unexpected shift opcode");
}
static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS,
AArch64CC::CondCode CC, bool NoNans, EVT VT,
const SDLoc &dl, SelectionDAG &DAG) {
EVT SrcVT = LHS.getValueType();
assert(VT.getSizeInBits() == SrcVT.getSizeInBits() &&
"function only supposed to emit natural comparisons");
APInt SplatValue;
APInt SplatUndef;
unsigned SplatBitSize = 0;
bool HasAnyUndefs;
BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
bool IsCnst = BVN && BVN->isConstantSplat(SplatValue, SplatUndef,
SplatBitSize, HasAnyUndefs);
bool IsZero = IsCnst && SplatValue == 0;
bool IsOne =
IsCnst && SrcVT.getScalarSizeInBits() == SplatBitSize && SplatValue == 1;
bool IsMinusOne = IsCnst && SplatValue.isAllOnes();
if (SrcVT.getVectorElementType().isFloatingPoint()) {
switch (CC) {
default:
return SDValue();
case AArch64CC::NE: {
SDValue Fcmeq;
if (IsZero)
Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
else
Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
return DAG.getNOT(dl, Fcmeq, VT);
}
case AArch64CC::EQ:
if (IsZero)
return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
case AArch64CC::GE:
if (IsZero)
return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS);
return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS);
case AArch64CC::GT:
if (IsZero)
return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS);
return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS);
case AArch64CC::LE:
if (!NoNans)
return SDValue();
// If we ignore NaNs then we can use to the LS implementation.
[[fallthrough]];
case AArch64CC::LS:
if (IsZero)
return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS);
return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS);
case AArch64CC::LT:
if (!NoNans)
return SDValue();
// If we ignore NaNs then we can use to the MI implementation.
[[fallthrough]];
case AArch64CC::MI:
if (IsZero)
return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS);
return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS);
}
}
switch (CC) {
default:
return SDValue();
case AArch64CC::NE: {
SDValue Cmeq;
if (IsZero)
Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
else
Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
return DAG.getNOT(dl, Cmeq, VT);
}
case AArch64CC::EQ:
if (IsZero)
return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
case AArch64CC::GE:
if (IsZero)
return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS);
return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS);
case AArch64CC::GT:
if (IsZero)
return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS);
if (IsMinusOne)
return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS, RHS);
return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS);
case AArch64CC::LE:
if (IsZero)
return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS);
return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS);
case AArch64CC::LS:
return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS);
case AArch64CC::LO:
return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS);
case AArch64CC::LT:
if (IsZero)
return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS);
if (IsOne)
return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS);
return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS);
case AArch64CC::HI:
return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS);
case AArch64CC::HS:
return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS);
}
}
SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op,
SelectionDAG &DAG) const {
if (Op.getValueType().isScalableVector())
return LowerToPredicatedOp(Op, DAG, AArch64ISD::SETCC_MERGE_ZERO);
if (useSVEForFixedLengthVectorVT(Op.getOperand(0).getValueType(),
!Subtarget->isNeonAvailable()))
return LowerFixedLengthVectorSetccToSVE(Op, DAG);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
EVT CmpVT = LHS.getValueType().changeVectorElementTypeToInteger();
SDLoc dl(Op);
if (LHS.getValueType().getVectorElementType().isInteger()) {
assert(LHS.getValueType() == RHS.getValueType());
AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
SDValue Cmp =
EmitVectorComparison(LHS, RHS, AArch64CC, false, CmpVT, dl, DAG);
return DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
}
// Lower isnan(x) | isnan(never-nan) to x != x.
// Lower !isnan(x) & !isnan(never-nan) to x == x.
if (CC == ISD::SETUO || CC == ISD::SETO) {
bool OneNaN = false;
if (LHS == RHS) {
OneNaN = true;
} else if (DAG.isKnownNeverNaN(RHS)) {
OneNaN = true;
RHS = LHS;
} else if (DAG.isKnownNeverNaN(LHS)) {
OneNaN = true;
LHS = RHS;
}
if (OneNaN) {
CC = CC == ISD::SETUO ? ISD::SETUNE : ISD::SETOEQ;
}
}
const bool FullFP16 = DAG.getSubtarget<AArch64Subtarget>().hasFullFP16();
// Make v4f16 (only) fcmp operations utilise vector instructions
// v8f16 support will be a litle more complicated
if ((!FullFP16 && LHS.getValueType().getVectorElementType() == MVT::f16) ||
LHS.getValueType().getVectorElementType() == MVT::bf16) {
if (LHS.getValueType().getVectorNumElements() == 4) {
LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v4f32, LHS);
RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v4f32, RHS);
SDValue NewSetcc = DAG.getSetCC(dl, MVT::v4i16, LHS, RHS, CC);
DAG.ReplaceAllUsesWith(Op, NewSetcc);
CmpVT = MVT::v4i32;
} else
return SDValue();
}
assert((!FullFP16 && LHS.getValueType().getVectorElementType() != MVT::f16) ||
LHS.getValueType().getVectorElementType() != MVT::bf16 ||
LHS.getValueType().getVectorElementType() != MVT::f128);
// Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
// clean. Some of them require two branches to implement.
AArch64CC::CondCode CC1, CC2;
bool ShouldInvert;
changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert);
bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs();
SDValue Cmp =
EmitVectorComparison(LHS, RHS, CC1, NoNaNs, CmpVT, dl, DAG);
if (!Cmp.getNode())
return SDValue();
if (CC2 != AArch64CC::AL) {
SDValue Cmp2 =
EmitVectorComparison(LHS, RHS, CC2, NoNaNs, CmpVT, dl, DAG);
if (!Cmp2.getNode())
return SDValue();
Cmp = DAG.getNode(ISD::OR, dl, CmpVT, Cmp, Cmp2);
}
Cmp = DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
if (ShouldInvert)
Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType());
return Cmp;
}
static SDValue getReductionSDNode(unsigned Op, SDLoc DL, SDValue ScalarOp,
SelectionDAG &DAG) {
SDValue VecOp = ScalarOp.getOperand(0);
auto Rdx = DAG.getNode(Op, DL, VecOp.getSimpleValueType(), VecOp);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarOp.getValueType(), Rdx,
DAG.getConstant(0, DL, MVT::i64));
}
static SDValue getVectorBitwiseReduce(unsigned Opcode, SDValue Vec, EVT VT,
SDLoc DL, SelectionDAG &DAG) {
unsigned ScalarOpcode;
switch (Opcode) {
case ISD::VECREDUCE_AND:
ScalarOpcode = ISD::AND;
break;
case ISD::VECREDUCE_OR:
ScalarOpcode = ISD::OR;
break;
case ISD::VECREDUCE_XOR:
ScalarOpcode = ISD::XOR;
break;
default:
llvm_unreachable("Expected bitwise vector reduction");
return SDValue();
}
EVT VecVT = Vec.getValueType();
assert(VecVT.isFixedLengthVector() && VecVT.isPow2VectorType() &&
"Expected power-of-2 length vector");
EVT ElemVT = VecVT.getVectorElementType();
SDValue Result;
unsigned NumElems = VecVT.getVectorNumElements();
// Special case for boolean reductions
if (ElemVT == MVT::i1) {
// Split large vectors into smaller ones
if (NumElems > 16) {
SDValue Lo, Hi;
std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
EVT HalfVT = Lo.getValueType();
SDValue HalfVec = DAG.getNode(ScalarOpcode, DL, HalfVT, Lo, Hi);
return getVectorBitwiseReduce(Opcode, HalfVec, VT, DL, DAG);
}
// Vectors that are less than 64 bits get widened to neatly fit a 64 bit
// register, so e.g. <4 x i1> gets lowered to <4 x i16>. Sign extending to
// this element size leads to the best codegen, since e.g. setcc results
// might need to be truncated otherwise.
EVT ExtendedVT = MVT::getIntegerVT(std::max(64u / NumElems, 8u));
// any_ext doesn't work with umin/umax, so only use it for uadd.
unsigned ExtendOp =
ScalarOpcode == ISD::XOR ? ISD::ANY_EXTEND : ISD::SIGN_EXTEND;
SDValue Extended = DAG.getNode(
ExtendOp, DL, VecVT.changeVectorElementType(ExtendedVT), Vec);
switch (ScalarOpcode) {
case ISD::AND:
Result = DAG.getNode(ISD::VECREDUCE_UMIN, DL, ExtendedVT, Extended);
break;
case ISD::OR:
Result = DAG.getNode(ISD::VECREDUCE_UMAX, DL, ExtendedVT, Extended);
break;
case ISD::XOR:
Result = DAG.getNode(ISD::VECREDUCE_ADD, DL, ExtendedVT, Extended);
break;
default:
llvm_unreachable("Unexpected Opcode");
}
Result = DAG.getAnyExtOrTrunc(Result, DL, MVT::i1);
} else {
// Iteratively split the vector in half and combine using the bitwise
// operation until it fits in a 64 bit register.
while (VecVT.getSizeInBits() > 64) {
SDValue Lo, Hi;
std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
VecVT = Lo.getValueType();
NumElems = VecVT.getVectorNumElements();
Vec = DAG.getNode(ScalarOpcode, DL, VecVT, Lo, Hi);
}
EVT ScalarVT = EVT::getIntegerVT(*DAG.getContext(), VecVT.getSizeInBits());
// Do the remaining work on a scalar since it allows the code generator to
// combine the shift and bitwise operation into one instruction and since
// integer instructions can have higher throughput than vector instructions.
SDValue Scalar = DAG.getBitcast(ScalarVT, Vec);
// Iteratively combine the lower and upper halves of the scalar using the
// bitwise operation, halving the relevant region of the scalar in each
// iteration, until the relevant region is just one element of the original
// vector.
for (unsigned Shift = NumElems / 2; Shift > 0; Shift /= 2) {
SDValue ShiftAmount =
DAG.getConstant(Shift * ElemVT.getSizeInBits(), DL, MVT::i64);
SDValue Shifted =
DAG.getNode(ISD::SRL, DL, ScalarVT, Scalar, ShiftAmount);
Scalar = DAG.getNode(ScalarOpcode, DL, ScalarVT, Scalar, Shifted);
}
Result = DAG.getAnyExtOrTrunc(Scalar, DL, ElemVT);
}
return DAG.getAnyExtOrTrunc(Result, DL, VT);
}
SDValue AArch64TargetLowering::LowerVECREDUCE(SDValue Op,
SelectionDAG &DAG) const {
SDValue Src = Op.getOperand(0);
// Try to lower fixed length reductions to SVE.
EVT SrcVT = Src.getValueType();
bool OverrideNEON = !Subtarget->isNeonAvailable() ||
Op.getOpcode() == ISD::VECREDUCE_AND ||
Op.getOpcode() == ISD::VECREDUCE_OR ||
Op.getOpcode() == ISD::VECREDUCE_XOR ||
Op.getOpcode() == ISD::VECREDUCE_FADD ||
(Op.getOpcode() != ISD::VECREDUCE_ADD &&
SrcVT.getVectorElementType() == MVT::i64);
if (SrcVT.isScalableVector() ||
useSVEForFixedLengthVectorVT(
SrcVT, OverrideNEON && Subtarget->useSVEForFixedLengthVectors())) {
if (SrcVT.getVectorElementType() == MVT::i1)
return LowerPredReductionToSVE(Op, DAG);
switch (Op.getOpcode()) {
case ISD::VECREDUCE_ADD:
return LowerReductionToSVE(AArch64ISD::UADDV_PRED, Op, DAG);
case ISD::VECREDUCE_AND:
return LowerReductionToSVE(AArch64ISD::ANDV_PRED, Op, DAG);
case ISD::VECREDUCE_OR:
return LowerReductionToSVE(AArch64ISD::ORV_PRED, Op, DAG);
case ISD::VECREDUCE_SMAX:
return LowerReductionToSVE(AArch64ISD::SMAXV_PRED, Op, DAG);
case ISD::VECREDUCE_SMIN:
return LowerReductionToSVE(AArch64ISD::SMINV_PRED, Op, DAG);
case ISD::VECREDUCE_UMAX:
return LowerReductionToSVE(AArch64ISD::UMAXV_PRED, Op, DAG);
case ISD::VECREDUCE_UMIN:
return LowerReductionToSVE(AArch64ISD::UMINV_PRED, Op, DAG);
case ISD::VECREDUCE_XOR:
return LowerReductionToSVE(AArch64ISD::EORV_PRED, Op, DAG);
case ISD::VECREDUCE_FADD:
return LowerReductionToSVE(AArch64ISD::FADDV_PRED, Op, DAG);
case ISD::VECREDUCE_FMAX:
return LowerReductionToSVE(AArch64ISD::FMAXNMV_PRED, Op, DAG);
case ISD::VECREDUCE_FMIN:
return LowerReductionToSVE(AArch64ISD::FMINNMV_PRED, Op, DAG);
case ISD::VECREDUCE_FMAXIMUM:
return LowerReductionToSVE(AArch64ISD::FMAXV_PRED, Op, DAG);
case ISD::VECREDUCE_FMINIMUM:
return LowerReductionToSVE(AArch64ISD::FMINV_PRED, Op, DAG);
default:
llvm_unreachable("Unhandled fixed length reduction");
}
}
// Lower NEON reductions.
SDLoc dl(Op);
switch (Op.getOpcode()) {
case ISD::VECREDUCE_AND:
case ISD::VECREDUCE_OR:
case ISD::VECREDUCE_XOR:
return getVectorBitwiseReduce(Op.getOpcode(), Op.getOperand(0),
Op.getValueType(), dl, DAG);
case ISD::VECREDUCE_ADD:
return getReductionSDNode(AArch64ISD::UADDV, dl, Op, DAG);
case ISD::VECREDUCE_SMAX:
return getReductionSDNode(AArch64ISD::SMAXV, dl, Op, DAG);
case ISD::VECREDUCE_SMIN:
return getReductionSDNode(AArch64ISD::SMINV, dl, Op, DAG);
case ISD::VECREDUCE_UMAX:
return getReductionSDNode(AArch64ISD::UMAXV, dl, Op, DAG);
case ISD::VECREDUCE_UMIN:
return getReductionSDNode(AArch64ISD::UMINV, dl, Op, DAG);
default:
llvm_unreachable("Unhandled reduction");
}
}
SDValue AArch64TargetLowering::LowerATOMIC_LOAD_AND(SDValue Op,
SelectionDAG &DAG) const {
auto &Subtarget = DAG.getSubtarget<AArch64Subtarget>();
// No point replacing if we don't have the relevant instruction/libcall anyway
if (!Subtarget.hasLSE() && !Subtarget.outlineAtomics())
return SDValue();
// LSE has an atomic load-clear instruction, but not a load-and.
SDLoc dl(Op);
MVT VT = Op.getSimpleValueType();
assert(VT != MVT::i128 && "Handled elsewhere, code replicated.");
SDValue RHS = Op.getOperand(2);
AtomicSDNode *AN = cast<AtomicSDNode>(Op.getNode());
RHS = DAG.getNode(ISD::XOR, dl, VT, DAG.getAllOnesConstant(dl, VT), RHS);
return DAG.getAtomic(ISD::ATOMIC_LOAD_CLR, dl, AN->getMemoryVT(),
Op.getOperand(0), Op.getOperand(1), RHS,
AN->getMemOperand());
}
SDValue
AArch64TargetLowering::LowerWindowsDYNAMIC_STACKALLOC(SDValue Op,
SelectionDAG &DAG) const {
SDLoc dl(Op);
// Get the inputs.
SDNode *Node = Op.getNode();
SDValue Chain = Op.getOperand(0);
SDValue Size = Op.getOperand(1);
MaybeAlign Align =
cast<ConstantSDNode>(Op.getOperand(2))->getMaybeAlignValue();
EVT VT = Node->getValueType(0);
if (DAG.getMachineFunction().getFunction().hasFnAttribute(
"no-stack-arg-probe")) {
SDValue SP = DAG.getCopyFromReg(Chain, dl, AArch64::SP, MVT::i64);
Chain = SP.getValue(1);
SP = DAG.getNode(ISD::SUB, dl, MVT::i64, SP, Size);
if (Align)
SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
DAG.getConstant(-(uint64_t)Align->value(), dl, VT));
Chain = DAG.getCopyToReg(Chain, dl, AArch64::SP, SP);
SDValue Ops[2] = {SP, Chain};
return DAG.getMergeValues(Ops, dl);
}
Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDValue Callee = DAG.getTargetExternalSymbol(Subtarget->getChkStkName(),
PtrVT, 0);
const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
const uint32_t *Mask = TRI->getWindowsStackProbePreservedMask();
if (Subtarget->hasCustomCallingConv())
TRI->UpdateCustomCallPreservedMask(DAG.getMachineFunction(), &Mask);
Size = DAG.getNode(ISD::SRL, dl, MVT::i64, Size,
DAG.getConstant(4, dl, MVT::i64));
Chain = DAG.getCopyToReg(Chain, dl, AArch64::X15, Size, SDValue());
Chain =
DAG.getNode(AArch64ISD::CALL, dl, DAG.getVTList(MVT::Other, MVT::Glue),
Chain, Callee, DAG.getRegister(AArch64::X15, MVT::i64),
DAG.getRegisterMask(Mask), Chain.getValue(1));
// To match the actual intent better, we should read the output from X15 here
// again (instead of potentially spilling it to the stack), but rereading Size
// from X15 here doesn't work at -O0, since it thinks that X15 is undefined
// here.
Size = DAG.getNode(ISD::SHL, dl, MVT::i64, Size,
DAG.getConstant(4, dl, MVT::i64));
SDValue SP = DAG.getCopyFromReg(Chain, dl, AArch64::SP, MVT::i64);
Chain = SP.getValue(1);
SP = DAG.getNode(ISD::SUB, dl, MVT::i64, SP, Size);
if (Align)
SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
DAG.getConstant(-(uint64_t)Align->value(), dl, VT));
Chain = DAG.getCopyToReg(Chain, dl, AArch64::SP, SP);
Chain = DAG.getCALLSEQ_END(Chain, 0, 0, SDValue(), dl);
SDValue Ops[2] = {SP, Chain};
return DAG.getMergeValues(Ops, dl);
}
SDValue
AArch64TargetLowering::LowerInlineDYNAMIC_STACKALLOC(SDValue Op,
SelectionDAG &DAG) const {
// Get the inputs.
SDNode *Node = Op.getNode();
SDValue Chain = Op.getOperand(0);
SDValue Size = Op.getOperand(1);
MaybeAlign Align =
cast<ConstantSDNode>(Op.getOperand(2))->getMaybeAlignValue();
SDLoc dl(Op);
EVT VT = Node->getValueType(0);
// Construct the new SP value in a GPR.
SDValue SP = DAG.getCopyFromReg(Chain, dl, AArch64::SP, MVT::i64);
Chain = SP.getValue(1);
SP = DAG.getNode(ISD::SUB, dl, MVT::i64, SP, Size);
if (Align)
SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
DAG.getConstant(-(uint64_t)Align->value(), dl, VT));
// Set the real SP to the new value with a probing loop.
Chain = DAG.getNode(AArch64ISD::PROBED_ALLOCA, dl, MVT::Other, Chain, SP);
SDValue Ops[2] = {SP, Chain};
return DAG.getMergeValues(Ops, dl);
}
SDValue
AArch64TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
if (Subtarget->isTargetWindows())
return LowerWindowsDYNAMIC_STACKALLOC(Op, DAG);
else if (hasInlineStackProbe(MF))
return LowerInlineDYNAMIC_STACKALLOC(Op, DAG);
else
return SDValue();
}
SDValue AArch64TargetLowering::LowerAVG(SDValue Op, SelectionDAG &DAG,
unsigned NewOp) const {
if (Subtarget->hasSVE2())
return LowerToPredicatedOp(Op, DAG, NewOp);
// Default to expand.
return SDValue();
}
SDValue AArch64TargetLowering::LowerVSCALE(SDValue Op,
SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
assert(VT != MVT::i64 && "Expected illegal VSCALE node");
SDLoc DL(Op);
APInt MulImm = Op.getConstantOperandAPInt(0);
return DAG.getZExtOrTrunc(DAG.getVScale(DL, MVT::i64, MulImm.sext(64)), DL,
VT);
}
/// Set the IntrinsicInfo for the `aarch64_sve_st<N>` intrinsics.
template <unsigned NumVecs>
static bool
setInfoSVEStN(const AArch64TargetLowering &TLI, const DataLayout &DL,
AArch64TargetLowering::IntrinsicInfo &Info, const CallInst &CI) {
Info.opc = ISD::INTRINSIC_VOID;
// Retrieve EC from first vector argument.
const EVT VT = TLI.getMemValueType(DL, CI.getArgOperand(0)->getType());
ElementCount EC = VT.getVectorElementCount();
#ifndef NDEBUG
// Check the assumption that all input vectors are the same type.
for (unsigned I = 0; I < NumVecs; ++I)
assert(VT == TLI.getMemValueType(DL, CI.getArgOperand(I)->getType()) &&
"Invalid type.");
#endif
// memVT is `NumVecs * VT`.
Info.memVT = EVT::getVectorVT(CI.getType()->getContext(), VT.getScalarType(),
EC * NumVecs);
Info.ptrVal = CI.getArgOperand(CI.arg_size() - 1);
Info.offset = 0;
Info.align.reset();
Info.flags = MachineMemOperand::MOStore;
return true;
}
/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
/// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
/// specified in the intrinsic calls.
bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
const CallInst &I,
MachineFunction &MF,
unsigned Intrinsic) const {
auto &DL = I.getDataLayout();
switch (Intrinsic) {
case Intrinsic::aarch64_sve_st2:
return setInfoSVEStN<2>(*this, DL, Info, I);
case Intrinsic::aarch64_sve_st3:
return setInfoSVEStN<3>(*this, DL, Info, I);
case Intrinsic::aarch64_sve_st4:
return setInfoSVEStN<4>(*this, DL, Info, I);
case Intrinsic::aarch64_neon_ld2:
case Intrinsic::aarch64_neon_ld3:
case Intrinsic::aarch64_neon_ld4:
case Intrinsic::aarch64_neon_ld1x2:
case Intrinsic::aarch64_neon_ld1x3:
case Intrinsic::aarch64_neon_ld1x4: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
Info.ptrVal = I.getArgOperand(I.arg_size() - 1);
Info.offset = 0;
Info.align.reset();
// volatile loads with NEON intrinsics not supported
Info.flags = MachineMemOperand::MOLoad;
return true;
}
case Intrinsic::aarch64_neon_ld2lane:
case Intrinsic::aarch64_neon_ld3lane:
case Intrinsic::aarch64_neon_ld4lane:
case Intrinsic::aarch64_neon_ld2r:
case Intrinsic::aarch64_neon_ld3r:
case Intrinsic::aarch64_neon_ld4r: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
// ldx return struct with the same vec type
Type *RetTy = I.getType();
auto *StructTy = cast<StructType>(RetTy);
unsigned NumElts = StructTy->getNumElements();
Type *VecTy = StructTy->getElementType(0);
MVT EleVT = MVT::getVT(VecTy).getVectorElementType();
Info.memVT = EVT::getVectorVT(I.getType()->getContext(), EleVT, NumElts);
Info.ptrVal = I.getArgOperand(I.arg_size() - 1);
Info.offset = 0;
Info.align.reset();
// volatile loads with NEON intrinsics not supported
Info.flags = MachineMemOperand::MOLoad;
return true;
}
case Intrinsic::aarch64_neon_st2:
case Intrinsic::aarch64_neon_st3:
case Intrinsic::aarch64_neon_st4:
case Intrinsic::aarch64_neon_st1x2:
case Intrinsic::aarch64_neon_st1x3:
case Intrinsic::aarch64_neon_st1x4: {
Info.opc = ISD::INTRINSIC_VOID;
unsigned NumElts = 0;
for (const Value *Arg : I.args()) {
Type *ArgTy = Arg->getType();
if (!ArgTy->isVectorTy())
break;
NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
}
Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
Info.ptrVal = I.getArgOperand(I.arg_size() - 1);
Info.offset = 0;
Info.align.reset();
// volatile stores with NEON intrinsics not supported
Info.flags = MachineMemOperand::MOStore;
return true;
}
case Intrinsic::aarch64_neon_st2lane:
case Intrinsic::aarch64_neon_st3lane:
case Intrinsic::aarch64_neon_st4lane: {
Info.opc = ISD::INTRINSIC_VOID;
unsigned NumElts = 0;
// all the vector type is same
Type *VecTy = I.getArgOperand(0)->getType();
MVT EleVT = MVT::getVT(VecTy).getVectorElementType();
for (const Value *Arg : I.args()) {
Type *ArgTy = Arg->getType();
if (!ArgTy->isVectorTy())
break;
NumElts += 1;
}
Info.memVT = EVT::getVectorVT(I.getType()->getContext(), EleVT, NumElts);
Info.ptrVal = I.getArgOperand(I.arg_size() - 1);
Info.offset = 0;
Info.align.reset();
// volatile stores with NEON intrinsics not supported
Info.flags = MachineMemOperand::MOStore;
return true;
}
case Intrinsic::aarch64_ldaxr:
case Intrinsic::aarch64_ldxr: {
Type *ValTy = I.getParamElementType(0);
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::getVT(ValTy);
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.align = DL.getABITypeAlign(ValTy);
Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
return true;
}
case Intrinsic::aarch64_stlxr:
case Intrinsic::aarch64_stxr: {
Type *ValTy = I.getParamElementType(1);
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::getVT(ValTy);
Info.ptrVal = I.getArgOperand(1);
Info.offset = 0;
Info.align = DL.getABITypeAlign(ValTy);
Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
return true;
}
case Intrinsic::aarch64_ldaxp:
case Intrinsic::aarch64_ldxp:
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::i128;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.align = Align(16);
Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
return true;
case Intrinsic::aarch64_stlxp:
case Intrinsic::aarch64_stxp:
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::i128;
Info.ptrVal = I.getArgOperand(2);
Info.offset = 0;
Info.align = Align(16);
Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
return true;
case Intrinsic::aarch64_sve_ldnt1: {
Type *ElTy = cast<VectorType>(I.getType())->getElementType();
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::getVT(I.getType());
Info.ptrVal = I.getArgOperand(1);
Info.offset = 0;
Info.align = DL.getABITypeAlign(ElTy);
Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MONonTemporal;
return true;
}
case Intrinsic::aarch64_sve_stnt1: {
Type *ElTy =
cast<VectorType>(I.getArgOperand(0)->getType())->getElementType();
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::getVT(I.getOperand(0)->getType());
Info.ptrVal = I.getArgOperand(2);
Info.offset = 0;
Info.align = DL.getABITypeAlign(ElTy);
Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MONonTemporal;
return true;
}
case Intrinsic::aarch64_mops_memset_tag: {
Value *Dst = I.getArgOperand(0);
Value *Val = I.getArgOperand(1);
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::getVT(Val->getType());
Info.ptrVal = Dst;
Info.offset = 0;
Info.align = I.getParamAlign(0).valueOrOne();
Info.flags = MachineMemOperand::MOStore;
// The size of the memory being operated on is unknown at this point
Info.size = MemoryLocation::UnknownSize;
return true;
}
default:
break;
}
return false;
}
bool AArch64TargetLowering::shouldReduceLoadWidth(SDNode *Load,
ISD::LoadExtType ExtTy,
EVT NewVT) const {
// TODO: This may be worth removing. Check regression tests for diffs.
if (!TargetLoweringBase::shouldReduceLoadWidth(Load, ExtTy, NewVT))
return false;
// If we're reducing the load width in order to avoid having to use an extra
// instruction to do extension then it's probably a good idea.
if (ExtTy != ISD::NON_EXTLOAD)
return true;
// Don't reduce load width if it would prevent us from combining a shift into
// the offset.
MemSDNode *Mem = dyn_cast<MemSDNode>(Load);
assert(Mem);
const SDValue &Base = Mem->getBasePtr();
if (Base.getOpcode() == ISD::ADD &&
Base.getOperand(1).getOpcode() == ISD::SHL &&
Base.getOperand(1).hasOneUse() &&
Base.getOperand(1).getOperand(1).getOpcode() == ISD::Constant) {
// It's unknown whether a scalable vector has a power-of-2 bitwidth.
if (Mem->getMemoryVT().isScalableVector())
return false;
// The shift can be combined if it matches the size of the value being
// loaded (and so reducing the width would make it not match).
uint64_t ShiftAmount = Base.getOperand(1).getConstantOperandVal(1);
uint64_t LoadBytes = Mem->getMemoryVT().getSizeInBits()/8;
if (ShiftAmount == Log2_32(LoadBytes))
return false;
}
// We have no reason to disallow reducing the load width, so allow it.
return true;
}
// Treat a sext_inreg(extract(..)) as free if it has multiple uses.
bool AArch64TargetLowering::shouldRemoveRedundantExtend(SDValue Extend) const {
EVT VT = Extend.getValueType();
if ((VT == MVT::i64 || VT == MVT::i32) && Extend->use_size()) {
SDValue Extract = Extend.getOperand(0);
if (Extract.getOpcode() == ISD::ANY_EXTEND && Extract.hasOneUse())
Extract = Extract.getOperand(0);
if (Extract.getOpcode() == ISD::EXTRACT_VECTOR_ELT && Extract.hasOneUse()) {
EVT VecVT = Extract.getOperand(0).getValueType();
if (VecVT.getScalarType() == MVT::i8 || VecVT.getScalarType() == MVT::i16)
return false;
}
}
return true;
}
// Truncations from 64-bit GPR to 32-bit GPR is free.
bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
return false;
uint64_t NumBits1 = Ty1->getPrimitiveSizeInBits().getFixedValue();
uint64_t NumBits2 = Ty2->getPrimitiveSizeInBits().getFixedValue();
return NumBits1 > NumBits2;
}
bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
return false;
uint64_t NumBits1 = VT1.getFixedSizeInBits();
uint64_t NumBits2 = VT2.getFixedSizeInBits();
return NumBits1 > NumBits2;
}
/// Check if it is profitable to hoist instruction in then/else to if.
/// Not profitable if I and it's user can form a FMA instruction
/// because we prefer FMSUB/FMADD.
bool AArch64TargetLowering::isProfitableToHoist(Instruction *I) const {
if (I->getOpcode() != Instruction::FMul)
return true;
if (!I->hasOneUse())
return true;
Instruction *User = I->user_back();
if (!(User->getOpcode() == Instruction::FSub ||
User->getOpcode() == Instruction::FAdd))
return true;
const TargetOptions &Options = getTargetMachine().Options;
const Function *F = I->getFunction();
const DataLayout &DL = F->getDataLayout();
Type *Ty = User->getOperand(0)->getType();
return !(isFMAFasterThanFMulAndFAdd(*F, Ty) &&
isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) &&
(Options.AllowFPOpFusion == FPOpFusion::Fast ||
Options.UnsafeFPMath));
}
// All 32-bit GPR operations implicitly zero the high-half of the corresponding
// 64-bit GPR.
bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
return false;
unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
return NumBits1 == 32 && NumBits2 == 64;
}
bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
return false;
unsigned NumBits1 = VT1.getSizeInBits();
unsigned NumBits2 = VT2.getSizeInBits();
return NumBits1 == 32 && NumBits2 == 64;
}
bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
EVT VT1 = Val.getValueType();
if (isZExtFree(VT1, VT2)) {
return true;
}
if (Val.getOpcode() != ISD::LOAD)
return false;
// 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() &&
VT2.isSimple() && !VT2.isVector() && VT2.isInteger() &&
VT1.getSizeInBits() <= 32);
}
bool AArch64TargetLowering::isExtFreeImpl(const Instruction *Ext) const {
if (isa<FPExtInst>(Ext))
return false;
// Vector types are not free.
if (Ext->getType()->isVectorTy())
return false;
for (const Use &U : Ext->uses()) {
// The extension is free if we can fold it with a left shift in an
// addressing mode or an arithmetic operation: add, sub, and cmp.
// Is there a shift?
const Instruction *Instr = cast<Instruction>(U.getUser());
// Is this a constant shift?
switch (Instr->getOpcode()) {
case Instruction::Shl:
if (!isa<ConstantInt>(Instr->getOperand(1)))
return false;
break;
case Instruction::GetElementPtr: {
gep_type_iterator GTI = gep_type_begin(Instr);
auto &DL = Ext->getDataLayout();
std::advance(GTI, U.getOperandNo()-1);
Type *IdxTy = GTI.getIndexedType();
// This extension will end up with a shift because of the scaling factor.
// 8-bit sized types have a scaling factor of 1, thus a shift amount of 0.
// Get the shift amount based on the scaling factor:
// log2(sizeof(IdxTy)) - log2(8).
if (IdxTy->isScalableTy())
return false;
uint64_t ShiftAmt =
llvm::countr_zero(DL.getTypeStoreSizeInBits(IdxTy).getFixedValue()) -
3;
// Is the constant foldable in the shift of the addressing mode?
// I.e., shift amount is between 1 and 4 inclusive.
if (ShiftAmt == 0 || ShiftAmt > 4)
return false;
break;
}
case Instruction::Trunc:
// Check if this is a noop.
// trunc(sext ty1 to ty2) to ty1.
if (Instr->getType() == Ext->getOperand(0)->getType())
continue;
[[fallthrough]];
default:
return false;
}
// At this point we can use the bfm family, so this extension is free
// for that use.
}
return true;
}
static bool createTblShuffleMask(unsigned SrcWidth, unsigned DstWidth,
unsigned NumElts, bool IsLittleEndian,
SmallVectorImpl<int> &Mask) {
if (DstWidth % 8 != 0 || DstWidth <= 16 || DstWidth > 64)
return false;
assert(DstWidth % SrcWidth == 0 &&
"TBL lowering is not supported for a conversion instruction with this "
"source and destination element type.");
unsigned Factor = DstWidth / SrcWidth;
unsigned MaskLen = NumElts * Factor;
Mask.clear();
Mask.resize(MaskLen, NumElts);
unsigned SrcIndex = 0;
for (unsigned I = IsLittleEndian ? 0 : Factor - 1; I < MaskLen; I += Factor)
Mask[I] = SrcIndex++;
return true;
}
static Value *createTblShuffleForZExt(IRBuilderBase &Builder, Value *Op,
FixedVectorType *ZExtTy,
FixedVectorType *DstTy,
bool IsLittleEndian) {
auto *SrcTy = cast<FixedVectorType>(Op->getType());
unsigned NumElts = SrcTy->getNumElements();
auto SrcWidth = cast<IntegerType>(SrcTy->getElementType())->getBitWidth();
auto DstWidth = cast<IntegerType>(DstTy->getElementType())->getBitWidth();
SmallVector<int> Mask;
if (!createTblShuffleMask(SrcWidth, DstWidth, NumElts, IsLittleEndian, Mask))
return nullptr;
auto *FirstEltZero = Builder.CreateInsertElement(
PoisonValue::get(SrcTy), Builder.getIntN(SrcWidth, 0), uint64_t(0));
Value *Result = Builder.CreateShuffleVector(Op, FirstEltZero, Mask);
Result = Builder.CreateBitCast(Result, DstTy);
if (DstTy != ZExtTy)
Result = Builder.CreateZExt(Result, ZExtTy);
return Result;
}
static Value *createTblShuffleForSExt(IRBuilderBase &Builder, Value *Op,
FixedVectorType *DstTy,
bool IsLittleEndian) {
auto *SrcTy = cast<FixedVectorType>(Op->getType());
auto SrcWidth = cast<IntegerType>(SrcTy->getElementType())->getBitWidth();
auto DstWidth = cast<IntegerType>(DstTy->getElementType())->getBitWidth();
SmallVector<int> Mask;
if (!createTblShuffleMask(SrcWidth, DstWidth, SrcTy->getNumElements(),
!IsLittleEndian, Mask))
return nullptr;
auto *FirstEltZero = Builder.CreateInsertElement(
PoisonValue::get(SrcTy), Builder.getIntN(SrcWidth, 0), uint64_t(0));
return Builder.CreateShuffleVector(Op, FirstEltZero, Mask);
}
static void createTblForTrunc(TruncInst *TI, bool IsLittleEndian) {
IRBuilder<> Builder(TI);
SmallVector<Value *> Parts;
int NumElements = cast<FixedVectorType>(TI->getType())->getNumElements();
auto *SrcTy = cast<FixedVectorType>(TI->getOperand(0)->getType());
auto *DstTy = cast<FixedVectorType>(TI->getType());
assert(SrcTy->getElementType()->isIntegerTy() &&
"Non-integer type source vector element is not supported");
assert(DstTy->getElementType()->isIntegerTy(8) &&
"Unsupported destination vector element type");
unsigned SrcElemTySz =
cast<IntegerType>(SrcTy->getElementType())->getBitWidth();
unsigned DstElemTySz =
cast<IntegerType>(DstTy->getElementType())->getBitWidth();
assert((SrcElemTySz % DstElemTySz == 0) &&
"Cannot lower truncate to tbl instructions for a source element size "
"that is not divisible by the destination element size");
unsigned TruncFactor = SrcElemTySz / DstElemTySz;
assert((SrcElemTySz == 16 || SrcElemTySz == 32 || SrcElemTySz == 64) &&
"Unsupported source vector element type size");
Type *VecTy = FixedVectorType::get(Builder.getInt8Ty(), 16);
// Create a mask to choose every nth byte from the source vector table of
// bytes to create the truncated destination vector, where 'n' is the truncate
// ratio. For example, for a truncate from Yxi64 to Yxi8, choose
// 0,8,16,..Y*8th bytes for the little-endian format
SmallVector<Constant *, 16> MaskConst;
for (int Itr = 0; Itr < 16; Itr++) {
if (Itr < NumElements)
MaskConst.push_back(Builder.getInt8(
IsLittleEndian ? Itr * TruncFactor
: Itr * TruncFactor + (TruncFactor - 1)));
else
MaskConst.push_back(Builder.getInt8(255));
}
int MaxTblSz = 128 * 4;
int MaxSrcSz = SrcElemTySz * NumElements;
int ElemsPerTbl =
(MaxTblSz > MaxSrcSz) ? NumElements : (MaxTblSz / SrcElemTySz);
assert(ElemsPerTbl <= 16 &&
"Maximum elements selected using TBL instruction cannot exceed 16!");
int ShuffleCount = 128 / SrcElemTySz;
SmallVector<int> ShuffleLanes;
for (int i = 0; i < ShuffleCount; ++i)
ShuffleLanes.push_back(i);
// Create TBL's table of bytes in 1,2,3 or 4 FP/SIMD registers using shuffles
// over the source vector. If TBL's maximum 4 FP/SIMD registers are saturated,
// call TBL & save the result in a vector of TBL results for combining later.
SmallVector<Value *> Results;
while (ShuffleLanes.back() < NumElements) {
Parts.push_back(Builder.CreateBitCast(
Builder.CreateShuffleVector(TI->getOperand(0), ShuffleLanes), VecTy));
if (Parts.size() == 4) {
Parts.push_back(ConstantVector::get(MaskConst));
Results.push_back(
Builder.CreateIntrinsic(Intrinsic::aarch64_neon_tbl4, VecTy, Parts));
Parts.clear();
}
for (int i = 0; i < ShuffleCount; ++i)
ShuffleLanes[i] += ShuffleCount;
}
assert((Parts.empty() || Results.empty()) &&
"Lowering trunc for vectors requiring different TBL instructions is "
"not supported!");
// Call TBL for the residual table bytes present in 1,2, or 3 FP/SIMD
// registers
if (!Parts.empty()) {
Intrinsic::ID TblID;
switch (Parts.size()) {
case 1:
TblID = Intrinsic::aarch64_neon_tbl1;
break;
case 2:
TblID = Intrinsic::aarch64_neon_tbl2;
break;
case 3:
TblID = Intrinsic::aarch64_neon_tbl3;
break;
}
Parts.push_back(ConstantVector::get(MaskConst));
Results.push_back(Builder.CreateIntrinsic(TblID, VecTy, Parts));
}
// Extract the destination vector from TBL result(s) after combining them
// where applicable. Currently, at most two TBLs are supported.
assert(Results.size() <= 2 && "Trunc lowering does not support generation of "
"more than 2 tbl instructions!");
Value *FinalResult = Results[0];
if (Results.size() == 1) {
if (ElemsPerTbl < 16) {
SmallVector<int> FinalMask(ElemsPerTbl);
std::iota(FinalMask.begin(), FinalMask.end(), 0);
FinalResult = Builder.CreateShuffleVector(Results[0], FinalMask);
}
} else {
SmallVector<int> FinalMask(ElemsPerTbl * Results.size());
if (ElemsPerTbl < 16) {
std::iota(FinalMask.begin(), FinalMask.begin() + ElemsPerTbl, 0);
std::iota(FinalMask.begin() + ElemsPerTbl, FinalMask.end(), 16);
} else {
std::iota(FinalMask.begin(), FinalMask.end(), 0);
}
FinalResult =
Builder.CreateShuffleVector(Results[0], Results[1], FinalMask);
}
TI->replaceAllUsesWith(FinalResult);
TI->eraseFromParent();
}
bool AArch64TargetLowering::optimizeExtendOrTruncateConversion(
Instruction *I, Loop *L, const TargetTransformInfo &TTI) const {
// shuffle_vector instructions are serialized when targeting SVE,
// see LowerSPLAT_VECTOR. This peephole is not beneficial.
if (!EnableExtToTBL || Subtarget->useSVEForFixedLengthVectors())
return false;
// Try to optimize conversions using tbl. This requires materializing constant
// index vectors, which can increase code size and add loads. Skip the
// transform unless the conversion is in a loop block guaranteed to execute
// and we are not optimizing for size.
Function *F = I->getParent()->getParent();
if (!L || L->getHeader() != I->getParent() || F->hasMinSize() ||
F->hasOptSize())
return false;
auto *SrcTy = dyn_cast<FixedVectorType>(I->getOperand(0)->getType());
auto *DstTy = dyn_cast<FixedVectorType>(I->getType());
if (!SrcTy || !DstTy)
return false;
// Convert 'zext <Y x i8> %x to <Y x i8X>' to a shuffle that can be
// lowered to tbl instructions to insert the original i8 elements
// into i8x lanes. This is enabled for cases where it is beneficial.
auto *ZExt = dyn_cast<ZExtInst>(I);
if (ZExt && SrcTy->getElementType()->isIntegerTy(8)) {
auto DstWidth = DstTy->getElementType()->getScalarSizeInBits();
if (DstWidth % 8 != 0)
return false;
auto *TruncDstType =
cast<FixedVectorType>(VectorType::getTruncatedElementVectorType(DstTy));
// If the ZExt can be lowered to a single ZExt to the next power-of-2 and
// the remaining ZExt folded into the user, don't use tbl lowering.
auto SrcWidth = SrcTy->getElementType()->getScalarSizeInBits();
if (TTI.getCastInstrCost(I->getOpcode(), DstTy, TruncDstType,
TargetTransformInfo::getCastContextHint(I),
TTI::TCK_SizeAndLatency, I) == TTI::TCC_Free) {
if (SrcWidth * 2 >= TruncDstType->getElementType()->getScalarSizeInBits())
return false;
DstTy = TruncDstType;
}
// mul(zext(i8), sext) can be transformed into smull(zext, sext) which
// performs one extend implicitly. If DstWidth is at most 4 * SrcWidth, at
// most one extra extend step is needed and using tbl is not profitable.
if (SrcWidth * 4 <= DstWidth && I->hasOneUser()) {
auto *SingleUser = cast<Instruction>(*I->user_begin());
if (match(SingleUser, m_c_Mul(m_Specific(I), m_SExt(m_Value()))))
return false;
}
if (DstTy->getScalarSizeInBits() >= 64)
return false;
IRBuilder<> Builder(ZExt);
Value *Result = createTblShuffleForZExt(
Builder, ZExt->getOperand(0), cast<FixedVectorType>(ZExt->getType()),
DstTy, Subtarget->isLittleEndian());
if (!Result)
return false;
ZExt->replaceAllUsesWith(Result);
ZExt->eraseFromParent();
return true;
}
auto *UIToFP = dyn_cast<UIToFPInst>(I);
if (UIToFP && ((SrcTy->getElementType()->isIntegerTy(8) &&
DstTy->getElementType()->isFloatTy()) ||
(SrcTy->getElementType()->isIntegerTy(16) &&
DstTy->getElementType()->isDoubleTy()))) {
IRBuilder<> Builder(I);
Value *ZExt = createTblShuffleForZExt(
Builder, I->getOperand(0), FixedVectorType::getInteger(DstTy),
FixedVectorType::getInteger(DstTy), Subtarget->isLittleEndian());
assert(ZExt && "Cannot fail for the i8 to float conversion");
auto *UI = Builder.CreateUIToFP(ZExt, DstTy);
I->replaceAllUsesWith(UI);
I->eraseFromParent();
return true;
}
auto *SIToFP = dyn_cast<SIToFPInst>(I);
if (SIToFP && SrcTy->getElementType()->isIntegerTy(8) &&
DstTy->getElementType()->isFloatTy()) {
IRBuilder<> Builder(I);
auto *Shuffle = createTblShuffleForSExt(Builder, I->getOperand(0),
FixedVectorType::getInteger(DstTy),
Subtarget->isLittleEndian());
assert(Shuffle && "Cannot fail for the i8 to float conversion");
auto *Cast = Builder.CreateBitCast(Shuffle, VectorType::getInteger(DstTy));
auto *AShr = Builder.CreateAShr(Cast, 24, "", true);
auto *SI = Builder.CreateSIToFP(AShr, DstTy);
I->replaceAllUsesWith(SI);
I->eraseFromParent();
return true;
}
// Convert 'fptoui <(8|16) x float> to <(8|16) x i8>' to a wide fptoui
// followed by a truncate lowered to using tbl.4.
auto *FPToUI = dyn_cast<FPToUIInst>(I);
if (FPToUI &&
(SrcTy->getNumElements() == 8 || SrcTy->getNumElements() == 16) &&
SrcTy->getElementType()->isFloatTy() &&
DstTy->getElementType()->isIntegerTy(8)) {
IRBuilder<> Builder(I);
auto *WideConv = Builder.CreateFPToUI(FPToUI->getOperand(0),
VectorType::getInteger(SrcTy));
auto *TruncI = Builder.CreateTrunc(WideConv, DstTy);
I->replaceAllUsesWith(TruncI);
I->eraseFromParent();
createTblForTrunc(cast<TruncInst>(TruncI), Subtarget->isLittleEndian());
return true;
}
// Convert 'trunc <(8|16) x (i32|i64)> %x to <(8|16) x i8>' to an appropriate
// tbl instruction selecting the lowest/highest (little/big endian) 8 bits
// per lane of the input that is represented using 1,2,3 or 4 128-bit table
// registers
auto *TI = dyn_cast<TruncInst>(I);
if (TI && DstTy->getElementType()->isIntegerTy(8) &&
((SrcTy->getElementType()->isIntegerTy(32) ||
SrcTy->getElementType()->isIntegerTy(64)) &&
(SrcTy->getNumElements() == 16 || SrcTy->getNumElements() == 8))) {
createTblForTrunc(TI, Subtarget->isLittleEndian());
return true;
}
return false;
}
bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType,
Align &RequiredAligment) const {
if (!LoadedType.isSimple() ||
(!LoadedType.isInteger() && !LoadedType.isFloatingPoint()))
return false;
// Cyclone supports unaligned accesses.
RequiredAligment = Align(1);
unsigned NumBits = LoadedType.getSizeInBits();
return NumBits == 32 || NumBits == 64;
}
/// A helper function for determining the number of interleaved accesses we
/// will generate when lowering accesses of the given type.
unsigned AArch64TargetLowering::getNumInterleavedAccesses(
VectorType *VecTy, const DataLayout &DL, bool UseScalable) const {
unsigned VecSize = 128;
unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType());
unsigned MinElts = VecTy->getElementCount().getKnownMinValue();
if (UseScalable && isa<FixedVectorType>(VecTy))
VecSize = std::max(Subtarget->getMinSVEVectorSizeInBits(), 128u);
return std::max<unsigned>(1, (MinElts * ElSize + 127) / VecSize);
}
MachineMemOperand::Flags
AArch64TargetLowering::getTargetMMOFlags(const Instruction &I) const {
if (Subtarget->getProcFamily() == AArch64Subtarget::Falkor &&
I.hasMetadata(FALKOR_STRIDED_ACCESS_MD))
return MOStridedAccess;
return MachineMemOperand::MONone;
}
bool AArch64TargetLowering::isLegalInterleavedAccessType(
VectorType *VecTy, const DataLayout &DL, bool &UseScalable) const {
unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType());
auto EC = VecTy->getElementCount();
unsigned MinElts = EC.getKnownMinValue();
UseScalable = false;
if (isa<FixedVectorType>(VecTy) && !Subtarget->isNeonAvailable() &&
(!Subtarget->useSVEForFixedLengthVectors() ||
!getSVEPredPatternFromNumElements(MinElts)))
return false;
if (isa<ScalableVectorType>(VecTy) &&
!Subtarget->isSVEorStreamingSVEAvailable())
return false;
// Ensure the number of vector elements is greater than 1.
if (MinElts < 2)
return false;
// Ensure the element type is legal.
if (ElSize != 8 && ElSize != 16 && ElSize != 32 && ElSize != 64)
return false;
if (EC.isScalable()) {
UseScalable = true;
return isPowerOf2_32(MinElts) && (MinElts * ElSize) % 128 == 0;
}
unsigned VecSize = DL.getTypeSizeInBits(VecTy);
if (Subtarget->useSVEForFixedLengthVectors()) {
unsigned MinSVEVectorSize =
std::max(Subtarget->getMinSVEVectorSizeInBits(), 128u);
if (VecSize % MinSVEVectorSize == 0 ||
(VecSize < MinSVEVectorSize && isPowerOf2_32(MinElts) &&
(!Subtarget->isNeonAvailable() || VecSize > 128))) {
UseScalable = true;
return true;
}
}
// Ensure the total vector size is 64 or a multiple of 128. Types larger than
// 128 will be split into multiple interleaved accesses.
return Subtarget->isNeonAvailable() && (VecSize == 64 || VecSize % 128 == 0);
}
static ScalableVectorType *getSVEContainerIRType(FixedVectorType *VTy) {
if (VTy->getElementType() == Type::getDoubleTy(VTy->getContext()))
return ScalableVectorType::get(VTy->getElementType(), 2);
if (VTy->getElementType() == Type::getFloatTy(VTy->getContext()))
return ScalableVectorType::get(VTy->getElementType(), 4);
if (VTy->getElementType() == Type::getBFloatTy(VTy->getContext()))
return ScalableVectorType::get(VTy->getElementType(), 8);
if (VTy->getElementType() == Type::getHalfTy(VTy->getContext()))
return ScalableVectorType::get(VTy->getElementType(), 8);
if (VTy->getElementType() == Type::getInt64Ty(VTy->getContext()))
return ScalableVectorType::get(VTy->getElementType(), 2);
if (VTy->getElementType() == Type::getInt32Ty(VTy->getContext()))
return ScalableVectorType::get(VTy->getElementType(), 4);
if (VTy->getElementType() == Type::getInt16Ty(VTy->getContext()))
return ScalableVectorType::get(VTy->getElementType(), 8);
if (VTy->getElementType() == Type::getInt8Ty(VTy->getContext()))
return ScalableVectorType::get(VTy->getElementType(), 16);
llvm_unreachable("Cannot handle input vector type");
}
static Function *getStructuredLoadFunction(Module *M, unsigned Factor,
bool Scalable, Type *LDVTy,
Type *PtrTy) {
assert(Factor >= 2 && Factor <= 4 && "Invalid interleave factor");
static const Intrinsic::ID SVELoads[3] = {Intrinsic::aarch64_sve_ld2_sret,
Intrinsic::aarch64_sve_ld3_sret,
Intrinsic::aarch64_sve_ld4_sret};
static const Intrinsic::ID NEONLoads[3] = {Intrinsic::aarch64_neon_ld2,
Intrinsic::aarch64_neon_ld3,
Intrinsic::aarch64_neon_ld4};
if (Scalable)
return Intrinsic::getOrInsertDeclaration(M, SVELoads[Factor - 2], {LDVTy});
return Intrinsic::getOrInsertDeclaration(M, NEONLoads[Factor - 2],
{LDVTy, PtrTy});
}
static Function *getStructuredStoreFunction(Module *M, unsigned Factor,
bool Scalable, Type *STVTy,
Type *PtrTy) {
assert(Factor >= 2 && Factor <= 4 && "Invalid interleave factor");
static const Intrinsic::ID SVEStores[3] = {Intrinsic::aarch64_sve_st2,
Intrinsic::aarch64_sve_st3,
Intrinsic::aarch64_sve_st4};
static const Intrinsic::ID NEONStores[3] = {Intrinsic::aarch64_neon_st2,
Intrinsic::aarch64_neon_st3,
Intrinsic::aarch64_neon_st4};
if (Scalable)
return Intrinsic::getOrInsertDeclaration(M, SVEStores[Factor - 2], {STVTy});
return Intrinsic::getOrInsertDeclaration(M, NEONStores[Factor - 2],
{STVTy, PtrTy});
}
/// Lower an interleaved load into a ldN intrinsic.
///
/// E.g. Lower an interleaved load (Factor = 2):
/// %wide.vec = load <8 x i32>, <8 x i32>* %ptr
/// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements
/// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements
///
/// Into:
/// %ld2 = { <4 x i32>, <4 x i32> } call llvm.aarch64.neon.ld2(%ptr)
/// %vec0 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 0
/// %vec1 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 1
bool AArch64TargetLowering::lowerInterleavedLoad(
LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
ArrayRef<unsigned> Indices, unsigned Factor) const {
assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
"Invalid interleave factor");
assert(!Shuffles.empty() && "Empty shufflevector input");
assert(Shuffles.size() == Indices.size() &&
"Unmatched number of shufflevectors and indices");
const DataLayout &DL = LI->getDataLayout();
VectorType *VTy = Shuffles[0]->getType();
// Skip if we do not have NEON and skip illegal vector types. We can
// "legalize" wide vector types into multiple interleaved accesses as long as
// the vector types are divisible by 128.
bool UseScalable;
if (!isLegalInterleavedAccessType(VTy, DL, UseScalable))
return false;
// Check if the interleave is a zext(shuffle), that can be better optimized
// into shift / and masks. For the moment we do this just for uitofp (not
// zext) to avoid issues with widening instructions.
if (Shuffles.size() == 4 && all_of(Shuffles, [](ShuffleVectorInst *SI) {
return SI->hasOneUse() && match(SI->user_back(), m_UIToFP(m_Value())) &&
SI->getType()->getScalarSizeInBits() * 4 ==
SI->user_back()->getType()->getScalarSizeInBits();
}))
return false;
unsigned NumLoads = getNumInterleavedAccesses(VTy, DL, UseScalable);
auto *FVTy = cast<FixedVectorType>(VTy);
// A pointer vector can not be the return type of the ldN intrinsics. Need to
// load integer vectors first and then convert to pointer vectors.
Type *EltTy = FVTy->getElementType();
if (EltTy->isPointerTy())
FVTy =
FixedVectorType::get(DL.getIntPtrType(EltTy), FVTy->getNumElements());
// If we're going to generate more than one load, reset the sub-vector type
// to something legal.
FVTy = FixedVectorType::get(FVTy->getElementType(),
FVTy->getNumElements() / NumLoads);
auto *LDVTy =
UseScalable ? cast<VectorType>(getSVEContainerIRType(FVTy)) : FVTy;
IRBuilder<> Builder(LI);
// The base address of the load.
Value *BaseAddr = LI->getPointerOperand();
Type *PtrTy = LI->getPointerOperandType();
Type *PredTy = VectorType::get(Type::getInt1Ty(LDVTy->getContext()),
LDVTy->getElementCount());
Function *LdNFunc = getStructuredLoadFunction(LI->getModule(), Factor,
UseScalable, LDVTy, PtrTy);
// Holds sub-vectors extracted from the load intrinsic return values. The
// sub-vectors are associated with the shufflevector instructions they will
// replace.
DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs;
Value *PTrue = nullptr;
if (UseScalable) {
std::optional<unsigned> PgPattern =
getSVEPredPatternFromNumElements(FVTy->getNumElements());
if (Subtarget->getMinSVEVectorSizeInBits() ==
Subtarget->getMaxSVEVectorSizeInBits() &&
Subtarget->getMinSVEVectorSizeInBits() == DL.getTypeSizeInBits(FVTy))
PgPattern = AArch64SVEPredPattern::all;
auto *PTruePat =
ConstantInt::get(Type::getInt32Ty(LDVTy->getContext()), *PgPattern);
PTrue = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue, {PredTy},
{PTruePat});
}
for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) {
// If we're generating more than one load, compute the base address of
// subsequent loads as an offset from the previous.
if (LoadCount > 0)
BaseAddr = Builder.CreateConstGEP1_32(LDVTy->getElementType(), BaseAddr,
FVTy->getNumElements() * Factor);
CallInst *LdN;
if (UseScalable)
LdN = Builder.CreateCall(LdNFunc, {PTrue, BaseAddr}, "ldN");
else
LdN = Builder.CreateCall(LdNFunc, BaseAddr, "ldN");
// Extract and store the sub-vectors returned by the load intrinsic.
for (unsigned i = 0; i < Shuffles.size(); i++) {
ShuffleVectorInst *SVI = Shuffles[i];
unsigned Index = Indices[i];
Value *SubVec = Builder.CreateExtractValue(LdN, Index);
if (UseScalable)
SubVec = Builder.CreateExtractVector(
FVTy, SubVec,
ConstantInt::get(Type::getInt64Ty(VTy->getContext()), 0));
// Convert the integer vector to pointer vector if the element is pointer.
if (EltTy->isPointerTy())
SubVec = Builder.CreateIntToPtr(
SubVec, FixedVectorType::get(SVI->getType()->getElementType(),
FVTy->getNumElements()));
SubVecs[SVI].push_back(SubVec);
}
}
// Replace uses of the shufflevector instructions with the sub-vectors
// returned by the load intrinsic. If a shufflevector instruction is
// associated with more than one sub-vector, those sub-vectors will be
// concatenated into a single wide vector.
for (ShuffleVectorInst *SVI : Shuffles) {
auto &SubVec = SubVecs[SVI];
auto *WideVec =
SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0];
SVI->replaceAllUsesWith(WideVec);
}
return true;
}
template <typename Iter>
bool hasNearbyPairedStore(Iter It, Iter End, Value *Ptr, const DataLayout &DL) {
int MaxLookupDist = 20;
unsigned IdxWidth = DL.getIndexSizeInBits(0);
APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0);
const Value *PtrA1 =
Ptr->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
while (++It != End) {
if (It->isDebugOrPseudoInst())
continue;
if (MaxLookupDist-- == 0)
break;
if (const auto *SI = dyn_cast<StoreInst>(&*It)) {
const Value *PtrB1 =
SI->getPointerOperand()->stripAndAccumulateInBoundsConstantOffsets(
DL, OffsetB);
if (PtrA1 == PtrB1 &&
(OffsetA.sextOrTrunc(IdxWidth) - OffsetB.sextOrTrunc(IdxWidth))
.abs() == 16)
return true;
}
}
return false;
}
/// Lower an interleaved store into a stN intrinsic.
///
/// E.g. Lower an interleaved store (Factor = 3):
/// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
/// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
/// store <12 x i32> %i.vec, <12 x i32>* %ptr
///
/// Into:
/// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
/// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
/// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
/// call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)
///
/// Note that the new shufflevectors will be removed and we'll only generate one
/// st3 instruction in CodeGen.
///
/// Example for a more general valid mask (Factor 3). Lower:
/// %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
/// <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
/// store <12 x i32> %i.vec, <12 x i32>* %ptr
///
/// Into:
/// %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
/// %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
/// %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
/// call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)
bool AArch64TargetLowering::lowerInterleavedStore(StoreInst *SI,
ShuffleVectorInst *SVI,
unsigned Factor) const {
assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
"Invalid interleave factor");
auto *VecTy = cast<FixedVectorType>(SVI->getType());
assert(VecTy->getNumElements() % Factor == 0 && "Invalid interleaved store");
unsigned LaneLen = VecTy->getNumElements() / Factor;
Type *EltTy = VecTy->getElementType();
auto *SubVecTy = FixedVectorType::get(EltTy, LaneLen);
const DataLayout &DL = SI->getDataLayout();
bool UseScalable;
// Skip if we do not have NEON and skip illegal vector types. We can
// "legalize" wide vector types into multiple interleaved accesses as long as
// the vector types are divisible by 128.
if (!isLegalInterleavedAccessType(SubVecTy, DL, UseScalable))
return false;
unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL, UseScalable);
Value *Op0 = SVI->getOperand(0);
Value *Op1 = SVI->getOperand(1);
IRBuilder<> Builder(SI);
// StN intrinsics don't support pointer vectors as arguments. Convert pointer
// vectors to integer vectors.
if (EltTy->isPointerTy()) {
Type *IntTy = DL.getIntPtrType(EltTy);
unsigned NumOpElts =
cast<FixedVectorType>(Op0->getType())->getNumElements();
// Convert to the corresponding integer vector.
auto *IntVecTy = FixedVectorType::get(IntTy, NumOpElts);
Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
SubVecTy = FixedVectorType::get(IntTy, LaneLen);
}
// If we're going to generate more than one store, reset the lane length
// and sub-vector type to something legal.
LaneLen /= NumStores;
SubVecTy = FixedVectorType::get(SubVecTy->getElementType(), LaneLen);
auto *STVTy = UseScalable ? cast<VectorType>(getSVEContainerIRType(SubVecTy))
: SubVecTy;
// The base address of the store.
Value *BaseAddr = SI->getPointerOperand();
auto Mask = SVI->getShuffleMask();
// Sanity check if all the indices are NOT in range.
// If mask is `poison`, `Mask` may be a vector of -1s.
// If all of them are `poison`, OOB read will happen later.
if (llvm::all_of(Mask, [](int Idx) { return Idx == PoisonMaskElem; })) {
return false;
}
// A 64bit st2 which does not start at element 0 will involved adding extra
// ext elements making the st2 unprofitable, and if there is a nearby store
// that points to BaseAddr+16 or BaseAddr-16 then it can be better left as a
// zip;ldp pair which has higher throughput.
if (Factor == 2 && SubVecTy->getPrimitiveSizeInBits() == 64 &&
(Mask[0] != 0 ||
hasNearbyPairedStore(SI->getIterator(), SI->getParent()->end(), BaseAddr,
DL) ||
hasNearbyPairedStore(SI->getReverseIterator(), SI->getParent()->rend(),
BaseAddr, DL)))
return false;
Type *PtrTy = SI->getPointerOperandType();
Type *PredTy = VectorType::get(Type::getInt1Ty(STVTy->getContext()),
STVTy->getElementCount());
Function *StNFunc = getStructuredStoreFunction(SI->getModule(), Factor,
UseScalable, STVTy, PtrTy);
Value *PTrue = nullptr;
if (UseScalable) {
std::optional<unsigned> PgPattern =
getSVEPredPatternFromNumElements(SubVecTy->getNumElements());
if (Subtarget->getMinSVEVectorSizeInBits() ==
Subtarget->getMaxSVEVectorSizeInBits() &&
Subtarget->getMinSVEVectorSizeInBits() ==
DL.getTypeSizeInBits(SubVecTy))
PgPattern = AArch64SVEPredPattern::all;
auto *PTruePat =
ConstantInt::get(Type::getInt32Ty(STVTy->getContext()), *PgPattern);
PTrue = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue, {PredTy},
{PTruePat});
}
for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) {
SmallVector<Value *, 5> Ops;
// Split the shufflevector operands into sub vectors for the new stN call.
for (unsigned i = 0; i < Factor; i++) {
Value *Shuffle;
unsigned IdxI = StoreCount * LaneLen * Factor + i;
if (Mask[IdxI] >= 0) {
Shuffle = Builder.CreateShuffleVector(
Op0, Op1, createSequentialMask(Mask[IdxI], LaneLen, 0));
} else {
unsigned StartMask = 0;
for (unsigned j = 1; j < LaneLen; j++) {
unsigned IdxJ = StoreCount * LaneLen * Factor + j * Factor + i;
if (Mask[IdxJ] >= 0) {
StartMask = Mask[IdxJ] - j;
break;
}
}
// Note: Filling undef gaps with random elements is ok, since
// those elements were being written anyway (with undefs).
// In the case of all undefs we're defaulting to using elems from 0
// Note: StartMask cannot be negative, it's checked in
// isReInterleaveMask
Shuffle = Builder.CreateShuffleVector(
Op0, Op1, createSequentialMask(StartMask, LaneLen, 0));
}
if (UseScalable)
Shuffle = Builder.CreateInsertVector(
STVTy, UndefValue::get(STVTy), Shuffle,
ConstantInt::get(Type::getInt64Ty(STVTy->getContext()), 0));
Ops.push_back(Shuffle);
}
if (UseScalable)
Ops.push_back(PTrue);
// If we generating more than one store, we compute the base address of
// subsequent stores as an offset from the previous.
if (StoreCount > 0)
BaseAddr = Builder.CreateConstGEP1_32(SubVecTy->getElementType(),
BaseAddr, LaneLen * Factor);
Ops.push_back(BaseAddr);
Builder.CreateCall(StNFunc, Ops);
}
return true;
}
bool getDeinterleave2Values(
Value *DI, SmallVectorImpl<Instruction *> &DeinterleavedValues,
SmallVectorImpl<Instruction *> &DeInterleaveDeadInsts) {
if (!DI->hasNUses(2))
return false;
auto *Extr1 = dyn_cast<ExtractValueInst>(*(DI->user_begin()));
auto *Extr2 = dyn_cast<ExtractValueInst>(*(++DI->user_begin()));
if (!Extr1 || !Extr2)
return false;
DeinterleavedValues.resize(2);
// Place the values into the vector in the order of extraction:
DeinterleavedValues[0x1 & (Extr1->getIndices()[0])] = Extr1;
DeinterleavedValues[0x1 & (Extr2->getIndices()[0])] = Extr2;
if (!DeinterleavedValues[0] || !DeinterleavedValues[1])
return false;
// Make sure that the extracted values match the deinterleave tree pattern
if (!match(DeinterleavedValues[0], m_ExtractValue<0>((m_Specific(DI)))) ||
!match(DeinterleavedValues[1], m_ExtractValue<1>((m_Specific(DI))))) {
LLVM_DEBUG(dbgs() << "matching deinterleave2 failed\n");
return false;
}
// DeinterleavedValues will be replace by output of ld2
DeInterleaveDeadInsts.insert(DeInterleaveDeadInsts.end(),
DeinterleavedValues.begin(),
DeinterleavedValues.end());
return true;
}
/*
DeinterleaveIntrinsic tree:
[DI]
/ \
[Extr<0>] [Extr<1>]
| |
[DI] [DI]
/ \ / \
[Extr<0>][Extr<1>] [Extr<0>][Extr<1>]
| | | |
roots: A C B D
roots in correct order of DI4 will be: A B C D.
Returns true if `DI` is the top of an IR tree that represents a theoretical
vector.deinterleave4 intrinsic. When true is returned, \p `DeinterleavedValues`
vector is populated with the results such an intrinsic would return: (i.e. {A,
B, C, D } = vector.deinterleave4(...))
*/
bool getDeinterleave4Values(
Value *DI, SmallVectorImpl<Instruction *> &DeinterleavedValues,
SmallVectorImpl<Instruction *> &DeInterleaveDeadInsts) {
if (!DI->hasNUses(2))
return false;
auto *Extr1 = dyn_cast<ExtractValueInst>(*(DI->user_begin()));
auto *Extr2 = dyn_cast<ExtractValueInst>(*(++DI->user_begin()));
if (!Extr1 || !Extr2)
return false;
if (!Extr1->hasOneUse() || !Extr2->hasOneUse())
return false;
auto *DI1 = *(Extr1->user_begin());
auto *DI2 = *(Extr2->user_begin());
if (!DI1->hasNUses(2) || !DI2->hasNUses(2))
return false;
// Leaf nodes of the deinterleave tree:
auto *A = dyn_cast<ExtractValueInst>(*(DI1->user_begin()));
auto *C = dyn_cast<ExtractValueInst>(*(++DI1->user_begin()));
auto *B = dyn_cast<ExtractValueInst>(*(DI2->user_begin()));
auto *D = dyn_cast<ExtractValueInst>(*(++DI2->user_begin()));
// Make sure that the A,B,C and D are ExtractValue instructions before getting
// the extract index
if (!A || !B || !C || !D)
return false;
DeinterleavedValues.resize(4);
// Place the values into the vector in the order of deinterleave4:
DeinterleavedValues[0x3 &
((A->getIndices()[0] * 2) + Extr1->getIndices()[0])] = A;
DeinterleavedValues[0x3 &
((B->getIndices()[0] * 2) + Extr2->getIndices()[0])] = B;
DeinterleavedValues[0x3 &
((C->getIndices()[0] * 2) + Extr1->getIndices()[0])] = C;
DeinterleavedValues[0x3 &
((D->getIndices()[0] * 2) + Extr2->getIndices()[0])] = D;
if (!DeinterleavedValues[0] || !DeinterleavedValues[1] ||
!DeinterleavedValues[2] || !DeinterleavedValues[3])
return false;
// Make sure that A,B,C,D match the deinterleave tree pattern
if (!match(DeinterleavedValues[0], m_ExtractValue<0>(m_Deinterleave2(
m_ExtractValue<0>(m_Specific(DI))))) ||
!match(DeinterleavedValues[1], m_ExtractValue<0>(m_Deinterleave2(
m_ExtractValue<1>(m_Specific(DI))))) ||
!match(DeinterleavedValues[2], m_ExtractValue<1>(m_Deinterleave2(
m_ExtractValue<0>(m_Specific(DI))))) ||
!match(DeinterleavedValues[3], m_ExtractValue<1>(m_Deinterleave2(
m_ExtractValue<1>(m_Specific(DI)))))) {
LLVM_DEBUG(dbgs() << "matching deinterleave4 failed\n");
return false;
}
// These Values will not be used anymore,
// DI4 will be created instead of nested DI1 and DI2
DeInterleaveDeadInsts.insert(DeInterleaveDeadInsts.end(),
DeinterleavedValues.begin(),
DeinterleavedValues.end());
DeInterleaveDeadInsts.push_back(cast<Instruction>(DI1));
DeInterleaveDeadInsts.push_back(cast<Instruction>(Extr1));
DeInterleaveDeadInsts.push_back(cast<Instruction>(DI2));
DeInterleaveDeadInsts.push_back(cast<Instruction>(Extr2));
return true;
}
bool getDeinterleavedValues(
Value *DI, SmallVectorImpl<Instruction *> &DeinterleavedValues,
SmallVectorImpl<Instruction *> &DeInterleaveDeadInsts) {
if (getDeinterleave4Values(DI, DeinterleavedValues, DeInterleaveDeadInsts))
return true;
return getDeinterleave2Values(DI, DeinterleavedValues, DeInterleaveDeadInsts);
}
bool AArch64TargetLowering::lowerDeinterleaveIntrinsicToLoad(
IntrinsicInst *DI, LoadInst *LI,
SmallVectorImpl<Instruction *> &DeadInsts) const {
// Only deinterleave2 supported at present.
if (DI->getIntrinsicID() != Intrinsic::vector_deinterleave2)
return false;
SmallVector<Instruction *, 4> DeinterleavedValues;
SmallVector<Instruction *, 8> DeInterleaveDeadInsts;
if (!getDeinterleavedValues(DI, DeinterleavedValues, DeInterleaveDeadInsts)) {
LLVM_DEBUG(dbgs() << "Matching ld2 and ld4 patterns failed\n");
return false;
}
unsigned Factor = DeinterleavedValues.size();
assert((Factor == 2 || Factor == 4) &&
"Currently supported Factor is 2 or 4 only");
VectorType *VTy = cast<VectorType>(DeinterleavedValues[0]->getType());
const DataLayout &DL = DI->getModule()->getDataLayout();
bool UseScalable;
if (!isLegalInterleavedAccessType(VTy, DL, UseScalable))
return false;
// TODO: Add support for using SVE instructions with fixed types later, using
// the code from lowerInterleavedLoad to obtain the correct container type.
if (UseScalable && !VTy->isScalableTy())
return false;
unsigned NumLoads = getNumInterleavedAccesses(VTy, DL, UseScalable);
VectorType *LdTy =
VectorType::get(VTy->getElementType(),
VTy->getElementCount().divideCoefficientBy(NumLoads));
Type *PtrTy = LI->getPointerOperandType();
Function *LdNFunc = getStructuredLoadFunction(DI->getModule(), Factor,
UseScalable, LdTy, PtrTy);
IRBuilder<> Builder(LI);
Value *Pred = nullptr;
if (UseScalable)
Pred =
Builder.CreateVectorSplat(LdTy->getElementCount(), Builder.getTrue());
Value *BaseAddr = LI->getPointerOperand();
if (NumLoads > 1) {
// Create multiple legal small ldN.
SmallVector<Value *, 4> ExtractedLdValues(Factor, PoisonValue::get(VTy));
for (unsigned I = 0; I < NumLoads; ++I) {
Value *Offset = Builder.getInt64(I * Factor);
Value *Address = Builder.CreateGEP(LdTy, BaseAddr, {Offset});
Value *LdN = nullptr;
if (UseScalable)
LdN = Builder.CreateCall(LdNFunc, {Pred, Address}, "ldN");
else
LdN = Builder.CreateCall(LdNFunc, Address, "ldN");
Value *Idx =
Builder.getInt64(I * LdTy->getElementCount().getKnownMinValue());
for (unsigned J = 0; J < Factor; ++J) {
ExtractedLdValues[J] = Builder.CreateInsertVector(
VTy, ExtractedLdValues[J], Builder.CreateExtractValue(LdN, J), Idx);
}
LLVM_DEBUG(dbgs() << "LdN4 res: "; LdN->dump());
}
// Replace output of deinterleave2 intrinsic by output of ldN2/ldN4
for (unsigned J = 0; J < Factor; ++J)
DeinterleavedValues[J]->replaceAllUsesWith(ExtractedLdValues[J]);
} else {
Value *Result;
if (UseScalable)
Result = Builder.CreateCall(LdNFunc, {Pred, BaseAddr}, "ldN");
else
Result = Builder.CreateCall(LdNFunc, BaseAddr, "ldN");
// Replace output of deinterleave2 intrinsic by output of ldN2/ldN4
for (unsigned I = 0; I < Factor; I++) {
Value *NewExtract = Builder.CreateExtractValue(Result, I);
DeinterleavedValues[I]->replaceAllUsesWith(NewExtract);
}
}
DeadInsts.insert(DeadInsts.end(), DeInterleaveDeadInsts.begin(),
DeInterleaveDeadInsts.end());
return true;
}
/*
InterleaveIntrinsic tree.
A C B D
\ / \ /
[II] [II]
\ /
[II]
values in correct order of interleave4: A B C D.
Returns true if `II` is the root of an IR tree that represents a theoretical
vector.interleave4 intrinsic. When true is returned, \p `InterleavedValues`
vector is populated with the inputs such an intrinsic would take: (i.e.
vector.interleave4(A, B, C, D)).
*/
bool getValuesToInterleave(
Value *II, SmallVectorImpl<Value *> &InterleavedValues,
SmallVectorImpl<Instruction *> &InterleaveDeadInsts) {
Value *A, *B, *C, *D;
// Try to match interleave of Factor 4
if (match(II, m_Interleave2(m_Interleave2(m_Value(A), m_Value(C)),
m_Interleave2(m_Value(B), m_Value(D))))) {
InterleavedValues.push_back(A);
InterleavedValues.push_back(B);
InterleavedValues.push_back(C);
InterleavedValues.push_back(D);
// intermediate II will not be needed anymore
InterleaveDeadInsts.push_back(
cast<Instruction>(cast<Instruction>(II)->getOperand(0)));
InterleaveDeadInsts.push_back(
cast<Instruction>(cast<Instruction>(II)->getOperand(1)));
return true;
}
// Try to match interleave of Factor 2
if (match(II, m_Interleave2(m_Value(A), m_Value(B)))) {
InterleavedValues.push_back(A);
InterleavedValues.push_back(B);
return true;
}
return false;
}
bool AArch64TargetLowering::lowerInterleaveIntrinsicToStore(
IntrinsicInst *II, StoreInst *SI,
SmallVectorImpl<Instruction *> &DeadInsts) const {
// Only interleave2 supported at present.
if (II->getIntrinsicID() != Intrinsic::vector_interleave2)
return false;
SmallVector<Value *, 4> InterleavedValues;
SmallVector<Instruction *, 2> InterleaveDeadInsts;
if (!getValuesToInterleave(II, InterleavedValues, InterleaveDeadInsts)) {
LLVM_DEBUG(dbgs() << "Matching st2 and st4 patterns failed\n");
return false;
}
unsigned Factor = InterleavedValues.size();
assert((Factor == 2 || Factor == 4) &&
"Currently supported Factor is 2 or 4 only");
VectorType *VTy = cast<VectorType>(InterleavedValues[0]->getType());
const DataLayout &DL = II->getModule()->getDataLayout();
bool UseScalable;
if (!isLegalInterleavedAccessType(VTy, DL, UseScalable))
return false;
// TODO: Add support for using SVE instructions with fixed types later, using
// the code from lowerInterleavedStore to obtain the correct container type.
if (UseScalable && !VTy->isScalableTy())
return false;
unsigned NumStores = getNumInterleavedAccesses(VTy, DL, UseScalable);
VectorType *StTy =
VectorType::get(VTy->getElementType(),
VTy->getElementCount().divideCoefficientBy(NumStores));
Type *PtrTy = SI->getPointerOperandType();
Function *StNFunc = getStructuredStoreFunction(SI->getModule(), Factor,
UseScalable, StTy, PtrTy);
IRBuilder<> Builder(SI);
Value *BaseAddr = SI->getPointerOperand();
Value *Pred = nullptr;
if (UseScalable)
Pred =
Builder.CreateVectorSplat(StTy->getElementCount(), Builder.getTrue());
auto ExtractedValues = InterleavedValues;
if (UseScalable)
InterleavedValues.push_back(Pred);
InterleavedValues.push_back(BaseAddr);
for (unsigned I = 0; I < NumStores; ++I) {
Value *Address = BaseAddr;
if (NumStores > 1) {
Value *Offset = Builder.getInt64(I * Factor);
Address = Builder.CreateGEP(StTy, BaseAddr, {Offset});
Value *Idx =
Builder.getInt64(I * StTy->getElementCount().getKnownMinValue());
for (unsigned J = 0; J < Factor; J++) {
InterleavedValues[J] =
Builder.CreateExtractVector(StTy, ExtractedValues[J], Idx);
}
// update the address
InterleavedValues[InterleavedValues.size() - 1] = Address;
}
Builder.CreateCall(StNFunc, InterleavedValues);
}
DeadInsts.insert(DeadInsts.end(), InterleaveDeadInsts.begin(),
InterleaveDeadInsts.end());
return true;
}
EVT AArch64TargetLowering::getOptimalMemOpType(
const MemOp &Op, const AttributeList &FuncAttributes) const {
bool CanImplicitFloat = !FuncAttributes.hasFnAttr(Attribute::NoImplicitFloat);
bool CanUseNEON = Subtarget->hasNEON() && CanImplicitFloat;
bool CanUseFP = Subtarget->hasFPARMv8() && CanImplicitFloat;
// Only use AdvSIMD to implement memset of 32-byte and above. It would have
// taken one instruction to materialize the v2i64 zero and one store (with
// restrictive addressing mode). Just do i64 stores.
bool IsSmallMemset = Op.isMemset() && Op.size() < 32;
auto AlignmentIsAcceptable = [&](EVT VT, Align AlignCheck) {
if (Op.isAligned(AlignCheck))
return true;
unsigned Fast;
return allowsMisalignedMemoryAccesses(VT, 0, Align(1),
MachineMemOperand::MONone, &Fast) &&
Fast;
};
if (CanUseNEON && Op.isMemset() && !IsSmallMemset &&
AlignmentIsAcceptable(MVT::v16i8, Align(16)))
return MVT::v16i8;
if (CanUseFP && !IsSmallMemset && AlignmentIsAcceptable(MVT::f128, Align(16)))
return MVT::f128;
if (Op.size() >= 8 && AlignmentIsAcceptable(MVT::i64, Align(8)))
return MVT::i64;
if (Op.size() >= 4 && AlignmentIsAcceptable(MVT::i32, Align(4)))
return MVT::i32;
return MVT::Other;
}
LLT AArch64TargetLowering::getOptimalMemOpLLT(
const MemOp &Op, const AttributeList &FuncAttributes) const {
bool CanImplicitFloat = !FuncAttributes.hasFnAttr(Attribute::NoImplicitFloat);
bool CanUseNEON = Subtarget->hasNEON() && CanImplicitFloat;
bool CanUseFP = Subtarget->hasFPARMv8() && CanImplicitFloat;
// Only use AdvSIMD to implement memset of 32-byte and above. It would have
// taken one instruction to materialize the v2i64 zero and one store (with
// restrictive addressing mode). Just do i64 stores.
bool IsSmallMemset = Op.isMemset() && Op.size() < 32;
auto AlignmentIsAcceptable = [&](EVT VT, Align AlignCheck) {
if (Op.isAligned(AlignCheck))
return true;
unsigned Fast;
return allowsMisalignedMemoryAccesses(VT, 0, Align(1),
MachineMemOperand::MONone, &Fast) &&
Fast;
};
if (CanUseNEON && Op.isMemset() && !IsSmallMemset &&
AlignmentIsAcceptable(MVT::v2i64, Align(16)))
return LLT::fixed_vector(2, 64);
if (CanUseFP && !IsSmallMemset && AlignmentIsAcceptable(MVT::f128, Align(16)))
return LLT::scalar(128);
if (Op.size() >= 8 && AlignmentIsAcceptable(MVT::i64, Align(8)))
return LLT::scalar(64);
if (Op.size() >= 4 && AlignmentIsAcceptable(MVT::i32, Align(4)))
return LLT::scalar(32);
return LLT();
}
// 12-bit optionally shifted immediates are legal for adds.
bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const {
if (Immed == std::numeric_limits<int64_t>::min()) {
LLVM_DEBUG(dbgs() << "Illegal add imm " << Immed
<< ": avoid UB for INT64_MIN\n");
return false;
}
// Same encoding for add/sub, just flip the sign.
Immed = std::abs(Immed);
bool IsLegal = ((Immed >> 12) == 0 ||
((Immed & 0xfff) == 0 && Immed >> 24 == 0));
LLVM_DEBUG(dbgs() << "Is " << Immed
<< " legal add imm: " << (IsLegal ? "yes" : "no") << "\n");
return IsLegal;
}
bool AArch64TargetLowering::isLegalAddScalableImmediate(int64_t Imm) const {
// We will only emit addvl/inc* instructions for SVE2
if (!Subtarget->hasSVE2())
return false;
// addvl's immediates are in terms of the number of bytes in a register.
// Since there are 16 in the base supported size (128bits), we need to
// divide the immediate by that much to give us a useful immediate to
// multiply by vscale. We can't have a remainder as a result of this.
if (Imm % 16 == 0)
return isInt<6>(Imm / 16);
// Inc[b|h|w|d] instructions take a pattern and a positive immediate
// multiplier. For now, assume a pattern of 'all'. Incb would be a subset
// of addvl as a result, so only take h|w|d into account.
// Dec[h|w|d] will cover subtractions.
// Immediates are in the range [1,16], so we can't do a 2's complement check.
// FIXME: Can we make use of other patterns to cover other immediates?
// inch|dech
if (Imm % 8 == 0)
return std::abs(Imm / 8) <= 16;
// incw|decw
if (Imm % 4 == 0)
return std::abs(Imm / 4) <= 16;
// incd|decd
if (Imm % 2 == 0)
return std::abs(Imm / 2) <= 16;
return false;
}
// Return false to prevent folding
// (mul (add x, c1), c2) -> (add (mul x, c2), c2*c1) in DAGCombine,
// if the folding leads to worse code.
bool AArch64TargetLowering::isMulAddWithConstProfitable(
SDValue AddNode, SDValue ConstNode) const {
// Let the DAGCombiner decide for vector types and large types.
const EVT VT = AddNode.getValueType();
if (VT.isVector() || VT.getScalarSizeInBits() > 64)
return true;
// It is worse if c1 is legal add immediate, while c1*c2 is not
// and has to be composed by at least two instructions.
const ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1));
const ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode);
const int64_t C1 = C1Node->getSExtValue();
const APInt C1C2 = C1Node->getAPIntValue() * C2Node->getAPIntValue();
if (!isLegalAddImmediate(C1) || isLegalAddImmediate(C1C2.getSExtValue()))
return true;
SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn;
// Adapt to the width of a register.
unsigned BitSize = VT.getSizeInBits() <= 32 ? 32 : 64;
AArch64_IMM::expandMOVImm(C1C2.getZExtValue(), BitSize, Insn);
if (Insn.size() > 1)
return false;
// Default to true and let the DAGCombiner decide.
return true;
}
// Integer comparisons are implemented with ADDS/SUBS, so the range of valid
// immediates is the same as for an add or a sub.
bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
return isLegalAddImmediate(Immed);
}
/// isLegalAddressingMode - Return true if the addressing mode represented
/// by AM is legal for this target, for a load/store of the specified type.
bool AArch64TargetLowering::isLegalAddressingMode(const DataLayout &DL,
const AddrMode &AMode, Type *Ty,
unsigned AS, Instruction *I) const {
// AArch64 has five basic addressing modes:
// reg
// reg + 9-bit signed offset
// reg + SIZE_IN_BYTES * 12-bit unsigned offset
// reg1 + reg2
// reg + SIZE_IN_BYTES * reg
// No global is ever allowed as a base.
if (AMode.BaseGV)
return false;
// No reg+reg+imm addressing.
if (AMode.HasBaseReg && AMode.BaseOffs && AMode.Scale)
return false;
// Canonicalise `1*ScaledReg + imm` into `BaseReg + imm` and
// `2*ScaledReg` into `BaseReg + ScaledReg`
AddrMode AM = AMode;
if (AM.Scale && !AM.HasBaseReg) {
if (AM.Scale == 1) {
AM.HasBaseReg = true;
AM.Scale = 0;
} else if (AM.Scale == 2) {
AM.HasBaseReg = true;
AM.Scale = 1;
} else {
return false;
}
}
// A base register is required in all addressing modes.
if (!AM.HasBaseReg)
return false;
if (Ty->isScalableTy()) {
if (isa<ScalableVectorType>(Ty)) {
// See if we have a foldable vscale-based offset, for vector types which
// are either legal or smaller than the minimum; more work will be
// required if we need to consider addressing for types which need
// legalization by splitting.
uint64_t VecNumBytes = DL.getTypeSizeInBits(Ty).getKnownMinValue() / 8;
if (AM.HasBaseReg && !AM.BaseOffs && AM.ScalableOffset && !AM.Scale &&
(AM.ScalableOffset % VecNumBytes == 0) && VecNumBytes <= 16 &&
isPowerOf2_64(VecNumBytes))
return isInt<4>(AM.ScalableOffset / (int64_t)VecNumBytes);
uint64_t VecElemNumBytes =
DL.getTypeSizeInBits(cast<VectorType>(Ty)->getElementType()) / 8;
return AM.HasBaseReg && !AM.BaseOffs && !AM.ScalableOffset &&
(AM.Scale == 0 || (uint64_t)AM.Scale == VecElemNumBytes);
}
return AM.HasBaseReg && !AM.BaseOffs && !AM.ScalableOffset && !AM.Scale;
}
// No scalable offsets allowed for non-scalable types.
if (AM.ScalableOffset)
return false;
// check reg + imm case:
// i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
uint64_t NumBytes = 0;
if (Ty->isSized()) {
uint64_t NumBits = DL.getTypeSizeInBits(Ty);
NumBytes = NumBits / 8;
if (!isPowerOf2_64(NumBits))
NumBytes = 0;
}
return Subtarget->getInstrInfo()->isLegalAddressingMode(NumBytes, AM.BaseOffs,
AM.Scale);
}
// Check whether the 2 offsets belong to the same imm24 range, and their high
// 12bits are same, then their high part can be decoded with the offset of add.
int64_t
AArch64TargetLowering::getPreferredLargeGEPBaseOffset(int64_t MinOffset,
int64_t MaxOffset) const {
int64_t HighPart = MinOffset & ~0xfffULL;
if (MinOffset >> 12 == MaxOffset >> 12 && isLegalAddImmediate(HighPart)) {
// Rebase the value to an integer multiple of imm12.
return HighPart;
}
return 0;
}
bool AArch64TargetLowering::shouldConsiderGEPOffsetSplit() const {
// Consider splitting large offset of struct or array.
return true;
}
bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(
const MachineFunction &MF, EVT VT) const {
VT = VT.getScalarType();
if (!VT.isSimple())
return false;
switch (VT.getSimpleVT().SimpleTy) {
case MVT::f16:
return Subtarget->hasFullFP16();
case MVT::f32:
case MVT::f64:
return true;
default:
break;
}
return false;
}
bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F,
Type *Ty) const {
switch (Ty->getScalarType()->getTypeID()) {
case Type::FloatTyID:
case Type::DoubleTyID:
return true;
default:
return false;
}
}
bool AArch64TargetLowering::generateFMAsInMachineCombiner(
EVT VT, CodeGenOptLevel OptLevel) const {
return (OptLevel >= CodeGenOptLevel::Aggressive) && !VT.isScalableVector() &&
!useSVEForFixedLengthVectorVT(VT);
}
const MCPhysReg *
AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const {
// LR is a callee-save register, but we must treat it as clobbered by any call
// site. Hence we include LR in the scratch registers, which are in turn added
// as implicit-defs for stackmaps and patchpoints.
static const MCPhysReg ScratchRegs[] = {
AArch64::X16, AArch64::X17, AArch64::LR, 0
};
return ScratchRegs;
}
ArrayRef<MCPhysReg> AArch64TargetLowering::getRoundingControlRegisters() const {
static const MCPhysReg RCRegs[] = {AArch64::FPCR};
return RCRegs;
}
bool
AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N,
CombineLevel Level) const {
assert((N->getOpcode() == ISD::SHL || N->getOpcode() == ISD::SRA ||
N->getOpcode() == ISD::SRL) &&
"Expected shift op");
SDValue ShiftLHS = N->getOperand(0);
EVT VT = N->getValueType(0);
// If ShiftLHS is unsigned bit extraction: ((x >> C) & mask), then do not
// combine it with shift 'N' to let it be lowered to UBFX except:
// ((x >> C) & mask) << C.
if (ShiftLHS.getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) &&
isa<ConstantSDNode>(ShiftLHS.getOperand(1))) {
uint64_t TruncMask = ShiftLHS.getConstantOperandVal(1);
if (isMask_64(TruncMask)) {
SDValue AndLHS = ShiftLHS.getOperand(0);
if (AndLHS.getOpcode() == ISD::SRL) {
if (auto *SRLC = dyn_cast<ConstantSDNode>(AndLHS.getOperand(1))) {
if (N->getOpcode() == ISD::SHL)
if (auto *SHLC = dyn_cast<ConstantSDNode>(N->getOperand(1)))
return SRLC->getZExtValue() == SHLC->getZExtValue();
return false;
}
}
}
}
return true;
}
bool AArch64TargetLowering::isDesirableToCommuteXorWithShift(
const SDNode *N) const {
assert(N->getOpcode() == ISD::XOR &&
(N->getOperand(0).getOpcode() == ISD::SHL ||
N->getOperand(0).getOpcode() == ISD::SRL) &&
"Expected XOR(SHIFT) pattern");
// Only commute if the entire NOT mask is a hidden shifted mask.
auto *XorC = dyn_cast<ConstantSDNode>(N->getOperand(1));
auto *ShiftC = dyn_cast<ConstantSDNode>(N->getOperand(0).getOperand(1));
if (XorC && ShiftC) {
unsigned MaskIdx, MaskLen;
if (XorC->getAPIntValue().isShiftedMask(MaskIdx, MaskLen)) {
unsigned ShiftAmt = ShiftC->getZExtValue();
unsigned BitWidth = N->getValueType(0).getScalarSizeInBits();
if (N->getOperand(0).getOpcode() == ISD::SHL)
return MaskIdx == ShiftAmt && MaskLen == (BitWidth - ShiftAmt);
return MaskIdx == 0 && MaskLen == (BitWidth - ShiftAmt);
}
}
return false;
}
bool AArch64TargetLowering::shouldFoldConstantShiftPairToMask(
const SDNode *N, CombineLevel Level) const {
assert(((N->getOpcode() == ISD::SHL &&
N->getOperand(0).getOpcode() == ISD::SRL) ||
(N->getOpcode() == ISD::SRL &&
N->getOperand(0).getOpcode() == ISD::SHL)) &&
"Expected shift-shift mask");
// Don't allow multiuse shift folding with the same shift amount.
if (!N->getOperand(0)->hasOneUse())
return false;
// Only fold srl(shl(x,c1),c2) iff C1 >= C2 to prevent loss of UBFX patterns.
EVT VT = N->getValueType(0);
if (N->getOpcode() == ISD::SRL && (VT == MVT::i32 || VT == MVT::i64)) {
auto *C1 = dyn_cast<ConstantSDNode>(N->getOperand(0).getOperand(1));
auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
return (!C1 || !C2 || C1->getZExtValue() >= C2->getZExtValue());
}
// We do not need to fold when this shifting used in specific load case:
// (ldr x, (add x, (shl (srl x, c1) 2)))
if (N->getOpcode() == ISD::SHL && N->hasOneUse()) {
if (auto C2 = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
unsigned ShlAmt = C2->getZExtValue();
if (auto ShouldADD = *N->use_begin();
ShouldADD->getOpcode() == ISD::ADD && ShouldADD->hasOneUse()) {
if (auto ShouldLOAD = dyn_cast<LoadSDNode>(*ShouldADD->use_begin())) {
unsigned ByteVT = ShouldLOAD->getMemoryVT().getSizeInBits() / 8;
if ((1ULL << ShlAmt) == ByteVT &&
isIndexedLoadLegal(ISD::PRE_INC, ShouldLOAD->getMemoryVT()))
return false;
}
}
}
}
return true;
}
bool AArch64TargetLowering::shouldFoldSelectWithIdentityConstant(
unsigned BinOpcode, EVT VT) const {
return VT.isScalableVector() && isTypeLegal(VT);
}
bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
Type *Ty) const {
assert(Ty->isIntegerTy());
unsigned BitSize = Ty->getPrimitiveSizeInBits();
if (BitSize == 0)
return false;
int64_t Val = Imm.getSExtValue();
if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize))
return true;
if ((int64_t)Val < 0)
Val = ~Val;
if (BitSize == 32)
Val &= (1LL << 32) - 1;
unsigned Shift = llvm::Log2_64((uint64_t)Val) / 16;
// MOVZ is free so return true for one or fewer MOVK.
return Shift < 3;
}
bool AArch64TargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
unsigned Index) const {
if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
return false;
return (Index == 0 || Index == ResVT.getVectorMinNumElements());
}
/// Turn vector tests of the signbit in the form of:
/// xor (sra X, elt_size(X)-1), -1
/// into:
/// cmge X, X, #0
static SDValue foldVectorXorShiftIntoCmp(SDNode *N, SelectionDAG &DAG,
const AArch64Subtarget *Subtarget) {
EVT VT = N->getValueType(0);
if (!Subtarget->hasNEON() || !VT.isVector())
return SDValue();
// There must be a shift right algebraic before the xor, and the xor must be a
// 'not' operation.
SDValue Shift = N->getOperand(0);
SDValue Ones = N->getOperand(1);
if (Shift.getOpcode() != AArch64ISD::VASHR || !Shift.hasOneUse() ||
!ISD::isBuildVectorAllOnes(Ones.getNode()))
return SDValue();
// The shift should be smearing the sign bit across each vector element.
auto *ShiftAmt = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
EVT ShiftEltTy = Shift.getValueType().getVectorElementType();
if (!ShiftAmt || ShiftAmt->getZExtValue() != ShiftEltTy.getSizeInBits() - 1)
return SDValue();
return DAG.getNode(AArch64ISD::CMGEz, SDLoc(N), VT, Shift.getOperand(0));
}
// Given a vecreduce_add node, detect the below pattern and convert it to the
// node sequence with UABDL, [S|U]ADB and UADDLP.
//
// i32 vecreduce_add(
// v16i32 abs(
// v16i32 sub(
// v16i32 [sign|zero]_extend(v16i8 a), v16i32 [sign|zero]_extend(v16i8 b))))
// =================>
// i32 vecreduce_add(
// v4i32 UADDLP(
// v8i16 add(
// v8i16 zext(
// v8i8 [S|U]ABD low8:v16i8 a, low8:v16i8 b
// v8i16 zext(
// v8i8 [S|U]ABD high8:v16i8 a, high8:v16i8 b
static SDValue performVecReduceAddCombineWithUADDLP(SDNode *N,
SelectionDAG &DAG) {
// Assumed i32 vecreduce_add
if (N->getValueType(0) != MVT::i32)
return SDValue();
SDValue VecReduceOp0 = N->getOperand(0);
unsigned Opcode = VecReduceOp0.getOpcode();
// Assumed v16i32 abs
if (Opcode != ISD::ABS || VecReduceOp0->getValueType(0) != MVT::v16i32)
return SDValue();
SDValue ABS = VecReduceOp0;
// Assumed v16i32 sub
if (ABS->getOperand(0)->getOpcode() != ISD::SUB ||
ABS->getOperand(0)->getValueType(0) != MVT::v16i32)
return SDValue();
SDValue SUB = ABS->getOperand(0);
unsigned Opcode0 = SUB->getOperand(0).getOpcode();
unsigned Opcode1 = SUB->getOperand(1).getOpcode();
// Assumed v16i32 type
if (SUB->getOperand(0)->getValueType(0) != MVT::v16i32 ||
SUB->getOperand(1)->getValueType(0) != MVT::v16i32)
return SDValue();
// Assumed zext or sext
bool IsZExt = false;
if (Opcode0 == ISD::ZERO_EXTEND && Opcode1 == ISD::ZERO_EXTEND) {
IsZExt = true;
} else if (Opcode0 == ISD::SIGN_EXTEND && Opcode1 == ISD::SIGN_EXTEND) {
IsZExt = false;
} else
return SDValue();
SDValue EXT0 = SUB->getOperand(0);
SDValue EXT1 = SUB->getOperand(1);
// Assumed zext's operand has v16i8 type
if (EXT0->getOperand(0)->getValueType(0) != MVT::v16i8 ||
EXT1->getOperand(0)->getValueType(0) != MVT::v16i8)
return SDValue();
// Pattern is dectected. Let's convert it to sequence of nodes.
SDLoc DL(N);
// First, create the node pattern of UABD/SABD.
SDValue UABDHigh8Op0 =
DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8, EXT0->getOperand(0),
DAG.getConstant(8, DL, MVT::i64));
SDValue UABDHigh8Op1 =
DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8, EXT1->getOperand(0),
DAG.getConstant(8, DL, MVT::i64));
SDValue UABDHigh8 = DAG.getNode(IsZExt ? ISD::ABDU : ISD::ABDS, DL, MVT::v8i8,
UABDHigh8Op0, UABDHigh8Op1);
SDValue UABDL = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, UABDHigh8);
// Second, create the node pattern of UABAL.
SDValue UABDLo8Op0 =
DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8, EXT0->getOperand(0),
DAG.getConstant(0, DL, MVT::i64));
SDValue UABDLo8Op1 =
DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8, EXT1->getOperand(0),
DAG.getConstant(0, DL, MVT::i64));
SDValue UABDLo8 = DAG.getNode(IsZExt ? ISD::ABDU : ISD::ABDS, DL, MVT::v8i8,
UABDLo8Op0, UABDLo8Op1);
SDValue ZExtUABD = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, UABDLo8);
SDValue UABAL = DAG.getNode(ISD::ADD, DL, MVT::v8i16, UABDL, ZExtUABD);
// Third, create the node of UADDLP.
SDValue UADDLP = DAG.getNode(AArch64ISD::UADDLP, DL, MVT::v4i32, UABAL);
// Fourth, create the node of VECREDUCE_ADD.
return DAG.getNode(ISD::VECREDUCE_ADD, DL, MVT::i32, UADDLP);
}
// Turn a v8i8/v16i8 extended vecreduce into a udot/sdot and vecreduce
// vecreduce.add(ext(A)) to vecreduce.add(DOT(zero, A, one))
// vecreduce.add(mul(ext(A), ext(B))) to vecreduce.add(DOT(zero, A, B))
// If we have vectors larger than v16i8 we extract v16i8 vectors,
// Follow the same steps above to get DOT instructions concatenate them
// and generate vecreduce.add(concat_vector(DOT, DOT2, ..)).
static SDValue performVecReduceAddCombine(SDNode *N, SelectionDAG &DAG,
const AArch64Subtarget *ST) {
if (!ST->isNeonAvailable())
return SDValue();
if (!ST->hasDotProd())
return performVecReduceAddCombineWithUADDLP(N, DAG);
SDValue Op0 = N->getOperand(0);
if (N->getValueType(0) != MVT::i32 || Op0.getValueType().isScalableVT() ||
Op0.getValueType().getVectorElementType() != MVT::i32)
return SDValue();
unsigned ExtOpcode = Op0.getOpcode();
SDValue A = Op0;
SDValue B;
if (ExtOpcode == ISD::MUL) {
A = Op0.getOperand(0);
B = Op0.getOperand(1);
if (A.getOpcode() != B.getOpcode() ||
A.getOperand(0).getValueType() != B.getOperand(0).getValueType())
return SDValue();
ExtOpcode = A.getOpcode();
}
if (ExtOpcode != ISD::ZERO_EXTEND && ExtOpcode != ISD::SIGN_EXTEND)
return SDValue();
EVT Op0VT = A.getOperand(0).getValueType();
bool IsValidElementCount = Op0VT.getVectorNumElements() % 8 == 0;
bool IsValidSize = Op0VT.getScalarSizeInBits() == 8;
if (!IsValidElementCount || !IsValidSize)
return SDValue();
SDLoc DL(Op0);
// For non-mla reductions B can be set to 1. For MLA we take the operand of
// the extend B.
if (!B)
B = DAG.getConstant(1, DL, Op0VT);
else
B = B.getOperand(0);
unsigned IsMultipleOf16 = Op0VT.getVectorNumElements() % 16 == 0;
unsigned NumOfVecReduce;
EVT TargetType;
if (IsMultipleOf16) {
NumOfVecReduce = Op0VT.getVectorNumElements() / 16;
TargetType = MVT::v4i32;
} else {
NumOfVecReduce = Op0VT.getVectorNumElements() / 8;
TargetType = MVT::v2i32;
}
auto DotOpcode =
(ExtOpcode == ISD::ZERO_EXTEND) ? AArch64ISD::UDOT : AArch64ISD::SDOT;
// Handle the case where we need to generate only one Dot operation.
if (NumOfVecReduce == 1) {
SDValue Zeros = DAG.getConstant(0, DL, TargetType);
SDValue Dot = DAG.getNode(DotOpcode, DL, Zeros.getValueType(), Zeros,
A.getOperand(0), B);
return DAG.getNode(ISD::VECREDUCE_ADD, DL, N->getValueType(0), Dot);
}
// Generate Dot instructions that are multiple of 16.
unsigned VecReduce16Num = Op0VT.getVectorNumElements() / 16;
SmallVector<SDValue, 4> SDotVec16;
unsigned I = 0;
for (; I < VecReduce16Num; I += 1) {
SDValue Zeros = DAG.getConstant(0, DL, MVT::v4i32);
SDValue Op0 =
DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v16i8, A.getOperand(0),
DAG.getConstant(I * 16, DL, MVT::i64));
SDValue Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v16i8, B,
DAG.getConstant(I * 16, DL, MVT::i64));
SDValue Dot =
DAG.getNode(DotOpcode, DL, Zeros.getValueType(), Zeros, Op0, Op1);
SDotVec16.push_back(Dot);
}
// Concatenate dot operations.
EVT SDot16EVT =
EVT::getVectorVT(*DAG.getContext(), MVT::i32, 4 * VecReduce16Num);
SDValue ConcatSDot16 =
DAG.getNode(ISD::CONCAT_VECTORS, DL, SDot16EVT, SDotVec16);
SDValue VecReduceAdd16 =
DAG.getNode(ISD::VECREDUCE_ADD, DL, N->getValueType(0), ConcatSDot16);
unsigned VecReduce8Num = (Op0VT.getVectorNumElements() % 16) / 8;
if (VecReduce8Num == 0)
return VecReduceAdd16;
// Generate the remainder Dot operation that is multiple of 8.
SmallVector<SDValue, 4> SDotVec8;
SDValue Zeros = DAG.getConstant(0, DL, MVT::v2i32);
SDValue Vec8Op0 =
DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8, A.getOperand(0),
DAG.getConstant(I * 16, DL, MVT::i64));
SDValue Vec8Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8, B,
DAG.getConstant(I * 16, DL, MVT::i64));
SDValue Dot =
DAG.getNode(DotOpcode, DL, Zeros.getValueType(), Zeros, Vec8Op0, Vec8Op1);
SDValue VecReudceAdd8 =
DAG.getNode(ISD::VECREDUCE_ADD, DL, N->getValueType(0), Dot);
return DAG.getNode(ISD::ADD, DL, N->getValueType(0), VecReduceAdd16,
VecReudceAdd8);
}
// Given an (integer) vecreduce, we know the order of the inputs does not
// matter. We can convert UADDV(add(zext(extract_lo(x)), zext(extract_hi(x))))
// into UADDV(UADDLP(x)). This can also happen through an extra add, where we
// transform UADDV(add(y, add(zext(extract_lo(x)), zext(extract_hi(x))))).
static SDValue performUADDVAddCombine(SDValue A, SelectionDAG &DAG) {
auto DetectAddExtract = [&](SDValue A) {
// Look for add(zext(extract_lo(x)), zext(extract_hi(x))), returning
// UADDLP(x) if found.
assert(A.getOpcode() == ISD::ADD);
EVT VT = A.getValueType();
SDValue Op0 = A.getOperand(0);
SDValue Op1 = A.getOperand(1);
if (Op0.getOpcode() != Op0.getOpcode() ||
(Op0.getOpcode() != ISD::ZERO_EXTEND &&
Op0.getOpcode() != ISD::SIGN_EXTEND))
return SDValue();
SDValue Ext0 = Op0.getOperand(0);
SDValue Ext1 = Op1.getOperand(0);
if (Ext0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
Ext1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
Ext0.getOperand(0) != Ext1.getOperand(0))
return SDValue();
// Check that the type is twice the add types, and the extract are from
// upper/lower parts of the same source.
if (Ext0.getOperand(0).getValueType().getVectorNumElements() !=
VT.getVectorNumElements() * 2)
return SDValue();
if ((Ext0.getConstantOperandVal(1) != 0 ||
Ext1.getConstantOperandVal(1) != VT.getVectorNumElements()) &&
(Ext1.getConstantOperandVal(1) != 0 ||
Ext0.getConstantOperandVal(1) != VT.getVectorNumElements()))
return SDValue();
unsigned Opcode = Op0.getOpcode() == ISD::ZERO_EXTEND ? AArch64ISD::UADDLP
: AArch64ISD::SADDLP;
return DAG.getNode(Opcode, SDLoc(A), VT, Ext0.getOperand(0));
};
if (SDValue R = DetectAddExtract(A))
return R;
if (A.getOperand(0).getOpcode() == ISD::ADD && A.getOperand(0).hasOneUse())
if (SDValue R = performUADDVAddCombine(A.getOperand(0), DAG))
return DAG.getNode(ISD::ADD, SDLoc(A), A.getValueType(), R,
A.getOperand(1));
if (A.getOperand(1).getOpcode() == ISD::ADD && A.getOperand(1).hasOneUse())
if (SDValue R = performUADDVAddCombine(A.getOperand(1), DAG))
return DAG.getNode(ISD::ADD, SDLoc(A), A.getValueType(), R,
A.getOperand(0));
return SDValue();
}
// We can convert a UADDV(add(zext(64-bit source), zext(64-bit source))) into
// UADDLV(concat), where the concat represents the 64-bit zext sources.
static SDValue performUADDVZextCombine(SDValue A, SelectionDAG &DAG) {
// Look for add(zext(64-bit source), zext(64-bit source)), returning
// UADDLV(concat(zext, zext)) if found.
assert(A.getOpcode() == ISD::ADD);
EVT VT = A.getValueType();
if (VT != MVT::v8i16 && VT != MVT::v4i32 && VT != MVT::v2i64)
return SDValue();
SDValue Op0 = A.getOperand(0);
SDValue Op1 = A.getOperand(1);
if (Op0.getOpcode() != ISD::ZERO_EXTEND || Op0.getOpcode() != Op1.getOpcode())
return SDValue();
SDValue Ext0 = Op0.getOperand(0);
SDValue Ext1 = Op1.getOperand(0);
EVT ExtVT0 = Ext0.getValueType();
EVT ExtVT1 = Ext1.getValueType();
// Check zext VTs are the same and 64-bit length.
if (ExtVT0 != ExtVT1 ||
VT.getScalarSizeInBits() != (2 * ExtVT0.getScalarSizeInBits()))
return SDValue();
// Get VT for concat of zext sources.
EVT PairVT = ExtVT0.getDoubleNumVectorElementsVT(*DAG.getContext());
SDValue Concat =
DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(A), PairVT, Ext0, Ext1);
switch (VT.getSimpleVT().SimpleTy) {
case MVT::v2i64:
case MVT::v4i32:
return DAG.getNode(AArch64ISD::UADDLV, SDLoc(A), VT, Concat);
case MVT::v8i16: {
SDValue Uaddlv =
DAG.getNode(AArch64ISD::UADDLV, SDLoc(A), MVT::v4i32, Concat);
return DAG.getNode(AArch64ISD::NVCAST, SDLoc(A), MVT::v8i16, Uaddlv);
}
default:
llvm_unreachable("Unhandled vector type");
}
}
static SDValue performUADDVCombine(SDNode *N, SelectionDAG &DAG) {
SDValue A = N->getOperand(0);
if (A.getOpcode() == ISD::ADD) {
if (SDValue R = performUADDVAddCombine(A, DAG))
return DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0), R);
else if (SDValue R = performUADDVZextCombine(A, DAG))
return R;
}
return SDValue();
}
static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const AArch64Subtarget *Subtarget) {
if (DCI.isBeforeLegalizeOps())
return SDValue();
return foldVectorXorShiftIntoCmp(N, DAG, Subtarget);
}
SDValue
AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
SelectionDAG &DAG,
SmallVectorImpl<SDNode *> &Created) const {
AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
if (isIntDivCheap(N->getValueType(0), Attr))
return SDValue(N, 0); // Lower SDIV as SDIV
EVT VT = N->getValueType(0);
// For scalable and fixed types, mark them as cheap so we can handle it much
// later. This allows us to handle larger than legal types.
if (VT.isScalableVector() ||
(VT.isFixedLengthVector() && Subtarget->useSVEForFixedLengthVectors()))
return SDValue(N, 0);
// fold (sdiv X, pow2)
if ((VT != MVT::i32 && VT != MVT::i64) ||
!(Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()))
return SDValue();
// If the divisor is 2 or -2, the default expansion is better. It will add
// (N->getValueType(0) >> (BitWidth - 1)) to it before shifting right.
if (Divisor == 2 ||
Divisor == APInt(Divisor.getBitWidth(), -2, /*isSigned*/ true))
return SDValue();
return TargetLowering::buildSDIVPow2WithCMov(N, Divisor, DAG, Created);
}
SDValue
AArch64TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor,
SelectionDAG &DAG,
SmallVectorImpl<SDNode *> &Created) const {
AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
if (isIntDivCheap(N->getValueType(0), Attr))
return SDValue(N, 0); // Lower SREM as SREM
EVT VT = N->getValueType(0);
// For scalable and fixed types, mark them as cheap so we can handle it much
// later. This allows us to handle larger than legal types.
if (VT.isScalableVector() || Subtarget->useSVEForFixedLengthVectors())
return SDValue(N, 0);
// fold (srem X, pow2)
if ((VT != MVT::i32 && VT != MVT::i64) ||
!(Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()))
return SDValue();
unsigned Lg2 = Divisor.countr_zero();
if (Lg2 == 0)
return SDValue();
SDLoc DL(N);
SDValue N0 = N->getOperand(0);
SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
SDValue Zero = DAG.getConstant(0, DL, VT);
SDValue CCVal, CSNeg;
if (Lg2 == 1) {
SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETGE, CCVal, DAG, DL);
SDValue And = DAG.getNode(ISD::AND, DL, VT, N0, Pow2MinusOne);
CSNeg = DAG.getNode(AArch64ISD::CSNEG, DL, VT, And, And, CCVal, Cmp);
Created.push_back(Cmp.getNode());
Created.push_back(And.getNode());
} else {
SDValue CCVal = DAG.getConstant(AArch64CC::MI, DL, MVT_CC);
SDVTList VTs = DAG.getVTList(VT, MVT::i32);
SDValue Negs = DAG.getNode(AArch64ISD::SUBS, DL, VTs, Zero, N0);
SDValue AndPos = DAG.getNode(ISD::AND, DL, VT, N0, Pow2MinusOne);
SDValue AndNeg = DAG.getNode(ISD::AND, DL, VT, Negs, Pow2MinusOne);
CSNeg = DAG.getNode(AArch64ISD::CSNEG, DL, VT, AndPos, AndNeg, CCVal,
Negs.getValue(1));
Created.push_back(Negs.getNode());
Created.push_back(AndPos.getNode());
Created.push_back(AndNeg.getNode());
}
return CSNeg;
}
static std::optional<unsigned> IsSVECntIntrinsic(SDValue S) {
switch(getIntrinsicID(S.getNode())) {
default:
break;
case Intrinsic::aarch64_sve_cntb:
return 8;
case Intrinsic::aarch64_sve_cnth:
return 16;
case Intrinsic::aarch64_sve_cntw:
return 32;
case Intrinsic::aarch64_sve_cntd:
return 64;
}
return {};
}
/// Calculates what the pre-extend type is, based on the extension
/// operation node provided by \p Extend.
///
/// In the case that \p Extend is a SIGN_EXTEND or a ZERO_EXTEND, the
/// pre-extend type is pulled directly from the operand, while other extend
/// operations need a bit more inspection to get this information.
///
/// \param Extend The SDNode from the DAG that represents the extend operation
///
/// \returns The type representing the \p Extend source type, or \p MVT::Other
/// if no valid type can be determined
static EVT calculatePreExtendType(SDValue Extend) {
switch (Extend.getOpcode()) {
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
return Extend.getOperand(0).getValueType();
case ISD::AssertSext:
case ISD::AssertZext:
case ISD::SIGN_EXTEND_INREG: {
VTSDNode *TypeNode = dyn_cast<VTSDNode>(Extend.getOperand(1));
if (!TypeNode)
return MVT::Other;
return TypeNode->getVT();
}
case ISD::AND: {
ConstantSDNode *Constant =
dyn_cast<ConstantSDNode>(Extend.getOperand(1).getNode());
if (!Constant)
return MVT::Other;
uint32_t Mask = Constant->getZExtValue();
if (Mask == UCHAR_MAX)
return MVT::i8;
else if (Mask == USHRT_MAX)
return MVT::i16;
else if (Mask == UINT_MAX)
return MVT::i32;
return MVT::Other;
}
default:
return MVT::Other;
}
}
/// Combines a buildvector(sext/zext) or shuffle(sext/zext, undef) node pattern
/// into sext/zext(buildvector) or sext/zext(shuffle) making use of the vector
/// SExt/ZExt rather than the scalar SExt/ZExt
static SDValue performBuildShuffleExtendCombine(SDValue BV, SelectionDAG &DAG) {
EVT VT = BV.getValueType();
if (BV.getOpcode() != ISD::BUILD_VECTOR &&
BV.getOpcode() != ISD::VECTOR_SHUFFLE)
return SDValue();
// Use the first item in the buildvector/shuffle to get the size of the
// extend, and make sure it looks valid.
SDValue Extend = BV->getOperand(0);
unsigned ExtendOpcode = Extend.getOpcode();
bool IsSExt = ExtendOpcode == ISD::SIGN_EXTEND ||
ExtendOpcode == ISD::SIGN_EXTEND_INREG ||
ExtendOpcode == ISD::AssertSext;
if (!IsSExt && ExtendOpcode != ISD::ZERO_EXTEND &&
ExtendOpcode != ISD::AssertZext && ExtendOpcode != ISD::AND)
return SDValue();
// Shuffle inputs are vector, limit to SIGN_EXTEND and ZERO_EXTEND to ensure
// calculatePreExtendType will work without issue.
if (BV.getOpcode() == ISD::VECTOR_SHUFFLE &&
ExtendOpcode != ISD::SIGN_EXTEND && ExtendOpcode != ISD::ZERO_EXTEND)
return SDValue();
// Restrict valid pre-extend data type
EVT PreExtendType = calculatePreExtendType(Extend);
if (PreExtendType == MVT::Other ||
PreExtendType.getScalarSizeInBits() != VT.getScalarSizeInBits() / 2)
return SDValue();
// Make sure all other operands are equally extended
for (SDValue Op : drop_begin(BV->ops())) {
if (Op.isUndef())
continue;
unsigned Opc = Op.getOpcode();
bool OpcIsSExt = Opc == ISD::SIGN_EXTEND || Opc == ISD::SIGN_EXTEND_INREG ||
Opc == ISD::AssertSext;
if (OpcIsSExt != IsSExt || calculatePreExtendType(Op) != PreExtendType)
return SDValue();
}
SDValue NBV;
SDLoc DL(BV);
if (BV.getOpcode() == ISD::BUILD_VECTOR) {
EVT PreExtendVT = VT.changeVectorElementType(PreExtendType);
EVT PreExtendLegalType =
PreExtendType.getScalarSizeInBits() < 32 ? MVT::i32 : PreExtendType;
SmallVector<SDValue, 8> NewOps;
for (SDValue Op : BV->ops())
NewOps.push_back(Op.isUndef() ? DAG.getUNDEF(PreExtendLegalType)
: DAG.getAnyExtOrTrunc(Op.getOperand(0), DL,
PreExtendLegalType));
NBV = DAG.getNode(ISD::BUILD_VECTOR, DL, PreExtendVT, NewOps);
} else { // BV.getOpcode() == ISD::VECTOR_SHUFFLE
EVT PreExtendVT = VT.changeVectorElementType(PreExtendType.getScalarType());
NBV = DAG.getVectorShuffle(PreExtendVT, DL, BV.getOperand(0).getOperand(0),
BV.getOperand(1).isUndef()
? DAG.getUNDEF(PreExtendVT)
: BV.getOperand(1).getOperand(0),
cast<ShuffleVectorSDNode>(BV)->getMask());
}
return DAG.getNode(IsSExt ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, VT, NBV);
}
/// Combines a mul(dup(sext/zext)) node pattern into mul(sext/zext(dup))
/// making use of the vector SExt/ZExt rather than the scalar SExt/ZExt
static SDValue performMulVectorExtendCombine(SDNode *Mul, SelectionDAG &DAG) {
// If the value type isn't a vector, none of the operands are going to be dups
EVT VT = Mul->getValueType(0);
if (VT != MVT::v8i16 && VT != MVT::v4i32 && VT != MVT::v2i64)
return SDValue();
SDValue Op0 = performBuildShuffleExtendCombine(Mul->getOperand(0), DAG);
SDValue Op1 = performBuildShuffleExtendCombine(Mul->getOperand(1), DAG);
// Neither operands have been changed, don't make any further changes
if (!Op0 && !Op1)
return SDValue();
SDLoc DL(Mul);
return DAG.getNode(Mul->getOpcode(), DL, VT, Op0 ? Op0 : Mul->getOperand(0),
Op1 ? Op1 : Mul->getOperand(1));
}
// Combine v4i32 Mul(And(Srl(X, 15), 0x10001), 0xffff) -> v8i16 CMLTz
// Same for other types with equivalent constants.
static SDValue performMulVectorCmpZeroCombine(SDNode *N, SelectionDAG &DAG) {
EVT VT = N->getValueType(0);
if (VT != MVT::v2i64 && VT != MVT::v1i64 && VT != MVT::v2i32 &&
VT != MVT::v4i32 && VT != MVT::v4i16 && VT != MVT::v8i16)
return SDValue();
if (N->getOperand(0).getOpcode() != ISD::AND ||
N->getOperand(0).getOperand(0).getOpcode() != ISD::SRL)
return SDValue();
SDValue And = N->getOperand(0);
SDValue Srl = And.getOperand(0);
APInt V1, V2, V3;
if (!ISD::isConstantSplatVector(N->getOperand(1).getNode(), V1) ||
!ISD::isConstantSplatVector(And.getOperand(1).getNode(), V2) ||
!ISD::isConstantSplatVector(Srl.getOperand(1).getNode(), V3))
return SDValue();
unsigned HalfSize = VT.getScalarSizeInBits() / 2;
if (!V1.isMask(HalfSize) || V2 != (1ULL | 1ULL << HalfSize) ||
V3 != (HalfSize - 1))
return SDValue();
EVT HalfVT = EVT::getVectorVT(*DAG.getContext(),
EVT::getIntegerVT(*DAG.getContext(), HalfSize),
VT.getVectorElementCount() * 2);
SDLoc DL(N);
SDValue In = DAG.getNode(AArch64ISD::NVCAST, DL, HalfVT, Srl.getOperand(0));
SDValue CM = DAG.getNode(AArch64ISD::CMLTz, DL, HalfVT, In);
return DAG.getNode(AArch64ISD::NVCAST, DL, VT, CM);
}
// Transform vector add(zext i8 to i32, zext i8 to i32)
// into sext(add(zext(i8 to i16), zext(i8 to i16)) to i32)
// This allows extra uses of saddl/uaddl at the lower vector widths, and less
// extends.
static SDValue performVectorExtCombine(SDNode *N, SelectionDAG &DAG) {
EVT VT = N->getValueType(0);
if (!VT.isFixedLengthVector() || VT.getSizeInBits() <= 128 ||
(N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND) ||
(N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND) ||
N->getOperand(0).getOperand(0).getValueType() !=
N->getOperand(1).getOperand(0).getValueType())
return SDValue();
if (N->getOpcode() == ISD::MUL &&
N->getOperand(0).getOpcode() != N->getOperand(1).getOpcode())
return SDValue();
SDValue N0 = N->getOperand(0).getOperand(0);
SDValue N1 = N->getOperand(1).getOperand(0);
EVT InVT = N0.getValueType();
EVT S1 = InVT.getScalarType();
EVT S2 = VT.getScalarType();
if ((S2 == MVT::i32 && S1 == MVT::i8) ||
(S2 == MVT::i64 && (S1 == MVT::i8 || S1 == MVT::i16))) {
SDLoc DL(N);
EVT HalfVT = EVT::getVectorVT(*DAG.getContext(),
S2.getHalfSizedIntegerVT(*DAG.getContext()),
VT.getVectorElementCount());
SDValue NewN0 = DAG.getNode(N->getOperand(0).getOpcode(), DL, HalfVT, N0);
SDValue NewN1 = DAG.getNode(N->getOperand(1).getOpcode(), DL, HalfVT, N1);
SDValue NewOp = DAG.getNode(N->getOpcode(), DL, HalfVT, NewN0, NewN1);
return DAG.getNode(N->getOpcode() == ISD::MUL ? N->getOperand(0).getOpcode()
: (unsigned)ISD::SIGN_EXTEND,
DL, VT, NewOp);
}
return SDValue();
}
static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const AArch64Subtarget *Subtarget) {
if (SDValue Ext = performMulVectorExtendCombine(N, DAG))
return Ext;
if (SDValue Ext = performMulVectorCmpZeroCombine(N, DAG))
return Ext;
if (SDValue Ext = performVectorExtCombine(N, DAG))
return Ext;
if (DCI.isBeforeLegalizeOps())
return SDValue();
// Canonicalize X*(Y+1) -> X*Y+X and (X+1)*Y -> X*Y+Y,
// and in MachineCombiner pass, add+mul will be combined into madd.
// Similarly, X*(1-Y) -> X - X*Y and (1-Y)*X -> X - Y*X.
SDLoc DL(N);
EVT VT = N->getValueType(0);
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue MulOper;
unsigned AddSubOpc;
auto IsAddSubWith1 = [&](SDValue V) -> bool {
AddSubOpc = V->getOpcode();
if ((AddSubOpc == ISD::ADD || AddSubOpc == ISD::SUB) && V->hasOneUse()) {
SDValue Opnd = V->getOperand(1);
MulOper = V->getOperand(0);
if (AddSubOpc == ISD::SUB)
std::swap(Opnd, MulOper);
if (auto C = dyn_cast<ConstantSDNode>(Opnd))
return C->isOne();
}
return false;
};
if (IsAddSubWith1(N0)) {
SDValue MulVal = DAG.getNode(ISD::MUL, DL, VT, N1, MulOper);
return DAG.getNode(AddSubOpc, DL, VT, N1, MulVal);
}
if (IsAddSubWith1(N1)) {
SDValue MulVal = DAG.getNode(ISD::MUL, DL, VT, N0, MulOper);
return DAG.getNode(AddSubOpc, DL, VT, N0, MulVal);
}
// The below optimizations require a constant RHS.
if (!isa<ConstantSDNode>(N1))
return SDValue();
ConstantSDNode *C = cast<ConstantSDNode>(N1);
const APInt &ConstValue = C->getAPIntValue();
// Allow the scaling to be folded into the `cnt` instruction by preventing
// the scaling to be obscured here. This makes it easier to pattern match.
if (IsSVECntIntrinsic(N0) ||
(N0->getOpcode() == ISD::TRUNCATE &&
(IsSVECntIntrinsic(N0->getOperand(0)))))
if (ConstValue.sge(1) && ConstValue.sle(16))
return SDValue();
// Multiplication of a power of two plus/minus one can be done more
// cheaply as shift+add/sub. For now, this is true unilaterally. If
// future CPUs have a cheaper MADD instruction, this may need to be
// gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
// 64-bit is 5 cycles, so this is always a win.
// More aggressively, some multiplications N0 * C can be lowered to
// shift+add+shift if the constant C = A * B where A = 2^N + 1 and B = 2^M,
// e.g. 6=3*2=(2+1)*2, 45=(1+4)*(1+8)
// TODO: lower more cases.
// TrailingZeroes is used to test if the mul can be lowered to
// shift+add+shift.
unsigned TrailingZeroes = ConstValue.countr_zero();
if (TrailingZeroes) {
// Conservatively do not lower to shift+add+shift if the mul might be
// folded into smul or umul.
if (N0->hasOneUse() && (isSignExtended(N0, DAG) ||
isZeroExtended(N0, DAG)))
return SDValue();
// Conservatively do not lower to shift+add+shift if the mul might be
// folded into madd or msub.
if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ADD ||
N->use_begin()->getOpcode() == ISD::SUB))
return SDValue();
}
// Use ShiftedConstValue instead of ConstValue to support both shift+add/sub
// and shift+add+shift.
APInt ShiftedConstValue = ConstValue.ashr(TrailingZeroes);
unsigned ShiftAmt;
auto Shl = [&](SDValue N0, unsigned N1) {
if (!N0.getNode())
return SDValue();
// If shift causes overflow, ignore this combine.
if (N1 >= N0.getValueSizeInBits())
return SDValue();
SDValue RHS = DAG.getConstant(N1, DL, MVT::i64);
return DAG.getNode(ISD::SHL, DL, VT, N0, RHS);
};
auto Add = [&](SDValue N0, SDValue N1) {
if (!N0.getNode() || !N1.getNode())
return SDValue();
return DAG.getNode(ISD::ADD, DL, VT, N0, N1);
};
auto Sub = [&](SDValue N0, SDValue N1) {
if (!N0.getNode() || !N1.getNode())
return SDValue();
return DAG.getNode(ISD::SUB, DL, VT, N0, N1);
};
auto Negate = [&](SDValue N) {
if (!N0.getNode())
return SDValue();
SDValue Zero = DAG.getConstant(0, DL, VT);
return DAG.getNode(ISD::SUB, DL, VT, Zero, N);
};
// Can the const C be decomposed into (1+2^M1)*(1+2^N1), eg:
// C = 45 is equal to (1+4)*(1+8), we don't decompose it into (1+2)*(16-1) as
// the (2^N - 1) can't be execused via a single instruction.
auto isPowPlusPlusConst = [](APInt C, APInt &M, APInt &N) {
unsigned BitWidth = C.getBitWidth();
for (unsigned i = 1; i < BitWidth / 2; i++) {
APInt Rem;
APInt X(BitWidth, (1 << i) + 1);
APInt::sdivrem(C, X, N, Rem);
APInt NVMinus1 = N - 1;
if (Rem == 0 && NVMinus1.isPowerOf2()) {
M = X;
return true;
}
}
return false;
};
// Can the const C be decomposed into (2^M + 1) * 2^N + 1), eg:
// C = 11 is equal to (1+4)*2+1, we don't decompose it into (1+2)*4-1 as
// the (2^N - 1) can't be execused via a single instruction.
auto isPowPlusPlusOneConst = [](APInt C, APInt &M, APInt &N) {
APInt CVMinus1 = C - 1;
if (CVMinus1.isNegative())
return false;
unsigned TrailingZeroes = CVMinus1.countr_zero();
APInt SCVMinus1 = CVMinus1.ashr(TrailingZeroes) - 1;
if (SCVMinus1.isPowerOf2()) {
unsigned BitWidth = SCVMinus1.getBitWidth();
M = APInt(BitWidth, SCVMinus1.logBase2());
N = APInt(BitWidth, TrailingZeroes);
return true;
}
return false;
};
// Can the const C be decomposed into (1 - (1 - 2^M) * 2^N), eg:
// C = 29 is equal to 1 - (1 - 2^3) * 2^2.
auto isPowMinusMinusOneConst = [](APInt C, APInt &M, APInt &N) {
APInt CVMinus1 = C - 1;
if (CVMinus1.isNegative())
return false;
unsigned TrailingZeroes = CVMinus1.countr_zero();
APInt CVPlus1 = CVMinus1.ashr(TrailingZeroes) + 1;
if (CVPlus1.isPowerOf2()) {
unsigned BitWidth = CVPlus1.getBitWidth();
M = APInt(BitWidth, CVPlus1.logBase2());
N = APInt(BitWidth, TrailingZeroes);
return true;
}
return false;
};
if (ConstValue.isNonNegative()) {
// (mul x, (2^N + 1) * 2^M) => (shl (add (shl x, N), x), M)
// (mul x, 2^N - 1) => (sub (shl x, N), x)
// (mul x, (2^(N-M) - 1) * 2^M) => (sub (shl x, N), (shl x, M))
// (mul x, (2^M + 1) * (2^N + 1))
// => MV = (add (shl x, M), x); (add (shl MV, N), MV)
// (mul x, (2^M + 1) * 2^N + 1))
// => MV = add (shl x, M), x); add (shl MV, N), x)
// (mul x, 1 - (1 - 2^M) * 2^N))
// => MV = sub (x - (shl x, M)); sub (x - (shl MV, N))
APInt SCVMinus1 = ShiftedConstValue - 1;
APInt SCVPlus1 = ShiftedConstValue + 1;
APInt CVPlus1 = ConstValue + 1;
APInt CVM, CVN;
if (SCVMinus1.isPowerOf2()) {
ShiftAmt = SCVMinus1.logBase2();
return Shl(Add(Shl(N0, ShiftAmt), N0), TrailingZeroes);
} else if (CVPlus1.isPowerOf2()) {
ShiftAmt = CVPlus1.logBase2();
return Sub(Shl(N0, ShiftAmt), N0);
} else if (SCVPlus1.isPowerOf2()) {
ShiftAmt = SCVPlus1.logBase2() + TrailingZeroes;
return Sub(Shl(N0, ShiftAmt), Shl(N0, TrailingZeroes));
}
if (Subtarget->hasALULSLFast() &&
isPowPlusPlusConst(ConstValue, CVM, CVN)) {
APInt CVMMinus1 = CVM - 1;
APInt CVNMinus1 = CVN - 1;
unsigned ShiftM1 = CVMMinus1.logBase2();
unsigned ShiftN1 = CVNMinus1.logBase2();
// ALULSLFast implicate that Shifts <= 4 places are fast
if (ShiftM1 <= 4 && ShiftN1 <= 4) {
SDValue MVal = Add(Shl(N0, ShiftM1), N0);
return Add(Shl(MVal, ShiftN1), MVal);
}
}
if (Subtarget->hasALULSLFast() &&
isPowPlusPlusOneConst(ConstValue, CVM, CVN)) {
unsigned ShiftM = CVM.getZExtValue();
unsigned ShiftN = CVN.getZExtValue();
// ALULSLFast implicate that Shifts <= 4 places are fast
if (ShiftM <= 4 && ShiftN <= 4) {
SDValue MVal = Add(Shl(N0, CVM.getZExtValue()), N0);
return Add(Shl(MVal, CVN.getZExtValue()), N0);
}
}
if (Subtarget->hasALULSLFast() &&
isPowMinusMinusOneConst(ConstValue, CVM, CVN)) {
unsigned ShiftM = CVM.getZExtValue();
unsigned ShiftN = CVN.getZExtValue();
// ALULSLFast implicate that Shifts <= 4 places are fast
if (ShiftM <= 4 && ShiftN <= 4) {
SDValue MVal = Sub(N0, Shl(N0, CVM.getZExtValue()));
return Sub(N0, Shl(MVal, CVN.getZExtValue()));
}
}
} else {
// (mul x, -(2^N - 1)) => (sub x, (shl x, N))
// (mul x, -(2^N + 1)) => - (add (shl x, N), x)
// (mul x, -(2^(N-M) - 1) * 2^M) => (sub (shl x, M), (shl x, N))
APInt SCVPlus1 = -ShiftedConstValue + 1;
APInt CVNegPlus1 = -ConstValue + 1;
APInt CVNegMinus1 = -ConstValue - 1;
if (CVNegPlus1.isPowerOf2()) {
ShiftAmt = CVNegPlus1.logBase2();
return Sub(N0, Shl(N0, ShiftAmt));
} else if (CVNegMinus1.isPowerOf2()) {
ShiftAmt = CVNegMinus1.logBase2();
return Negate(Add(Shl(N0, ShiftAmt), N0));
} else if (SCVPlus1.isPowerOf2()) {
ShiftAmt = SCVPlus1.logBase2() + TrailingZeroes;
return Sub(Shl(N0, TrailingZeroes), Shl(N0, ShiftAmt));
}
}
return SDValue();
}
static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
SelectionDAG &DAG) {
// Take advantage of vector comparisons producing 0 or -1 in each lane to
// optimize away operation when it's from a constant.
//
// The general transformation is:
// UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
// AND(VECTOR_CMP(x,y), constant2)
// constant2 = UNARYOP(constant)
// Early exit if this isn't a vector operation, the operand of the
// unary operation isn't a bitwise AND, or if the sizes of the operations
// aren't the same.
EVT VT = N->getValueType(0);
if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
return SDValue();
// Now check that the other operand of the AND is a constant. We could
// make the transformation for non-constant splats as well, but it's unclear
// that would be a benefit as it would not eliminate any operations, just
// perform one more step in scalar code before moving to the vector unit.
if (BuildVectorSDNode *BV =
dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
// Bail out if the vector isn't a constant.
if (!BV->isConstant())
return SDValue();
// Everything checks out. Build up the new and improved node.
SDLoc DL(N);
EVT IntVT = BV->getValueType(0);
// Create a new constant of the appropriate type for the transformed
// DAG.
SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
// The AND node needs bitcasts to/from an integer vector type around it.
SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst);
SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
N->getOperand(0)->getOperand(0), MaskConst);
SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd);
return Res;
}
return SDValue();
}
static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG,
const AArch64Subtarget *Subtarget) {
// First try to optimize away the conversion when it's conditionally from
// a constant. Vectors only.
if (SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG))
return Res;
EVT VT = N->getValueType(0);
if (VT != MVT::f32 && VT != MVT::f64)
return SDValue();
// Only optimize when the source and destination types have the same width.
if (VT.getSizeInBits() != N->getOperand(0).getValueSizeInBits())
return SDValue();
// If the result of an integer load is only used by an integer-to-float
// conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
// This eliminates an "integer-to-vector-move" UOP and improves throughput.
SDValue N0 = N->getOperand(0);
if (Subtarget->isNeonAvailable() && ISD::isNormalLoad(N0.getNode()) &&
N0.hasOneUse() &&
// Do not change the width of a volatile load.
!cast<LoadSDNode>(N0)->isVolatile()) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
LN0->getPointerInfo(), LN0->getAlign(),
LN0->getMemOperand()->getFlags());
// Make sure successors of the original load stay after it by updating them
// to use the new Chain.
DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1));
unsigned Opcode =
(N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF;
return DAG.getNode(Opcode, SDLoc(N), VT, Load);
}
return SDValue();
}
/// Fold a floating-point multiply by power of two into floating-point to
/// fixed-point conversion.
static SDValue performFpToIntCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const AArch64Subtarget *Subtarget) {
if (!Subtarget->isNeonAvailable())
return SDValue();
if (!N->getValueType(0).isSimple())
return SDValue();
SDValue Op = N->getOperand(0);
if (!Op.getValueType().isSimple() || Op.getOpcode() != ISD::FMUL)
return SDValue();
if (!Op.getValueType().is64BitVector() && !Op.getValueType().is128BitVector())
return SDValue();
SDValue ConstVec = Op->getOperand(1);
if (!isa<BuildVectorSDNode>(ConstVec))
return SDValue();
MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
uint32_t FloatBits = FloatTy.getSizeInBits();
if (FloatBits != 32 && FloatBits != 64 &&
(FloatBits != 16 || !Subtarget->hasFullFP16()))
return SDValue();
MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
uint32_t IntBits = IntTy.getSizeInBits();
if (IntBits != 16 && IntBits != 32 && IntBits != 64)
return SDValue();
// Avoid conversions where iN is larger than the float (e.g., float -> i64).
if (IntBits > FloatBits)
return SDValue();
BitVector UndefElements;
BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
int32_t Bits = IntBits == 64 ? 64 : 32;
int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, Bits + 1);
if (C == -1 || C == 0 || C > Bits)
return SDValue();
EVT ResTy = Op.getValueType().changeVectorElementTypeToInteger();
if (!DAG.getTargetLoweringInfo().isTypeLegal(ResTy))
return SDValue();
if (N->getOpcode() == ISD::FP_TO_SINT_SAT ||
N->getOpcode() == ISD::FP_TO_UINT_SAT) {
EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT();
if (SatVT.getScalarSizeInBits() != IntBits || IntBits != FloatBits)
return SDValue();
}
SDLoc DL(N);
bool IsSigned = (N->getOpcode() == ISD::FP_TO_SINT ||
N->getOpcode() == ISD::FP_TO_SINT_SAT);
unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfp2fxs
: Intrinsic::aarch64_neon_vcvtfp2fxu;
SDValue FixConv =
DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, ResTy,
DAG.getConstant(IntrinsicOpcode, DL, MVT::i32),
Op->getOperand(0), DAG.getConstant(C, DL, MVT::i32));
// We can handle smaller integers by generating an extra trunc.
if (IntBits < FloatBits)
FixConv = DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), FixConv);
return FixConv;
}
static SDValue tryCombineToBSL(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
const AArch64TargetLowering &TLI) {
EVT VT = N->getValueType(0);
SelectionDAG &DAG = DCI.DAG;
SDLoc DL(N);
const auto &Subtarget = DAG.getSubtarget<AArch64Subtarget>();
if (!VT.isVector())
return SDValue();
if (VT.isScalableVector() && !Subtarget.hasSVE2())
return SDValue();
if (VT.isFixedLengthVector() &&
(!Subtarget.isNeonAvailable() || TLI.useSVEForFixedLengthVectorVT(VT)))
return SDValue();
SDValue N0 = N->getOperand(0);
if (N0.getOpcode() != ISD::AND)
return SDValue();
SDValue N1 = N->getOperand(1);
if (N1.getOpcode() != ISD::AND)
return SDValue();
// InstCombine does (not (neg a)) => (add a -1).
// Try: (or (and (neg a) b) (and (add a -1) c)) => (bsl (neg a) b c)
// Loop over all combinations of AND operands.
for (int i = 1; i >= 0; --i) {
for (int j = 1; j >= 0; --j) {
SDValue O0 = N0->getOperand(i);
SDValue O1 = N1->getOperand(j);
SDValue Sub, Add, SubSibling, AddSibling;
// Find a SUB and an ADD operand, one from each AND.
if (O0.getOpcode() == ISD::SUB && O1.getOpcode() == ISD::ADD) {
Sub = O0;
Add = O1;
SubSibling = N0->getOperand(1 - i);
AddSibling = N1->getOperand(1 - j);
} else if (O0.getOpcode() == ISD::ADD && O1.getOpcode() == ISD::SUB) {
Add = O0;
Sub = O1;
AddSibling = N0->getOperand(1 - i);
SubSibling = N1->getOperand(1 - j);
} else
continue;
if (!ISD::isConstantSplatVectorAllZeros(Sub.getOperand(0).getNode()))
continue;
// Constant ones is always righthand operand of the Add.
if (!ISD::isConstantSplatVectorAllOnes(Add.getOperand(1).getNode()))
continue;
if (Sub.getOperand(1) != Add.getOperand(0))
continue;
return DAG.getNode(AArch64ISD::BSP, DL, VT, Sub, SubSibling, AddSibling);
}
}
// (or (and a b) (and (not a) c)) => (bsl a b c)
// We only have to look for constant vectors here since the general, variable
// case can be handled in TableGen.
unsigned Bits = VT.getScalarSizeInBits();
uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1);
for (int i = 1; i >= 0; --i)
for (int j = 1; j >= 0; --j) {
APInt Val1, Val2;
if (ISD::isConstantSplatVector(N0->getOperand(i).getNode(), Val1) &&
ISD::isConstantSplatVector(N1->getOperand(j).getNode(), Val2) &&
(BitMask & ~Val1.getZExtValue()) == Val2.getZExtValue()) {
return DAG.getNode(AArch64ISD::BSP, DL, VT, N0->getOperand(i),
N0->getOperand(1 - i), N1->getOperand(1 - j));
}
BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i));
BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j));
if (!BVN0 || !BVN1)
continue;
bool FoundMatch = true;
for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) {
ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k));
ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k));
if (!CN0 || !CN1 ||
CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) {
FoundMatch = false;
break;
}
}
if (FoundMatch)
return DAG.getNode(AArch64ISD::BSP, DL, VT, N0->getOperand(i),
N0->getOperand(1 - i), N1->getOperand(1 - j));
}
return SDValue();
}
// Given a tree of and/or(csel(0, 1, cc0), csel(0, 1, cc1)), we may be able to
// convert to csel(ccmp(.., cc0)), depending on cc1:
// (AND (CSET cc0 cmp0) (CSET cc1 (CMP x1 y1)))
// =>
// (CSET cc1 (CCMP x1 y1 !cc1 cc0 cmp0))
//
// (OR (CSET cc0 cmp0) (CSET cc1 (CMP x1 y1)))
// =>
// (CSET cc1 (CCMP x1 y1 cc1 !cc0 cmp0))
static SDValue performANDORCSELCombine(SDNode *N, SelectionDAG &DAG) {
EVT VT = N->getValueType(0);
SDValue CSel0 = N->getOperand(0);
SDValue CSel1 = N->getOperand(1);
if (CSel0.getOpcode() != AArch64ISD::CSEL ||
CSel1.getOpcode() != AArch64ISD::CSEL)
return SDValue();
if (!CSel0->hasOneUse() || !CSel1->hasOneUse())
return SDValue();
if (!isNullConstant(CSel0.getOperand(0)) ||
!isOneConstant(CSel0.getOperand(1)) ||
!isNullConstant(CSel1.getOperand(0)) ||
!isOneConstant(CSel1.getOperand(1)))
return SDValue();
SDValue Cmp0 = CSel0.getOperand(3);
SDValue Cmp1 = CSel1.getOperand(3);
AArch64CC::CondCode CC0 = (AArch64CC::CondCode)CSel0.getConstantOperandVal(2);
AArch64CC::CondCode CC1 = (AArch64CC::CondCode)CSel1.getConstantOperandVal(2);
if (!Cmp0->hasOneUse() || !Cmp1->hasOneUse())
return SDValue();
if (Cmp1.getOpcode() != AArch64ISD::SUBS &&
Cmp0.getOpcode() == AArch64ISD::SUBS) {
std::swap(Cmp0, Cmp1);
std::swap(CC0, CC1);
}
if (Cmp1.getOpcode() != AArch64ISD::SUBS)
return SDValue();
SDLoc DL(N);
SDValue CCmp, Condition;
unsigned NZCV;
if (N->getOpcode() == ISD::AND) {
AArch64CC::CondCode InvCC0 = AArch64CC::getInvertedCondCode(CC0);
Condition = DAG.getConstant(InvCC0, DL, MVT_CC);
NZCV = AArch64CC::getNZCVToSatisfyCondCode(CC1);
} else {
AArch64CC::CondCode InvCC1 = AArch64CC::getInvertedCondCode(CC1);
Condition = DAG.getConstant(CC0, DL, MVT_CC);
NZCV = AArch64CC::getNZCVToSatisfyCondCode(InvCC1);
}
SDValue NZCVOp = DAG.getConstant(NZCV, DL, MVT::i32);
auto *Op1 = dyn_cast<ConstantSDNode>(Cmp1.getOperand(1));
if (Op1 && Op1->getAPIntValue().isNegative() &&
Op1->getAPIntValue().sgt(-32)) {
// CCMP accept the constant int the range [0, 31]
// if the Op1 is a constant in the range [-31, -1], we
// can select to CCMN to avoid the extra mov
SDValue AbsOp1 =
DAG.getConstant(Op1->getAPIntValue().abs(), DL, Op1->getValueType(0));
CCmp = DAG.getNode(AArch64ISD::CCMN, DL, MVT_CC, Cmp1.getOperand(0), AbsOp1,
NZCVOp, Condition, Cmp0);
} else {
CCmp = DAG.getNode(AArch64ISD::CCMP, DL, MVT_CC, Cmp1.getOperand(0),
Cmp1.getOperand(1), NZCVOp, Condition, Cmp0);
}
return DAG.getNode(AArch64ISD::CSEL, DL, VT, CSel0.getOperand(0),
CSel0.getOperand(1), DAG.getConstant(CC1, DL, MVT::i32),
CCmp);
}
static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
const AArch64Subtarget *Subtarget,
const AArch64TargetLowering &TLI) {
SelectionDAG &DAG = DCI.DAG;
EVT VT = N->getValueType(0);
if (SDValue R = performANDORCSELCombine(N, DAG))
return R;
if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
return SDValue();
if (SDValue Res = tryCombineToBSL(N, DCI, TLI))
return Res;
return SDValue();
}
static bool isConstantSplatVectorMaskForType(SDNode *N, EVT MemVT) {
if (!MemVT.getVectorElementType().isSimple())
return false;
uint64_t MaskForTy = 0ull;
switch (MemVT.getVectorElementType().getSimpleVT().SimpleTy) {
case MVT::i8:
MaskForTy = 0xffull;
break;
case MVT::i16:
MaskForTy = 0xffffull;
break;
case MVT::i32:
MaskForTy = 0xffffffffull;
break;
default:
return false;
break;
}
if (N->getOpcode() == AArch64ISD::DUP || N->getOpcode() == ISD::SPLAT_VECTOR)
if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0)))
return Op0->getAPIntValue().getLimitedValue() == MaskForTy;
return false;
}
static SDValue performReinterpretCastCombine(SDNode *N) {
SDValue LeafOp = SDValue(N, 0);
SDValue Op = N->getOperand(0);
while (Op.getOpcode() == AArch64ISD::REINTERPRET_CAST &&
LeafOp.getValueType() != Op.getValueType())
Op = Op->getOperand(0);
if (LeafOp.getValueType() == Op.getValueType())
return Op;
return SDValue();
}
static SDValue performSVEAndCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
SelectionDAG &DAG = DCI.DAG;
SDValue Src = N->getOperand(0);
unsigned Opc = Src->getOpcode();
// Zero/any extend of an unsigned unpack
if (Opc == AArch64ISD::UUNPKHI || Opc == AArch64ISD::UUNPKLO) {
SDValue UnpkOp = Src->getOperand(0);
SDValue Dup = N->getOperand(1);
if (Dup.getOpcode() != ISD::SPLAT_VECTOR)
return SDValue();
SDLoc DL(N);
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Dup->getOperand(0));
if (!C)
return SDValue();
uint64_t ExtVal = C->getZExtValue();
auto MaskAndTypeMatch = [ExtVal](EVT VT) -> bool {
return ((ExtVal == 0xFF && VT == MVT::i8) ||
(ExtVal == 0xFFFF && VT == MVT::i16) ||
(ExtVal == 0xFFFFFFFF && VT == MVT::i32));
};
// If the mask is fully covered by the unpack, we don't need to push
// a new AND onto the operand
EVT EltTy = UnpkOp->getValueType(0).getVectorElementType();
if (MaskAndTypeMatch(EltTy))
return Src;
// If this is 'and (uunpklo/hi (extload MemTy -> ExtTy)), mask', then check
// to see if the mask is all-ones of size MemTy.
auto MaskedLoadOp = dyn_cast<MaskedLoadSDNode>(UnpkOp);
if (MaskedLoadOp && (MaskedLoadOp->getExtensionType() == ISD::ZEXTLOAD ||
MaskedLoadOp->getExtensionType() == ISD::EXTLOAD)) {
EVT EltTy = MaskedLoadOp->getMemoryVT().getVectorElementType();
if (MaskAndTypeMatch(EltTy))
return Src;
}
// Truncate to prevent a DUP with an over wide constant
APInt Mask = C->getAPIntValue().trunc(EltTy.getSizeInBits());
// Otherwise, make sure we propagate the AND to the operand
// of the unpack
Dup = DAG.getNode(ISD::SPLAT_VECTOR, DL, UnpkOp->getValueType(0),
DAG.getConstant(Mask.zextOrTrunc(32), DL, MVT::i32));
SDValue And = DAG.getNode(ISD::AND, DL,
UnpkOp->getValueType(0), UnpkOp, Dup);
return DAG.getNode(Opc, DL, N->getValueType(0), And);
}
if (DCI.isBeforeLegalizeOps())
return SDValue();
// If both sides of AND operations are i1 splat_vectors then
// we can produce just i1 splat_vector as the result.
if (isAllActivePredicate(DAG, N->getOperand(0)))
return N->getOperand(1);
if (isAllActivePredicate(DAG, N->getOperand(1)))
return N->getOperand(0);
if (!EnableCombineMGatherIntrinsics)
return SDValue();
SDValue Mask = N->getOperand(1);
if (!Src.hasOneUse())
return SDValue();
EVT MemVT;
// SVE load instructions perform an implicit zero-extend, which makes them
// perfect candidates for combining.
switch (Opc) {
case AArch64ISD::LD1_MERGE_ZERO:
case AArch64ISD::LDNF1_MERGE_ZERO:
case AArch64ISD::LDFF1_MERGE_ZERO:
MemVT = cast<VTSDNode>(Src->getOperand(3))->getVT();
break;
case AArch64ISD::GLD1_MERGE_ZERO:
case AArch64ISD::GLD1_SCALED_MERGE_ZERO:
case AArch64ISD::GLD1_SXTW_MERGE_ZERO:
case AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO:
case AArch64ISD::GLD1_UXTW_MERGE_ZERO:
case AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO:
case AArch64ISD::GLD1_IMM_MERGE_ZERO:
case AArch64ISD::GLDFF1_MERGE_ZERO:
case AArch64ISD::GLDFF1_SCALED_MERGE_ZERO:
case AArch64ISD::GLDFF1_SXTW_MERGE_ZERO:
case AArch64ISD::GLDFF1_SXTW_SCALED_MERGE_ZERO:
case AArch64ISD::GLDFF1_UXTW_MERGE_ZERO:
case AArch64ISD::GLDFF1_UXTW_SCALED_MERGE_ZERO:
case AArch64ISD::GLDFF1_IMM_MERGE_ZERO:
case AArch64ISD::GLDNT1_MERGE_ZERO:
MemVT = cast<VTSDNode>(Src->getOperand(4))->getVT();
break;
default:
return SDValue();
}
if (isConstantSplatVectorMaskForType(Mask.getNode(), MemVT))
return Src;
return SDValue();
}
// Transform and(fcmp(a, b), fcmp(c, d)) into fccmp(fcmp(a, b), c, d)
static SDValue performANDSETCCCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
// This function performs an optimization on a specific pattern involving
// an AND operation and SETCC (Set Condition Code) node.
SDValue SetCC = N->getOperand(0);
EVT VT = N->getValueType(0);
SelectionDAG &DAG = DCI.DAG;
// Checks if the current node (N) is used by any SELECT instruction and
// returns an empty SDValue to avoid applying the optimization to prevent
// incorrect results
for (auto U : N->uses())
if (U->getOpcode() == ISD::SELECT)
return SDValue();
// Check if the operand is a SETCC node with floating-point comparison
if (SetCC.getOpcode() == ISD::SETCC &&
SetCC.getOperand(0).getValueType() == MVT::f32) {
SDValue Cmp;
AArch64CC::CondCode CC;
// Check if the DAG is after legalization and if we can emit the conjunction
if (!DCI.isBeforeLegalize() &&
(Cmp = emitConjunction(DAG, SDValue(N, 0), CC))) {
AArch64CC::CondCode InvertedCC = AArch64CC::getInvertedCondCode(CC);
SDLoc DL(N);
return DAG.getNode(AArch64ISD::CSINC, DL, VT, DAG.getConstant(0, DL, VT),
DAG.getConstant(0, DL, VT),
DAG.getConstant(InvertedCC, DL, MVT::i32), Cmp);
}
}
return SDValue();
}
static SDValue performANDCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
SelectionDAG &DAG = DCI.DAG;
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
EVT VT = N->getValueType(0);
if (SDValue R = performANDORCSELCombine(N, DAG))
return R;
if (SDValue R = performANDSETCCCombine(N,DCI))
return R;
if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
return SDValue();
if (VT.isScalableVector())
return performSVEAndCombine(N, DCI);
// The combining code below works only for NEON vectors. In particular, it
// does not work for SVE when dealing with vectors wider than 128 bits.
if (!VT.is64BitVector() && !VT.is128BitVector())
return SDValue();
BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
if (!BVN)
return SDValue();
// AND does not accept an immediate, so check if we can use a BIC immediate
// instruction instead. We do this here instead of using a (and x, (mvni imm))
// pattern in isel, because some immediates may be lowered to the preferred
// (and x, (movi imm)) form, even though an mvni representation also exists.
APInt DefBits(VT.getSizeInBits(), 0);
APInt UndefBits(VT.getSizeInBits(), 0);
if (resolveBuildVector(BVN, DefBits, UndefBits)) {
SDValue NewOp;
// Any bits known to already be 0 need not be cleared again, which can help
// reduce the size of the immediate to one supported by the instruction.
KnownBits Known = DAG.computeKnownBits(LHS);
APInt ZeroSplat(VT.getSizeInBits(), 0);
for (unsigned I = 0; I < VT.getSizeInBits() / Known.Zero.getBitWidth(); I++)
ZeroSplat |= Known.Zero.zext(VT.getSizeInBits())
<< (Known.Zero.getBitWidth() * I);
DefBits = ~(DefBits | ZeroSplat);
if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::BICi, SDValue(N, 0), DAG,
DefBits, &LHS)) ||
(NewOp = tryAdvSIMDModImm16(AArch64ISD::BICi, SDValue(N, 0), DAG,
DefBits, &LHS)))
return NewOp;
UndefBits = ~(UndefBits | ZeroSplat);
if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::BICi, SDValue(N, 0), DAG,
UndefBits, &LHS)) ||
(NewOp = tryAdvSIMDModImm16(AArch64ISD::BICi, SDValue(N, 0), DAG,
UndefBits, &LHS)))
return NewOp;
}
return SDValue();
}
static SDValue performFADDCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
SelectionDAG &DAG = DCI.DAG;
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
EVT VT = N->getValueType(0);
SDLoc DL(N);
if (!N->getFlags().hasAllowReassociation())
return SDValue();
// Combine fadd(a, vcmla(b, c, d)) -> vcmla(fadd(a, b), b, c)
auto ReassocComplex = [&](SDValue A, SDValue B) {
if (A.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
return SDValue();
unsigned Opc = A.getConstantOperandVal(0);
if (Opc != Intrinsic::aarch64_neon_vcmla_rot0 &&
Opc != Intrinsic::aarch64_neon_vcmla_rot90 &&
Opc != Intrinsic::aarch64_neon_vcmla_rot180 &&
Opc != Intrinsic::aarch64_neon_vcmla_rot270)
return SDValue();
SDValue VCMLA = DAG.getNode(
ISD::INTRINSIC_WO_CHAIN, DL, VT, A.getOperand(0),
DAG.getNode(ISD::FADD, DL, VT, A.getOperand(1), B, N->getFlags()),
A.getOperand(2), A.getOperand(3));
VCMLA->setFlags(A->getFlags());
return VCMLA;
};
if (SDValue R = ReassocComplex(LHS, RHS))
return R;
if (SDValue R = ReassocComplex(RHS, LHS))
return R;
return SDValue();
}
static bool hasPairwiseAdd(unsigned Opcode, EVT VT, bool FullFP16) {
switch (Opcode) {
case ISD::STRICT_FADD:
case ISD::FADD:
return (FullFP16 && VT == MVT::f16) || VT == MVT::f32 || VT == MVT::f64;
case ISD::ADD:
return VT == MVT::i64;
default:
return false;
}
}
static SDValue getPTest(SelectionDAG &DAG, EVT VT, SDValue Pg, SDValue Op,
AArch64CC::CondCode Cond);
static bool isPredicateCCSettingOp(SDValue N) {
if ((N.getOpcode() == ISD::SETCC) ||
(N.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
(N.getConstantOperandVal(0) == Intrinsic::aarch64_sve_whilege ||
N.getConstantOperandVal(0) == Intrinsic::aarch64_sve_whilegt ||
N.getConstantOperandVal(0) == Intrinsic::aarch64_sve_whilehi ||
N.getConstantOperandVal(0) == Intrinsic::aarch64_sve_whilehs ||
N.getConstantOperandVal(0) == Intrinsic::aarch64_sve_whilele ||
N.getConstantOperandVal(0) == Intrinsic::aarch64_sve_whilelo ||
N.getConstantOperandVal(0) == Intrinsic::aarch64_sve_whilels ||
N.getConstantOperandVal(0) == Intrinsic::aarch64_sve_whilelt ||
// get_active_lane_mask is lowered to a whilelo instruction.
N.getConstantOperandVal(0) == Intrinsic::get_active_lane_mask)))
return true;
return false;
}
// Materialize : i1 = extract_vector_elt t37, Constant:i64<0>
// ... into: "ptrue p, all" + PTEST
static SDValue
performFirstTrueTestVectorCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const AArch64Subtarget *Subtarget) {
assert(N->getOpcode() == ISD::EXTRACT_VECTOR_ELT);
// Make sure PTEST can be legalised with illegal types.
if (!Subtarget->hasSVE() || DCI.isBeforeLegalize())
return SDValue();
SDValue N0 = N->getOperand(0);
EVT VT = N0.getValueType();
if (!VT.isScalableVector() || VT.getVectorElementType() != MVT::i1 ||
!isNullConstant(N->getOperand(1)))
return SDValue();
// Restricted the DAG combine to only cases where we're extracting from a
// flag-setting operation.
if (!isPredicateCCSettingOp(N0))
return SDValue();
// Extracts of lane 0 for SVE can be expressed as PTEST(Op, FIRST) ? 1 : 0
SelectionDAG &DAG = DCI.DAG;
SDValue Pg = getPTrue(DAG, SDLoc(N), VT, AArch64SVEPredPattern::all);
return getPTest(DAG, N->getValueType(0), Pg, N0, AArch64CC::FIRST_ACTIVE);
}
// Materialize : Idx = (add (mul vscale, NumEls), -1)
// i1 = extract_vector_elt t37, Constant:i64<Idx>
// ... into: "ptrue p, all" + PTEST
static SDValue
performLastTrueTestVectorCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const AArch64Subtarget *Subtarget) {
assert(N->getOpcode() == ISD::EXTRACT_VECTOR_ELT);
// Make sure PTEST is legal types.
if (!Subtarget->hasSVE() || DCI.isBeforeLegalize())
return SDValue();
SDValue N0 = N->getOperand(0);
EVT OpVT = N0.getValueType();
if (!OpVT.isScalableVector() || OpVT.getVectorElementType() != MVT::i1)
return SDValue();
// Idx == (add (mul vscale, NumEls), -1)
SDValue Idx = N->getOperand(1);
if (Idx.getOpcode() != ISD::ADD || !isAllOnesConstant(Idx.getOperand(1)))
return SDValue();
SDValue VS = Idx.getOperand(0);
if (VS.getOpcode() != ISD::VSCALE)
return SDValue();
unsigned NumEls = OpVT.getVectorElementCount().getKnownMinValue();
if (VS.getConstantOperandVal(0) != NumEls)
return SDValue();
// Extracts of lane EC-1 for SVE can be expressed as PTEST(Op, LAST) ? 1 : 0
SelectionDAG &DAG = DCI.DAG;
SDValue Pg = getPTrue(DAG, SDLoc(N), OpVT, AArch64SVEPredPattern::all);
return getPTest(DAG, N->getValueType(0), Pg, N0, AArch64CC::LAST_ACTIVE);
}
static SDValue
performExtractVectorEltCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
const AArch64Subtarget *Subtarget) {
assert(N->getOpcode() == ISD::EXTRACT_VECTOR_ELT);
if (SDValue Res = performFirstTrueTestVectorCombine(N, DCI, Subtarget))
return Res;
if (SDValue Res = performLastTrueTestVectorCombine(N, DCI, Subtarget))
return Res;
SelectionDAG &DAG = DCI.DAG;
SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
const bool FullFP16 = DAG.getSubtarget<AArch64Subtarget>().hasFullFP16();
bool IsStrict = N0->isStrictFPOpcode();
// extract(dup x) -> x
if (N0.getOpcode() == AArch64ISD::DUP)
return VT.isInteger() ? DAG.getZExtOrTrunc(N0.getOperand(0), SDLoc(N), VT)
: N0.getOperand(0);
// Rewrite for pairwise fadd pattern
// (f32 (extract_vector_elt
// (fadd (vXf32 Other)
// (vector_shuffle (vXf32 Other) undef <1,X,...> )) 0))
// ->
// (f32 (fadd (extract_vector_elt (vXf32 Other) 0)
// (extract_vector_elt (vXf32 Other) 1))
// For strict_fadd we need to make sure the old strict_fadd can be deleted, so
// we can only do this when it's used only by the extract_vector_elt.
if (isNullConstant(N1) && hasPairwiseAdd(N0->getOpcode(), VT, FullFP16) &&
(!IsStrict || N0.hasOneUse())) {
SDLoc DL(N0);
SDValue N00 = N0->getOperand(IsStrict ? 1 : 0);
SDValue N01 = N0->getOperand(IsStrict ? 2 : 1);
ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(N01);
SDValue Other = N00;
// And handle the commutative case.
if (!Shuffle) {
Shuffle = dyn_cast<ShuffleVectorSDNode>(N00);
Other = N01;
}
if (Shuffle && Shuffle->getMaskElt(0) == 1 &&
Other == Shuffle->getOperand(0)) {
SDValue Extract1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Other,
DAG.getConstant(0, DL, MVT::i64));
SDValue Extract2 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Other,
DAG.getConstant(1, DL, MVT::i64));
if (!IsStrict)
return DAG.getNode(N0->getOpcode(), DL, VT, Extract1, Extract2);
// For strict_fadd we need uses of the final extract_vector to be replaced
// with the strict_fadd, but we also need uses of the chain output of the
// original strict_fadd to use the chain output of the new strict_fadd as
// otherwise it may not be deleted.
SDValue Ret = DAG.getNode(N0->getOpcode(), DL,
{VT, MVT::Other},
{N0->getOperand(0), Extract1, Extract2});
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Ret);
DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Ret.getValue(1));
return SDValue(N, 0);
}
}
return SDValue();
}
static SDValue performConcatVectorsCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
SelectionDAG &DAG) {
SDLoc dl(N);
EVT VT = N->getValueType(0);
SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
unsigned N0Opc = N0->getOpcode(), N1Opc = N1->getOpcode();
if (VT.isScalableVector())
return SDValue();
if (N->getNumOperands() == 2 && N0Opc == ISD::TRUNCATE &&
N1Opc == ISD::TRUNCATE) {
SDValue N00 = N0->getOperand(0);
SDValue N10 = N1->getOperand(0);
EVT N00VT = N00.getValueType();
unsigned N00Opc = N00.getOpcode(), N10Opc = N10.getOpcode();
// Optimize concat_vectors of truncated vectors, where the intermediate
// type is illegal, to avoid said illegality, e.g.,
// (v4i16 (concat_vectors (v2i16 (truncate (v2i64))),
// (v2i16 (truncate (v2i64)))))
// ->
// (v4i16 (truncate (vector_shuffle (v4i32 (bitcast (v2i64))),
// (v4i32 (bitcast (v2i64))),
// <0, 2, 4, 6>)))
// This isn't really target-specific, but ISD::TRUNCATE legality isn't keyed
// on both input and result type, so we might generate worse code.
// On AArch64 we know it's fine for v2i64->v4i16 and v4i32->v8i8.
if (N00VT == N10.getValueType() &&
(N00VT == MVT::v2i64 || N00VT == MVT::v4i32) &&
N00VT.getScalarSizeInBits() == 4 * VT.getScalarSizeInBits()) {
MVT MidVT = (N00VT == MVT::v2i64 ? MVT::v4i32 : MVT::v8i16);
SmallVector<int, 8> Mask(MidVT.getVectorNumElements());
for (size_t i = 0; i < Mask.size(); ++i)
Mask[i] = i * 2;
return DAG.getNode(ISD::TRUNCATE, dl, VT,
DAG.getVectorShuffle(
MidVT, dl,
DAG.getNode(ISD::BITCAST, dl, MidVT, N00),
DAG.getNode(ISD::BITCAST, dl, MidVT, N10), Mask));
}
// Optimize two large shifts and a combine into a single combine and shift
// For AArch64 architectures, sequences like the following:
//
// ushr v0.4s, v0.4s, #20
// ushr v1.4s, v1.4s, #20
// uzp1 v0.8h, v0.8h, v1.8h
//
// Can be optimized to:
//
// uzp2 v0.8h, v0.8h, v1.8h
// ushr v0.8h, v0.8h, #4
//
// This optimization reduces instruction count.
if (N00Opc == AArch64ISD::VLSHR && N10Opc == AArch64ISD::VLSHR &&
N00->getOperand(1) == N10->getOperand(1)) {
SDValue N000 = N00->getOperand(0);
SDValue N100 = N10->getOperand(0);
uint64_t N001ConstVal = N00->getConstantOperandVal(1),
N101ConstVal = N10->getConstantOperandVal(1),
NScalarSize = N->getValueType(0).getScalarSizeInBits();
if (N001ConstVal == N101ConstVal && N001ConstVal > NScalarSize) {
N000 = DAG.getNode(AArch64ISD::NVCAST, dl, VT, N000);
N100 = DAG.getNode(AArch64ISD::NVCAST, dl, VT, N100);
SDValue Uzp = DAG.getNode(AArch64ISD::UZP2, dl, VT, N000, N100);
SDValue NewShiftConstant =
DAG.getConstant(N001ConstVal - NScalarSize, dl, MVT::i32);
return DAG.getNode(AArch64ISD::VLSHR, dl, VT, Uzp, NewShiftConstant);
}
}
}
if (N->getOperand(0).getValueType() == MVT::v4i8 ||
N->getOperand(0).getValueType() == MVT::v2i16 ||
N->getOperand(0).getValueType() == MVT::v2i8) {
EVT SrcVT = N->getOperand(0).getValueType();
// If we have a concat of v4i8 loads, convert them to a buildvector of f32
// loads to prevent having to go through the v4i8 load legalization that
// needs to extend each element into a larger type.
if (N->getNumOperands() % 2 == 0 &&
all_of(N->op_values(), [SrcVT](SDValue V) {
if (V.getValueType() != SrcVT)
return false;
if (V.isUndef())
return true;
LoadSDNode *LD = dyn_cast<LoadSDNode>(V);
return LD && V.hasOneUse() && LD->isSimple() && !LD->isIndexed() &&
LD->getExtensionType() == ISD::NON_EXTLOAD;
})) {
EVT FVT = SrcVT == MVT::v2i8 ? MVT::f16 : MVT::f32;
EVT NVT = EVT::getVectorVT(*DAG.getContext(), FVT, N->getNumOperands());
SmallVector<SDValue> Ops;
for (unsigned i = 0; i < N->getNumOperands(); i++) {
SDValue V = N->getOperand(i);
if (V.isUndef())
Ops.push_back(DAG.getUNDEF(FVT));
else {
LoadSDNode *LD = cast<LoadSDNode>(V);
SDValue NewLoad = DAG.getLoad(FVT, dl, LD->getChain(),
LD->getBasePtr(), LD->getMemOperand());
DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLoad.getValue(1));
Ops.push_back(NewLoad);
}
}
return DAG.getBitcast(N->getValueType(0),
DAG.getBuildVector(NVT, dl, Ops));
}
}
// Canonicalise concat_vectors to replace concatenations of truncated nots
// with nots of concatenated truncates. This in some cases allows for multiple
// redundant negations to be eliminated.
// (concat_vectors (v4i16 (truncate (not (v4i32)))),
// (v4i16 (truncate (not (v4i32)))))
// ->
// (not (concat_vectors (v4i16 (truncate (v4i32))),
// (v4i16 (truncate (v4i32)))))
if (N->getNumOperands() == 2 && N0Opc == ISD::TRUNCATE &&
N1Opc == ISD::TRUNCATE && N->isOnlyUserOf(N0.getNode()) &&
N->isOnlyUserOf(N1.getNode())) {
auto isBitwiseVectorNegate = [](SDValue V) {
return V->getOpcode() == ISD::XOR &&
ISD::isConstantSplatVectorAllOnes(V.getOperand(1).getNode());
};
SDValue N00 = N0->getOperand(0);
SDValue N10 = N1->getOperand(0);
if (isBitwiseVectorNegate(N00) && N0->isOnlyUserOf(N00.getNode()) &&
isBitwiseVectorNegate(N10) && N1->isOnlyUserOf(N10.getNode())) {
return DAG.getNOT(
dl,
DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
DAG.getNode(ISD::TRUNCATE, dl, N0.getValueType(),
N00->getOperand(0)),
DAG.getNode(ISD::TRUNCATE, dl, N1.getValueType(),
N10->getOperand(0))),
VT);
}
}
// Wait till after everything is legalized to try this. That way we have
// legal vector types and such.
if (DCI.isBeforeLegalizeOps())
return SDValue();
// Optimise concat_vectors of two identical binops with a 128-bit destination
// size, combine into an binop of two contacts of the source vectors. eg:
// concat(uhadd(a,b), uhadd(c, d)) -> uhadd(concat(a, c), concat(b, d))
if (N->getNumOperands() == 2 && N0Opc == N1Opc && VT.is128BitVector() &&
DAG.getTargetLoweringInfo().isBinOp(N0Opc) && N0->hasOneUse() &&
N1->hasOneUse()) {
SDValue N00 = N0->getOperand(0);
SDValue N01 = N0->getOperand(1);
SDValue N10 = N1->getOperand(0);
SDValue N11 = N1->getOperand(1);
if (!N00.isUndef() && !N01.isUndef() && !N10.isUndef() && !N11.isUndef()) {
SDValue Concat0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, N00, N10);
SDValue Concat1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, N01, N11);
return DAG.getNode(N0Opc, dl, VT, Concat0, Concat1);
}
}
auto IsRSHRN = [](SDValue Shr) {
if (Shr.getOpcode() != AArch64ISD::VLSHR)
return false;
SDValue Op = Shr.getOperand(0);
EVT VT = Op.getValueType();
unsigned ShtAmt = Shr.getConstantOperandVal(1);
if (ShtAmt > VT.getScalarSizeInBits() / 2 || Op.getOpcode() != ISD::ADD)
return false;
APInt Imm;
if (Op.getOperand(1).getOpcode() == AArch64ISD::MOVIshift)
Imm = APInt(VT.getScalarSizeInBits(),
Op.getOperand(1).getConstantOperandVal(0)
<< Op.getOperand(1).getConstantOperandVal(1));
else if (Op.getOperand(1).getOpcode() == AArch64ISD::DUP &&
isa<ConstantSDNode>(Op.getOperand(1).getOperand(0)))
Imm = APInt(VT.getScalarSizeInBits(),
Op.getOperand(1).getConstantOperandVal(0));
else
return false;
if (Imm != 1ULL << (ShtAmt - 1))
return false;
return true;
};
// concat(rshrn(x), rshrn(y)) -> rshrn(concat(x, y))
if (N->getNumOperands() == 2 && IsRSHRN(N0) &&
((IsRSHRN(N1) &&
N0.getConstantOperandVal(1) == N1.getConstantOperandVal(1)) ||
N1.isUndef())) {
SDValue X = N0.getOperand(0).getOperand(0);
SDValue Y = N1.isUndef() ? DAG.getUNDEF(X.getValueType())
: N1.getOperand(0).getOperand(0);
EVT BVT =
X.getValueType().getDoubleNumVectorElementsVT(*DCI.DAG.getContext());
SDValue CC = DAG.getNode(ISD::CONCAT_VECTORS, dl, BVT, X, Y);
SDValue Add = DAG.getNode(
ISD::ADD, dl, BVT, CC,
DAG.getConstant(1ULL << (N0.getConstantOperandVal(1) - 1), dl, BVT));
SDValue Shr =
DAG.getNode(AArch64ISD::VLSHR, dl, BVT, Add, N0.getOperand(1));
return Shr;
}
// concat(zip1(a, b), zip2(a, b)) is zip1(a, b)
if (N->getNumOperands() == 2 && N0Opc == AArch64ISD::ZIP1 &&
N1Opc == AArch64ISD::ZIP2 && N0.getOperand(0) == N1.getOperand(0) &&
N0.getOperand(1) == N1.getOperand(1)) {
SDValue E0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, N0.getOperand(0),
DAG.getUNDEF(N0.getValueType()));
SDValue E1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, N0.getOperand(1),
DAG.getUNDEF(N0.getValueType()));
return DAG.getNode(AArch64ISD::ZIP1, dl, VT, E0, E1);
}
// If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector
// splat. The indexed instructions are going to be expecting a DUPLANE64, so
// canonicalise to that.
if (N->getNumOperands() == 2 && N0 == N1 && VT.getVectorNumElements() == 2) {
assert(VT.getScalarSizeInBits() == 64);
return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT, WidenVector(N0, DAG),
DAG.getConstant(0, dl, MVT::i64));
}
// Canonicalise concat_vectors so that the right-hand vector has as few
// bit-casts as possible before its real operation. The primary matching
// destination for these operations will be the narrowing "2" instructions,
// which depend on the operation being performed on this right-hand vector.
// For example,
// (concat_vectors LHS, (v1i64 (bitconvert (v4i16 RHS))))
// becomes
// (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS))
if (N->getNumOperands() != 2 || N1Opc != ISD::BITCAST)
return SDValue();
SDValue RHS = N1->getOperand(0);
MVT RHSTy = RHS.getValueType().getSimpleVT();
// If the RHS is not a vector, this is not the pattern we're looking for.
if (!RHSTy.isVector())
return SDValue();
LLVM_DEBUG(
dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n");
MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(),
RHSTy.getVectorNumElements() * 2);
return DAG.getNode(ISD::BITCAST, dl, VT,
DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy,
DAG.getNode(ISD::BITCAST, dl, RHSTy, N0),
RHS));
}
static SDValue
performExtractSubvectorCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
SelectionDAG &DAG) {
if (DCI.isBeforeLegalizeOps())
return SDValue();
EVT VT = N->getValueType(0);
if (!VT.isScalableVector() || VT.getVectorElementType() != MVT::i1)
return SDValue();
SDValue V = N->getOperand(0);
// NOTE: This combine exists in DAGCombiner, but that version's legality check
// blocks this combine because the non-const case requires custom lowering.
//
// ty1 extract_vector(ty2 splat(const))) -> ty1 splat(const)
if (V.getOpcode() == ISD::SPLAT_VECTOR)
if (isa<ConstantSDNode>(V.getOperand(0)))
return DAG.getNode(ISD::SPLAT_VECTOR, SDLoc(N), VT, V.getOperand(0));
return SDValue();
}
static SDValue
performInsertSubvectorCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
SelectionDAG &DAG) {
SDLoc DL(N);
SDValue Vec = N->getOperand(0);
SDValue SubVec = N->getOperand(1);
uint64_t IdxVal = N->getConstantOperandVal(2);
EVT VecVT = Vec.getValueType();
EVT SubVT = SubVec.getValueType();
// Only do this for legal fixed vector types.
if (!VecVT.isFixedLengthVector() ||
!DAG.getTargetLoweringInfo().isTypeLegal(VecVT) ||
!DAG.getTargetLoweringInfo().isTypeLegal(SubVT))
return SDValue();
// Ignore widening patterns.
if (IdxVal == 0 && Vec.isUndef())
return SDValue();
// Subvector must be half the width and an "aligned" insertion.
unsigned NumSubElts = SubVT.getVectorNumElements();
if ((SubVT.getSizeInBits() * 2) != VecVT.getSizeInBits() ||
(IdxVal != 0 && IdxVal != NumSubElts))
return SDValue();
// Fold insert_subvector -> concat_vectors
// insert_subvector(Vec,Sub,lo) -> concat_vectors(Sub,extract(Vec,hi))
// insert_subvector(Vec,Sub,hi) -> concat_vectors(extract(Vec,lo),Sub)
SDValue Lo, Hi;
if (IdxVal == 0) {
Lo = SubVec;
Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, Vec,
DAG.getVectorIdxConstant(NumSubElts, DL));
} else {
Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, Vec,
DAG.getVectorIdxConstant(0, DL));
Hi = SubVec;
}
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VecVT, Lo, Hi);
}
static SDValue tryCombineFixedPointConvert(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
SelectionDAG &DAG) {
// Wait until after everything is legalized to try this. That way we have
// legal vector types and such.
if (DCI.isBeforeLegalizeOps())
return SDValue();
// Transform a scalar conversion of a value from a lane extract into a
// lane extract of a vector conversion. E.g., from foo1 to foo2:
// double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); }
// double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; }
//
// The second form interacts better with instruction selection and the
// register allocator to avoid cross-class register copies that aren't
// coalescable due to a lane reference.
// Check the operand and see if it originates from a lane extract.
SDValue Op1 = N->getOperand(1);
if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
return SDValue();
// Yep, no additional predication needed. Perform the transform.
SDValue IID = N->getOperand(0);
SDValue Shift = N->getOperand(2);
SDValue Vec = Op1.getOperand(0);
SDValue Lane = Op1.getOperand(1);
EVT ResTy = N->getValueType(0);
EVT VecResTy;
SDLoc DL(N);
// The vector width should be 128 bits by the time we get here, even
// if it started as 64 bits (the extract_vector handling will have
// done so). Bail if it is not.
if (Vec.getValueSizeInBits() != 128)
return SDValue();
if (Vec.getValueType() == MVT::v4i32)
VecResTy = MVT::v4f32;
else if (Vec.getValueType() == MVT::v2i64)
VecResTy = MVT::v2f64;
else
return SDValue();
SDValue Convert =
DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane);
}
// AArch64 high-vector "long" operations are formed by performing the non-high
// version on an extract_subvector of each operand which gets the high half:
//
// (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS))
//
// However, there are cases which don't have an extract_high explicitly, but
// have another operation that can be made compatible with one for free. For
// example:
//
// (dupv64 scalar) --> (extract_high (dup128 scalar))
//
// This routine does the actual conversion of such DUPs, once outer routines
// have determined that everything else is in order.
// It also supports immediate DUP-like nodes (MOVI/MVNi), which we can fold
// similarly here.
static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) {
MVT VT = N.getSimpleValueType();
if (N.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
N.getConstantOperandVal(1) == 0)
N = N.getOperand(0);
switch (N.getOpcode()) {
case AArch64ISD::DUP:
case AArch64ISD::DUPLANE8:
case AArch64ISD::DUPLANE16:
case AArch64ISD::DUPLANE32:
case AArch64ISD::DUPLANE64:
case AArch64ISD::MOVI:
case AArch64ISD::MOVIshift:
case AArch64ISD::MOVIedit:
case AArch64ISD::MOVImsl:
case AArch64ISD::MVNIshift:
case AArch64ISD::MVNImsl:
break;
default:
// FMOV could be supported, but isn't very useful, as it would only occur
// if you passed a bitcast' floating point immediate to an eligible long
// integer op (addl, smull, ...).
return SDValue();
}
if (!VT.is64BitVector())
return SDValue();
SDLoc DL(N);
unsigned NumElems = VT.getVectorNumElements();
if (N.getValueType().is64BitVector()) {
MVT ElementTy = VT.getVectorElementType();
MVT NewVT = MVT::getVectorVT(ElementTy, NumElems * 2);
N = DAG.getNode(N->getOpcode(), DL, NewVT, N->ops());
}
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, N,
DAG.getConstant(NumElems, DL, MVT::i64));
}
static bool isEssentiallyExtractHighSubvector(SDValue N) {
if (N.getOpcode() == ISD::BITCAST)
N = N.getOperand(0);
if (N.getOpcode() != ISD::EXTRACT_SUBVECTOR)
return false;
if (N.getOperand(0).getValueType().isScalableVector())
return false;
return N.getConstantOperandAPInt(1) ==
N.getOperand(0).getValueType().getVectorNumElements() / 2;
}
/// Helper structure to keep track of ISD::SET_CC operands.
struct GenericSetCCInfo {
const SDValue *Opnd0;
const SDValue *Opnd1;
ISD::CondCode CC;
};
/// Helper structure to keep track of a SET_CC lowered into AArch64 code.
struct AArch64SetCCInfo {
const SDValue *Cmp;
AArch64CC::CondCode CC;
};
/// Helper structure to keep track of SetCC information.
union SetCCInfo {
GenericSetCCInfo Generic;
AArch64SetCCInfo AArch64;
};
/// Helper structure to be able to read SetCC information. If set to
/// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a
/// GenericSetCCInfo.
struct SetCCInfoAndKind {
SetCCInfo Info;
bool IsAArch64;
};
/// Check whether or not \p Op is a SET_CC operation, either a generic or
/// an
/// AArch64 lowered one.
/// \p SetCCInfo is filled accordingly.
/// \post SetCCInfo is meanginfull only when this function returns true.
/// \return True when Op is a kind of SET_CC operation.
static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) {
// If this is a setcc, this is straight forward.
if (Op.getOpcode() == ISD::SETCC) {
SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0);
SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1);
SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
SetCCInfo.IsAArch64 = false;
return true;
}
// Otherwise, check if this is a matching csel instruction.
// In other words:
// - csel 1, 0, cc
// - csel 0, 1, !cc
if (Op.getOpcode() != AArch64ISD::CSEL)
return false;
// Set the information about the operands.
// TODO: we want the operands of the Cmp not the csel
SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3);
SetCCInfo.IsAArch64 = true;
SetCCInfo.Info.AArch64.CC =
static_cast<AArch64CC::CondCode>(Op.getConstantOperandVal(2));
// Check that the operands matches the constraints:
// (1) Both operands must be constants.
// (2) One must be 1 and the other must be 0.
ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0));
ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1));
// Check (1).
if (!TValue || !FValue)
return false;
// Check (2).
if (!TValue->isOne()) {
// Update the comparison when we are interested in !cc.
std::swap(TValue, FValue);
SetCCInfo.Info.AArch64.CC =
AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC);
}
return TValue->isOne() && FValue->isZero();
}
// Returns true if Op is setcc or zext of setcc.
static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) {
if (isSetCC(Op, Info))
return true;
return ((Op.getOpcode() == ISD::ZERO_EXTEND) &&
isSetCC(Op->getOperand(0), Info));
}
// The folding we want to perform is:
// (add x, [zext] (setcc cc ...) )
// -->
// (csel x, (add x, 1), !cc ...)
//
// The latter will get matched to a CSINC instruction.
static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) {
assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!");
SDValue LHS = Op->getOperand(0);
SDValue RHS = Op->getOperand(1);
SetCCInfoAndKind InfoAndKind;
// If both operands are a SET_CC, then we don't want to perform this
// folding and create another csel as this results in more instructions
// (and higher register usage).
if (isSetCCOrZExtSetCC(LHS, InfoAndKind) &&
isSetCCOrZExtSetCC(RHS, InfoAndKind))
return SDValue();
// If neither operand is a SET_CC, give up.
if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) {
std::swap(LHS, RHS);
if (!isSetCCOrZExtSetCC(LHS, InfoAndKind))
return SDValue();
}
// FIXME: This could be generatized to work for FP comparisons.
EVT CmpVT = InfoAndKind.IsAArch64
? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType()
: InfoAndKind.Info.Generic.Opnd0->getValueType();
if (CmpVT != MVT::i32 && CmpVT != MVT::i64)
return SDValue();
SDValue CCVal;
SDValue Cmp;
SDLoc dl(Op);
if (InfoAndKind.IsAArch64) {
CCVal = DAG.getConstant(
AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), dl,
MVT::i32);
Cmp = *InfoAndKind.Info.AArch64.Cmp;
} else
Cmp = getAArch64Cmp(
*InfoAndKind.Info.Generic.Opnd0, *InfoAndKind.Info.Generic.Opnd1,
ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, CmpVT), CCVal, DAG,
dl);
EVT VT = Op->getValueType(0);
LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, dl, VT));
return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp);
}
// ADD(UADDV a, UADDV b) --> UADDV(ADD a, b)
static SDValue performAddUADDVCombine(SDNode *N, SelectionDAG &DAG) {
EVT VT = N->getValueType(0);
// Only scalar integer and vector types.
if (N->getOpcode() != ISD::ADD || !VT.isScalarInteger())
return SDValue();
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
if (LHS.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
RHS.getOpcode() != ISD::EXTRACT_VECTOR_ELT || LHS.getValueType() != VT)
return SDValue();
auto *LHSN1 = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
auto *RHSN1 = dyn_cast<ConstantSDNode>(RHS->getOperand(1));
if (!LHSN1 || LHSN1 != RHSN1 || !RHSN1->isZero())
return SDValue();
SDValue Op1 = LHS->getOperand(0);
SDValue Op2 = RHS->getOperand(0);
EVT OpVT1 = Op1.getValueType();
EVT OpVT2 = Op2.getValueType();
if (Op1.getOpcode() != AArch64ISD::UADDV || OpVT1 != OpVT2 ||
Op2.getOpcode() != AArch64ISD::UADDV ||
OpVT1.getVectorElementType() != VT)
return SDValue();
SDValue Val1 = Op1.getOperand(0);
SDValue Val2 = Op2.getOperand(0);
EVT ValVT = Val1->getValueType(0);
SDLoc DL(N);
SDValue AddVal = DAG.getNode(ISD::ADD, DL, ValVT, Val1, Val2);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
DAG.getNode(AArch64ISD::UADDV, DL, ValVT, AddVal),
DAG.getConstant(0, DL, MVT::i64));
}
/// Perform the scalar expression combine in the form of:
/// CSEL(c, 1, cc) + b => CSINC(b+c, b, cc)
/// CSNEG(c, -1, cc) + b => CSINC(b+c, b, cc)
static SDValue performAddCSelIntoCSinc(SDNode *N, SelectionDAG &DAG) {
EVT VT = N->getValueType(0);
if (!VT.isScalarInteger() || N->getOpcode() != ISD::ADD)
return SDValue();
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
// Handle commutivity.
if (LHS.getOpcode() != AArch64ISD::CSEL &&
LHS.getOpcode() != AArch64ISD::CSNEG) {
std::swap(LHS, RHS);
if (LHS.getOpcode() != AArch64ISD::CSEL &&
LHS.getOpcode() != AArch64ISD::CSNEG) {
return SDValue();
}
}
if (!LHS.hasOneUse())
return SDValue();
AArch64CC::CondCode AArch64CC =
static_cast<AArch64CC::CondCode>(LHS.getConstantOperandVal(2));
// The CSEL should include a const one operand, and the CSNEG should include
// One or NegOne operand.
ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(LHS.getOperand(0));
ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
if (!CTVal || !CFVal)
return SDValue();
if (!(LHS.getOpcode() == AArch64ISD::CSEL &&
(CTVal->isOne() || CFVal->isOne())) &&
!(LHS.getOpcode() == AArch64ISD::CSNEG &&
(CTVal->isOne() || CFVal->isAllOnes())))
return SDValue();
// Switch CSEL(1, c, cc) to CSEL(c, 1, !cc)
if (LHS.getOpcode() == AArch64ISD::CSEL && CTVal->isOne() &&
!CFVal->isOne()) {
std::swap(CTVal, CFVal);
AArch64CC = AArch64CC::getInvertedCondCode(AArch64CC);
}
SDLoc DL(N);
// Switch CSNEG(1, c, cc) to CSNEG(-c, -1, !cc)
if (LHS.getOpcode() == AArch64ISD::CSNEG && CTVal->isOne() &&
!CFVal->isAllOnes()) {
APInt C = -1 * CFVal->getAPIntValue();
CTVal = cast<ConstantSDNode>(DAG.getConstant(C, DL, VT));
CFVal = cast<ConstantSDNode>(DAG.getAllOnesConstant(DL, VT));
AArch64CC = AArch64CC::getInvertedCondCode(AArch64CC);
}
// It might be neutral for larger constants, as the immediate need to be
// materialized in a register.
APInt ADDC = CTVal->getAPIntValue();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (!TLI.isLegalAddImmediate(ADDC.getSExtValue()))
return SDValue();
assert(((LHS.getOpcode() == AArch64ISD::CSEL && CFVal->isOne()) ||
(LHS.getOpcode() == AArch64ISD::CSNEG && CFVal->isAllOnes())) &&
"Unexpected constant value");
SDValue NewNode = DAG.getNode(ISD::ADD, DL, VT, RHS, SDValue(CTVal, 0));
SDValue CCVal = DAG.getConstant(AArch64CC, DL, MVT::i32);
SDValue Cmp = LHS.getOperand(3);
return DAG.getNode(AArch64ISD::CSINC, DL, VT, NewNode, RHS, CCVal, Cmp);
}
// ADD(UDOT(zero, x, y), A) --> UDOT(A, x, y)
static SDValue performAddDotCombine(SDNode *N, SelectionDAG &DAG) {
EVT VT = N->getValueType(0);
if (N->getOpcode() != ISD::ADD)
return SDValue();
SDValue Dot = N->getOperand(0);
SDValue A = N->getOperand(1);
// Handle commutivity
auto isZeroDot = [](SDValue Dot) {
return (Dot.getOpcode() == AArch64ISD::UDOT ||
Dot.getOpcode() == AArch64ISD::SDOT) &&
isZerosVector(Dot.getOperand(0).getNode());
};
if (!isZeroDot(Dot))
std::swap(Dot, A);
if (!isZeroDot(Dot))
return SDValue();
return DAG.getNode(Dot.getOpcode(), SDLoc(N), VT, A, Dot.getOperand(1),
Dot.getOperand(2));
}
static bool isNegatedInteger(SDValue Op) {
return Op.getOpcode() == ISD::SUB && isNullConstant(Op.getOperand(0));
}
static SDValue getNegatedInteger(SDValue Op, SelectionDAG &DAG) {
SDLoc DL(Op);
EVT VT = Op.getValueType();
SDValue Zero = DAG.getConstant(0, DL, VT);
return DAG.getNode(ISD::SUB, DL, VT, Zero, Op);
}
// Try to fold
//
// (neg (csel X, Y)) -> (csel (neg X), (neg Y))
//
// The folding helps csel to be matched with csneg without generating
// redundant neg instruction, which includes negation of the csel expansion
// of abs node lowered by lowerABS.
static SDValue performNegCSelCombine(SDNode *N, SelectionDAG &DAG) {
if (!isNegatedInteger(SDValue(N, 0)))
return SDValue();
SDValue CSel = N->getOperand(1);
if (CSel.getOpcode() != AArch64ISD::CSEL || !CSel->hasOneUse())
return SDValue();
SDValue N0 = CSel.getOperand(0);
SDValue N1 = CSel.getOperand(1);
// If both of them is not negations, it's not worth the folding as it
// introduces two additional negations while reducing one negation.
if (!isNegatedInteger(N0) && !isNegatedInteger(N1))
return SDValue();
SDValue N0N = getNegatedInteger(N0, DAG);
SDValue N1N = getNegatedInteger(N1, DAG);
SDLoc DL(N);
EVT VT = CSel.getValueType();
return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0N, N1N, CSel.getOperand(2),
CSel.getOperand(3));
}
// The basic add/sub long vector instructions have variants with "2" on the end
// which act on the high-half of their inputs. They are normally matched by
// patterns like:
//
// (add (zeroext (extract_high LHS)),
// (zeroext (extract_high RHS)))
// -> uaddl2 vD, vN, vM
//
// However, if one of the extracts is something like a duplicate, this
// instruction can still be used profitably. This function puts the DAG into a
// more appropriate form for those patterns to trigger.
static SDValue performAddSubLongCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
SelectionDAG &DAG = DCI.DAG;
if (DCI.isBeforeLegalizeOps())
return SDValue();
MVT VT = N->getSimpleValueType(0);
if (!VT.is128BitVector()) {
if (N->getOpcode() == ISD::ADD)
return performSetccAddFolding(N, DAG);
return SDValue();
}
// Make sure both branches are extended in the same way.
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
if ((LHS.getOpcode() != ISD::ZERO_EXTEND &&
LHS.getOpcode() != ISD::SIGN_EXTEND) ||
LHS.getOpcode() != RHS.getOpcode())
return SDValue();
unsigned ExtType = LHS.getOpcode();
// It's not worth doing if at least one of the inputs isn't already an
// extract, but we don't know which it'll be so we have to try both.
if (isEssentiallyExtractHighSubvector(LHS.getOperand(0))) {
RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG);
if (!RHS.getNode())
return SDValue();
RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS);
} else if (isEssentiallyExtractHighSubvector(RHS.getOperand(0))) {
LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG);
if (!LHS.getNode())
return SDValue();
LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS);
}
return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS);
}
static bool isCMP(SDValue Op) {
return Op.getOpcode() == AArch64ISD::SUBS &&
!Op.getNode()->hasAnyUseOfValue(0);
}
// (CSEL 1 0 CC Cond) => CC
// (CSEL 0 1 CC Cond) => !CC
static std::optional<AArch64CC::CondCode> getCSETCondCode(SDValue Op) {
if (Op.getOpcode() != AArch64ISD::CSEL)
return std::nullopt;
auto CC = static_cast<AArch64CC::CondCode>(Op.getConstantOperandVal(2));
if (CC == AArch64CC::AL || CC == AArch64CC::NV)
return std::nullopt;
SDValue OpLHS = Op.getOperand(0);
SDValue OpRHS = Op.getOperand(1);
if (isOneConstant(OpLHS) && isNullConstant(OpRHS))
return CC;
if (isNullConstant(OpLHS) && isOneConstant(OpRHS))
return getInvertedCondCode(CC);
return std::nullopt;
}
// (ADC{S} l r (CMP (CSET HS carry) 1)) => (ADC{S} l r carry)
// (SBC{S} l r (CMP 0 (CSET LO carry))) => (SBC{S} l r carry)
static SDValue foldOverflowCheck(SDNode *Op, SelectionDAG &DAG, bool IsAdd) {
SDValue CmpOp = Op->getOperand(2);
if (!isCMP(CmpOp))
return SDValue();
if (IsAdd) {
if (!isOneConstant(CmpOp.getOperand(1)))
return SDValue();
} else {
if (!isNullConstant(CmpOp.getOperand(0)))
return SDValue();
}
SDValue CsetOp = CmpOp->getOperand(IsAdd ? 0 : 1);
auto CC = getCSETCondCode(CsetOp);
if (CC != (IsAdd ? AArch64CC::HS : AArch64CC::LO))
return SDValue();
return DAG.getNode(Op->getOpcode(), SDLoc(Op), Op->getVTList(),
Op->getOperand(0), Op->getOperand(1),
CsetOp.getOperand(3));
}
// (ADC x 0 cond) => (CINC x HS cond)
static SDValue foldADCToCINC(SDNode *N, SelectionDAG &DAG) {
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
SDValue Cond = N->getOperand(2);
if (!isNullConstant(RHS))
return SDValue();
EVT VT = N->getValueType(0);
SDLoc DL(N);
// (CINC x cc cond) <=> (CSINC x x !cc cond)
SDValue CC = DAG.getConstant(AArch64CC::LO, DL, MVT::i32);
return DAG.getNode(AArch64ISD::CSINC, DL, VT, LHS, LHS, CC, Cond);
}
static SDValue performBuildVectorCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
SelectionDAG &DAG) {
SDLoc DL(N);
EVT VT = N->getValueType(0);
if (DAG.getSubtarget<AArch64Subtarget>().isNeonAvailable() &&
(VT == MVT::v4f16 || VT == MVT::v4bf16)) {
SDValue Elt0 = N->getOperand(0), Elt1 = N->getOperand(1),
Elt2 = N->getOperand(2), Elt3 = N->getOperand(3);
if (Elt0->getOpcode() == ISD::FP_ROUND &&
Elt1->getOpcode() == ISD::FP_ROUND &&
isa<ConstantSDNode>(Elt0->getOperand(1)) &&
isa<ConstantSDNode>(Elt1->getOperand(1)) &&
Elt0->getConstantOperandVal(1) == Elt1->getConstantOperandVal(1) &&
Elt0->getOperand(0)->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
Elt1->getOperand(0)->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
// Constant index.
isa<ConstantSDNode>(Elt0->getOperand(0)->getOperand(1)) &&
isa<ConstantSDNode>(Elt1->getOperand(0)->getOperand(1)) &&
Elt0->getOperand(0)->getOperand(0) ==
Elt1->getOperand(0)->getOperand(0) &&
Elt0->getOperand(0)->getConstantOperandVal(1) == 0 &&
Elt1->getOperand(0)->getConstantOperandVal(1) == 1) {
SDValue LowLanesSrcVec = Elt0->getOperand(0)->getOperand(0);
if (LowLanesSrcVec.getValueType() == MVT::v2f64) {
SDValue HighLanes;
if (Elt2->getOpcode() == ISD::UNDEF &&
Elt3->getOpcode() == ISD::UNDEF) {
HighLanes = DAG.getUNDEF(MVT::v2f32);
} else if (Elt2->getOpcode() == ISD::FP_ROUND &&
Elt3->getOpcode() == ISD::FP_ROUND &&
isa<ConstantSDNode>(Elt2->getOperand(1)) &&
isa<ConstantSDNode>(Elt3->getOperand(1)) &&
Elt2->getConstantOperandVal(1) ==
Elt3->getConstantOperandVal(1) &&
Elt2->getOperand(0)->getOpcode() ==
ISD::EXTRACT_VECTOR_ELT &&
Elt3->getOperand(0)->getOpcode() ==
ISD::EXTRACT_VECTOR_ELT &&
// Constant index.
isa<ConstantSDNode>(Elt2->getOperand(0)->getOperand(1)) &&
isa<ConstantSDNode>(Elt3->getOperand(0)->getOperand(1)) &&
Elt2->getOperand(0)->getOperand(0) ==
Elt3->getOperand(0)->getOperand(0) &&
Elt2->getOperand(0)->getConstantOperandVal(1) == 0 &&
Elt3->getOperand(0)->getConstantOperandVal(1) == 1) {
SDValue HighLanesSrcVec = Elt2->getOperand(0)->getOperand(0);
HighLanes =
DAG.getNode(AArch64ISD::FCVTXN, DL, MVT::v2f32, HighLanesSrcVec);
}
if (HighLanes) {
SDValue DoubleToSingleSticky =
DAG.getNode(AArch64ISD::FCVTXN, DL, MVT::v2f32, LowLanesSrcVec);
SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4f32,
DoubleToSingleSticky, HighLanes);
return DAG.getNode(ISD::FP_ROUND, DL, VT, Concat,
Elt0->getOperand(1));
}
}
}
}
if (VT == MVT::v2f64) {
SDValue Elt0 = N->getOperand(0), Elt1 = N->getOperand(1);
if (Elt0->getOpcode() == ISD::FP_EXTEND &&
Elt1->getOpcode() == ISD::FP_EXTEND &&
Elt0->getOperand(0)->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
Elt1->getOperand(0)->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
Elt0->getOperand(0)->getOperand(0) ==
Elt1->getOperand(0)->getOperand(0) &&
// Constant index.
isa<ConstantSDNode>(Elt0->getOperand(0)->getOperand(1)) &&
isa<ConstantSDNode>(Elt1->getOperand(0)->getOperand(1)) &&
Elt0->getOperand(0)->getConstantOperandVal(1) + 1 ==
Elt1->getOperand(0)->getConstantOperandVal(1) &&
// EXTRACT_SUBVECTOR requires that Idx be a constant multiple of
// ResultType's known minimum vector length.
Elt0->getOperand(0)->getConstantOperandVal(1) %
VT.getVectorMinNumElements() ==
0) {
SDValue SrcVec = Elt0->getOperand(0)->getOperand(0);
if (SrcVec.getValueType() == MVT::v4f16 ||
SrcVec.getValueType() == MVT::v4bf16) {
SDValue HalfToSingle =
DAG.getNode(ISD::FP_EXTEND, DL, MVT::v4f32, SrcVec);
SDValue SubvectorIdx = Elt0->getOperand(0)->getOperand(1);
SDValue Extract = DAG.getNode(
ISD::EXTRACT_SUBVECTOR, DL, VT.changeVectorElementType(MVT::f32),
HalfToSingle, SubvectorIdx);
return DAG.getNode(ISD::FP_EXTEND, DL, VT, Extract);
}
}
}
// A build vector of two extracted elements is equivalent to an
// extract subvector where the inner vector is any-extended to the
// extract_vector_elt VT.
// (build_vector (extract_elt_iXX_to_i32 vec Idx+0)
// (extract_elt_iXX_to_i32 vec Idx+1))
// => (extract_subvector (anyext_iXX_to_i32 vec) Idx)
// For now, only consider the v2i32 case, which arises as a result of
// legalization.
if (VT != MVT::v2i32)
return SDValue();
SDValue Elt0 = N->getOperand(0), Elt1 = N->getOperand(1);
// Reminder, EXTRACT_VECTOR_ELT has the effect of any-extending to its VT.
if (Elt0->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
Elt1->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
// Constant index.
isa<ConstantSDNode>(Elt0->getOperand(1)) &&
isa<ConstantSDNode>(Elt1->getOperand(1)) &&
// Both EXTRACT_VECTOR_ELT from same vector...
Elt0->getOperand(0) == Elt1->getOperand(0) &&
// ... and contiguous. First element's index +1 == second element's index.
Elt0->getConstantOperandVal(1) + 1 == Elt1->getConstantOperandVal(1) &&
// EXTRACT_SUBVECTOR requires that Idx be a constant multiple of
// ResultType's known minimum vector length.
Elt0->getConstantOperandVal(1) % VT.getVectorMinNumElements() == 0) {
SDValue VecToExtend = Elt0->getOperand(0);
EVT ExtVT = VecToExtend.getValueType().changeVectorElementType(MVT::i32);
if (!DAG.getTargetLoweringInfo().isTypeLegal(ExtVT))
return SDValue();
SDValue SubvectorIdx = DAG.getVectorIdxConstant(Elt0->getConstantOperandVal(1), DL);
SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, DL, ExtVT, VecToExtend);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i32, Ext,
SubvectorIdx);
}
return SDValue();
}
static SDValue performTruncateCombine(SDNode *N,
SelectionDAG &DAG) {
EVT VT = N->getValueType(0);
SDValue N0 = N->getOperand(0);
if (VT.isFixedLengthVector() && VT.is64BitVector() && N0.hasOneUse() &&
N0.getOpcode() == AArch64ISD::DUP) {
SDValue Op = N0.getOperand(0);
if (VT.getScalarType() == MVT::i32 &&
N0.getOperand(0).getValueType().getScalarType() == MVT::i64)
Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i32, Op);
return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, Op);
}
return SDValue();
}
// Check an node is an extend or shift operand
static bool isExtendOrShiftOperand(SDValue N) {
unsigned Opcode = N.getOpcode();
if (ISD::isExtOpcode(Opcode) || Opcode == ISD::SIGN_EXTEND_INREG) {
EVT SrcVT;
if (Opcode == ISD::SIGN_EXTEND_INREG)
SrcVT = cast<VTSDNode>(N.getOperand(1))->getVT();
else
SrcVT = N.getOperand(0).getValueType();
return SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8;
} else if (Opcode == ISD::AND) {
ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
if (!CSD)
return false;
uint64_t AndMask = CSD->getZExtValue();
return AndMask == 0xff || AndMask == 0xffff || AndMask == 0xffffffff;
} else if (Opcode == ISD::SHL || Opcode == ISD::SRL || Opcode == ISD::SRA) {
return isa<ConstantSDNode>(N.getOperand(1));
}
return false;
}
// (N - Y) + Z --> (Z - Y) + N
// when N is an extend or shift operand
static SDValue performAddCombineSubShift(SDNode *N, SDValue SUB, SDValue Z,
SelectionDAG &DAG) {
auto IsOneUseExtend = [](SDValue N) {
return N.hasOneUse() && isExtendOrShiftOperand(N);
};
// DAGCombiner will revert the combination when Z is constant cause
// dead loop. So don't enable the combination when Z is constant.
// If Z is one use shift C, we also can't do the optimization.
// It will falling to self infinite loop.
if (isa<ConstantSDNode>(Z) || IsOneUseExtend(Z))
return SDValue();
if (SUB.getOpcode() != ISD::SUB || !SUB.hasOneUse())
return SDValue();
SDValue Shift = SUB.getOperand(0);
if (!IsOneUseExtend(Shift))
return SDValue();
SDLoc DL(N);
EVT VT = N->getValueType(0);
SDValue Y = SUB.getOperand(1);
SDValue NewSub = DAG.getNode(ISD::SUB, DL, VT, Z, Y);
return DAG.getNode(ISD::ADD, DL, VT, NewSub, Shift);
}
static SDValue performAddCombineForShiftedOperands(SDNode *N,
SelectionDAG &DAG) {
// NOTE: Swapping LHS and RHS is not done for SUB, since SUB is not
// commutative.
if (N->getOpcode() != ISD::ADD)
return SDValue();
// Bail out when value type is not one of {i32, i64}, since AArch64 ADD with
// shifted register is only available for i32 and i64.
EVT VT = N->getValueType(0);
if (VT != MVT::i32 && VT != MVT::i64)
return SDValue();
SDLoc DL(N);
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
if (SDValue Val = performAddCombineSubShift(N, LHS, RHS, DAG))
return Val;
if (SDValue Val = performAddCombineSubShift(N, RHS, LHS, DAG))
return Val;
uint64_t LHSImm = 0, RHSImm = 0;
// If both operand are shifted by imm and shift amount is not greater than 4
// for one operand, swap LHS and RHS to put operand with smaller shift amount
// on RHS.
//
// On many AArch64 processors (Cortex A78, Neoverse N1/N2/V1, etc), ADD with
// LSL shift (shift <= 4) has smaller latency and larger throughput than ADD
// with LSL (shift > 4). For the rest of processors, this is no-op for
// performance or correctness.
if (isOpcWithIntImmediate(LHS.getNode(), ISD::SHL, LHSImm) &&
isOpcWithIntImmediate(RHS.getNode(), ISD::SHL, RHSImm) && LHSImm <= 4 &&
RHSImm > 4 && LHS.hasOneUse())
return DAG.getNode(ISD::ADD, DL, VT, RHS, LHS);
return SDValue();
}
// The mid end will reassociate sub(sub(x, m1), m2) to sub(x, add(m1, m2))
// This reassociates it back to allow the creation of more mls instructions.
static SDValue performSubAddMULCombine(SDNode *N, SelectionDAG &DAG) {
if (N->getOpcode() != ISD::SUB)
return SDValue();
SDValue Add = N->getOperand(1);
SDValue X = N->getOperand(0);
if (Add.getOpcode() != ISD::ADD)
return SDValue();
if (!Add.hasOneUse())
return SDValue();
if (DAG.isConstantIntBuildVectorOrConstantInt(X))
return SDValue();
SDValue M1 = Add.getOperand(0);
SDValue M2 = Add.getOperand(1);
if (M1.getOpcode() != ISD::MUL && M1.getOpcode() != AArch64ISD::SMULL &&
M1.getOpcode() != AArch64ISD::UMULL)
return SDValue();
if (M2.getOpcode() != ISD::MUL && M2.getOpcode() != AArch64ISD::SMULL &&
M2.getOpcode() != AArch64ISD::UMULL)
return SDValue();
EVT VT = N->getValueType(0);
SDValue Sub = DAG.getNode(ISD::SUB, SDLoc(N), VT, X, M1);
return DAG.getNode(ISD::SUB, SDLoc(N), VT, Sub, M2);
}
// Combine into mla/mls.
// This works on the patterns of:
// add v1, (mul v2, v3)
// sub v1, (mul v2, v3)
// for vectors of type <1 x i64> and <2 x i64> when SVE is available.
// It will transform the add/sub to a scalable version, so that we can
// make use of SVE's MLA/MLS that will be generated for that pattern
static SDValue
performSVEMulAddSubCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
SelectionDAG &DAG = DCI.DAG;
// Make sure that the types are legal
if (!DCI.isAfterLegalizeDAG())
return SDValue();
// Before using SVE's features, check first if it's available.
if (!DAG.getSubtarget<AArch64Subtarget>().hasSVE())
return SDValue();
if (N->getOpcode() != ISD::ADD && N->getOpcode() != ISD::SUB)
return SDValue();
if (!N->getValueType(0).isFixedLengthVector())
return SDValue();
auto performOpt = [&DAG, &N](SDValue Op0, SDValue Op1) -> SDValue {
if (Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR)
return SDValue();
if (!cast<ConstantSDNode>(Op1->getOperand(1))->isZero())
return SDValue();
SDValue MulValue = Op1->getOperand(0);
if (MulValue.getOpcode() != AArch64ISD::MUL_PRED)
return SDValue();
if (!Op1.hasOneUse() || !MulValue.hasOneUse())
return SDValue();
EVT ScalableVT = MulValue.getValueType();
if (!ScalableVT.isScalableVector())
return SDValue();
SDValue ScaledOp = convertToScalableVector(DAG, ScalableVT, Op0);
SDValue NewValue =
DAG.getNode(N->getOpcode(), SDLoc(N), ScalableVT, {ScaledOp, MulValue});
return convertFromScalableVector(DAG, N->getValueType(0), NewValue);
};
if (SDValue res = performOpt(N->getOperand(0), N->getOperand(1)))
return res;
else if (N->getOpcode() == ISD::ADD)
return performOpt(N->getOperand(1), N->getOperand(0));
return SDValue();
}
// Given a i64 add from a v1i64 extract, convert to a neon v1i64 add. This can
// help, for example, to produce ssra from sshr+add.
static SDValue performAddSubIntoVectorOp(SDNode *N, SelectionDAG &DAG) {
EVT VT = N->getValueType(0);
if (VT != MVT::i64 ||
DAG.getTargetLoweringInfo().isOperationExpand(N->getOpcode(), MVT::v1i64))
return SDValue();
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
// At least one of the operands should be an extract, and the other should be
// something that is easy to convert to v1i64 type (in this case a load).
if (Op0.getOpcode() != ISD::EXTRACT_VECTOR_ELT &&
Op0.getOpcode() != ISD::LOAD)
return SDValue();
if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT &&
Op1.getOpcode() != ISD::LOAD)
return SDValue();
SDLoc DL(N);
if (Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
Op0.getOperand(0).getValueType() == MVT::v1i64) {
Op0 = Op0.getOperand(0);
Op1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v1i64, Op1);
} else if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
Op1.getOperand(0).getValueType() == MVT::v1i64) {
Op0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v1i64, Op0);
Op1 = Op1.getOperand(0);
} else
return SDValue();
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64,
DAG.getNode(N->getOpcode(), DL, MVT::v1i64, Op0, Op1),
DAG.getConstant(0, DL, MVT::i64));
}
static bool isLoadOrMultipleLoads(SDValue B, SmallVector<LoadSDNode *> &Loads) {
SDValue BV = peekThroughOneUseBitcasts(B);
if (!BV->hasOneUse())
return false;
if (auto *Ld = dyn_cast<LoadSDNode>(BV)) {
if (!Ld || !Ld->isSimple())
return false;
Loads.push_back(Ld);
return true;
} else if (BV.getOpcode() == ISD::BUILD_VECTOR ||
BV.getOpcode() == ISD::CONCAT_VECTORS) {
for (unsigned Op = 0; Op < BV.getNumOperands(); Op++) {
auto *Ld = dyn_cast<LoadSDNode>(BV.getOperand(Op));
if (!Ld || !Ld->isSimple() || !BV.getOperand(Op).hasOneUse())
return false;
Loads.push_back(Ld);
}
return true;
} else if (B.getOpcode() == ISD::VECTOR_SHUFFLE) {
// Try to find a tree of shuffles and concats from how IR shuffles of loads
// are lowered. Note that this only comes up because we do not always visit
// operands before uses. After that is fixed this can be removed and in the
// meantime this is fairly specific to the lowering we expect from IR.
// t46: v16i8 = vector_shuffle<0,1,2,3,4,5,6,7,8,9,10,11,16,17,18,19> t44, t45
// t44: v16i8 = vector_shuffle<0,1,2,3,4,5,6,7,16,17,18,19,u,u,u,u> t42, t43
// t42: v16i8 = concat_vectors t40, t36, undef:v4i8, undef:v4i8
// t40: v4i8,ch = load<(load (s32) from %ir.17)> t0, t22, undef:i64
// t36: v4i8,ch = load<(load (s32) from %ir.13)> t0, t18, undef:i64
// t43: v16i8 = concat_vectors t32, undef:v4i8, undef:v4i8, undef:v4i8
// t32: v4i8,ch = load<(load (s32) from %ir.9)> t0, t14, undef:i64
// t45: v16i8 = concat_vectors t28, undef:v4i8, undef:v4i8, undef:v4i8
// t28: v4i8,ch = load<(load (s32) from %ir.0)> t0, t2, undef:i64
if (B.getOperand(0).getOpcode() != ISD::VECTOR_SHUFFLE ||
B.getOperand(0).getOperand(0).getOpcode() != ISD::CONCAT_VECTORS ||
B.getOperand(0).getOperand(1).getOpcode() != ISD::CONCAT_VECTORS ||
B.getOperand(1).getOpcode() != ISD::CONCAT_VECTORS ||
B.getOperand(1).getNumOperands() != 4)
return false;
auto SV1 = cast<ShuffleVectorSDNode>(B);
auto SV2 = cast<ShuffleVectorSDNode>(B.getOperand(0));
int NumElts = B.getValueType().getVectorNumElements();
int NumSubElts = NumElts / 4;
for (int I = 0; I < NumSubElts; I++) {
// <0,1,2,3,4,5,6,7,8,9,10,11,16,17,18,19>
if (SV1->getMaskElt(I) != I ||
SV1->getMaskElt(I + NumSubElts) != I + NumSubElts ||
SV1->getMaskElt(I + NumSubElts * 2) != I + NumSubElts * 2 ||
SV1->getMaskElt(I + NumSubElts * 3) != I + NumElts)
return false;
// <0,1,2,3,4,5,6,7,16,17,18,19,u,u,u,u>
if (SV2->getMaskElt(I) != I ||
SV2->getMaskElt(I + NumSubElts) != I + NumSubElts ||
SV2->getMaskElt(I + NumSubElts * 2) != I + NumElts)
return false;
}
auto *Ld0 = dyn_cast<LoadSDNode>(SV2->getOperand(0).getOperand(0));
auto *Ld1 = dyn_cast<LoadSDNode>(SV2->getOperand(0).getOperand(1));
auto *Ld2 = dyn_cast<LoadSDNode>(SV2->getOperand(1).getOperand(0));
auto *Ld3 = dyn_cast<LoadSDNode>(B.getOperand(1).getOperand(0));
if (!Ld0 || !Ld1 || !Ld2 || !Ld3 || !Ld0->isSimple() || !Ld1->isSimple() ||
!Ld2->isSimple() || !Ld3->isSimple())
return false;
Loads.push_back(Ld0);
Loads.push_back(Ld1);
Loads.push_back(Ld2);
Loads.push_back(Ld3);
return true;
}
return false;
}
static bool areLoadedOffsetButOtherwiseSame(SDValue Op0, SDValue Op1,
SelectionDAG &DAG,
unsigned &NumSubLoads) {
if (!Op0.hasOneUse() || !Op1.hasOneUse())
return false;
SmallVector<LoadSDNode *> Loads0, Loads1;
if (isLoadOrMultipleLoads(Op0, Loads0) &&
isLoadOrMultipleLoads(Op1, Loads1)) {
if (NumSubLoads && Loads0.size() != NumSubLoads)
return false;
NumSubLoads = Loads0.size();
return Loads0.size() == Loads1.size() &&
all_of(zip(Loads0, Loads1), [&DAG](auto L) {
unsigned Size = get<0>(L)->getValueType(0).getSizeInBits();
return Size == get<1>(L)->getValueType(0).getSizeInBits() &&
DAG.areNonVolatileConsecutiveLoads(get<1>(L), get<0>(L),
Size / 8, 1);
});
}
if (Op0.getOpcode() != Op1.getOpcode())
return false;
switch (Op0.getOpcode()) {
case ISD::ADD:
case ISD::SUB:
return areLoadedOffsetButOtherwiseSame(Op0.getOperand(0), Op1.getOperand(0),
DAG, NumSubLoads) &&
areLoadedOffsetButOtherwiseSame(Op0.getOperand(1), Op1.getOperand(1),
DAG, NumSubLoads);
case ISD::SIGN_EXTEND:
case ISD::ANY_EXTEND:
case ISD::ZERO_EXTEND:
EVT XVT = Op0.getOperand(0).getValueType();
if (XVT.getScalarSizeInBits() != 8 && XVT.getScalarSizeInBits() != 16 &&
XVT.getScalarSizeInBits() != 32)
return false;
return areLoadedOffsetButOtherwiseSame(Op0.getOperand(0), Op1.getOperand(0),
DAG, NumSubLoads);
}
return false;
}
// This method attempts to fold trees of add(ext(load p), shl(ext(load p+4))
// into a single load of twice the size, that we extract the bottom part and top
// part so that the shl can use a shll2 instruction. The two loads in that
// example can also be larger trees of instructions, which are identical except
// for the leaves which are all loads offset from the LHS, including
// buildvectors of multiple loads. For example the RHS tree could be
// sub(zext(buildvec(load p+4, load q+4)), zext(buildvec(load r+4, load s+4)))
// Whilst it can be common for the larger loads to replace LDP instructions
// (which doesn't gain anything on it's own), the larger loads can help create
// more efficient code, and in buildvectors prevent the need for ld1 lane
// inserts which can be slower than normal loads.
static SDValue performExtBinopLoadFold(SDNode *N, SelectionDAG &DAG) {
EVT VT = N->getValueType(0);
if (!VT.isFixedLengthVector() ||
(VT.getScalarSizeInBits() != 16 && VT.getScalarSizeInBits() != 32 &&
VT.getScalarSizeInBits() != 64))
return SDValue();
SDValue Other = N->getOperand(0);
SDValue Shift = N->getOperand(1);
if (Shift.getOpcode() != ISD::SHL && N->getOpcode() != ISD::SUB)
std::swap(Shift, Other);
APInt ShiftAmt;
if (Shift.getOpcode() != ISD::SHL || !Shift.hasOneUse() ||
!ISD::isConstantSplatVector(Shift.getOperand(1).getNode(), ShiftAmt))
return SDValue();
if (!ISD::isExtOpcode(Shift.getOperand(0).getOpcode()) ||
!ISD::isExtOpcode(Other.getOpcode()) ||
Shift.getOperand(0).getOperand(0).getValueType() !=
Other.getOperand(0).getValueType() ||
!Other.hasOneUse() || !Shift.getOperand(0).hasOneUse())
return SDValue();
SDValue Op0 = Other.getOperand(0);
SDValue Op1 = Shift.getOperand(0).getOperand(0);
unsigned NumSubLoads = 0;
if (!areLoadedOffsetButOtherwiseSame(Op0, Op1, DAG, NumSubLoads))
return SDValue();
// Attempt to rule out some unprofitable cases using heuristics (some working
// around suboptimal code generation), notably if the extend not be able to
// use ushll2 instructions as the types are not large enough. Otherwise zip's
// will need to be created which can increase the instruction count.
unsigned NumElts = Op0.getValueType().getVectorNumElements();
unsigned NumSubElts = NumElts / NumSubLoads;
if (NumSubElts * VT.getScalarSizeInBits() < 128 ||
(Other.getOpcode() != Shift.getOperand(0).getOpcode() &&
Op0.getValueType().getSizeInBits() < 128 &&
!DAG.getTargetLoweringInfo().isTypeLegal(Op0.getValueType())))
return SDValue();
// Recreate the tree with the new combined loads.
std::function<SDValue(SDValue, SDValue, SelectionDAG &)> GenCombinedTree =
[&GenCombinedTree](SDValue Op0, SDValue Op1, SelectionDAG &DAG) {
EVT DVT =
Op0.getValueType().getDoubleNumVectorElementsVT(*DAG.getContext());
SmallVector<LoadSDNode *> Loads0, Loads1;
if (isLoadOrMultipleLoads(Op0, Loads0) &&
isLoadOrMultipleLoads(Op1, Loads1)) {
EVT LoadVT = EVT::getVectorVT(
*DAG.getContext(), Op0.getValueType().getScalarType(),
Op0.getValueType().getVectorNumElements() / Loads0.size());
EVT DLoadVT = LoadVT.getDoubleNumVectorElementsVT(*DAG.getContext());
SmallVector<SDValue> NewLoads;
for (const auto &[L0, L1] : zip(Loads0, Loads1)) {
SDValue Load = DAG.getLoad(DLoadVT, SDLoc(L0), L0->getChain(),
L0->getBasePtr(), L0->getPointerInfo(),
L0->getOriginalAlign());
DAG.makeEquivalentMemoryOrdering(L0, Load.getValue(1));
DAG.makeEquivalentMemoryOrdering(L1, Load.getValue(1));
NewLoads.push_back(Load);
}
return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op0), DVT, NewLoads);
}
SmallVector<SDValue> Ops;
for (const auto &[O0, O1] : zip(Op0->op_values(), Op1->op_values()))
Ops.push_back(GenCombinedTree(O0, O1, DAG));
return DAG.getNode(Op0.getOpcode(), SDLoc(Op0), DVT, Ops);
};
SDValue NewOp = GenCombinedTree(Op0, Op1, DAG);
SmallVector<int> LowMask(NumElts, 0), HighMask(NumElts, 0);
int Hi = NumSubElts, Lo = 0;
for (unsigned i = 0; i < NumSubLoads; i++) {
for (unsigned j = 0; j < NumSubElts; j++) {
LowMask[i * NumSubElts + j] = Lo++;
HighMask[i * NumSubElts + j] = Hi++;
}
Lo += NumSubElts;
Hi += NumSubElts;
}
SDLoc DL(N);
SDValue Ext0, Ext1;
// Extract the top and bottom lanes, then extend the result. Possibly extend
// the result then extract the lanes if the two operands match as it produces
// slightly smaller code.
if (Other.getOpcode() != Shift.getOperand(0).getOpcode()) {
SDValue SubL = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, Op0.getValueType(),
NewOp, DAG.getConstant(0, DL, MVT::i64));
SDValue SubH =
DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, Op0.getValueType(), NewOp,
DAG.getConstant(NumSubElts * NumSubLoads, DL, MVT::i64));
SDValue Extr0 =
DAG.getVectorShuffle(Op0.getValueType(), DL, SubL, SubH, LowMask);
SDValue Extr1 =
DAG.getVectorShuffle(Op0.getValueType(), DL, SubL, SubH, HighMask);
Ext0 = DAG.getNode(Other.getOpcode(), DL, VT, Extr0);
Ext1 = DAG.getNode(Shift.getOperand(0).getOpcode(), DL, VT, Extr1);
} else {
EVT DVT = VT.getDoubleNumVectorElementsVT(*DAG.getContext());
SDValue Ext = DAG.getNode(Other.getOpcode(), DL, DVT, NewOp);
SDValue SubL = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Ext,
DAG.getConstant(0, DL, MVT::i64));
SDValue SubH =
DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Ext,
DAG.getConstant(NumSubElts * NumSubLoads, DL, MVT::i64));
Ext0 = DAG.getVectorShuffle(VT, DL, SubL, SubH, LowMask);
Ext1 = DAG.getVectorShuffle(VT, DL, SubL, SubH, HighMask);
}
SDValue NShift =
DAG.getNode(Shift.getOpcode(), DL, VT, Ext1, Shift.getOperand(1));
return DAG.getNode(N->getOpcode(), DL, VT, Ext0, NShift);
}
static SDValue performAddSubCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
// Try to change sum of two reductions.
if (SDValue Val = performAddUADDVCombine(N, DCI.DAG))
return Val;
if (SDValue Val = performAddDotCombine(N, DCI.DAG))
return Val;
if (SDValue Val = performAddCSelIntoCSinc(N, DCI.DAG))
return Val;
if (SDValue Val = performNegCSelCombine(N, DCI.DAG))
return Val;
if (SDValue Val = performVectorExtCombine(N, DCI.DAG))
return Val;
if (SDValue Val = performAddCombineForShiftedOperands(N, DCI.DAG))
return Val;
if (SDValue Val = performSubAddMULCombine(N, DCI.DAG))
return Val;
if (SDValue Val = performSVEMulAddSubCombine(N, DCI))
return Val;
if (SDValue Val = performAddSubIntoVectorOp(N, DCI.DAG))
return Val;
if (SDValue Val = performExtBinopLoadFold(N, DCI.DAG))
return Val;
return performAddSubLongCombine(N, DCI);
}
// Massage DAGs which we can use the high-half "long" operations on into
// something isel will recognize better. E.g.
//
// (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) -->
// (aarch64_neon_umull (extract_high (v2i64 vec)))
// (extract_high (v2i64 (dup128 scalar)))))
//
static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
SelectionDAG &DAG) {
if (DCI.isBeforeLegalizeOps())
return SDValue();
SDValue LHS = N->getOperand((IID == Intrinsic::not_intrinsic) ? 0 : 1);
SDValue RHS = N->getOperand((IID == Intrinsic::not_intrinsic) ? 1 : 2);
assert(LHS.getValueType().is64BitVector() &&
RHS.getValueType().is64BitVector() &&
"unexpected shape for long operation");
// Either node could be a DUP, but it's not worth doing both of them (you'd
// just as well use the non-high version) so look for a corresponding extract
// operation on the other "wing".
if (isEssentiallyExtractHighSubvector(LHS)) {
RHS = tryExtendDUPToExtractHigh(RHS, DAG);
if (!RHS.getNode())
return SDValue();
} else if (isEssentiallyExtractHighSubvector(RHS)) {
LHS = tryExtendDUPToExtractHigh(LHS, DAG);
if (!LHS.getNode())
return SDValue();
} else
return SDValue();
if (IID == Intrinsic::not_intrinsic)
return DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0), LHS, RHS);
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0),
N->getOperand(0), LHS, RHS);
}
static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) {
MVT ElemTy = N->getSimpleValueType(0).getScalarType();
unsigned ElemBits = ElemTy.getSizeInBits();
int64_t ShiftAmount;
if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) {
APInt SplatValue, SplatUndef;
unsigned SplatBitSize;
bool HasAnyUndefs;
if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
HasAnyUndefs, ElemBits) ||
SplatBitSize != ElemBits)
return SDValue();
ShiftAmount = SplatValue.getSExtValue();
} else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
ShiftAmount = CVN->getSExtValue();
} else
return SDValue();
// If the shift amount is zero, remove the shift intrinsic.
if (ShiftAmount == 0 && IID != Intrinsic::aarch64_neon_sqshlu)
return N->getOperand(1);
unsigned Opcode;
bool IsRightShift;
switch (IID) {
default:
llvm_unreachable("Unknown shift intrinsic");
case Intrinsic::aarch64_neon_sqshl:
Opcode = AArch64ISD::SQSHL_I;
IsRightShift = false;
break;
case Intrinsic::aarch64_neon_uqshl:
Opcode = AArch64ISD::UQSHL_I;
IsRightShift = false;
break;
case Intrinsic::aarch64_neon_srshl:
Opcode = AArch64ISD::SRSHR_I;
IsRightShift = true;
break;
case Intrinsic::aarch64_neon_urshl:
Opcode = AArch64ISD::URSHR_I;
IsRightShift = true;
break;
case Intrinsic::aarch64_neon_sqshlu:
Opcode = AArch64ISD::SQSHLU_I;
IsRightShift = false;
break;
case Intrinsic::aarch64_neon_sshl:
case Intrinsic::aarch64_neon_ushl:
// For positive shift amounts we can use SHL, as ushl/sshl perform a regular
// left shift for positive shift amounts. For negative shifts we can use a
// VASHR/VLSHR as appropiate.
if (ShiftAmount < 0) {
Opcode = IID == Intrinsic::aarch64_neon_sshl ? AArch64ISD::VASHR
: AArch64ISD::VLSHR;
ShiftAmount = -ShiftAmount;
} else
Opcode = AArch64ISD::VSHL;
IsRightShift = false;
break;
}
EVT VT = N->getValueType(0);
SDValue Op = N->getOperand(1);
SDLoc dl(N);
if (VT == MVT::i64) {
Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op);
VT = MVT::v1i64;
}
if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits) {
Op = DAG.getNode(Opcode, dl, VT, Op,
DAG.getConstant(-ShiftAmount, dl, MVT::i32));
if (N->getValueType(0) == MVT::i64)
Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
DAG.getConstant(0, dl, MVT::i64));
return Op;
} else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits) {
Op = DAG.getNode(Opcode, dl, VT, Op,
DAG.getConstant(ShiftAmount, dl, MVT::i32));
if (N->getValueType(0) == MVT::i64)
Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
DAG.getConstant(0, dl, MVT::i64));
return Op;
}
return SDValue();
}
// The CRC32[BH] instructions ignore the high bits of their data operand. Since
// the intrinsics must be legal and take an i32, this means there's almost
// certainly going to be a zext in the DAG which we can eliminate.
static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) {
SDValue AndN = N->getOperand(2);
if (AndN.getOpcode() != ISD::AND)
return SDValue();
ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1));
if (!CMask || CMask->getZExtValue() != Mask)
return SDValue();
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32,
N->getOperand(0), N->getOperand(1), AndN.getOperand(0));
}
static SDValue combineAcrossLanesIntrinsic(unsigned Opc, SDNode *N,
SelectionDAG &DAG) {
SDLoc dl(N);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0),
DAG.getNode(Opc, dl,
N->getOperand(1).getSimpleValueType(),
N->getOperand(1)),
DAG.getConstant(0, dl, MVT::i64));
}
static SDValue LowerSVEIntrinsicIndex(SDNode *N, SelectionDAG &DAG) {
SDLoc DL(N);
SDValue Op1 = N->getOperand(1);
SDValue Op2 = N->getOperand(2);
EVT ScalarTy = Op2.getValueType();
if ((ScalarTy == MVT::i8) || (ScalarTy == MVT::i16))
ScalarTy = MVT::i32;
// Lower index_vector(base, step) to mul(step step_vector(1)) + splat(base).
SDValue StepVector = DAG.getStepVector(DL, N->getValueType(0));
SDValue Step = DAG.getNode(ISD::SPLAT_VECTOR, DL, N->getValueType(0), Op2);
SDValue Mul = DAG.getNode(ISD::MUL, DL, N->getValueType(0), StepVector, Step);
SDValue Base = DAG.getNode(ISD::SPLAT_VECTOR, DL, N->getValueType(0), Op1);
return DAG.getNode(ISD::ADD, DL, N->getValueType(0), Mul, Base);
}
static SDValue LowerSVEIntrinsicDUP(SDNode *N, SelectionDAG &DAG) {
SDLoc dl(N);
SDValue Scalar = N->getOperand(3);
EVT ScalarTy = Scalar.getValueType();
if ((ScalarTy == MVT::i8) || (ScalarTy == MVT::i16))
Scalar = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Scalar);
SDValue Passthru = N->getOperand(1);
SDValue Pred = N->getOperand(2);
return DAG.getNode(AArch64ISD::DUP_MERGE_PASSTHRU, dl, N->getValueType(0),
Pred, Scalar, Passthru);
}
static SDValue LowerSVEIntrinsicEXT(SDNode *N, SelectionDAG &DAG) {
SDLoc dl(N);
LLVMContext &Ctx = *DAG.getContext();
EVT VT = N->getValueType(0);
assert(VT.isScalableVector() && "Expected a scalable vector.");
// Current lowering only supports the SVE-ACLE types.
if (VT.getSizeInBits().getKnownMinValue() != AArch64::SVEBitsPerBlock)
return SDValue();
unsigned ElemSize = VT.getVectorElementType().getSizeInBits() / 8;
unsigned ByteSize = VT.getSizeInBits().getKnownMinValue() / 8;
EVT ByteVT =
EVT::getVectorVT(Ctx, MVT::i8, ElementCount::getScalable(ByteSize));
// Convert everything to the domain of EXT (i.e bytes).
SDValue Op0 = DAG.getNode(ISD::BITCAST, dl, ByteVT, N->getOperand(1));
SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, ByteVT, N->getOperand(2));
SDValue Op2 = DAG.getNode(ISD::MUL, dl, MVT::i32, N->getOperand(3),
DAG.getConstant(ElemSize, dl, MVT::i32));
SDValue EXT = DAG.getNode(AArch64ISD::EXT, dl, ByteVT, Op0, Op1, Op2);
return DAG.getNode(ISD::BITCAST, dl, VT, EXT);
}
static SDValue tryConvertSVEWideCompare(SDNode *N, ISD::CondCode CC,
TargetLowering::DAGCombinerInfo &DCI,
SelectionDAG &DAG) {
if (DCI.isBeforeLegalize())
return SDValue();
SDValue Comparator = N->getOperand(3);
if (Comparator.getOpcode() == AArch64ISD::DUP ||
Comparator.getOpcode() == ISD::SPLAT_VECTOR) {
unsigned IID = getIntrinsicID(N);
EVT VT = N->getValueType(0);
EVT CmpVT = N->getOperand(2).getValueType();
SDValue Pred = N->getOperand(1);
SDValue Imm;
SDLoc DL(N);
switch (IID) {
default:
llvm_unreachable("Called with wrong intrinsic!");
break;
// Signed comparisons
case Intrinsic::aarch64_sve_cmpeq_wide:
case Intrinsic::aarch64_sve_cmpne_wide:
case Intrinsic::aarch64_sve_cmpge_wide:
case Intrinsic::aarch64_sve_cmpgt_wide:
case Intrinsic::aarch64_sve_cmplt_wide:
case Intrinsic::aarch64_sve_cmple_wide: {
if (auto *CN = dyn_cast<ConstantSDNode>(Comparator.getOperand(0))) {
int64_t ImmVal = CN->getSExtValue();
if (ImmVal >= -16 && ImmVal <= 15)
Imm = DAG.getSignedConstant(ImmVal, DL, MVT::i32);
else
return SDValue();
}
break;
}
// Unsigned comparisons
case Intrinsic::aarch64_sve_cmphs_wide:
case Intrinsic::aarch64_sve_cmphi_wide:
case Intrinsic::aarch64_sve_cmplo_wide:
case Intrinsic::aarch64_sve_cmpls_wide: {
if (auto *CN = dyn_cast<ConstantSDNode>(Comparator.getOperand(0))) {
uint64_t ImmVal = CN->getZExtValue();
if (ImmVal <= 127)
Imm = DAG.getConstant(ImmVal, DL, MVT::i32);
else
return SDValue();
}
break;
}
}
if (!Imm)
return SDValue();
SDValue Splat = DAG.getNode(ISD::SPLAT_VECTOR, DL, CmpVT, Imm);
return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, DL, VT, Pred,
N->getOperand(2), Splat, DAG.getCondCode(CC));
}
return SDValue();
}
static SDValue getPTest(SelectionDAG &DAG, EVT VT, SDValue Pg, SDValue Op,
AArch64CC::CondCode Cond) {
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
SDLoc DL(Op);
assert(Op.getValueType().isScalableVector() &&
TLI.isTypeLegal(Op.getValueType()) &&
"Expected legal scalable vector type!");
assert(Op.getValueType() == Pg.getValueType() &&
"Expected same type for PTEST operands");
// Ensure target specific opcodes are using legal type.
EVT OutVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
SDValue TVal = DAG.getConstant(1, DL, OutVT);
SDValue FVal = DAG.getConstant(0, DL, OutVT);
// Ensure operands have type nxv16i1.
if (Op.getValueType() != MVT::nxv16i1) {
if ((Cond == AArch64CC::ANY_ACTIVE || Cond == AArch64CC::NONE_ACTIVE) &&
isZeroingInactiveLanes(Op))
Pg = DAG.getNode(AArch64ISD::REINTERPRET_CAST, DL, MVT::nxv16i1, Pg);
else
Pg = getSVEPredicateBitCast(MVT::nxv16i1, Pg, DAG);
Op = DAG.getNode(AArch64ISD::REINTERPRET_CAST, DL, MVT::nxv16i1, Op);
}
// Set condition code (CC) flags.
SDValue Test = DAG.getNode(
Cond == AArch64CC::ANY_ACTIVE ? AArch64ISD::PTEST_ANY : AArch64ISD::PTEST,
DL, MVT::Other, Pg, Op);
// Convert CC to integer based on requested condition.
// NOTE: Cond is inverted to promote CSEL's removal when it feeds a compare.
SDValue CC = DAG.getConstant(getInvertedCondCode(Cond), DL, MVT::i32);
SDValue Res = DAG.getNode(AArch64ISD::CSEL, DL, OutVT, FVal, TVal, CC, Test);
return DAG.getZExtOrTrunc(Res, DL, VT);
}
static SDValue combineSVEReductionInt(SDNode *N, unsigned Opc,
SelectionDAG &DAG) {
SDLoc DL(N);
SDValue Pred = N->getOperand(1);
SDValue VecToReduce = N->getOperand(2);
// NOTE: The integer reduction's result type is not always linked to the
// operand's element type so we construct it from the intrinsic's result type.
EVT ReduceVT = getPackedSVEVectorVT(N->getValueType(0));
SDValue Reduce = DAG.getNode(Opc, DL, ReduceVT, Pred, VecToReduce);
// SVE reductions set the whole vector register with the first element
// containing the reduction result, which we'll now extract.
SDValue Zero = DAG.getConstant(0, DL, MVT::i64);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, N->getValueType(0), Reduce,
Zero);
}
static SDValue combineSVEReductionFP(SDNode *N, unsigned Opc,
SelectionDAG &DAG) {
SDLoc DL(N);
SDValue Pred = N->getOperand(1);
SDValue VecToReduce = N->getOperand(2);
EVT ReduceVT = VecToReduce.getValueType();
SDValue Reduce = DAG.getNode(Opc, DL, ReduceVT, Pred, VecToReduce);
// SVE reductions set the whole vector register with the first element
// containing the reduction result, which we'll now extract.
SDValue Zero = DAG.getConstant(0, DL, MVT::i64);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, N->getValueType(0), Reduce,
Zero);
}
static SDValue combineSVEReductionOrderedFP(SDNode *N, unsigned Opc,
SelectionDAG &DAG) {
SDLoc DL(N);
SDValue Pred = N->getOperand(1);
SDValue InitVal = N->getOperand(2);
SDValue VecToReduce = N->getOperand(3);
EVT ReduceVT = VecToReduce.getValueType();
// Ordered reductions use the first lane of the result vector as the
// reduction's initial value.
SDValue Zero = DAG.getConstant(0, DL, MVT::i64);
InitVal = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ReduceVT,
DAG.getUNDEF(ReduceVT), InitVal, Zero);
SDValue Reduce = DAG.getNode(Opc, DL, ReduceVT, Pred, InitVal, VecToReduce);
// SVE reductions set the whole vector register with the first element
// containing the reduction result, which we'll now extract.
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, N->getValueType(0), Reduce,
Zero);
}
// If a merged operation has no inactive lanes we can relax it to a predicated
// or unpredicated operation, which potentially allows better isel (perhaps
// using immediate forms) or relaxing register reuse requirements.
static SDValue convertMergedOpToPredOp(SDNode *N, unsigned Opc,
SelectionDAG &DAG, bool UnpredOp = false,
bool SwapOperands = false) {
assert(N->getOpcode() == ISD::INTRINSIC_WO_CHAIN && "Expected intrinsic!");
assert(N->getNumOperands() == 4 && "Expected 3 operand intrinsic!");
SDValue Pg = N->getOperand(1);
SDValue Op1 = N->getOperand(SwapOperands ? 3 : 2);
SDValue Op2 = N->getOperand(SwapOperands ? 2 : 3);
// ISD way to specify an all active predicate.
if (isAllActivePredicate(DAG, Pg)) {
if (UnpredOp)
return DAG.getNode(Opc, SDLoc(N), N->getValueType(0), Op1, Op2);
return DAG.getNode(Opc, SDLoc(N), N->getValueType(0), Pg, Op1, Op2);
}
// FUTURE: SplatVector(true)
return SDValue();
}
static SDValue tryCombineWhileLo(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const AArch64Subtarget *Subtarget) {
if (DCI.isBeforeLegalize())
return SDValue();
if (!Subtarget->hasSVE2p1())
return SDValue();
if (!N->hasNUsesOfValue(2, 0))
return SDValue();
const uint64_t HalfSize = N->getValueType(0).getVectorMinNumElements() / 2;
if (HalfSize < 2)
return SDValue();
auto It = N->use_begin();
SDNode *Lo = *It++;
SDNode *Hi = *It;
if (Lo->getOpcode() != ISD::EXTRACT_SUBVECTOR ||
Hi->getOpcode() != ISD::EXTRACT_SUBVECTOR)
return SDValue();
uint64_t OffLo = Lo->getConstantOperandVal(1);
uint64_t OffHi = Hi->getConstantOperandVal(1);
if (OffLo > OffHi) {
std::swap(Lo, Hi);
std::swap(OffLo, OffHi);
}
if (OffLo != 0 || OffHi != HalfSize)
return SDValue();
EVT HalfVec = Lo->getValueType(0);
if (HalfVec != Hi->getValueType(0) ||
HalfVec.getVectorElementCount() != ElementCount::getScalable(HalfSize))
return SDValue();
SelectionDAG &DAG = DCI.DAG;
SDLoc DL(N);
SDValue ID =
DAG.getTargetConstant(Intrinsic::aarch64_sve_whilelo_x2, DL, MVT::i64);
SDValue Idx = N->getOperand(1);
SDValue TC = N->getOperand(2);
if (Idx.getValueType() != MVT::i64) {
Idx = DAG.getZExtOrTrunc(Idx, DL, MVT::i64);
TC = DAG.getZExtOrTrunc(TC, DL, MVT::i64);
}
auto R =
DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL,
{Lo->getValueType(0), Hi->getValueType(0)}, {ID, Idx, TC});
DCI.CombineTo(Lo, R.getValue(0));
DCI.CombineTo(Hi, R.getValue(1));
return SDValue(N, 0);
}
SDValue tryLowerPartialReductionToDot(SDNode *N,
const AArch64Subtarget *Subtarget,
SelectionDAG &DAG) {
assert(N->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
getIntrinsicID(N) ==
Intrinsic::experimental_vector_partial_reduce_add &&
"Expected a partial reduction node");
bool Scalable = N->getValueType(0).isScalableVector();
if (Scalable && !Subtarget->isSVEorStreamingSVEAvailable())
return SDValue();
if (!Scalable && (!Subtarget->isNeonAvailable() || !Subtarget->hasDotProd()))
return SDValue();
SDLoc DL(N);
// The narrower of the two operands. Used as the accumulator
auto NarrowOp = N->getOperand(1);
auto MulOp = N->getOperand(2);
if (MulOp->getOpcode() != ISD::MUL)
return SDValue();
auto ExtA = MulOp->getOperand(0);
auto ExtB = MulOp->getOperand(1);
if (!ISD::isExtOpcode(ExtA->getOpcode()) ||
!ISD::isExtOpcode(ExtB->getOpcode()))
return SDValue();
bool AIsSigned = ExtA->getOpcode() == ISD::SIGN_EXTEND;
bool BIsSigned = ExtB->getOpcode() == ISD::SIGN_EXTEND;
auto A = ExtA->getOperand(0);
auto B = ExtB->getOperand(0);
if (A.getValueType() != B.getValueType())
return SDValue();
EVT ReducedType = N->getValueType(0);
EVT MulSrcType = A.getValueType();
// Dot products operate on chunks of four elements so there must be four times
// as many elements in the wide type
if (!(ReducedType == MVT::nxv4i64 && MulSrcType == MVT::nxv16i8) &&
!(ReducedType == MVT::nxv4i32 && MulSrcType == MVT::nxv16i8) &&
!(ReducedType == MVT::nxv2i64 && MulSrcType == MVT::nxv8i16) &&
!(ReducedType == MVT::v4i64 && MulSrcType == MVT::v16i8) &&
!(ReducedType == MVT::v4i32 && MulSrcType == MVT::v16i8) &&
!(ReducedType == MVT::v2i32 && MulSrcType == MVT::v8i8))
return SDValue();
// If the extensions are mixed, we should lower it to a usdot instead
unsigned Opcode = 0;
if (AIsSigned != BIsSigned) {
if (!Subtarget->hasMatMulInt8())
return SDValue();
bool Scalable = N->getValueType(0).isScalableVT();
// There's no nxv2i64 version of usdot
if (Scalable && ReducedType != MVT::nxv4i32 && ReducedType != MVT::nxv4i64)
return SDValue();
Opcode = AArch64ISD::USDOT;
// USDOT expects the signed operand to be last
if (!BIsSigned)
std::swap(A, B);
} else if (AIsSigned)
Opcode = AArch64ISD::SDOT;
else
Opcode = AArch64ISD::UDOT;
// Partial reduction lowering for (nx)v16i8 to (nx)v4i64 requires an i32 dot
// product followed by a zero / sign extension
if ((ReducedType == MVT::nxv4i64 && MulSrcType == MVT::nxv16i8) ||
(ReducedType == MVT::v4i64 && MulSrcType == MVT::v16i8)) {
EVT ReducedTypeI32 =
(ReducedType.isScalableVector()) ? MVT::nxv4i32 : MVT::v4i32;
auto DotI32 = DAG.getNode(Opcode, DL, ReducedTypeI32,
DAG.getConstant(0, DL, ReducedTypeI32), A, B);
auto Extended = DAG.getSExtOrTrunc(DotI32, DL, ReducedType);
return DAG.getNode(ISD::ADD, DL, NarrowOp.getValueType(), NarrowOp,
Extended);
}
return DAG.getNode(Opcode, DL, ReducedType, NarrowOp, A, B);
}
SDValue tryLowerPartialReductionToWideAdd(SDNode *N,
const AArch64Subtarget *Subtarget,
SelectionDAG &DAG) {
assert(N->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
getIntrinsicID(N) ==
Intrinsic::experimental_vector_partial_reduce_add &&
"Expected a partial reduction node");
if (!Subtarget->isSVEorStreamingSVEAvailable())
return SDValue();
SDLoc DL(N);
auto Acc = N->getOperand(1);
auto ExtInput = N->getOperand(2);
EVT AccVT = Acc.getValueType();
EVT AccElemVT = AccVT.getVectorElementType();
if (ExtInput.getValueType().getVectorElementType() != AccElemVT)
return SDValue();
unsigned ExtInputOpcode = ExtInput->getOpcode();
if (!ISD::isExtOpcode(ExtInputOpcode))
return SDValue();
auto Input = ExtInput->getOperand(0);
EVT InputVT = Input.getValueType();
if (!(InputVT == MVT::nxv4i32 && AccVT == MVT::nxv2i64) &&
!(InputVT == MVT::nxv8i16 && AccVT == MVT::nxv4i32) &&
!(InputVT == MVT::nxv16i8 && AccVT == MVT::nxv8i16))
return SDValue();
bool InputIsSigned = ExtInputOpcode == ISD::SIGN_EXTEND;
auto BottomIntrinsic = InputIsSigned ? Intrinsic::aarch64_sve_saddwb
: Intrinsic::aarch64_sve_uaddwb;
auto TopIntrinsic = InputIsSigned ? Intrinsic::aarch64_sve_saddwt
: Intrinsic::aarch64_sve_uaddwt;
auto BottomID = DAG.getTargetConstant(BottomIntrinsic, DL, AccElemVT);
auto BottomNode =
DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, AccVT, BottomID, Acc, Input);
auto TopID = DAG.getTargetConstant(TopIntrinsic, DL, AccElemVT);
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, AccVT, TopID, BottomNode,
Input);
}
static SDValue performIntrinsicCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const AArch64Subtarget *Subtarget) {
SelectionDAG &DAG = DCI.DAG;
unsigned IID = getIntrinsicID(N);
switch (IID) {
default:
break;
case Intrinsic::experimental_vector_partial_reduce_add: {
if (auto Dot = tryLowerPartialReductionToDot(N, Subtarget, DAG))
return Dot;
if (auto WideAdd = tryLowerPartialReductionToWideAdd(N, Subtarget, DAG))
return WideAdd;
return DAG.getPartialReduceAdd(SDLoc(N), N->getValueType(0),
N->getOperand(1), N->getOperand(2));
}
case Intrinsic::aarch64_neon_vcvtfxs2fp:
case Intrinsic::aarch64_neon_vcvtfxu2fp:
return tryCombineFixedPointConvert(N, DCI, DAG);
case Intrinsic::aarch64_neon_saddv:
return combineAcrossLanesIntrinsic(AArch64ISD::SADDV, N, DAG);
case Intrinsic::aarch64_neon_uaddv:
return combineAcrossLanesIntrinsic(AArch64ISD::UADDV, N, DAG);
case Intrinsic::aarch64_neon_sminv:
return combineAcrossLanesIntrinsic(AArch64ISD::SMINV, N, DAG);
case Intrinsic::aarch64_neon_uminv:
return combineAcrossLanesIntrinsic(AArch64ISD::UMINV, N, DAG);
case Intrinsic::aarch64_neon_smaxv:
return combineAcrossLanesIntrinsic(AArch64ISD::SMAXV, N, DAG);
case Intrinsic::aarch64_neon_umaxv:
return combineAcrossLanesIntrinsic(AArch64ISD::UMAXV, N, DAG);
case Intrinsic::aarch64_neon_fmax:
return DAG.getNode(ISD::FMAXIMUM, SDLoc(N), N->getValueType(0),
N->getOperand(1), N->getOperand(2));
case Intrinsic::aarch64_neon_fmin:
return DAG.getNode(ISD::FMINIMUM, SDLoc(N), N->getValueType(0),
N->getOperand(1), N->getOperand(2));
case Intrinsic::aarch64_neon_fmaxnm:
return DAG.getNode(ISD::FMAXNUM, SDLoc(N), N->getValueType(0),
N->getOperand(1), N->getOperand(2));
case Intrinsic::aarch64_neon_fminnm:
return DAG.getNode(ISD::FMINNUM, SDLoc(N), N->getValueType(0),
N->getOperand(1), N->getOperand(2));
case Intrinsic::aarch64_neon_smull:
return DAG.getNode(AArch64ISD::SMULL, SDLoc(N), N->getValueType(0),
N->getOperand(1), N->getOperand(2));
case Intrinsic::aarch64_neon_umull:
return DAG.getNode(AArch64ISD::UMULL, SDLoc(N), N->getValueType(0),
N->getOperand(1), N->getOperand(2));
case Intrinsic::aarch64_neon_pmull:
return DAG.getNode(AArch64ISD::PMULL, SDLoc(N), N->getValueType(0),
N->getOperand(1), N->getOperand(2));
case Intrinsic::aarch64_neon_sqdmull:
return tryCombineLongOpWithDup(IID, N, DCI, DAG);
case Intrinsic::aarch64_neon_sqshl:
case Intrinsic::aarch64_neon_uqshl:
case Intrinsic::aarch64_neon_sqshlu:
case Intrinsic::aarch64_neon_srshl:
case Intrinsic::aarch64_neon_urshl:
case Intrinsic::aarch64_neon_sshl:
case Intrinsic::aarch64_neon_ushl:
return tryCombineShiftImm(IID, N, DAG);
case Intrinsic::aarch64_neon_sabd:
return DAG.getNode(ISD::ABDS, SDLoc(N), N->getValueType(0),
N->getOperand(1), N->getOperand(2));
case Intrinsic::aarch64_neon_uabd:
return DAG.getNode(ISD::ABDU, SDLoc(N), N->getValueType(0),
N->getOperand(1), N->getOperand(2));
case Intrinsic::aarch64_crc32b:
case Intrinsic::aarch64_crc32cb:
return tryCombineCRC32(0xff, N, DAG);
case Intrinsic::aarch64_crc32h:
case Intrinsic::aarch64_crc32ch:
return tryCombineCRC32(0xffff, N, DAG);
case Intrinsic::aarch64_sve_saddv:
// There is no i64 version of SADDV because the sign is irrelevant.
if (N->getOperand(2)->getValueType(0).getVectorElementType() == MVT::i64)
return combineSVEReductionInt(N, AArch64ISD::UADDV_PRED, DAG);
else
return combineSVEReductionInt(N, AArch64ISD::SADDV_PRED, DAG);
case Intrinsic::aarch64_sve_uaddv:
return combineSVEReductionInt(N, AArch64ISD::UADDV_PRED, DAG);
case Intrinsic::aarch64_sve_smaxv:
return combineSVEReductionInt(N, AArch64ISD::SMAXV_PRED, DAG);
case Intrinsic::aarch64_sve_umaxv:
return combineSVEReductionInt(N, AArch64ISD::UMAXV_PRED, DAG);
case Intrinsic::aarch64_sve_sminv:
return combineSVEReductionInt(N, AArch64ISD::SMINV_PRED, DAG);
case Intrinsic::aarch64_sve_uminv:
return combineSVEReductionInt(N, AArch64ISD::UMINV_PRED, DAG);
case Intrinsic::aarch64_sve_orv:
return combineSVEReductionInt(N, AArch64ISD::ORV_PRED, DAG);
case Intrinsic::aarch64_sve_eorv:
return combineSVEReductionInt(N, AArch64ISD::EORV_PRED, DAG);
case Intrinsic::aarch64_sve_andv:
return combineSVEReductionInt(N, AArch64ISD::ANDV_PRED, DAG);
case Intrinsic::aarch64_sve_index:
return LowerSVEIntrinsicIndex(N, DAG);
case Intrinsic::aarch64_sve_dup:
return LowerSVEIntrinsicDUP(N, DAG);
case Intrinsic::aarch64_sve_dup_x:
return DAG.getNode(ISD::SPLAT_VECTOR, SDLoc(N), N->getValueType(0),
N->getOperand(1));
case Intrinsic::aarch64_sve_ext:
return LowerSVEIntrinsicEXT(N, DAG);
case Intrinsic::aarch64_sve_mul_u:
return DAG.getNode(AArch64ISD::MUL_PRED, SDLoc(N), N->getValueType(0),
N->getOperand(1), N->getOperand(2), N->getOperand(3));
case Intrinsic::aarch64_sve_smulh_u:
return DAG.getNode(AArch64ISD::MULHS_PRED, SDLoc(N), N->getValueType(0),
N->getOperand(1), N->getOperand(2), N->getOperand(3));
case Intrinsic::aarch64_sve_umulh_u:
return DAG.getNode(AArch64ISD::MULHU_PRED, SDLoc(N), N->getValueType(0),
N->getOperand(1), N->getOperand(2), N->getOperand(3));
case Intrinsic::aarch64_sve_smin_u:
return DAG.getNode(AArch64ISD::SMIN_PRED, SDLoc(N), N->getValueType(0),
N->getOperand(1), N->getOperand(2), N->getOperand(3));
case Intrinsic::aarch64_sve_umin_u:
return DAG.getNode(AArch64ISD::UMIN_PRED, SDLoc(N), N->getValueType(0),
N->getOperand(1), N->getOperand(2), N->getOperand(3));
case Intrinsic::aarch64_sve_smax_u:
return DAG.getNode(AArch64ISD::SMAX_PRED, SDLoc(N), N->getValueType(0),
N->getOperand(1), N->getOperand(2), N->getOperand(3));
case Intrinsic::aarch64_sve_umax_u:
return DAG.getNode(AArch64ISD::UMAX_PRED, SDLoc(N), N->getValueType(0),
N->getOperand(1), N->getOperand(2), N->getOperand(3));
case Intrinsic::aarch64_sve_lsl_u:
return DAG.getNode(AArch64ISD::SHL_PRED, SDLoc(N), N->getValueType(0),
N->getOperand(1), N->getOperand(2), N->getOperand(3));
case Intrinsic::aarch64_sve_lsr_u:
return DAG.getNode(AArch64ISD::SRL_PRED, SDLoc(N), N->getValueType(0),
N->getOperand(1), N->getOperand(2), N->getOperand(3));
case Intrinsic::aarch64_sve_asr_u:
return DAG.getNode(AArch64ISD::SRA_PRED, SDLoc(N), N->getValueType(0),
N->getOperand(1), N->getOperand(2), N->getOperand(3));
case Intrinsic::aarch64_sve_fadd_u:
return DAG.getNode(AArch64ISD::FADD_PRED, SDLoc(N), N->getValueType(0),
N->getOperand(1), N->getOperand(2), N->getOperand(3));
case Intrinsic::aarch64_sve_fdiv_u:
return DAG.getNode(AArch64ISD::FDIV_PRED, SDLoc(N), N->getValueType(0),
N->getOperand(1), N->getOperand(2), N->getOperand(3));
case Intrinsic::aarch64_sve_fmax_u:
return DAG.getNode(AArch64ISD::FMAX_PRED, SDLoc(N), N->getValueType(0),
N->getOperand(1), N->getOperand(2), N->getOperand(3));
case Intrinsic::aarch64_sve_fmaxnm_u:
return DAG.getNode(AArch64ISD::FMAXNM_PRED, SDLoc(N), N->getValueType(0),
N->getOperand(1), N->getOperand(2), N->getOperand(3));
case Intrinsic::aarch64_sve_fmla_u:
return DAG.getNode(AArch64ISD::FMA_PRED, SDLoc(N), N->getValueType(0),
N->getOperand(1), N->getOperand(3), N->getOperand(4),
N->getOperand(2));
case Intrinsic::aarch64_sve_fmin_u:
return DAG.getNode(AArch64ISD::FMIN_PRED, SDLoc(N), N->getValueType(0),
N->getOperand(1), N->getOperand(2), N->getOperand(3));
case Intrinsic::aarch64_sve_fminnm_u:
return DAG.getNode(AArch64ISD::FMINNM_PRED, SDLoc(N), N->getValueType(0),
N->getOperand(1), N->getOperand(2), N->getOperand(3));
case Intrinsic::aarch64_sve_fmul_u:
return DAG.getNode(AArch64ISD::FMUL_PRED, SDLoc(N), N->getValueType(0),
N->getOperand(1), N->getOperand(2), N->getOperand(3));
case Intrinsic::aarch64_sve_fsub_u:
return DAG.getNode(AArch64ISD::FSUB_PRED, SDLoc(N), N->getValueType(0),
N->getOperand(1), N->getOperand(2), N->getOperand(3));
case Intrinsic::aarch64_sve_add_u:
return DAG.getNode(ISD::ADD, SDLoc(N), N->getValueType(0), N->getOperand(2),
N->getOperand(3));
case Intrinsic::aarch64_sve_sub_u:
return DAG.getNode(ISD::SUB, SDLoc(N), N->getValueType(0), N->getOperand(2),
N->getOperand(3));
case Intrinsic::aarch64_sve_subr:
return convertMergedOpToPredOp(N, ISD::SUB, DAG, true, true);
case Intrinsic::aarch64_sve_and_u:
return DAG.getNode(ISD::AND, SDLoc(N), N->getValueType(0), N->getOperand(2),
N->getOperand(3));
case Intrinsic::aarch64_sve_bic_u:
return DAG.getNode(AArch64ISD::BIC, SDLoc(N), N->getValueType(0),
N->getOperand(2), N->getOperand(3));
case Intrinsic::aarch64_sve_eor_u:
return DAG.getNode(ISD::XOR, SDLoc(N), N->getValueType(0), N->getOperand(2),
N->getOperand(3));
case Intrinsic::aarch64_sve_orr_u:
return DAG.getNode(ISD::OR, SDLoc(N), N->getValueType(0), N->getOperand(2),
N->getOperand(3));
case Intrinsic::aarch64_sve_sabd_u:
return DAG.getNode(ISD::ABDS, SDLoc(N), N->getValueType(0),
N->getOperand(2), N->getOperand(3));
case Intrinsic::aarch64_sve_uabd_u:
return DAG.getNode(ISD::ABDU, SDLoc(N), N->getValueType(0),
N->getOperand(2), N->getOperand(3));
case Intrinsic::aarch64_sve_sdiv_u:
return DAG.getNode(AArch64ISD::SDIV_PRED, SDLoc(N), N->getValueType(0),
N->getOperand(1), N->getOperand(2), N->getOperand(3));
case Intrinsic::aarch64_sve_udiv_u:
return DAG.getNode(AArch64ISD::UDIV_PRED, SDLoc(N), N->getValueType(0),
N->getOperand(1), N->getOperand(2), N->getOperand(3));
case Intrinsic::aarch64_sve_sqadd:
return convertMergedOpToPredOp(N, ISD::SADDSAT, DAG, true);
case Intrinsic::aarch64_sve_sqsub_u:
return DAG.getNode(ISD::SSUBSAT, SDLoc(N), N->getValueType(0),
N->getOperand(2), N->getOperand(3));
case Intrinsic::aarch64_sve_uqadd:
return convertMergedOpToPredOp(N, ISD::UADDSAT, DAG, true);
case Intrinsic::aarch64_sve_uqsub_u:
return DAG.getNode(ISD::USUBSAT, SDLoc(N), N->getValueType(0),
N->getOperand(2), N->getOperand(3));
case Intrinsic::aarch64_sve_sqadd_x:
return DAG.getNode(ISD::SADDSAT, SDLoc(N), N->getValueType(0),
N->getOperand(1), N->getOperand(2));
case Intrinsic::aarch64_sve_sqsub_x:
return DAG.getNode(ISD::SSUBSAT, SDLoc(N), N->getValueType(0),
N->getOperand(1), N->getOperand(2));
case Intrinsic::aarch64_sve_uqadd_x:
return DAG.getNode(ISD::UADDSAT, SDLoc(N), N->getValueType(0),
N->getOperand(1), N->getOperand(2));
case Intrinsic::aarch64_sve_uqsub_x:
return DAG.getNode(ISD::USUBSAT, SDLoc(N), N->getValueType(0),
N->getOperand(1), N->getOperand(2));
case Intrinsic::aarch64_sve_asrd:
return DAG.getNode(AArch64ISD::SRAD_MERGE_OP1, SDLoc(N), N->getValueType(0),
N->getOperand(1), N->getOperand(2), N->getOperand(3));
case Intrinsic::aarch64_sve_cmphs:
if (!N->getOperand(2).getValueType().isFloatingPoint())
return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, SDLoc(N),
N->getValueType(0), N->getOperand(1), N->getOperand(2),
N->getOperand(3), DAG.getCondCode(ISD::SETUGE));
break;
case Intrinsic::aarch64_sve_cmphi:
if (!N->getOperand(2).getValueType().isFloatingPoint())
return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, SDLoc(N),
N->getValueType(0), N->getOperand(1), N->getOperand(2),
N->getOperand(3), DAG.getCondCode(ISD::SETUGT));
break;
case Intrinsic::aarch64_sve_fcmpge:
case Intrinsic::aarch64_sve_cmpge:
return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, SDLoc(N),
N->getValueType(0), N->getOperand(1), N->getOperand(2),
N->getOperand(3), DAG.getCondCode(ISD::SETGE));
break;
case Intrinsic::aarch64_sve_fcmpgt:
case Intrinsic::aarch64_sve_cmpgt:
return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, SDLoc(N),
N->getValueType(0), N->getOperand(1), N->getOperand(2),
N->getOperand(3), DAG.getCondCode(ISD::SETGT));
break;
case Intrinsic::aarch64_sve_fcmpeq:
case Intrinsic::aarch64_sve_cmpeq:
return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, SDLoc(N),
N->getValueType(0), N->getOperand(1), N->getOperand(2),
N->getOperand(3), DAG.getCondCode(ISD::SETEQ));
break;
case Intrinsic::aarch64_sve_fcmpne:
case Intrinsic::aarch64_sve_cmpne:
return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, SDLoc(N),
N->getValueType(0), N->getOperand(1), N->getOperand(2),
N->getOperand(3), DAG.getCondCode(ISD::SETNE));
break;
case Intrinsic::aarch64_sve_fcmpuo:
return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, SDLoc(N),
N->getValueType(0), N->getOperand(1), N->getOperand(2),
N->getOperand(3), DAG.getCondCode(ISD::SETUO));
break;
case Intrinsic::aarch64_sve_fadda:
return combineSVEReductionOrderedFP(N, AArch64ISD::FADDA_PRED, DAG);
case Intrinsic::aarch64_sve_faddv:
return combineSVEReductionFP(N, AArch64ISD::FADDV_PRED, DAG);
case Intrinsic::aarch64_sve_fmaxnmv:
return combineSVEReductionFP(N, AArch64ISD::FMAXNMV_PRED, DAG);
case Intrinsic::aarch64_sve_fmaxv:
return combineSVEReductionFP(N, AArch64ISD::FMAXV_PRED, DAG);
case Intrinsic::aarch64_sve_fminnmv:
return combineSVEReductionFP(N, AArch64ISD::FMINNMV_PRED, DAG);
case Intrinsic::aarch64_sve_fminv:
return combineSVEReductionFP(N, AArch64ISD::FMINV_PRED, DAG);
case Intrinsic::aarch64_sve_sel:
return DAG.getNode(ISD::VSELECT, SDLoc(N), N->getValueType(0),
N->getOperand(1), N->getOperand(2), N->getOperand(3));
case Intrinsic::aarch64_sve_cmpeq_wide:
return tryConvertSVEWideCompare(N, ISD::SETEQ, DCI, DAG);
case Intrinsic::aarch64_sve_cmpne_wide:
return tryConvertSVEWideCompare(N, ISD::SETNE, DCI, DAG);
case Intrinsic::aarch64_sve_cmpge_wide:
return tryConvertSVEWideCompare(N, ISD::SETGE, DCI, DAG);
case Intrinsic::aarch64_sve_cmpgt_wide:
return tryConvertSVEWideCompare(N, ISD::SETGT, DCI, DAG);
case Intrinsic::aarch64_sve_cmplt_wide:
return tryConvertSVEWideCompare(N, ISD::SETLT, DCI, DAG);
case Intrinsic::aarch64_sve_cmple_wide:
return tryConvertSVEWideCompare(N, ISD::SETLE, DCI, DAG);
case Intrinsic::aarch64_sve_cmphs_wide:
return tryConvertSVEWideCompare(N, ISD::SETUGE, DCI, DAG);
case Intrinsic::aarch64_sve_cmphi_wide:
return tryConvertSVEWideCompare(N, ISD::SETUGT, DCI, DAG);
case Intrinsic::aarch64_sve_cmplo_wide:
return tryConvertSVEWideCompare(N, ISD::SETULT, DCI, DAG);
case Intrinsic::aarch64_sve_cmpls_wide:
return tryConvertSVEWideCompare(N, ISD::SETULE, DCI, DAG);
case Intrinsic::aarch64_sve_ptest_any:
return getPTest(DAG, N->getValueType(0), N->getOperand(1), N->getOperand(2),
AArch64CC::ANY_ACTIVE);
case Intrinsic::aarch64_sve_ptest_first:
return getPTest(DAG, N->getValueType(0), N->getOperand(1), N->getOperand(2),
AArch64CC::FIRST_ACTIVE);
case Intrinsic::aarch64_sve_ptest_last:
return getPTest(DAG, N->getValueType(0), N->getOperand(1), N->getOperand(2),
AArch64CC::LAST_ACTIVE);
case Intrinsic::aarch64_sve_whilelo:
return tryCombineWhileLo(N, DCI, Subtarget);
}
return SDValue();
}
static bool isCheapToExtend(const SDValue &N) {
unsigned OC = N->getOpcode();
return OC == ISD::LOAD || OC == ISD::MLOAD ||
ISD::isConstantSplatVectorAllZeros(N.getNode());
}
static SDValue
performSignExtendSetCCCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
SelectionDAG &DAG) {
// If we have (sext (setcc A B)) and A and B are cheap to extend,
// we can move the sext into the arguments and have the same result. For
// example, if A and B are both loads, we can make those extending loads and
// avoid an extra instruction. This pattern appears often in VLS code
// generation where the inputs to the setcc have a different size to the
// instruction that wants to use the result of the setcc.
assert(N->getOpcode() == ISD::SIGN_EXTEND &&
N->getOperand(0)->getOpcode() == ISD::SETCC);
const SDValue SetCC = N->getOperand(0);
const SDValue CCOp0 = SetCC.getOperand(0);
const SDValue CCOp1 = SetCC.getOperand(1);
if (!CCOp0->getValueType(0).isInteger() ||
!CCOp1->getValueType(0).isInteger())
return SDValue();
ISD::CondCode Code =
cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get();
ISD::NodeType ExtType =
isSignedIntSetCC(Code) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
if (isCheapToExtend(SetCC.getOperand(0)) &&
isCheapToExtend(SetCC.getOperand(1))) {
const SDValue Ext1 =
DAG.getNode(ExtType, SDLoc(N), N->getValueType(0), CCOp0);
const SDValue Ext2 =
DAG.getNode(ExtType, SDLoc(N), N->getValueType(0), CCOp1);
return DAG.getSetCC(
SDLoc(SetCC), N->getValueType(0), Ext1, Ext2,
cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get());
}
return SDValue();
}
// Convert zext(extract(shuffle a, b, [0,4,8,12])) -> and(uzp1(a, b), 255)
// This comes from interleaved vectorization. It is performed late to capture
// uitofp converts too.
static SDValue performZExtDeinterleaveShuffleCombine(SDNode *N,
SelectionDAG &DAG) {
EVT VT = N->getValueType(0);
if ((VT != MVT::v4i32 && VT != MVT::v8i16) ||
N->getOpcode() != ISD::ZERO_EXTEND ||
N->getOperand(0).getOpcode() != ISD::EXTRACT_SUBVECTOR)
return SDValue();
unsigned ExtOffset = N->getOperand(0).getConstantOperandVal(1);
if (ExtOffset != 0 && ExtOffset != VT.getVectorNumElements())
return SDValue();
EVT InVT = N->getOperand(0).getOperand(0).getValueType();
auto *Shuffle = dyn_cast<ShuffleVectorSDNode>(N->getOperand(0).getOperand(0));
if (!Shuffle ||
InVT.getVectorNumElements() != VT.getVectorNumElements() * 2 ||
InVT.getScalarSizeInBits() * 2 != VT.getScalarSizeInBits())
return SDValue();
unsigned Idx;
bool IsDeInterleave = ShuffleVectorInst::isDeInterleaveMaskOfFactor(
Shuffle->getMask().slice(ExtOffset, VT.getVectorNumElements()), 4, Idx);
// An undef interleave shuffle can come up after other canonicalizations,
// where the shuffle has been converted to
// zext(extract(shuffle b, undef, [u,u,0,4]))
bool IsUndefDeInterleave = false;
if (!IsDeInterleave)
IsUndefDeInterleave =
Shuffle->getOperand(1).isUndef() &&
ShuffleVectorInst::isDeInterleaveMaskOfFactor(
Shuffle->getMask().slice(ExtOffset + VT.getVectorNumElements() / 2,
VT.getVectorNumElements() / 2),
4, Idx);
if ((!IsDeInterleave && !IsUndefDeInterleave) || Idx >= 4)
return SDValue();
SDLoc DL(N);
SDValue BC1 = DAG.getNode(AArch64ISD::NVCAST, DL, VT,
Shuffle->getOperand(IsUndefDeInterleave ? 1 : 0));
SDValue BC2 = DAG.getNode(AArch64ISD::NVCAST, DL, VT,
Shuffle->getOperand(IsUndefDeInterleave ? 0 : 1));
SDValue UZP = DAG.getNode(Idx < 2 ? AArch64ISD::UZP1 : AArch64ISD::UZP2, DL,
VT, BC1, BC2);
if ((Idx & 1) == 1)
UZP = DAG.getNode(ISD::SRL, DL, VT, UZP,
DAG.getConstant(InVT.getScalarSizeInBits(), DL, VT));
return DAG.getNode(
ISD::AND, DL, VT, UZP,
DAG.getConstant((1 << InVT.getScalarSizeInBits()) - 1, DL, VT));
}
// This comes up similar to the above when lowering deinterleaving shuffles from
// zexts. We have legalized the operations in the generally case to
// zext(extract_subvector(uzp(a, b))), which can be converted to and(a, mask) if
// the extract is to the low half and the uzp is uzp1. There would be an extra
// shift if the uzp was uzp2 to grab the upper half. Due to the combine above
// there could also be an existing and / shift that can be combined in, either
// before of after the extract.
static SDValue performZExtUZPCombine(SDNode *N, SelectionDAG &DAG) {
EVT VT = N->getValueType(0);
if (N->getOpcode() != ISD::ZERO_EXTEND ||
(VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16))
return SDValue();
SDValue Op = N->getOperand(0);
unsigned ExtOffset = (unsigned)-1;
if (Op.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
ExtOffset = Op.getConstantOperandVal(1);
Op = Op.getOperand(0);
}
unsigned Shift = 0;
APInt Mask = APInt::getLowBitsSet(VT.getScalarSizeInBits(),
Op.getValueType().getScalarSizeInBits());
if (Op.getOpcode() == AArch64ISD::VLSHR) {
Shift = Op.getConstantOperandVal(1);
Op = Op.getOperand(0);
Mask = Mask.lshr(Shift);
}
if (Op.getOpcode() == ISD::AND &&
ISD::isConstantSplatVector(Op.getOperand(1).getNode(), Mask)) {
Op = Op.getOperand(0);
Mask = Mask.zext(VT.getScalarSizeInBits());
} else if (Op.getOpcode() == AArch64ISD::BICi) {
Mask = ~APInt(Op.getValueType().getScalarSizeInBits(),
Op.getConstantOperandVal(1) << Op.getConstantOperandVal(2));
Mask = Mask.zext(VT.getScalarSizeInBits());
Op = Op.getOperand(0);
}
if (ExtOffset == (unsigned)-1) {
if (Op.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
ExtOffset = Op.getConstantOperandVal(1);
Op = Op.getOperand(0);
} else
return SDValue();
}
if (ExtOffset != 0 && ExtOffset != VT.getVectorNumElements())
return SDValue();
if (Op.getOpcode() != AArch64ISD::UZP1 && Op.getOpcode() != AArch64ISD::UZP2)
return SDValue();
if (Op.getOpcode() == AArch64ISD::UZP2)
Shift += VT.getScalarSizeInBits() / 2;
SDLoc DL(N);
SDValue BC = DAG.getNode(AArch64ISD::NVCAST, DL, VT,
Op.getOperand(ExtOffset == 0 ? 0 : 1));
if (Shift != 0)
BC = DAG.getNode(AArch64ISD::VLSHR, DL, VT, BC,
DAG.getConstant(Shift, DL, MVT::i32));
return DAG.getNode(ISD::AND, DL, VT, BC, DAG.getConstant(Mask, DL, VT));
}
static SDValue performExtendCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
SelectionDAG &DAG) {
// If we see something like (zext (sabd (extract_high ...), (DUP ...))) then
// we can convert that DUP into another extract_high (of a bigger DUP), which
// helps the backend to decide that an sabdl2 would be useful, saving a real
// extract_high operation.
if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND &&
N->getOperand(0).getValueType().is64BitVector() &&
(N->getOperand(0).getOpcode() == ISD::ABDU ||
N->getOperand(0).getOpcode() == ISD::ABDS)) {
SDNode *ABDNode = N->getOperand(0).getNode();
SDValue NewABD =
tryCombineLongOpWithDup(Intrinsic::not_intrinsic, ABDNode, DCI, DAG);
if (!NewABD.getNode())
return SDValue();
return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0), NewABD);
}
if (SDValue R = performZExtDeinterleaveShuffleCombine(N, DAG))
return R;
if (SDValue R = performZExtUZPCombine(N, DAG))
return R;
if (N->getValueType(0).isFixedLengthVector() &&
N->getOpcode() == ISD::SIGN_EXTEND &&
N->getOperand(0)->getOpcode() == ISD::SETCC)
return performSignExtendSetCCCombine(N, DCI, DAG);
// If we see (any_extend (bswap ...)) with bswap returning an i16, we know
// that the top half of the result register must be unused, due to the
// any_extend. This means that we can replace this pattern with (rev16
// (any_extend ...)). This saves a machine instruction compared to (lsr (rev
// ...)), which is what this pattern would otherwise be lowered to.
// Only apply this optimisation if any_extend in original pattern to i32 or
// i64, because this type will become the input type to REV16 in the new
// pattern, so must be a legitimate REV16 input type.
SDValue Bswap = N->getOperand(0);
if (N->getOpcode() == ISD::ANY_EXTEND && Bswap.getOpcode() == ISD::BSWAP &&
Bswap.getValueType() == MVT::i16 &&
(N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64)) {
SDLoc DL(N);
SDValue NewAnyExtend = DAG.getNode(ISD::ANY_EXTEND, DL, N->getValueType(0),
Bswap->getOperand(0));
return DAG.getNode(AArch64ISD::REV16, SDLoc(N), N->getValueType(0),
NewAnyExtend);
}
return SDValue();
}
static SDValue splitStoreSplat(SelectionDAG &DAG, StoreSDNode &St,
SDValue SplatVal, unsigned NumVecElts) {
assert(!St.isTruncatingStore() && "cannot split truncating vector store");
Align OrigAlignment = St.getAlign();
unsigned EltOffset = SplatVal.getValueType().getSizeInBits() / 8;
// Create scalar stores. This is at least as good as the code sequence for a
// split unaligned store which is a dup.s, ext.b, and two stores.
// Most of the time the three stores should be replaced by store pair
// instructions (stp).
SDLoc DL(&St);
SDValue BasePtr = St.getBasePtr();
uint64_t BaseOffset = 0;
const MachinePointerInfo &PtrInfo = St.getPointerInfo();
SDValue NewST1 =
DAG.getStore(St.getChain(), DL, SplatVal, BasePtr, PtrInfo,
OrigAlignment, St.getMemOperand()->getFlags());
// As this in ISel, we will not merge this add which may degrade results.
if (BasePtr->getOpcode() == ISD::ADD &&
isa<ConstantSDNode>(BasePtr->getOperand(1))) {
BaseOffset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue();
BasePtr = BasePtr->getOperand(0);
}
unsigned Offset = EltOffset;
while (--NumVecElts) {
Align Alignment = commonAlignment(OrigAlignment, Offset);
SDValue OffsetPtr =
DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
DAG.getConstant(BaseOffset + Offset, DL, MVT::i64));
NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr,
PtrInfo.getWithOffset(Offset), Alignment,
St.getMemOperand()->getFlags());
Offset += EltOffset;
}
return NewST1;
}
// Returns an SVE type that ContentTy can be trivially sign or zero extended
// into.
static MVT getSVEContainerType(EVT ContentTy) {
assert(ContentTy.isSimple() && "No SVE containers for extended types");
switch (ContentTy.getSimpleVT().SimpleTy) {
default:
llvm_unreachable("No known SVE container for this MVT type");
case MVT::nxv2i8:
case MVT::nxv2i16:
case MVT::nxv2i32:
case MVT::nxv2i64:
case MVT::nxv2f32:
case MVT::nxv2f64:
return MVT::nxv2i64;
case MVT::nxv4i8:
case MVT::nxv4i16:
case MVT::nxv4i32:
case MVT::nxv4f32:
return MVT::nxv4i32;
case MVT::nxv8i8:
case MVT::nxv8i16:
case MVT::nxv8f16:
case MVT::nxv8bf16:
return MVT::nxv8i16;
case MVT::nxv16i8:
return MVT::nxv16i8;
}
}
static SDValue performLD1Combine(SDNode *N, SelectionDAG &DAG, unsigned Opc) {
SDLoc DL(N);
EVT VT = N->getValueType(0);
if (VT.getSizeInBits().getKnownMinValue() > AArch64::SVEBitsPerBlock)
return SDValue();
EVT ContainerVT = VT;
if (ContainerVT.isInteger())
ContainerVT = getSVEContainerType(ContainerVT);
SDVTList VTs = DAG.getVTList(ContainerVT, MVT::Other);
SDValue Ops[] = { N->getOperand(0), // Chain
N->getOperand(2), // Pg
N->getOperand(3), // Base
DAG.getValueType(VT) };
SDValue Load = DAG.getNode(Opc, DL, VTs, Ops);
SDValue LoadChain = SDValue(Load.getNode(), 1);
if (ContainerVT.isInteger() && (VT != ContainerVT))
Load = DAG.getNode(ISD::TRUNCATE, DL, VT, Load.getValue(0));
return DAG.getMergeValues({ Load, LoadChain }, DL);
}
static SDValue performLDNT1Combine(SDNode *N, SelectionDAG &DAG) {
SDLoc DL(N);
EVT VT = N->getValueType(0);
EVT PtrTy = N->getOperand(3).getValueType();
EVT LoadVT = VT;
if (VT.isFloatingPoint())
LoadVT = VT.changeTypeToInteger();
auto *MINode = cast<MemIntrinsicSDNode>(N);
SDValue PassThru = DAG.getConstant(0, DL, LoadVT);
SDValue L = DAG.getMaskedLoad(LoadVT, DL, MINode->getChain(),
MINode->getOperand(3), DAG.getUNDEF(PtrTy),
MINode->getOperand(2), PassThru,
MINode->getMemoryVT(), MINode->getMemOperand(),
ISD::UNINDEXED, ISD::NON_EXTLOAD, false);
if (VT.isFloatingPoint()) {
SDValue Ops[] = { DAG.getNode(ISD::BITCAST, DL, VT, L), L.getValue(1) };
return DAG.getMergeValues(Ops, DL);
}
return L;
}
template <unsigned Opcode>
static SDValue performLD1ReplicateCombine(SDNode *N, SelectionDAG &DAG) {
static_assert(Opcode == AArch64ISD::LD1RQ_MERGE_ZERO ||
Opcode == AArch64ISD::LD1RO_MERGE_ZERO,
"Unsupported opcode.");
SDLoc DL(N);
EVT VT = N->getValueType(0);
EVT LoadVT = VT;
if (VT.isFloatingPoint())
LoadVT = VT.changeTypeToInteger();
SDValue Ops[] = {N->getOperand(0), N->getOperand(2), N->getOperand(3)};
SDValue Load = DAG.getNode(Opcode, DL, {LoadVT, MVT::Other}, Ops);
SDValue LoadChain = SDValue(Load.getNode(), 1);
if (VT.isFloatingPoint())
Load = DAG.getNode(ISD::BITCAST, DL, VT, Load.getValue(0));
return DAG.getMergeValues({Load, LoadChain}, DL);
}
static SDValue performST1Combine(SDNode *N, SelectionDAG &DAG) {
SDLoc DL(N);
SDValue Data = N->getOperand(2);
EVT DataVT = Data.getValueType();
EVT HwSrcVt = getSVEContainerType(DataVT);
SDValue InputVT = DAG.getValueType(DataVT);
if (DataVT.isFloatingPoint())
InputVT = DAG.getValueType(HwSrcVt);
SDValue SrcNew;
if (Data.getValueType().isFloatingPoint())
SrcNew = DAG.getNode(ISD::BITCAST, DL, HwSrcVt, Data);
else
SrcNew = DAG.getNode(ISD::ANY_EXTEND, DL, HwSrcVt, Data);
SDValue Ops[] = { N->getOperand(0), // Chain
SrcNew,
N->getOperand(4), // Base
N->getOperand(3), // Pg
InputVT
};
return DAG.getNode(AArch64ISD::ST1_PRED, DL, N->getValueType(0), Ops);
}
static SDValue performSTNT1Combine(SDNode *N, SelectionDAG &DAG) {
SDLoc DL(N);
SDValue Data = N->getOperand(2);
EVT DataVT = Data.getValueType();
EVT PtrTy = N->getOperand(4).getValueType();
if (DataVT.isFloatingPoint())
Data = DAG.getNode(ISD::BITCAST, DL, DataVT.changeTypeToInteger(), Data);
auto *MINode = cast<MemIntrinsicSDNode>(N);
return DAG.getMaskedStore(MINode->getChain(), DL, Data, MINode->getOperand(4),
DAG.getUNDEF(PtrTy), MINode->getOperand(3),
MINode->getMemoryVT(), MINode->getMemOperand(),
ISD::UNINDEXED, false, false);
}
/// Replace a splat of zeros to a vector store by scalar stores of WZR/XZR. The
/// load store optimizer pass will merge them to store pair stores. This should
/// be better than a movi to create the vector zero followed by a vector store
/// if the zero constant is not re-used, since one instructions and one register
/// live range will be removed.
///
/// For example, the final generated code should be:
///
/// stp xzr, xzr, [x0]
///
/// instead of:
///
/// movi v0.2d, #0
/// str q0, [x0]
///
static SDValue replaceZeroVectorStore(SelectionDAG &DAG, StoreSDNode &St) {
SDValue StVal = St.getValue();
EVT VT = StVal.getValueType();
// Avoid scalarizing zero splat stores for scalable vectors.
if (VT.isScalableVector())
return SDValue();
// It is beneficial to scalarize a zero splat store for 2 or 3 i64 elements or
// 2, 3 or 4 i32 elements.
int NumVecElts = VT.getVectorNumElements();
if (!(((NumVecElts == 2 || NumVecElts == 3) &&
VT.getVectorElementType().getSizeInBits() == 64) ||
((NumVecElts == 2 || NumVecElts == 3 || NumVecElts == 4) &&
VT.getVectorElementType().getSizeInBits() == 32)))
return SDValue();
if (StVal.getOpcode() != ISD::BUILD_VECTOR)
return SDValue();
// If the zero constant has more than one use then the vector store could be
// better since the constant mov will be amortized and stp q instructions
// should be able to be formed.
if (!StVal.hasOneUse())
return SDValue();
// If the store is truncating then it's going down to i16 or smaller, which
// means it can be implemented in a single store anyway.
if (St.isTruncatingStore())
return SDValue();
// If the immediate offset of the address operand is too large for the stp
// instruction, then bail out.
if (DAG.isBaseWithConstantOffset(St.getBasePtr())) {
int64_t Offset = St.getBasePtr()->getConstantOperandVal(1);
if (Offset < -512 || Offset > 504)
return SDValue();
}
for (int I = 0; I < NumVecElts; ++I) {
SDValue EltVal = StVal.getOperand(I);
if (!isNullConstant(EltVal) && !isNullFPConstant(EltVal))
return SDValue();
}
// Use a CopyFromReg WZR/XZR here to prevent
// DAGCombiner::MergeConsecutiveStores from undoing this transformation.
SDLoc DL(&St);
unsigned ZeroReg;
EVT ZeroVT;
if (VT.getVectorElementType().getSizeInBits() == 32) {
ZeroReg = AArch64::WZR;
ZeroVT = MVT::i32;
} else {
ZeroReg = AArch64::XZR;
ZeroVT = MVT::i64;
}
SDValue SplatVal =
DAG.getCopyFromReg(DAG.getEntryNode(), DL, ZeroReg, ZeroVT);
return splitStoreSplat(DAG, St, SplatVal, NumVecElts);
}
/// Replace a splat of a scalar to a vector store by scalar stores of the scalar
/// value. The load store optimizer pass will merge them to store pair stores.
/// This has better performance than a splat of the scalar followed by a split
/// vector store. Even if the stores are not merged it is four stores vs a dup,
/// followed by an ext.b and two stores.
static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode &St) {
SDValue StVal = St.getValue();
EVT VT = StVal.getValueType();
// Don't replace floating point stores, they possibly won't be transformed to
// stp because of the store pair suppress pass.
if (VT.isFloatingPoint())
return SDValue();
// We can express a splat as store pair(s) for 2 or 4 elements.
unsigned NumVecElts = VT.getVectorNumElements();
if (NumVecElts != 4 && NumVecElts != 2)
return SDValue();
// If the store is truncating then it's going down to i16 or smaller, which
// means it can be implemented in a single store anyway.
if (St.isTruncatingStore())
return SDValue();
// Check that this is a splat.
// Make sure that each of the relevant vector element locations are inserted
// to, i.e. 0 and 1 for v2i64 and 0, 1, 2, 3 for v4i32.
std::bitset<4> IndexNotInserted((1 << NumVecElts) - 1);
SDValue SplatVal;
for (unsigned I = 0; I < NumVecElts; ++I) {
// Check for insert vector elements.
if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT)
return SDValue();
// Check that same value is inserted at each vector element.
if (I == 0)
SplatVal = StVal.getOperand(1);
else if (StVal.getOperand(1) != SplatVal)
return SDValue();
// Check insert element index.
ConstantSDNode *CIndex = dyn_cast<ConstantSDNode>(StVal.getOperand(2));
if (!CIndex)
return SDValue();
uint64_t IndexVal = CIndex->getZExtValue();
if (IndexVal >= NumVecElts)
return SDValue();
IndexNotInserted.reset(IndexVal);
StVal = StVal.getOperand(0);
}
// Check that all vector element locations were inserted to.
if (IndexNotInserted.any())
return SDValue();
return splitStoreSplat(DAG, St, SplatVal, NumVecElts);
}
static SDValue splitStores(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
SelectionDAG &DAG,
const AArch64Subtarget *Subtarget) {
StoreSDNode *S = cast<StoreSDNode>(N);
if (S->isVolatile() || S->isIndexed())
return SDValue();
SDValue StVal = S->getValue();
EVT VT = StVal.getValueType();
if (!VT.isFixedLengthVector())
return SDValue();
// If we get a splat of zeros, convert this vector store to a store of
// scalars. They will be merged into store pairs of xzr thereby removing one
// instruction and one register.
if (SDValue ReplacedZeroSplat = replaceZeroVectorStore(DAG, *S))
return ReplacedZeroSplat;
// FIXME: The logic for deciding if an unaligned store should be split should
// be included in TLI.allowsMisalignedMemoryAccesses(), and there should be
// a call to that function here.
if (!Subtarget->isMisaligned128StoreSlow())
return SDValue();
// Don't split at -Oz.
if (DAG.getMachineFunction().getFunction().hasMinSize())
return SDValue();
// Don't split v2i64 vectors. Memcpy lowering produces those and splitting
// those up regresses performance on micro-benchmarks and olden/bh.
if (VT.getVectorNumElements() < 2 || VT == MVT::v2i64)
return SDValue();
// Split unaligned 16B stores. They are terrible for performance.
// Don't split stores with alignment of 1 or 2. Code that uses clang vector
// extensions can use this to mark that it does not want splitting to happen
// (by underspecifying alignment to be 1 or 2). Furthermore, the chance of
// eliminating alignment hazards is only 1 in 8 for alignment of 2.
if (VT.getSizeInBits() != 128 || S->getAlign() >= Align(16) ||
S->getAlign() <= Align(2))
return SDValue();
// If we get a splat of a scalar convert this vector store to a store of
// scalars. They will be merged into store pairs thereby removing two
// instructions.
if (SDValue ReplacedSplat = replaceSplatVectorStore(DAG, *S))
return ReplacedSplat;
SDLoc DL(S);
// Split VT into two.
EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
unsigned NumElts = HalfVT.getVectorNumElements();
SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
DAG.getConstant(0, DL, MVT::i64));
SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
DAG.getConstant(NumElts, DL, MVT::i64));
SDValue BasePtr = S->getBasePtr();
SDValue NewST1 =
DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(),
S->getAlign(), S->getMemOperand()->getFlags());
SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
DAG.getConstant(8, DL, MVT::i64));
return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr,
S->getPointerInfo(), S->getAlign(),
S->getMemOperand()->getFlags());
}
static SDValue performSpliceCombine(SDNode *N, SelectionDAG &DAG) {
assert(N->getOpcode() == AArch64ISD::SPLICE && "Unexepected Opcode!");
// splice(pg, op1, undef) -> op1
if (N->getOperand(2).isUndef())
return N->getOperand(1);
return SDValue();
}
static SDValue performUnpackCombine(SDNode *N, SelectionDAG &DAG,
const AArch64Subtarget *Subtarget) {
assert((N->getOpcode() == AArch64ISD::UUNPKHI ||
N->getOpcode() == AArch64ISD::UUNPKLO) &&
"Unexpected Opcode!");
// uunpklo/hi undef -> undef
if (N->getOperand(0).isUndef())
return DAG.getUNDEF(N->getValueType(0));
// If this is a masked load followed by an UUNPKLO, fold this into a masked
// extending load. We can do this even if this is already a masked
// {z,}extload.
if (N->getOperand(0).getOpcode() == ISD::MLOAD &&
N->getOpcode() == AArch64ISD::UUNPKLO) {
MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N->getOperand(0));
SDValue Mask = MLD->getMask();
SDLoc DL(N);
if (MLD->isUnindexed() && MLD->getExtensionType() != ISD::SEXTLOAD &&
SDValue(MLD, 0).hasOneUse() && Mask->getOpcode() == AArch64ISD::PTRUE &&
(MLD->getPassThru()->isUndef() ||
isZerosVector(MLD->getPassThru().getNode()))) {
unsigned MinSVESize = Subtarget->getMinSVEVectorSizeInBits();
unsigned PgPattern = Mask->getConstantOperandVal(0);
EVT VT = N->getValueType(0);
// Ensure we can double the size of the predicate pattern
unsigned NumElts = getNumElementsFromSVEPredPattern(PgPattern);
if (NumElts &&
NumElts * VT.getVectorElementType().getSizeInBits() <= MinSVESize) {
Mask =
getPTrue(DAG, DL, VT.changeVectorElementType(MVT::i1), PgPattern);
SDValue PassThru = DAG.getConstant(0, DL, VT);
SDValue NewLoad = DAG.getMaskedLoad(
VT, DL, MLD->getChain(), MLD->getBasePtr(), MLD->getOffset(), Mask,
PassThru, MLD->getMemoryVT(), MLD->getMemOperand(),
MLD->getAddressingMode(), ISD::ZEXTLOAD);
DAG.ReplaceAllUsesOfValueWith(SDValue(MLD, 1), NewLoad.getValue(1));
return NewLoad;
}
}
}
return SDValue();
}
static bool isHalvingTruncateAndConcatOfLegalIntScalableType(SDNode *N) {
if (N->getOpcode() != AArch64ISD::UZP1)
return false;
SDValue Op0 = N->getOperand(0);
EVT SrcVT = Op0->getValueType(0);
EVT DstVT = N->getValueType(0);
return (SrcVT == MVT::nxv8i16 && DstVT == MVT::nxv16i8) ||
(SrcVT == MVT::nxv4i32 && DstVT == MVT::nxv8i16) ||
(SrcVT == MVT::nxv2i64 && DstVT == MVT::nxv4i32);
}
// Try to combine rounding shifts where the operands come from an extend, and
// the result is truncated and combined into one vector.
// uzp1(rshrnb(uunpklo(X),C), rshrnb(uunpkhi(X), C)) -> urshr(X, C)
static SDValue tryCombineExtendRShTrunc(SDNode *N, SelectionDAG &DAG) {
assert(N->getOpcode() == AArch64ISD::UZP1 && "Only UZP1 expected.");
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
EVT ResVT = N->getValueType(0);
unsigned RshOpc = Op0.getOpcode();
if (RshOpc != AArch64ISD::RSHRNB_I)
return SDValue();
// Same op code and imm value?
SDValue ShiftValue = Op0.getOperand(1);
if (RshOpc != Op1.getOpcode() || ShiftValue != Op1.getOperand(1))
return SDValue();
// Same unextended operand value?
SDValue Lo = Op0.getOperand(0);
SDValue Hi = Op1.getOperand(0);
if (Lo.getOpcode() != AArch64ISD::UUNPKLO &&
Hi.getOpcode() != AArch64ISD::UUNPKHI)
return SDValue();
SDValue OrigArg = Lo.getOperand(0);
if (OrigArg != Hi.getOperand(0))
return SDValue();
SDLoc DL(N);
return DAG.getNode(AArch64ISD::URSHR_I_PRED, DL, ResVT,
getPredicateForVector(DAG, DL, ResVT), OrigArg,
ShiftValue);
}
// Try to simplify:
// t1 = nxv8i16 add(X, 1 << (ShiftValue - 1))
// t2 = nxv8i16 srl(t1, ShiftValue)
// to
// t1 = nxv8i16 rshrnb(X, shiftvalue).
// rshrnb will zero the top half bits of each element. Therefore, this combine
// should only be performed when a following instruction with the rshrnb
// as an operand does not care about the top half of each element. For example,
// a uzp1 or a truncating store.
static SDValue trySimplifySrlAddToRshrnb(SDValue Srl, SelectionDAG &DAG,
const AArch64Subtarget *Subtarget) {
EVT VT = Srl->getValueType(0);
if (!VT.isScalableVector() || !Subtarget->hasSVE2())
return SDValue();
EVT ResVT;
if (VT == MVT::nxv8i16)
ResVT = MVT::nxv16i8;
else if (VT == MVT::nxv4i32)
ResVT = MVT::nxv8i16;
else if (VT == MVT::nxv2i64)
ResVT = MVT::nxv4i32;
else
return SDValue();
SDLoc DL(Srl);
unsigned ShiftValue;
SDValue RShOperand;
if (!canLowerSRLToRoundingShiftForVT(Srl, ResVT, DAG, ShiftValue, RShOperand))
return SDValue();
SDValue Rshrnb = DAG.getNode(
AArch64ISD::RSHRNB_I, DL, ResVT,
{RShOperand, DAG.getTargetConstant(ShiftValue, DL, MVT::i32)});
return DAG.getNode(AArch64ISD::NVCAST, DL, VT, Rshrnb);
}
static SDValue isNVCastToHalfWidthElements(SDValue V) {
if (V.getOpcode() != AArch64ISD::NVCAST)
return SDValue();
SDValue Op = V.getOperand(0);
if (V.getValueType().getVectorElementCount() !=
Op.getValueType().getVectorElementCount() * 2)
return SDValue();
return Op;
}
static SDValue performUzpCombine(SDNode *N, SelectionDAG &DAG,
const AArch64Subtarget *Subtarget) {
SDLoc DL(N);
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
EVT ResVT = N->getValueType(0);
// uzp(extract_lo(x), extract_hi(x)) -> extract_lo(uzp x, x)
if (Op0.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
Op1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
Op0.getOperand(0) == Op1.getOperand(0)) {
SDValue SourceVec = Op0.getOperand(0);
uint64_t ExtIdx0 = Op0.getConstantOperandVal(1);
uint64_t ExtIdx1 = Op1.getConstantOperandVal(1);
uint64_t NumElements = SourceVec.getValueType().getVectorMinNumElements();
if (ExtIdx0 == 0 && ExtIdx1 == NumElements / 2) {
EVT OpVT = Op0.getOperand(1).getValueType();
EVT WidenedResVT = ResVT.getDoubleNumVectorElementsVT(*DAG.getContext());
SDValue Uzp = DAG.getNode(N->getOpcode(), DL, WidenedResVT, SourceVec,
DAG.getUNDEF(WidenedResVT));
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResVT, Uzp,
DAG.getConstant(0, DL, OpVT));
}
}
// Following optimizations only work with uzp1.
if (N->getOpcode() == AArch64ISD::UZP2)
return SDValue();
// uzp1(x, undef) -> concat(truncate(x), undef)
if (Op1.getOpcode() == ISD::UNDEF) {
EVT BCVT = MVT::Other, HalfVT = MVT::Other;
switch (ResVT.getSimpleVT().SimpleTy) {
default:
break;
case MVT::v16i8:
BCVT = MVT::v8i16;
HalfVT = MVT::v8i8;
break;
case MVT::v8i16:
BCVT = MVT::v4i32;
HalfVT = MVT::v4i16;
break;
case MVT::v4i32:
BCVT = MVT::v2i64;
HalfVT = MVT::v2i32;
break;
}
if (BCVT != MVT::Other) {
SDValue BC = DAG.getBitcast(BCVT, Op0);
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, HalfVT, BC);
return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Trunc,
DAG.getUNDEF(HalfVT));
}
}
if (SDValue Urshr = tryCombineExtendRShTrunc(N, DAG))
return Urshr;
if (SDValue PreCast = isNVCastToHalfWidthElements(Op0)) {
if (SDValue Rshrnb = trySimplifySrlAddToRshrnb(PreCast, DAG, Subtarget)) {
Rshrnb = DAG.getNode(AArch64ISD::NVCAST, DL, ResVT, Rshrnb);
return DAG.getNode(AArch64ISD::UZP1, DL, ResVT, Rshrnb, Op1);
}
}
if (SDValue PreCast = isNVCastToHalfWidthElements(Op1)) {
if (SDValue Rshrnb = trySimplifySrlAddToRshrnb(PreCast, DAG, Subtarget)) {
Rshrnb = DAG.getNode(AArch64ISD::NVCAST, DL, ResVT, Rshrnb);
return DAG.getNode(AArch64ISD::UZP1, DL, ResVT, Op0, Rshrnb);
}
}
// uzp1<ty>(nvcast(unpklo(uzp1<ty>(x, y))), z) => uzp1<ty>(x, z)
if (SDValue PreCast = isNVCastToHalfWidthElements(Op0)) {
if (PreCast.getOpcode() == AArch64ISD::UUNPKLO) {
if (PreCast.getOperand(0).getOpcode() == AArch64ISD::UZP1) {
SDValue X = PreCast.getOperand(0).getOperand(0);
return DAG.getNode(AArch64ISD::UZP1, DL, ResVT, X, Op1);
}
}
}
// uzp1<ty>(x, nvcast(unpkhi(uzp1<ty>(y, z)))) => uzp1<ty>(x, z)
if (SDValue PreCast = isNVCastToHalfWidthElements(Op1)) {
if (PreCast.getOpcode() == AArch64ISD::UUNPKHI) {
if (PreCast.getOperand(0).getOpcode() == AArch64ISD::UZP1) {
SDValue Z = PreCast.getOperand(0).getOperand(1);
return DAG.getNode(AArch64ISD::UZP1, DL, ResVT, Op0, Z);
}
}
}
// These optimizations only work on little endian.
if (!DAG.getDataLayout().isLittleEndian())
return SDValue();
// uzp1(bitcast(x), bitcast(y)) -> uzp1(x, y)
// Example:
// nxv4i32 = uzp1 bitcast(nxv4i32 x to nxv2i64), bitcast(nxv4i32 y to nxv2i64)
// to
// nxv4i32 = uzp1 nxv4i32 x, nxv4i32 y
if (isHalvingTruncateAndConcatOfLegalIntScalableType(N) &&
Op0.getOpcode() == ISD::BITCAST && Op1.getOpcode() == ISD::BITCAST) {
if (Op0.getOperand(0).getValueType() == Op1.getOperand(0).getValueType()) {
return DAG.getNode(AArch64ISD::UZP1, DL, ResVT, Op0.getOperand(0),
Op1.getOperand(0));
}
}
if (ResVT != MVT::v2i32 && ResVT != MVT::v4i16 && ResVT != MVT::v8i8)
return SDValue();
SDValue SourceOp0 = peekThroughBitcasts(Op0);
SDValue SourceOp1 = peekThroughBitcasts(Op1);
// truncating uzp1(x, y) -> xtn(concat (x, y))
if (SourceOp0.getValueType() == SourceOp1.getValueType()) {
EVT Op0Ty = SourceOp0.getValueType();
if ((ResVT == MVT::v4i16 && Op0Ty == MVT::v2i32) ||
(ResVT == MVT::v8i8 && Op0Ty == MVT::v4i16)) {
SDValue Concat =
DAG.getNode(ISD::CONCAT_VECTORS, DL,
Op0Ty.getDoubleNumVectorElementsVT(*DAG.getContext()),
SourceOp0, SourceOp1);
return DAG.getNode(ISD::TRUNCATE, DL, ResVT, Concat);
}
}
// uzp1(xtn x, xtn y) -> xtn(uzp1 (x, y))
if (SourceOp0.getOpcode() != ISD::TRUNCATE ||
SourceOp1.getOpcode() != ISD::TRUNCATE)
return SDValue();
SourceOp0 = SourceOp0.getOperand(0);
SourceOp1 = SourceOp1.getOperand(0);
if (SourceOp0.getValueType() != SourceOp1.getValueType() ||
!SourceOp0.getValueType().isSimple())
return SDValue();
EVT ResultTy;
switch (SourceOp0.getSimpleValueType().SimpleTy) {
case MVT::v2i64:
ResultTy = MVT::v4i32;
break;
case MVT::v4i32:
ResultTy = MVT::v8i16;
break;
case MVT::v8i16:
ResultTy = MVT::v16i8;
break;
default:
return SDValue();
}
SDValue UzpOp0 = DAG.getNode(ISD::BITCAST, DL, ResultTy, SourceOp0);
SDValue UzpOp1 = DAG.getNode(ISD::BITCAST, DL, ResultTy, SourceOp1);
SDValue UzpResult =
DAG.getNode(AArch64ISD::UZP1, DL, UzpOp0.getValueType(), UzpOp0, UzpOp1);
EVT BitcastResultTy;
switch (ResVT.getSimpleVT().SimpleTy) {
case MVT::v2i32:
BitcastResultTy = MVT::v2i64;
break;
case MVT::v4i16:
BitcastResultTy = MVT::v4i32;
break;
case MVT::v8i8:
BitcastResultTy = MVT::v8i16;
break;
default:
llvm_unreachable("Should be one of {v2i32, v4i16, v8i8}");
}
return DAG.getNode(ISD::TRUNCATE, DL, ResVT,
DAG.getNode(ISD::BITCAST, DL, BitcastResultTy, UzpResult));
}
static SDValue performGLD1Combine(SDNode *N, SelectionDAG &DAG) {
unsigned Opc = N->getOpcode();
assert(((Opc >= AArch64ISD::GLD1_MERGE_ZERO && // unsigned gather loads
Opc <= AArch64ISD::GLD1_IMM_MERGE_ZERO) ||
(Opc >= AArch64ISD::GLD1S_MERGE_ZERO && // signed gather loads
Opc <= AArch64ISD::GLD1S_IMM_MERGE_ZERO)) &&
"Invalid opcode.");
const bool Scaled = Opc == AArch64ISD::GLD1_SCALED_MERGE_ZERO ||
Opc == AArch64ISD::GLD1S_SCALED_MERGE_ZERO;
const bool Signed = Opc == AArch64ISD::GLD1S_MERGE_ZERO ||
Opc == AArch64ISD::GLD1S_SCALED_MERGE_ZERO;
const bool Extended = Opc == AArch64ISD::GLD1_SXTW_MERGE_ZERO ||
Opc == AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO ||
Opc == AArch64ISD::GLD1_UXTW_MERGE_ZERO ||
Opc == AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO;
SDLoc DL(N);
SDValue Chain = N->getOperand(0);
SDValue Pg = N->getOperand(1);
SDValue Base = N->getOperand(2);
SDValue Offset = N->getOperand(3);
SDValue Ty = N->getOperand(4);
EVT ResVT = N->getValueType(0);
const auto OffsetOpc = Offset.getOpcode();
const bool OffsetIsZExt =
OffsetOpc == AArch64ISD::ZERO_EXTEND_INREG_MERGE_PASSTHRU;
const bool OffsetIsSExt =
OffsetOpc == AArch64ISD::SIGN_EXTEND_INREG_MERGE_PASSTHRU;
// Fold sign/zero extensions of vector offsets into GLD1 nodes where possible.
if (!Extended && (OffsetIsSExt || OffsetIsZExt)) {
SDValue ExtPg = Offset.getOperand(0);
VTSDNode *ExtFrom = cast<VTSDNode>(Offset.getOperand(2).getNode());
EVT ExtFromEVT = ExtFrom->getVT().getVectorElementType();
// If the predicate for the sign- or zero-extended offset is the
// same as the predicate used for this load and the sign-/zero-extension
// was from a 32-bits...
if (ExtPg == Pg && ExtFromEVT == MVT::i32) {
SDValue UnextendedOffset = Offset.getOperand(1);
unsigned NewOpc = getGatherVecOpcode(Scaled, OffsetIsSExt, true);
if (Signed)
NewOpc = getSignExtendedGatherOpcode(NewOpc);
return DAG.getNode(NewOpc, DL, {ResVT, MVT::Other},
{Chain, Pg, Base, UnextendedOffset, Ty});
}
}
return SDValue();
}
/// Optimize a vector shift instruction and its operand if shifted out
/// bits are not used.
static SDValue performVectorShiftCombine(SDNode *N,
const AArch64TargetLowering &TLI,
TargetLowering::DAGCombinerInfo &DCI) {
assert(N->getOpcode() == AArch64ISD::VASHR ||
N->getOpcode() == AArch64ISD::VLSHR);
SDValue Op = N->getOperand(0);
unsigned OpScalarSize = Op.getScalarValueSizeInBits();
unsigned ShiftImm = N->getConstantOperandVal(1);
assert(OpScalarSize > ShiftImm && "Invalid shift imm");
// Remove sign_extend_inreg (ashr(shl(x)) based on the number of sign bits.
if (N->getOpcode() == AArch64ISD::VASHR &&
Op.getOpcode() == AArch64ISD::VSHL &&
N->getOperand(1) == Op.getOperand(1))
if (DCI.DAG.ComputeNumSignBits(Op.getOperand(0)) > ShiftImm)
return Op.getOperand(0);
// If the shift is exact, the shifted out bits matter.
if (N->getFlags().hasExact())
return SDValue();
APInt ShiftedOutBits = APInt::getLowBitsSet(OpScalarSize, ShiftImm);
APInt DemandedMask = ~ShiftedOutBits;
if (TLI.SimplifyDemandedBits(Op, DemandedMask, DCI))
return SDValue(N, 0);
return SDValue();
}
static SDValue performSunpkloCombine(SDNode *N, SelectionDAG &DAG) {
// sunpklo(sext(pred)) -> sext(extract_low_half(pred))
// This transform works in partnership with performSetCCPunpkCombine to
// remove unnecessary transfer of predicates into standard registers and back
if (N->getOperand(0).getOpcode() == ISD::SIGN_EXTEND &&
N->getOperand(0)->getOperand(0)->getValueType(0).getScalarType() ==
MVT::i1) {
SDValue CC = N->getOperand(0)->getOperand(0);
auto VT = CC->getValueType(0).getHalfNumVectorElementsVT(*DAG.getContext());
SDValue Unpk = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), VT, CC,
DAG.getVectorIdxConstant(0, SDLoc(N)));
return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), N->getValueType(0), Unpk);
}
return SDValue();
}
/// Target-specific DAG combine function for post-increment LD1 (lane) and
/// post-increment LD1R.
static SDValue performPostLD1Combine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
bool IsLaneOp) {
if (DCI.isBeforeLegalizeOps())
return SDValue();
SelectionDAG &DAG = DCI.DAG;
EVT VT = N->getValueType(0);
if (!VT.is128BitVector() && !VT.is64BitVector())
return SDValue();
unsigned LoadIdx = IsLaneOp ? 1 : 0;
SDNode *LD = N->getOperand(LoadIdx).getNode();
// If it is not LOAD, can not do such combine.
if (LD->getOpcode() != ISD::LOAD)
return SDValue();
// The vector lane must be a constant in the LD1LANE opcode.
SDValue Lane;
if (IsLaneOp) {
Lane = N->getOperand(2);
auto *LaneC = dyn_cast<ConstantSDNode>(Lane);
if (!LaneC || LaneC->getZExtValue() >= VT.getVectorNumElements())
return SDValue();
}
LoadSDNode *LoadSDN = cast<LoadSDNode>(LD);
EVT MemVT = LoadSDN->getMemoryVT();
// Check if memory operand is the same type as the vector element.
if (MemVT != VT.getVectorElementType())
return SDValue();
// Check if there are other uses. If so, do not combine as it will introduce
// an extra load.
for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE;
++UI) {
if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result.
continue;
if (*UI != N)
return SDValue();
}
// If there is one use and it can splat the value, prefer that operation.
// TODO: This could be expanded to more operations if they reliably use the
// index variants.
if (N->hasOneUse()) {
unsigned UseOpc = N->use_begin()->getOpcode();
if (UseOpc == ISD::FMUL || UseOpc == ISD::FMA)
return SDValue();
}
SDValue Addr = LD->getOperand(1);
SDValue Vector = N->getOperand(0);
// Search for a use of the address operand that is an increment.
for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE =
Addr.getNode()->use_end(); UI != UE; ++UI) {
SDNode *User = *UI;
if (User->getOpcode() != ISD::ADD
|| UI.getUse().getResNo() != Addr.getResNo())
continue;
// If the increment is a constant, it must match the memory ref size.
SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
uint32_t IncVal = CInc->getZExtValue();
unsigned NumBytes = VT.getScalarSizeInBits() / 8;
if (IncVal != NumBytes)
continue;
Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
}
// To avoid cycle construction make sure that neither the load nor the add
// are predecessors to each other or the Vector.
SmallPtrSet<const SDNode *, 32> Visited;
SmallVector<const SDNode *, 16> Worklist;
Visited.insert(Addr.getNode());
Worklist.push_back(User);
Worklist.push_back(LD);
Worklist.push_back(Vector.getNode());
if (SDNode::hasPredecessorHelper(LD, Visited, Worklist) ||
SDNode::hasPredecessorHelper(User, Visited, Worklist))
continue;
SmallVector<SDValue, 8> Ops;
Ops.push_back(LD->getOperand(0)); // Chain
if (IsLaneOp) {
Ops.push_back(Vector); // The vector to be inserted
Ops.push_back(Lane); // The lane to be inserted in the vector
}
Ops.push_back(Addr);
Ops.push_back(Inc);
EVT Tys[3] = { VT, MVT::i64, MVT::Other };
SDVTList SDTys = DAG.getVTList(Tys);
unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost;
SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops,
MemVT,
LoadSDN->getMemOperand());
// Update the uses.
SDValue NewResults[] = {
SDValue(LD, 0), // The result of load
SDValue(UpdN.getNode(), 2) // Chain
};
DCI.CombineTo(LD, NewResults);
DCI.CombineTo(N, SDValue(UpdN.getNode(), 0)); // Dup/Inserted Result
DCI.CombineTo(User, SDValue(UpdN.getNode(), 1)); // Write back register
break;
}
return SDValue();
}
/// Simplify ``Addr`` given that the top byte of it is ignored by HW during
/// address translation.
static bool performTBISimplification(SDValue Addr,
TargetLowering::DAGCombinerInfo &DCI,
SelectionDAG &DAG) {
APInt DemandedMask = APInt::getLowBitsSet(64, 56);
KnownBits Known;
TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
!DCI.isBeforeLegalizeOps());
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (TLI.SimplifyDemandedBits(Addr, DemandedMask, Known, TLO)) {
DCI.CommitTargetLoweringOpt(TLO);
return true;
}
return false;
}
static SDValue foldTruncStoreOfExt(SelectionDAG &DAG, SDNode *N) {
assert((N->getOpcode() == ISD::STORE || N->getOpcode() == ISD::MSTORE) &&
"Expected STORE dag node in input!");
if (auto Store = dyn_cast<StoreSDNode>(N)) {
if (!Store->isTruncatingStore() || Store->isIndexed())
return SDValue();
SDValue Ext = Store->getValue();
auto ExtOpCode = Ext.getOpcode();
if (ExtOpCode != ISD::ZERO_EXTEND && ExtOpCode != ISD::SIGN_EXTEND &&
ExtOpCode != ISD::ANY_EXTEND)
return SDValue();
SDValue Orig = Ext->getOperand(0);
if (Store->getMemoryVT() != Orig.getValueType())
return SDValue();
return DAG.getStore(Store->getChain(), SDLoc(Store), Orig,
Store->getBasePtr(), Store->getMemOperand());
}
return SDValue();
}
// A custom combine to lower load <3 x i8> as the more efficient sequence
// below:
// ldrb wX, [x0, #2]
// ldrh wY, [x0]
// orr wX, wY, wX, lsl #16
// fmov s0, wX
//
// Note that an alternative sequence with even fewer (although usually more
// complex/expensive) instructions would be:
// ld1r.4h { v0 }, [x0], #2
// ld1.b { v0 }[2], [x0]
//
// Generating this sequence unfortunately results in noticeably worse codegen
// for code that extends the loaded v3i8, due to legalization breaking vector
// shuffle detection in a way that is very difficult to work around.
// TODO: Revisit once v3i8 legalization has been improved in general.
static SDValue combineV3I8LoadExt(LoadSDNode *LD, SelectionDAG &DAG) {
EVT MemVT = LD->getMemoryVT();
if (MemVT != EVT::getVectorVT(*DAG.getContext(), MVT::i8, 3) ||
LD->getOriginalAlign() >= 4)
return SDValue();
SDLoc DL(LD);
MachineFunction &MF = DAG.getMachineFunction();
SDValue Chain = LD->getChain();
SDValue BasePtr = LD->getBasePtr();
MachineMemOperand *MMO = LD->getMemOperand();
assert(LD->getOffset().isUndef() && "undef offset expected");
// Load 2 x i8, then 1 x i8.
SDValue L16 = DAG.getLoad(MVT::i16, DL, Chain, BasePtr, MMO);
TypeSize Offset2 = TypeSize::getFixed(2);
SDValue L8 = DAG.getLoad(MVT::i8, DL, Chain,
DAG.getMemBasePlusOffset(BasePtr, Offset2, DL),
MF.getMachineMemOperand(MMO, 2, 1));
// Extend to i32.
SDValue Ext16 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, L16);
SDValue Ext8 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, L8);
// Pack 2 x i8 and 1 x i8 in an i32 and convert to v4i8.
SDValue Shl = DAG.getNode(ISD::SHL, DL, MVT::i32, Ext8,
DAG.getConstant(16, DL, MVT::i32));
SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, Ext16, Shl);
SDValue Cast = DAG.getNode(ISD::BITCAST, DL, MVT::v4i8, Or);
// Extract v3i8 again.
SDValue Extract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MemVT, Cast,
DAG.getConstant(0, DL, MVT::i64));
SDValue TokenFactor = DAG.getNode(
ISD::TokenFactor, DL, MVT::Other,
{SDValue(cast<SDNode>(L16), 1), SDValue(cast<SDNode>(L8), 1)});
return DAG.getMergeValues({Extract, TokenFactor}, DL);
}
// Perform TBI simplification if supported by the target and try to break up
// nontemporal loads larger than 256-bits loads for odd types so LDNPQ 256-bit
// load instructions can be selected.
static SDValue performLOADCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
SelectionDAG &DAG,
const AArch64Subtarget *Subtarget) {
if (Subtarget->supportsAddressTopByteIgnored())
performTBISimplification(N->getOperand(1), DCI, DAG);
LoadSDNode *LD = cast<LoadSDNode>(N);
if (LD->isVolatile() || !Subtarget->isLittleEndian())
return SDValue(N, 0);
if (SDValue Res = combineV3I8LoadExt(LD, DAG))
return Res;
if (!LD->isNonTemporal())
return SDValue(N, 0);
EVT MemVT = LD->getMemoryVT();
if (MemVT.isScalableVector() || MemVT.getSizeInBits() <= 256 ||
MemVT.getSizeInBits() % 256 == 0 ||
256 % MemVT.getScalarSizeInBits() != 0)
return SDValue(N, 0);
SDLoc DL(LD);
SDValue Chain = LD->getChain();
SDValue BasePtr = LD->getBasePtr();
SDNodeFlags Flags = LD->getFlags();
SmallVector<SDValue, 4> LoadOps;
SmallVector<SDValue, 4> LoadOpsChain;
// Replace any non temporal load over 256-bit with a series of 256 bit loads
// and a scalar/vector load less than 256. This way we can utilize 256-bit
// loads and reduce the amount of load instructions generated.
MVT NewVT =
MVT::getVectorVT(MemVT.getVectorElementType().getSimpleVT(),
256 / MemVT.getVectorElementType().getSizeInBits());
unsigned Num256Loads = MemVT.getSizeInBits() / 256;
// Create all 256-bit loads starting from offset 0 and up to Num256Loads-1*32.
for (unsigned I = 0; I < Num256Loads; I++) {
unsigned PtrOffset = I * 32;
SDValue NewPtr = DAG.getMemBasePlusOffset(
BasePtr, TypeSize::getFixed(PtrOffset), DL, Flags);
Align NewAlign = commonAlignment(LD->getAlign(), PtrOffset);
SDValue NewLoad = DAG.getLoad(
NewVT, DL, Chain, NewPtr, LD->getPointerInfo().getWithOffset(PtrOffset),
NewAlign, LD->getMemOperand()->getFlags(), LD->getAAInfo());
LoadOps.push_back(NewLoad);
LoadOpsChain.push_back(SDValue(cast<SDNode>(NewLoad), 1));
}
// Process remaining bits of the load operation.
// This is done by creating an UNDEF vector to match the size of the
// 256-bit loads and inserting the remaining load to it. We extract the
// original load type at the end using EXTRACT_SUBVECTOR instruction.
unsigned BitsRemaining = MemVT.getSizeInBits() % 256;
unsigned PtrOffset = (MemVT.getSizeInBits() - BitsRemaining) / 8;
MVT RemainingVT = MVT::getVectorVT(
MemVT.getVectorElementType().getSimpleVT(),
BitsRemaining / MemVT.getVectorElementType().getSizeInBits());
SDValue NewPtr = DAG.getMemBasePlusOffset(
BasePtr, TypeSize::getFixed(PtrOffset), DL, Flags);
Align NewAlign = commonAlignment(LD->getAlign(), PtrOffset);
SDValue RemainingLoad =
DAG.getLoad(RemainingVT, DL, Chain, NewPtr,
LD->getPointerInfo().getWithOffset(PtrOffset), NewAlign,
LD->getMemOperand()->getFlags(), LD->getAAInfo());
SDValue UndefVector = DAG.getUNDEF(NewVT);
SDValue InsertIdx = DAG.getVectorIdxConstant(0, DL);
SDValue ExtendedReminingLoad =
DAG.getNode(ISD::INSERT_SUBVECTOR, DL, NewVT,
{UndefVector, RemainingLoad, InsertIdx});
LoadOps.push_back(ExtendedReminingLoad);
LoadOpsChain.push_back(SDValue(cast<SDNode>(RemainingLoad), 1));
EVT ConcatVT =
EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
LoadOps.size() * NewVT.getVectorNumElements());
SDValue ConcatVectors =
DAG.getNode(ISD::CONCAT_VECTORS, DL, ConcatVT, LoadOps);
// Extract the original vector type size.
SDValue ExtractSubVector =
DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MemVT,
{ConcatVectors, DAG.getVectorIdxConstant(0, DL)});
SDValue TokenFactor =
DAG.getNode(ISD::TokenFactor, DL, MVT::Other, LoadOpsChain);
return DAG.getMergeValues({ExtractSubVector, TokenFactor}, DL);
}
static EVT tryGetOriginalBoolVectorType(SDValue Op, int Depth = 0) {
EVT VecVT = Op.getValueType();
assert(VecVT.isVector() && VecVT.getVectorElementType() == MVT::i1 &&
"Need boolean vector type.");
if (Depth > 3)
return MVT::INVALID_SIMPLE_VALUE_TYPE;
// We can get the base type from a vector compare or truncate.
if (Op.getOpcode() == ISD::SETCC || Op.getOpcode() == ISD::TRUNCATE)
return Op.getOperand(0).getValueType();
// If an operand is a bool vector, continue looking.
EVT BaseVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
for (SDValue Operand : Op->op_values()) {
if (Operand.getValueType() != VecVT)
continue;
EVT OperandVT = tryGetOriginalBoolVectorType(Operand, Depth + 1);
if (!BaseVT.isSimple())
BaseVT = OperandVT;
else if (OperandVT != BaseVT)
return MVT::INVALID_SIMPLE_VALUE_TYPE;
}
return BaseVT;
}
// When converting a <N x iX> vector to <N x i1> to store or use as a scalar
// iN, we can use a trick that extracts the i^th bit from the i^th element and
// then performs a vector add to get a scalar bitmask. This requires that each
// element's bits are either all 1 or all 0.
static SDValue vectorToScalarBitmask(SDNode *N, SelectionDAG &DAG) {
SDLoc DL(N);
SDValue ComparisonResult(N, 0);
EVT VecVT = ComparisonResult.getValueType();
assert(VecVT.isVector() && "Must be a vector type");
unsigned NumElts = VecVT.getVectorNumElements();
if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
return SDValue();
if (VecVT.getVectorElementType() != MVT::i1 &&
!DAG.getTargetLoweringInfo().isTypeLegal(VecVT))
return SDValue();
// If we can find the original types to work on instead of a vector of i1,
// we can avoid extend/extract conversion instructions.
if (VecVT.getVectorElementType() == MVT::i1) {
VecVT = tryGetOriginalBoolVectorType(ComparisonResult);
if (!VecVT.isSimple()) {
unsigned BitsPerElement = std::max(64 / NumElts, 8u); // >= 64-bit vector
VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), NumElts);
}
}
VecVT = VecVT.changeVectorElementTypeToInteger();
// Large vectors don't map directly to this conversion, so to avoid too many
// edge cases, we don't apply it here. The conversion will likely still be
// applied later via multiple smaller vectors, whose results are concatenated.
if (VecVT.getSizeInBits() > 128)
return SDValue();
// Ensure that all elements' bits are either 0s or 1s.
ComparisonResult = DAG.getSExtOrTrunc(ComparisonResult, DL, VecVT);
SmallVector<SDValue, 16> MaskConstants;
if (DAG.getSubtarget<AArch64Subtarget>().isNeonAvailable() &&
VecVT == MVT::v16i8) {
// v16i8 is a special case, as we have 16 entries but only 8 positional bits
// per entry. We split it into two halves, apply the mask, zip the halves to
// create 8x 16-bit values, and the perform the vector reduce.
for (unsigned Half = 0; Half < 2; ++Half) {
for (unsigned MaskBit = 1; MaskBit <= 128; MaskBit *= 2) {
MaskConstants.push_back(DAG.getConstant(MaskBit, DL, MVT::i32));
}
}
SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, VecVT, MaskConstants);
SDValue RepresentativeBits =
DAG.getNode(ISD::AND, DL, VecVT, ComparisonResult, Mask);
SDValue UpperRepresentativeBits =
DAG.getNode(AArch64ISD::EXT, DL, VecVT, RepresentativeBits,
RepresentativeBits, DAG.getConstant(8, DL, MVT::i32));
SDValue Zipped = DAG.getNode(AArch64ISD::ZIP1, DL, VecVT,
RepresentativeBits, UpperRepresentativeBits);
Zipped = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, Zipped);
return DAG.getNode(ISD::VECREDUCE_ADD, DL, MVT::i16, Zipped);
}
// All other vector sizes.
unsigned MaxBitMask = 1u << (VecVT.getVectorNumElements() - 1);
for (unsigned MaskBit = 1; MaskBit <= MaxBitMask; MaskBit *= 2) {
MaskConstants.push_back(DAG.getConstant(MaskBit, DL, MVT::i64));
}
SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, VecVT, MaskConstants);
SDValue RepresentativeBits =
DAG.getNode(ISD::AND, DL, VecVT, ComparisonResult, Mask);
EVT ResultVT = MVT::getIntegerVT(std::max<unsigned>(
NumElts, VecVT.getVectorElementType().getSizeInBits()));
return DAG.getNode(ISD::VECREDUCE_ADD, DL, ResultVT, RepresentativeBits);
}
static SDValue combineBoolVectorAndTruncateStore(SelectionDAG &DAG,
StoreSDNode *Store) {
if (!Store->isTruncatingStore())
return SDValue();
SDLoc DL(Store);
SDValue VecOp = Store->getValue();
EVT VT = VecOp.getValueType();
EVT MemVT = Store->getMemoryVT();
if (!MemVT.isVector() || !VT.isVector() ||
MemVT.getVectorElementType() != MVT::i1)
return SDValue();
// If we are storing a vector that we are currently building, let
// `scalarizeVectorStore()` handle this more efficiently.
if (VecOp.getOpcode() == ISD::BUILD_VECTOR)
return SDValue();
VecOp = DAG.getNode(ISD::TRUNCATE, DL, MemVT, VecOp);
SDValue VectorBits = vectorToScalarBitmask(VecOp.getNode(), DAG);
if (!VectorBits)
return SDValue();
EVT StoreVT =
EVT::getIntegerVT(*DAG.getContext(), MemVT.getStoreSizeInBits());
SDValue ExtendedBits = DAG.getZExtOrTrunc(VectorBits, DL, StoreVT);
return DAG.getStore(Store->getChain(), DL, ExtendedBits, Store->getBasePtr(),
Store->getMemOperand());
}
bool isHalvingTruncateOfLegalScalableType(EVT SrcVT, EVT DstVT) {
return (SrcVT == MVT::nxv8i16 && DstVT == MVT::nxv8i8) ||
(SrcVT == MVT::nxv4i32 && DstVT == MVT::nxv4i16) ||
(SrcVT == MVT::nxv2i64 && DstVT == MVT::nxv2i32);
}
// Combine store (trunc X to <3 x i8>) to sequence of ST1.b.
static SDValue combineI8TruncStore(StoreSDNode *ST, SelectionDAG &DAG,
const AArch64Subtarget *Subtarget) {
SDValue Value = ST->getValue();
EVT ValueVT = Value.getValueType();
if (ST->isVolatile() || !Subtarget->isLittleEndian() ||
Value.getOpcode() != ISD::TRUNCATE ||
ValueVT != EVT::getVectorVT(*DAG.getContext(), MVT::i8, 3))
return SDValue();
assert(ST->getOffset().isUndef() && "undef offset expected");
SDLoc DL(ST);
auto WideVT = EVT::getVectorVT(
*DAG.getContext(),
Value->getOperand(0).getValueType().getVectorElementType(), 4);
SDValue UndefVector = DAG.getUNDEF(WideVT);
SDValue WideTrunc = DAG.getNode(
ISD::INSERT_SUBVECTOR, DL, WideVT,
{UndefVector, Value->getOperand(0), DAG.getVectorIdxConstant(0, DL)});
SDValue Cast = DAG.getNode(
ISD::BITCAST, DL, WideVT.getSizeInBits() == 64 ? MVT::v8i8 : MVT::v16i8,
WideTrunc);
MachineFunction &MF = DAG.getMachineFunction();
SDValue Chain = ST->getChain();
MachineMemOperand *MMO = ST->getMemOperand();
unsigned IdxScale = WideVT.getScalarSizeInBits() / 8;
SDValue E2 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i8, Cast,
DAG.getConstant(2 * IdxScale, DL, MVT::i64));
TypeSize Offset2 = TypeSize::getFixed(2);
SDValue Ptr2 = DAG.getMemBasePlusOffset(ST->getBasePtr(), Offset2, DL);
Chain = DAG.getStore(Chain, DL, E2, Ptr2, MF.getMachineMemOperand(MMO, 2, 1));
SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i8, Cast,
DAG.getConstant(1 * IdxScale, DL, MVT::i64));
TypeSize Offset1 = TypeSize::getFixed(1);
SDValue Ptr1 = DAG.getMemBasePlusOffset(ST->getBasePtr(), Offset1, DL);
Chain = DAG.getStore(Chain, DL, E1, Ptr1, MF.getMachineMemOperand(MMO, 1, 1));
SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i8, Cast,
DAG.getConstant(0, DL, MVT::i64));
Chain = DAG.getStore(Chain, DL, E0, ST->getBasePtr(),
MF.getMachineMemOperand(MMO, 0, 1));
return Chain;
}
static SDValue performSTORECombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
SelectionDAG &DAG,
const AArch64Subtarget *Subtarget) {
StoreSDNode *ST = cast<StoreSDNode>(N);
SDValue Chain = ST->getChain();
SDValue Value = ST->getValue();
SDValue Ptr = ST->getBasePtr();
EVT ValueVT = Value.getValueType();
auto hasValidElementTypeForFPTruncStore = [](EVT VT) {
EVT EltVT = VT.getVectorElementType();
return EltVT == MVT::f32 || EltVT == MVT::f64;
};
if (SDValue Res = combineI8TruncStore(ST, DAG, Subtarget))
return Res;
// If this is an FP_ROUND followed by a store, fold this into a truncating
// store. We can do this even if this is already a truncstore.
// We purposefully don't care about legality of the nodes here as we know
// they can be split down into something legal.
if (DCI.isBeforeLegalizeOps() && Value.getOpcode() == ISD::FP_ROUND &&
Value.getNode()->hasOneUse() && ST->isUnindexed() &&
Subtarget->useSVEForFixedLengthVectors() &&
ValueVT.isFixedLengthVector() &&
ValueVT.getFixedSizeInBits() >= Subtarget->getMinSVEVectorSizeInBits() &&
hasValidElementTypeForFPTruncStore(Value.getOperand(0).getValueType()))
return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0), Ptr,
ST->getMemoryVT(), ST->getMemOperand());
if (SDValue Split = splitStores(N, DCI, DAG, Subtarget))
return Split;
if (Subtarget->supportsAddressTopByteIgnored() &&
performTBISimplification(N->getOperand(2), DCI, DAG))
return SDValue(N, 0);
if (SDValue Store = foldTruncStoreOfExt(DAG, N))
return Store;
if (SDValue Store = combineBoolVectorAndTruncateStore(DAG, ST))
return Store;
if (ST->isTruncatingStore()) {
EVT StoreVT = ST->getMemoryVT();
if (!isHalvingTruncateOfLegalScalableType(ValueVT, StoreVT))
return SDValue();
if (SDValue Rshrnb =
trySimplifySrlAddToRshrnb(ST->getOperand(1), DAG, Subtarget)) {
return DAG.getTruncStore(ST->getChain(), ST, Rshrnb, ST->getBasePtr(),
StoreVT, ST->getMemOperand());
}
}
return SDValue();
}
static SDValue performMSTORECombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
SelectionDAG &DAG,
const AArch64Subtarget *Subtarget) {
MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
SDValue Value = MST->getValue();
SDValue Mask = MST->getMask();
SDLoc DL(N);
// If this is a UZP1 followed by a masked store, fold this into a masked
// truncating store. We can do this even if this is already a masked
// truncstore.
if (Value.getOpcode() == AArch64ISD::UZP1 && Value->hasOneUse() &&
MST->isUnindexed() && Mask->getOpcode() == AArch64ISD::PTRUE &&
Value.getValueType().isInteger()) {
Value = Value.getOperand(0);
if (Value.getOpcode() == ISD::BITCAST) {
EVT HalfVT =
Value.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
EVT InVT = Value.getOperand(0).getValueType();
if (HalfVT.widenIntegerVectorElementType(*DAG.getContext()) == InVT) {
unsigned MinSVESize = Subtarget->getMinSVEVectorSizeInBits();
unsigned PgPattern = Mask->getConstantOperandVal(0);
// Ensure we can double the size of the predicate pattern
unsigned NumElts = getNumElementsFromSVEPredPattern(PgPattern);
if (NumElts && NumElts * InVT.getVectorElementType().getSizeInBits() <=
MinSVESize) {
Mask = getPTrue(DAG, DL, InVT.changeVectorElementType(MVT::i1),
PgPattern);
return DAG.getMaskedStore(MST->getChain(), DL, Value.getOperand(0),
MST->getBasePtr(), MST->getOffset(), Mask,
MST->getMemoryVT(), MST->getMemOperand(),
MST->getAddressingMode(),
/*IsTruncating=*/true);
}
}
}
}
if (MST->isTruncatingStore()) {
EVT ValueVT = Value->getValueType(0);
EVT MemVT = MST->getMemoryVT();
if (!isHalvingTruncateOfLegalScalableType(ValueVT, MemVT))
return SDValue();
if (SDValue Rshrnb = trySimplifySrlAddToRshrnb(Value, DAG, Subtarget)) {
return DAG.getMaskedStore(MST->getChain(), DL, Rshrnb, MST->getBasePtr(),
MST->getOffset(), MST->getMask(),
MST->getMemoryVT(), MST->getMemOperand(),
MST->getAddressingMode(), true);
}
}
return SDValue();
}
/// \return true if part of the index was folded into the Base.
static bool foldIndexIntoBase(SDValue &BasePtr, SDValue &Index, SDValue Scale,
SDLoc DL, SelectionDAG &DAG) {
// This function assumes a vector of i64 indices.
EVT IndexVT = Index.getValueType();
if (!IndexVT.isVector() || IndexVT.getVectorElementType() != MVT::i64)
return false;
// Simplify:
// BasePtr = Ptr
// Index = X + splat(Offset)
// ->
// BasePtr = Ptr + Offset * scale.
// Index = X
if (Index.getOpcode() == ISD::ADD) {
if (auto Offset = DAG.getSplatValue(Index.getOperand(1))) {
Offset = DAG.getNode(ISD::MUL, DL, MVT::i64, Offset, Scale);
BasePtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr, Offset);
Index = Index.getOperand(0);
return true;
}
}
// Simplify:
// BasePtr = Ptr
// Index = (X + splat(Offset)) << splat(Shift)
// ->
// BasePtr = Ptr + (Offset << Shift) * scale)
// Index = X << splat(shift)
if (Index.getOpcode() == ISD::SHL &&
Index.getOperand(0).getOpcode() == ISD::ADD) {
SDValue Add = Index.getOperand(0);
SDValue ShiftOp = Index.getOperand(1);
SDValue OffsetOp = Add.getOperand(1);
if (auto Shift = DAG.getSplatValue(ShiftOp))
if (auto Offset = DAG.getSplatValue(OffsetOp)) {
Offset = DAG.getNode(ISD::SHL, DL, MVT::i64, Offset, Shift);
Offset = DAG.getNode(ISD::MUL, DL, MVT::i64, Offset, Scale);
BasePtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr, Offset);
Index = DAG.getNode(ISD::SHL, DL, Index.getValueType(),
Add.getOperand(0), ShiftOp);
return true;
}
}
return false;
}
// Analyse the specified address returning true if a more optimal addressing
// mode is available. When returning true all parameters are updated to reflect
// their recommended values.
static bool findMoreOptimalIndexType(const MaskedGatherScatterSDNode *N,
SDValue &BasePtr, SDValue &Index,
SelectionDAG &DAG) {
// Try to iteratively fold parts of the index into the base pointer to
// simplify the index as much as possible.
bool Changed = false;
while (foldIndexIntoBase(BasePtr, Index, N->getScale(), SDLoc(N), DAG))
Changed = true;
// Only consider element types that are pointer sized as smaller types can
// be easily promoted.
EVT IndexVT = Index.getValueType();
if (IndexVT.getVectorElementType() != MVT::i64 || IndexVT == MVT::nxv2i64)
return Changed;
// Can indices be trivially shrunk?
EVT DataVT = N->getOperand(1).getValueType();
// Don't attempt to shrink the index for fixed vectors of 64 bit data since it
// will later be re-extended to 64 bits in legalization
if (DataVT.isFixedLengthVector() && DataVT.getScalarSizeInBits() == 64)
return Changed;
if (ISD::isVectorShrinkable(Index.getNode(), 32, N->isIndexSigned())) {
EVT NewIndexVT = IndexVT.changeVectorElementType(MVT::i32);
Index = DAG.getNode(ISD::TRUNCATE, SDLoc(N), NewIndexVT, Index);
return true;
}
// Match:
// Index = step(const)
int64_t Stride = 0;
if (Index.getOpcode() == ISD::STEP_VECTOR) {
Stride = cast<ConstantSDNode>(Index.getOperand(0))->getSExtValue();
}
// Match:
// Index = step(const) << shift(const)
else if (Index.getOpcode() == ISD::SHL &&
Index.getOperand(0).getOpcode() == ISD::STEP_VECTOR) {
SDValue RHS = Index.getOperand(1);
if (auto *Shift =
dyn_cast_or_null<ConstantSDNode>(DAG.getSplatValue(RHS))) {
int64_t Step = (int64_t)Index.getOperand(0).getConstantOperandVal(1);
Stride = Step << Shift->getZExtValue();
}
}
// Return early because no supported pattern is found.
if (Stride == 0)
return Changed;
if (Stride < std::numeric_limits<int32_t>::min() ||
Stride > std::numeric_limits<int32_t>::max())
return Changed;
const auto &Subtarget = DAG.getSubtarget<AArch64Subtarget>();
unsigned MaxVScale =
Subtarget.getMaxSVEVectorSizeInBits() / AArch64::SVEBitsPerBlock;
int64_t LastElementOffset =
IndexVT.getVectorMinNumElements() * Stride * MaxVScale;
if (LastElementOffset < std::numeric_limits<int32_t>::min() ||
LastElementOffset > std::numeric_limits<int32_t>::max())
return Changed;
EVT NewIndexVT = IndexVT.changeVectorElementType(MVT::i32);
// Stride does not scale explicitly by 'Scale', because it happens in
// the gather/scatter addressing mode.
Index = DAG.getStepVector(SDLoc(N), NewIndexVT, APInt(32, Stride, true));
return true;
}
static SDValue performMaskedGatherScatterCombine(
SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG) {
if (!DCI.isBeforeLegalize())
return SDValue();
MaskedGatherScatterSDNode *MGS = cast<MaskedGatherScatterSDNode>(N);
SDLoc DL(MGS);
SDValue Chain = MGS->getChain();
SDValue Scale = MGS->getScale();
SDValue Index = MGS->getIndex();
SDValue Mask = MGS->getMask();
SDValue BasePtr = MGS->getBasePtr();
ISD::MemIndexType IndexType = MGS->getIndexType();
if (!findMoreOptimalIndexType(MGS, BasePtr, Index, DAG))
return SDValue();
// Here we catch such cases early and change MGATHER's IndexType to allow
// the use of an Index that's more legalisation friendly.
if (auto *MGT = dyn_cast<MaskedGatherSDNode>(MGS)) {
SDValue PassThru = MGT->getPassThru();
SDValue Ops[] = {Chain, PassThru, Mask, BasePtr, Index, Scale};
return DAG.getMaskedGather(
DAG.getVTList(N->getValueType(0), MVT::Other), MGT->getMemoryVT(), DL,
Ops, MGT->getMemOperand(), IndexType, MGT->getExtensionType());
}
if (auto *MSC = dyn_cast<MaskedScatterSDNode>(MGS)) {
SDValue Data = MSC->getValue();
SDValue Ops[] = {Chain, Data, Mask, BasePtr, Index, Scale};
return DAG.getMaskedScatter(DAG.getVTList(MVT::Other), MSC->getMemoryVT(),
DL, Ops, MSC->getMemOperand(), IndexType,
MSC->isTruncatingStore());
}
auto *HG = cast<MaskedHistogramSDNode>(MGS);
SDValue Ops[] = {Chain, HG->getInc(), Mask, BasePtr,
Index, Scale, HG->getIntID()};
return DAG.getMaskedHistogram(DAG.getVTList(MVT::Other), HG->getMemoryVT(),
DL, Ops, HG->getMemOperand(), IndexType);
}
/// Target-specific DAG combine function for NEON load/store intrinsics
/// to merge base address updates.
static SDValue performNEONPostLDSTCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
SelectionDAG &DAG) {
if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
return SDValue();
unsigned AddrOpIdx = N->getNumOperands() - 1;
SDValue Addr = N->getOperand(AddrOpIdx);
// Search for a use of the address operand that is an increment.
for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
SDNode *User = *UI;
if (User->getOpcode() != ISD::ADD ||
UI.getUse().getResNo() != Addr.getResNo())
continue;
// Check that the add is independent of the load/store. Otherwise, folding
// it would create a cycle.
SmallPtrSet<const SDNode *, 32> Visited;
SmallVector<const SDNode *, 16> Worklist;
Visited.insert(Addr.getNode());
Worklist.push_back(N);
Worklist.push_back(User);
if (SDNode::hasPredecessorHelper(N, Visited, Worklist) ||
SDNode::hasPredecessorHelper(User, Visited, Worklist))
continue;
// Find the new opcode for the updating load/store.
bool IsStore = false;
bool IsLaneOp = false;
bool IsDupOp = false;
unsigned NewOpc = 0;
unsigned NumVecs = 0;
unsigned IntNo = N->getConstantOperandVal(1);
switch (IntNo) {
default: llvm_unreachable("unexpected intrinsic for Neon base update");
case Intrinsic::aarch64_neon_ld2: NewOpc = AArch64ISD::LD2post;
NumVecs = 2; break;
case Intrinsic::aarch64_neon_ld3: NewOpc = AArch64ISD::LD3post;
NumVecs = 3; break;
case Intrinsic::aarch64_neon_ld4: NewOpc = AArch64ISD::LD4post;
NumVecs = 4; break;
case Intrinsic::aarch64_neon_st2: NewOpc = AArch64ISD::ST2post;
NumVecs = 2; IsStore = true; break;
case Intrinsic::aarch64_neon_st3: NewOpc = AArch64ISD::ST3post;
NumVecs = 3; IsStore = true; break;
case Intrinsic::aarch64_neon_st4: NewOpc = AArch64ISD::ST4post;
NumVecs = 4; IsStore = true; break;
case Intrinsic::aarch64_neon_ld1x2: NewOpc = AArch64ISD::LD1x2post;
NumVecs = 2; break;
case Intrinsic::aarch64_neon_ld1x3: NewOpc = AArch64ISD::LD1x3post;
NumVecs = 3; break;
case Intrinsic::aarch64_neon_ld1x4: NewOpc = AArch64ISD::LD1x4post;
NumVecs = 4; break;
case Intrinsic::aarch64_neon_st1x2: NewOpc = AArch64ISD::ST1x2post;
NumVecs = 2; IsStore = true; break;
case Intrinsic::aarch64_neon_st1x3: NewOpc = AArch64ISD::ST1x3post;
NumVecs = 3; IsStore = true; break;
case Intrinsic::aarch64_neon_st1x4: NewOpc = AArch64ISD::ST1x4post;
NumVecs = 4; IsStore = true; break;
case Intrinsic::aarch64_neon_ld2r: NewOpc = AArch64ISD::LD2DUPpost;
NumVecs = 2; IsDupOp = true; break;
case Intrinsic::aarch64_neon_ld3r: NewOpc = AArch64ISD::LD3DUPpost;
NumVecs = 3; IsDupOp = true; break;
case Intrinsic::aarch64_neon_ld4r: NewOpc = AArch64ISD::LD4DUPpost;
NumVecs = 4; IsDupOp = true; break;
case Intrinsic::aarch64_neon_ld2lane: NewOpc = AArch64ISD::LD2LANEpost;
NumVecs = 2; IsLaneOp = true; break;
case Intrinsic::aarch64_neon_ld3lane: NewOpc = AArch64ISD::LD3LANEpost;
NumVecs = 3; IsLaneOp = true; break;
case Intrinsic::aarch64_neon_ld4lane: NewOpc = AArch64ISD::LD4LANEpost;
NumVecs = 4; IsLaneOp = true; break;
case Intrinsic::aarch64_neon_st2lane: NewOpc = AArch64ISD::ST2LANEpost;
NumVecs = 2; IsStore = true; IsLaneOp = true; break;
case Intrinsic::aarch64_neon_st3lane: NewOpc = AArch64ISD::ST3LANEpost;
NumVecs = 3; IsStore = true; IsLaneOp = true; break;
case Intrinsic::aarch64_neon_st4lane: NewOpc = AArch64ISD::ST4LANEpost;
NumVecs = 4; IsStore = true; IsLaneOp = true; break;
}
EVT VecTy;
if (IsStore)
VecTy = N->getOperand(2).getValueType();
else
VecTy = N->getValueType(0);
// If the increment is a constant, it must match the memory ref size.
SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
uint32_t IncVal = CInc->getZExtValue();
unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
if (IsLaneOp || IsDupOp)
NumBytes /= VecTy.getVectorNumElements();
if (IncVal != NumBytes)
continue;
Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
}
SmallVector<SDValue, 8> Ops;
Ops.push_back(N->getOperand(0)); // Incoming chain
// Load lane and store have vector list as input.
if (IsLaneOp || IsStore)
for (unsigned i = 2; i < AddrOpIdx; ++i)
Ops.push_back(N->getOperand(i));
Ops.push_back(Addr); // Base register
Ops.push_back(Inc);
// Return Types.
EVT Tys[6];
unsigned NumResultVecs = (IsStore ? 0 : NumVecs);
unsigned n;
for (n = 0; n < NumResultVecs; ++n)
Tys[n] = VecTy;
Tys[n++] = MVT::i64; // Type of write back register
Tys[n] = MVT::Other; // Type of the chain
SDVTList SDTys = DAG.getVTList(ArrayRef(Tys, NumResultVecs + 2));
MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops,
MemInt->getMemoryVT(),
MemInt->getMemOperand());
// Update the uses.
std::vector<SDValue> NewResults;
for (unsigned i = 0; i < NumResultVecs; ++i) {
NewResults.push_back(SDValue(UpdN.getNode(), i));
}
NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1));
DCI.CombineTo(N, NewResults);
DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
break;
}
return SDValue();
}
// Checks to see if the value is the prescribed width and returns information
// about its extension mode.
static
bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType) {
ExtType = ISD::NON_EXTLOAD;
switch(V.getNode()->getOpcode()) {
default:
return false;
case ISD::LOAD: {
LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode());
if ((LoadNode->getMemoryVT() == MVT::i8 && width == 8)
|| (LoadNode->getMemoryVT() == MVT::i16 && width == 16)) {
ExtType = LoadNode->getExtensionType();
return true;
}
return false;
}
case ISD::AssertSext: {
VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
if ((TypeNode->getVT() == MVT::i8 && width == 8)
|| (TypeNode->getVT() == MVT::i16 && width == 16)) {
ExtType = ISD::SEXTLOAD;
return true;
}
return false;
}
case ISD::AssertZext: {
VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
if ((TypeNode->getVT() == MVT::i8 && width == 8)
|| (TypeNode->getVT() == MVT::i16 && width == 16)) {
ExtType = ISD::ZEXTLOAD;
return true;
}
return false;
}
case ISD::Constant:
case ISD::TargetConstant: {
return std::abs(cast<ConstantSDNode>(V.getNode())->getSExtValue()) <
1LL << (width - 1);
}
}
return true;
}
// This function does a whole lot of voodoo to determine if the tests are
// equivalent without and with a mask. Essentially what happens is that given a
// DAG resembling:
//
// +-------------+ +-------------+ +-------------+ +-------------+
// | Input | | AddConstant | | CompConstant| | CC |
// +-------------+ +-------------+ +-------------+ +-------------+
// | | | |
// V V | +----------+
// +-------------+ +----+ | |
// | ADD | |0xff| | |
// +-------------+ +----+ | |
// | | | |
// V V | |
// +-------------+ | |
// | AND | | |
// +-------------+ | |
// | | |
// +-----+ | |
// | | |
// V V V
// +-------------+
// | CMP |
// +-------------+
//
// The AND node may be safely removed for some combinations of inputs. In
// particular we need to take into account the extension type of the Input,
// the exact values of AddConstant, CompConstant, and CC, along with the nominal
// width of the input (this can work for any width inputs, the above graph is
// specific to 8 bits.
//
// The specific equations were worked out by generating output tables for each
// AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The
// problem was simplified by working with 4 bit inputs, which means we only
// needed to reason about 24 distinct bit patterns: 8 patterns unique to zero
// extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8
// patterns present in both extensions (0,7). For every distinct set of
// AddConstant and CompConstants bit patterns we can consider the masked and
// unmasked versions to be equivalent if the result of this function is true for
// all 16 distinct bit patterns of for the current extension type of Input (w0).
//
// sub w8, w0, w1
// and w10, w8, #0x0f
// cmp w8, w2
// cset w9, AArch64CC
// cmp w10, w2
// cset w11, AArch64CC
// cmp w9, w11
// cset w0, eq
// ret
//
// Since the above function shows when the outputs are equivalent it defines
// when it is safe to remove the AND. Unfortunately it only runs on AArch64 and
// would be expensive to run during compiles. The equations below were written
// in a test harness that confirmed they gave equivalent outputs to the above
// for all inputs function, so they can be used determine if the removal is
// legal instead.
//
// isEquivalentMaskless() is the code for testing if the AND can be removed
// factored out of the DAG recognition as the DAG can take several forms.
static bool isEquivalentMaskless(unsigned CC, unsigned width,
ISD::LoadExtType ExtType, int AddConstant,
int CompConstant) {
// By being careful about our equations and only writing the in term
// symbolic values and well known constants (0, 1, -1, MaxUInt) we can
// make them generally applicable to all bit widths.
int MaxUInt = (1 << width);
// For the purposes of these comparisons sign extending the type is
// equivalent to zero extending the add and displacing it by half the integer
// width. Provided we are careful and make sure our equations are valid over
// the whole range we can just adjust the input and avoid writing equations
// for sign extended inputs.
if (ExtType == ISD::SEXTLOAD)
AddConstant -= (1 << (width-1));
switch(CC) {
case AArch64CC::LE:
case AArch64CC::GT:
if ((AddConstant == 0) ||
(CompConstant == MaxUInt - 1 && AddConstant < 0) ||
(AddConstant >= 0 && CompConstant < 0) ||
(AddConstant <= 0 && CompConstant <= 0 && CompConstant < AddConstant))
return true;
break;
case AArch64CC::LT:
case AArch64CC::GE:
if ((AddConstant == 0) ||
(AddConstant >= 0 && CompConstant <= 0) ||
(AddConstant <= 0 && CompConstant <= 0 && CompConstant <= AddConstant))
return true;
break;
case AArch64CC::HI:
case AArch64CC::LS:
if ((AddConstant >= 0 && CompConstant < 0) ||
(AddConstant <= 0 && CompConstant >= -1 &&
CompConstant < AddConstant + MaxUInt))
return true;
break;
case AArch64CC::PL:
case AArch64CC::MI:
if ((AddConstant == 0) ||
(AddConstant > 0 && CompConstant <= 0) ||
(AddConstant < 0 && CompConstant <= AddConstant))
return true;
break;
case AArch64CC::LO:
case AArch64CC::HS:
if ((AddConstant >= 0 && CompConstant <= 0) ||
(AddConstant <= 0 && CompConstant >= 0 &&
CompConstant <= AddConstant + MaxUInt))
return true;
break;
case AArch64CC::EQ:
case AArch64CC::NE:
if ((AddConstant > 0 && CompConstant < 0) ||
(AddConstant < 0 && CompConstant >= 0 &&
CompConstant < AddConstant + MaxUInt) ||
(AddConstant >= 0 && CompConstant >= 0 &&
CompConstant >= AddConstant) ||
(AddConstant <= 0 && CompConstant < 0 && CompConstant < AddConstant))
return true;
break;
case AArch64CC::VS:
case AArch64CC::VC:
case AArch64CC::AL:
case AArch64CC::NV:
return true;
case AArch64CC::Invalid:
break;
}
return false;
}
// (X & C) >u Mask --> (X & (C & (~Mask)) != 0
// (X & C) <u Pow2 --> (X & (C & ~(Pow2-1)) == 0
static SDValue performSubsToAndsCombine(SDNode *N, SDNode *SubsNode,
SDNode *AndNode, SelectionDAG &DAG,
unsigned CCIndex, unsigned CmpIndex,
unsigned CC) {
ConstantSDNode *SubsC = dyn_cast<ConstantSDNode>(SubsNode->getOperand(1));
if (!SubsC)
return SDValue();
APInt SubsAP = SubsC->getAPIntValue();
if (CC == AArch64CC::HI) {
if (!SubsAP.isMask())
return SDValue();
} else if (CC == AArch64CC::LO) {
if (!SubsAP.isPowerOf2())
return SDValue();
} else
return SDValue();
ConstantSDNode *AndC = dyn_cast<ConstantSDNode>(AndNode->getOperand(1));
if (!AndC)
return SDValue();
APInt MaskAP = CC == AArch64CC::HI ? SubsAP : (SubsAP - 1);
SDLoc DL(N);
APInt AndSMask = (~MaskAP) & AndC->getAPIntValue();
SDValue ANDS = DAG.getNode(
AArch64ISD::ANDS, DL, SubsNode->getVTList(), AndNode->getOperand(0),
DAG.getConstant(AndSMask, DL, SubsC->getValueType(0)));
SDValue AArch64_CC =
DAG.getConstant(CC == AArch64CC::HI ? AArch64CC::NE : AArch64CC::EQ, DL,
N->getOperand(CCIndex)->getValueType(0));
// For now, only performCSELCombine and performBRCONDCombine call this
// function. And both of them pass 2 for CCIndex, 3 for CmpIndex with 4
// operands. So just init the ops direct to simplify the code. If we have some
// other case with different CCIndex, CmpIndex, we need to use for loop to
// rewrite the code here.
// TODO: Do we need to assert number of operand is 4 here?
assert((CCIndex == 2 && CmpIndex == 3) &&
"Expected CCIndex to be 2 and CmpIndex to be 3.");
SDValue Ops[] = {N->getOperand(0), N->getOperand(1), AArch64_CC,
ANDS.getValue(1)};
return DAG.getNode(N->getOpcode(), N, N->getVTList(), Ops);
}
static
SDValue performCONDCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
SelectionDAG &DAG, unsigned CCIndex,
unsigned CmpIndex) {
unsigned CC = cast<ConstantSDNode>(N->getOperand(CCIndex))->getSExtValue();
SDNode *SubsNode = N->getOperand(CmpIndex).getNode();
unsigned CondOpcode = SubsNode->getOpcode();
if (CondOpcode != AArch64ISD::SUBS || SubsNode->hasAnyUseOfValue(0) ||
!SubsNode->hasOneUse())
return SDValue();
// There is a SUBS feeding this condition. Is it fed by a mask we can
// use?
SDNode *AndNode = SubsNode->getOperand(0).getNode();
unsigned MaskBits = 0;
if (AndNode->getOpcode() != ISD::AND)
return SDValue();
if (SDValue Val = performSubsToAndsCombine(N, SubsNode, AndNode, DAG, CCIndex,
CmpIndex, CC))
return Val;
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(AndNode->getOperand(1))) {
uint32_t CNV = CN->getZExtValue();
if (CNV == 255)
MaskBits = 8;
else if (CNV == 65535)
MaskBits = 16;
}
if (!MaskBits)
return SDValue();
SDValue AddValue = AndNode->getOperand(0);
if (AddValue.getOpcode() != ISD::ADD)
return SDValue();
// The basic dag structure is correct, grab the inputs and validate them.
SDValue AddInputValue1 = AddValue.getNode()->getOperand(0);
SDValue AddInputValue2 = AddValue.getNode()->getOperand(1);
SDValue SubsInputValue = SubsNode->getOperand(1);
// The mask is present and the provenance of all the values is a smaller type,
// lets see if the mask is superfluous.
if (!isa<ConstantSDNode>(AddInputValue2.getNode()) ||
!isa<ConstantSDNode>(SubsInputValue.getNode()))
return SDValue();
ISD::LoadExtType ExtType;
if (!checkValueWidth(SubsInputValue, MaskBits, ExtType) ||
!checkValueWidth(AddInputValue2, MaskBits, ExtType) ||
!checkValueWidth(AddInputValue1, MaskBits, ExtType) )
return SDValue();
if(!isEquivalentMaskless(CC, MaskBits, ExtType,
cast<ConstantSDNode>(AddInputValue2.getNode())->getSExtValue(),
cast<ConstantSDNode>(SubsInputValue.getNode())->getSExtValue()))
return SDValue();
// The AND is not necessary, remove it.
SDVTList VTs = DAG.getVTList(SubsNode->getValueType(0),
SubsNode->getValueType(1));
SDValue Ops[] = { AddValue, SubsNode->getOperand(1) };
SDValue NewValue = DAG.getNode(CondOpcode, SDLoc(SubsNode), VTs, Ops);
DAG.ReplaceAllUsesWith(SubsNode, NewValue.getNode());
return SDValue(N, 0);
}
// Optimize compare with zero and branch.
static SDValue performBRCONDCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
SelectionDAG &DAG) {
MachineFunction &MF = DAG.getMachineFunction();
// Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z instructions
// will not be produced, as they are conditional branch instructions that do
// not set flags.
if (MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening))
return SDValue();
if (SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3))
N = NV.getNode();
SDValue Chain = N->getOperand(0);
SDValue Dest = N->getOperand(1);
SDValue CCVal = N->getOperand(2);
SDValue Cmp = N->getOperand(3);
assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!");
unsigned CC = CCVal->getAsZExtVal();
if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
return SDValue();
unsigned CmpOpc = Cmp.getOpcode();
if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS)
return SDValue();
// Only attempt folding if there is only one use of the flag and no use of the
// value.
if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1))
return SDValue();
SDValue LHS = Cmp.getOperand(0);
SDValue RHS = Cmp.getOperand(1);
assert(LHS.getValueType() == RHS.getValueType() &&
"Expected the value type to be the same for both operands!");
if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
return SDValue();
if (isNullConstant(LHS))
std::swap(LHS, RHS);
if (!isNullConstant(RHS))
return SDValue();
if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA ||
LHS.getOpcode() == ISD::SRL)
return SDValue();
// Fold the compare into the branch instruction.
SDValue BR;
if (CC == AArch64CC::EQ)
BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
else
BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
// Do not add new nodes to DAG combiner worklist.
DCI.CombineTo(N, BR, false);
return SDValue();
}
static SDValue foldCSELofCTTZ(SDNode *N, SelectionDAG &DAG) {
unsigned CC = N->getConstantOperandVal(2);
SDValue SUBS = N->getOperand(3);
SDValue Zero, CTTZ;
if (CC == AArch64CC::EQ && SUBS.getOpcode() == AArch64ISD::SUBS) {
Zero = N->getOperand(0);
CTTZ = N->getOperand(1);
} else if (CC == AArch64CC::NE && SUBS.getOpcode() == AArch64ISD::SUBS) {
Zero = N->getOperand(1);
CTTZ = N->getOperand(0);
} else
return SDValue();
if ((CTTZ.getOpcode() != ISD::CTTZ && CTTZ.getOpcode() != ISD::TRUNCATE) ||
(CTTZ.getOpcode() == ISD::TRUNCATE &&
CTTZ.getOperand(0).getOpcode() != ISD::CTTZ))
return SDValue();
assert((CTTZ.getValueType() == MVT::i32 || CTTZ.getValueType() == MVT::i64) &&
"Illegal type in CTTZ folding");
if (!isNullConstant(Zero) || !isNullConstant(SUBS.getOperand(1)))
return SDValue();
SDValue X = CTTZ.getOpcode() == ISD::TRUNCATE
? CTTZ.getOperand(0).getOperand(0)
: CTTZ.getOperand(0);
if (X != SUBS.getOperand(0))
return SDValue();
unsigned BitWidth = CTTZ.getOpcode() == ISD::TRUNCATE
? CTTZ.getOperand(0).getValueSizeInBits()
: CTTZ.getValueSizeInBits();
SDValue BitWidthMinusOne =
DAG.getConstant(BitWidth - 1, SDLoc(N), CTTZ.getValueType());
return DAG.getNode(ISD::AND, SDLoc(N), CTTZ.getValueType(), CTTZ,
BitWidthMinusOne);
}
// (CSEL l r EQ (CMP (CSEL x y cc2 cond) x)) => (CSEL l r cc2 cond)
// (CSEL l r EQ (CMP (CSEL x y cc2 cond) y)) => (CSEL l r !cc2 cond)
// Where x and y are constants and x != y
// (CSEL l r NE (CMP (CSEL x y cc2 cond) x)) => (CSEL l r !cc2 cond)
// (CSEL l r NE (CMP (CSEL x y cc2 cond) y)) => (CSEL l r cc2 cond)
// Where x and y are constants and x != y
static SDValue foldCSELOfCSEL(SDNode *Op, SelectionDAG &DAG) {
SDValue L = Op->getOperand(0);
SDValue R = Op->getOperand(1);
AArch64CC::CondCode OpCC =
static_cast<AArch64CC::CondCode>(Op->getConstantOperandVal(2));
SDValue OpCmp = Op->getOperand(3);
if (!isCMP(OpCmp))
return SDValue();
SDValue CmpLHS = OpCmp.getOperand(0);
SDValue CmpRHS = OpCmp.getOperand(1);
if (CmpRHS.getOpcode() == AArch64ISD::CSEL)
std::swap(CmpLHS, CmpRHS);
else if (CmpLHS.getOpcode() != AArch64ISD::CSEL)
return SDValue();
SDValue X = CmpLHS->getOperand(0);
SDValue Y = CmpLHS->getOperand(1);
if (!isa<ConstantSDNode>(X) || !isa<ConstantSDNode>(Y) || X == Y) {
return SDValue();
}
// If one of the constant is opaque constant, x,y sdnode is still different
// but the real value maybe the same. So check APInt here to make sure the
// code is correct.
ConstantSDNode *CX = cast<ConstantSDNode>(X);
ConstantSDNode *CY = cast<ConstantSDNode>(Y);
if (CX->getAPIntValue() == CY->getAPIntValue())
return SDValue();
AArch64CC::CondCode CC =
static_cast<AArch64CC::CondCode>(CmpLHS->getConstantOperandVal(2));
SDValue Cond = CmpLHS->getOperand(3);
if (CmpRHS == Y)
CC = AArch64CC::getInvertedCondCode(CC);
else if (CmpRHS != X)
return SDValue();
if (OpCC == AArch64CC::NE)
CC = AArch64CC::getInvertedCondCode(CC);
else if (OpCC != AArch64CC::EQ)
return SDValue();
SDLoc DL(Op);
EVT VT = Op->getValueType(0);
SDValue CCValue = DAG.getConstant(CC, DL, MVT::i32);
return DAG.getNode(AArch64ISD::CSEL, DL, VT, L, R, CCValue, Cond);
}
// Optimize CSEL instructions
static SDValue performCSELCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
SelectionDAG &DAG) {
// CSEL x, x, cc -> x
if (N->getOperand(0) == N->getOperand(1))
return N->getOperand(0);
if (SDValue R = foldCSELOfCSEL(N, DAG))
return R;
// CSEL 0, cttz(X), eq(X, 0) -> AND cttz bitwidth-1
// CSEL cttz(X), 0, ne(X, 0) -> AND cttz bitwidth-1
if (SDValue Folded = foldCSELofCTTZ(N, DAG))
return Folded;
return performCONDCombine(N, DCI, DAG, 2, 3);
}
// Try to re-use an already extended operand of a vector SetCC feeding a
// extended select. Doing so avoids requiring another full extension of the
// SET_CC result when lowering the select.
static SDValue tryToWidenSetCCOperands(SDNode *Op, SelectionDAG &DAG) {
EVT Op0MVT = Op->getOperand(0).getValueType();
if (!Op0MVT.isVector() || Op->use_empty())
return SDValue();
// Make sure that all uses of Op are VSELECTs with result matching types where
// the result type has a larger element type than the SetCC operand.
SDNode *FirstUse = *Op->use_begin();
if (FirstUse->getOpcode() != ISD::VSELECT)
return SDValue();
EVT UseMVT = FirstUse->getValueType(0);
if (UseMVT.getScalarSizeInBits() <= Op0MVT.getScalarSizeInBits())
return SDValue();
if (any_of(Op->uses(), [&UseMVT](const SDNode *N) {
return N->getOpcode() != ISD::VSELECT || N->getValueType(0) != UseMVT;
}))
return SDValue();
APInt V;
if (!ISD::isConstantSplatVector(Op->getOperand(1).getNode(), V))
return SDValue();
SDLoc DL(Op);
SDValue Op0ExtV;
SDValue Op1ExtV;
ISD::CondCode CC = cast<CondCodeSDNode>(Op->getOperand(2))->get();
// Check if the first operand of the SET_CC is already extended. If it is,
// split the SET_CC and re-use the extended version of the operand.
SDNode *Op0SExt = DAG.getNodeIfExists(ISD::SIGN_EXTEND, DAG.getVTList(UseMVT),
Op->getOperand(0));
SDNode *Op0ZExt = DAG.getNodeIfExists(ISD::ZERO_EXTEND, DAG.getVTList(UseMVT),
Op->getOperand(0));
if (Op0SExt && (isSignedIntSetCC(CC) || isIntEqualitySetCC(CC))) {
Op0ExtV = SDValue(Op0SExt, 0);
Op1ExtV = DAG.getNode(ISD::SIGN_EXTEND, DL, UseMVT, Op->getOperand(1));
} else if (Op0ZExt && (isUnsignedIntSetCC(CC) || isIntEqualitySetCC(CC))) {
Op0ExtV = SDValue(Op0ZExt, 0);
Op1ExtV = DAG.getNode(ISD::ZERO_EXTEND, DL, UseMVT, Op->getOperand(1));
} else
return SDValue();
return DAG.getNode(ISD::SETCC, DL, UseMVT.changeVectorElementType(MVT::i1),
Op0ExtV, Op1ExtV, Op->getOperand(2));
}
static SDValue
performVecReduceBitwiseCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
SelectionDAG &DAG) {
SDValue Vec = N->getOperand(0);
if (DCI.isBeforeLegalize() &&
Vec.getValueType().getVectorElementType() == MVT::i1 &&
Vec.getValueType().isFixedLengthVector() &&
Vec.getValueType().isPow2VectorType()) {
SDLoc DL(N);
return getVectorBitwiseReduce(N->getOpcode(), Vec, N->getValueType(0), DL,
DAG);
}
return SDValue();
}
static SDValue performSETCCCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
SelectionDAG &DAG) {
assert(N->getOpcode() == ISD::SETCC && "Unexpected opcode!");
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
ISD::CondCode Cond = cast<CondCodeSDNode>(N->getOperand(2))->get();
SDLoc DL(N);
EVT VT = N->getValueType(0);
if (SDValue V = tryToWidenSetCCOperands(N, DAG))
return V;
// setcc (csel 0, 1, cond, X), 1, ne ==> csel 0, 1, !cond, X
if (Cond == ISD::SETNE && isOneConstant(RHS) &&
LHS->getOpcode() == AArch64ISD::CSEL &&
isNullConstant(LHS->getOperand(0)) && isOneConstant(LHS->getOperand(1)) &&
LHS->hasOneUse()) {
// Invert CSEL's condition.
auto OldCond =
static_cast<AArch64CC::CondCode>(LHS.getConstantOperandVal(2));
auto NewCond = getInvertedCondCode(OldCond);
// csel 0, 1, !cond, X
SDValue CSEL =
DAG.getNode(AArch64ISD::CSEL, DL, LHS.getValueType(), LHS.getOperand(0),
LHS.getOperand(1), DAG.getConstant(NewCond, DL, MVT::i32),
LHS.getOperand(3));
return DAG.getZExtOrTrunc(CSEL, DL, VT);
}
// setcc (srl x, imm), 0, ne ==> setcc (and x, (-1 << imm)), 0, ne
if (Cond == ISD::SETNE && isNullConstant(RHS) &&
LHS->getOpcode() == ISD::SRL && isa<ConstantSDNode>(LHS->getOperand(1)) &&
LHS->getConstantOperandVal(1) < VT.getScalarSizeInBits() &&
LHS->hasOneUse()) {
EVT TstVT = LHS->getValueType(0);
if (TstVT.isScalarInteger() && TstVT.getFixedSizeInBits() <= 64) {
// this pattern will get better opt in emitComparison
uint64_t TstImm = -1ULL << LHS->getConstantOperandVal(1);
SDValue TST = DAG.getNode(ISD::AND, DL, TstVT, LHS->getOperand(0),
DAG.getSignedConstant(TstImm, DL, TstVT));
return DAG.getNode(ISD::SETCC, DL, VT, TST, RHS, N->getOperand(2));
}
}
// setcc (iN (bitcast (vNi1 X))), 0, (eq|ne)
// ==> setcc (iN (zext (i1 (vecreduce_or (vNi1 X))))), 0, (eq|ne)
// setcc (iN (bitcast (vNi1 X))), -1, (eq|ne)
// ==> setcc (iN (sext (i1 (vecreduce_and (vNi1 X))))), -1, (eq|ne)
if (DCI.isBeforeLegalize() && VT.isScalarInteger() &&
(Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
(isNullConstant(RHS) || isAllOnesConstant(RHS)) &&
LHS->getOpcode() == ISD::BITCAST) {
EVT ToVT = LHS->getValueType(0);
EVT FromVT = LHS->getOperand(0).getValueType();
if (FromVT.isFixedLengthVector() &&
FromVT.getVectorElementType() == MVT::i1) {
bool IsNull = isNullConstant(RHS);
LHS = DAG.getNode(IsNull ? ISD::VECREDUCE_OR : ISD::VECREDUCE_AND,
DL, MVT::i1, LHS->getOperand(0));
LHS = DAG.getNode(IsNull ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND, DL, ToVT,
LHS);
return DAG.getSetCC(DL, VT, LHS, RHS, Cond);
}
}
// Try to perform the memcmp when the result is tested for [in]equality with 0
if (SDValue V = performOrXorChainCombine(N, DAG))
return V;
return SDValue();
}
// Replace a flag-setting operator (eg ANDS) with the generic version
// (eg AND) if the flag is unused.
static SDValue performFlagSettingCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
unsigned GenericOpcode) {
SDLoc DL(N);
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
EVT VT = N->getValueType(0);
// If the flag result isn't used, convert back to a generic opcode.
if (!N->hasAnyUseOfValue(1)) {
SDValue Res = DCI.DAG.getNode(GenericOpcode, DL, VT, N->ops());
return DCI.DAG.getMergeValues({Res, DCI.DAG.getConstant(0, DL, MVT::i32)},
DL);
}
// Combine identical generic nodes into this node, re-using the result.
if (SDNode *Generic = DCI.DAG.getNodeIfExists(
GenericOpcode, DCI.DAG.getVTList(VT), {LHS, RHS}))
DCI.CombineTo(Generic, SDValue(N, 0));
return SDValue();
}
static SDValue performSetCCPunpkCombine(SDNode *N, SelectionDAG &DAG) {
// setcc_merge_zero pred
// (sign_extend (extract_subvector (setcc_merge_zero ... pred ...))), 0, ne
// => extract_subvector (inner setcc_merge_zero)
SDValue Pred = N->getOperand(0);
SDValue LHS = N->getOperand(1);
SDValue RHS = N->getOperand(2);
ISD::CondCode Cond = cast<CondCodeSDNode>(N->getOperand(3))->get();
if (Cond != ISD::SETNE || !isZerosVector(RHS.getNode()) ||
LHS->getOpcode() != ISD::SIGN_EXTEND)
return SDValue();
SDValue Extract = LHS->getOperand(0);
if (Extract->getOpcode() != ISD::EXTRACT_SUBVECTOR ||
Extract->getValueType(0) != N->getValueType(0) ||
Extract->getConstantOperandVal(1) != 0)
return SDValue();
SDValue InnerSetCC = Extract->getOperand(0);
if (InnerSetCC->getOpcode() != AArch64ISD::SETCC_MERGE_ZERO)
return SDValue();
// By this point we've effectively got
// zero_inactive_lanes_and_trunc_i1(sext_i1(A)). If we can prove A's inactive
// lanes are already zero then the trunc(sext()) sequence is redundant and we
// can operate on A directly.
SDValue InnerPred = InnerSetCC.getOperand(0);
if (Pred.getOpcode() == AArch64ISD::PTRUE &&
InnerPred.getOpcode() == AArch64ISD::PTRUE &&
Pred.getConstantOperandVal(0) == InnerPred.getConstantOperandVal(0) &&
Pred->getConstantOperandVal(0) >= AArch64SVEPredPattern::vl1 &&
Pred->getConstantOperandVal(0) <= AArch64SVEPredPattern::vl256)
return Extract;
return SDValue();
}
static SDValue
performSetccMergeZeroCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
assert(N->getOpcode() == AArch64ISD::SETCC_MERGE_ZERO &&
"Unexpected opcode!");
SelectionDAG &DAG = DCI.DAG;
SDValue Pred = N->getOperand(0);
SDValue LHS = N->getOperand(1);
SDValue RHS = N->getOperand(2);
ISD::CondCode Cond = cast<CondCodeSDNode>(N->getOperand(3))->get();
if (SDValue V = performSetCCPunpkCombine(N, DAG))
return V;
if (Cond == ISD::SETNE && isZerosVector(RHS.getNode()) &&
LHS->getOpcode() == ISD::SIGN_EXTEND &&
LHS->getOperand(0)->getValueType(0) == N->getValueType(0)) {
// setcc_merge_zero(
// pred, extend(setcc_merge_zero(pred, ...)), != splat(0))
// => setcc_merge_zero(pred, ...)
if (LHS->getOperand(0)->getOpcode() == AArch64ISD::SETCC_MERGE_ZERO &&
LHS->getOperand(0)->getOperand(0) == Pred)
return LHS->getOperand(0);
// setcc_merge_zero(
// all_active, extend(nxvNi1 ...), != splat(0))
// -> nxvNi1 ...
if (isAllActivePredicate(DAG, Pred))
return LHS->getOperand(0);
// setcc_merge_zero(
// pred, extend(nxvNi1 ...), != splat(0))
// -> nxvNi1 and(pred, ...)
if (DCI.isAfterLegalizeDAG())
// Do this after legalization to allow more folds on setcc_merge_zero
// to be recognized.
return DAG.getNode(ISD::AND, SDLoc(N), N->getValueType(0),
LHS->getOperand(0), Pred);
}
return SDValue();
}
// Optimize some simple tbz/tbnz cases. Returns the new operand and bit to test
// as well as whether the test should be inverted. This code is required to
// catch these cases (as opposed to standard dag combines) because
// AArch64ISD::TBZ is matched during legalization.
static SDValue getTestBitOperand(SDValue Op, unsigned &Bit, bool &Invert,
SelectionDAG &DAG) {
if (!Op->hasOneUse())
return Op;
// We don't handle undef/constant-fold cases below, as they should have
// already been taken care of (e.g. and of 0, test of undefined shifted bits,
// etc.)
// (tbz (trunc x), b) -> (tbz x, b)
// This case is just here to enable more of the below cases to be caught.
if (Op->getOpcode() == ISD::TRUNCATE &&
Bit < Op->getValueType(0).getSizeInBits()) {
return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
}
// (tbz (any_ext x), b) -> (tbz x, b) if we don't use the extended bits.
if (Op->getOpcode() == ISD::ANY_EXTEND &&
Bit < Op->getOperand(0).getValueSizeInBits()) {
return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
}
if (Op->getNumOperands() != 2)
return Op;
auto *C = dyn_cast<ConstantSDNode>(Op->getOperand(1));
if (!C)
return Op;
switch (Op->getOpcode()) {
default:
return Op;
// (tbz (and x, m), b) -> (tbz x, b)
case ISD::AND:
if ((C->getZExtValue() >> Bit) & 1)
return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
return Op;
// (tbz (shl x, c), b) -> (tbz x, b-c)
case ISD::SHL:
if (C->getZExtValue() <= Bit &&
(Bit - C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) {
Bit = Bit - C->getZExtValue();
return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
}
return Op;
// (tbz (sra x, c), b) -> (tbz x, b+c) or (tbz x, msb) if b+c is > # bits in x
case ISD::SRA:
Bit = Bit + C->getZExtValue();
if (Bit >= Op->getValueType(0).getSizeInBits())
Bit = Op->getValueType(0).getSizeInBits() - 1;
return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
// (tbz (srl x, c), b) -> (tbz x, b+c)
case ISD::SRL:
if ((Bit + C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) {
Bit = Bit + C->getZExtValue();
return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
}
return Op;
// (tbz (xor x, -1), b) -> (tbnz x, b)
case ISD::XOR:
if ((C->getZExtValue() >> Bit) & 1)
Invert = !Invert;
return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
}
}
// Optimize test single bit zero/non-zero and branch.
static SDValue performTBZCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
SelectionDAG &DAG) {
unsigned Bit = N->getConstantOperandVal(2);
bool Invert = false;
SDValue TestSrc = N->getOperand(1);
SDValue NewTestSrc = getTestBitOperand(TestSrc, Bit, Invert, DAG);
if (TestSrc == NewTestSrc)
return SDValue();
unsigned NewOpc = N->getOpcode();
if (Invert) {
if (NewOpc == AArch64ISD::TBZ)
NewOpc = AArch64ISD::TBNZ;
else {
assert(NewOpc == AArch64ISD::TBNZ);
NewOpc = AArch64ISD::TBZ;
}
}
SDLoc DL(N);
return DAG.getNode(NewOpc, DL, MVT::Other, N->getOperand(0), NewTestSrc,
DAG.getConstant(Bit, DL, MVT::i64), N->getOperand(3));
}
// Swap vselect operands where it may allow a predicated operation to achieve
// the `sel`.
//
// (vselect (setcc ( condcode) (_) (_)) (a) (op (a) (b)))
// => (vselect (setcc (!condcode) (_) (_)) (op (a) (b)) (a))
static SDValue trySwapVSelectOperands(SDNode *N, SelectionDAG &DAG) {
auto SelectA = N->getOperand(1);
auto SelectB = N->getOperand(2);
auto NTy = N->getValueType(0);
if (!NTy.isScalableVector())
return SDValue();
SDValue SetCC = N->getOperand(0);
if (SetCC.getOpcode() != ISD::SETCC || !SetCC.hasOneUse())
return SDValue();
switch (SelectB.getOpcode()) {
default:
return SDValue();
case ISD::FMUL:
case ISD::FSUB:
case ISD::FADD:
break;
}
if (SelectA != SelectB.getOperand(0))
return SDValue();
ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
ISD::CondCode InverseCC =
ISD::getSetCCInverse(CC, SetCC.getOperand(0).getValueType());
auto InverseSetCC =
DAG.getSetCC(SDLoc(SetCC), SetCC.getValueType(), SetCC.getOperand(0),
SetCC.getOperand(1), InverseCC);
return DAG.getNode(ISD::VSELECT, SDLoc(N), NTy,
{InverseSetCC, SelectB, SelectA});
}
// vselect (v1i1 setcc) ->
// vselect (v1iXX setcc) (XX is the size of the compared operand type)
// FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
// condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
// such VSELECT.
static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) {
if (auto SwapResult = trySwapVSelectOperands(N, DAG))
return SwapResult;
SDValue N0 = N->getOperand(0);
EVT CCVT = N0.getValueType();
if (isAllActivePredicate(DAG, N0))
return N->getOperand(1);
if (isAllInactivePredicate(N0))
return N->getOperand(2);
// Check for sign pattern (VSELECT setgt, iN lhs, -1, 1, -1) and transform
// into (OR (ASR lhs, N-1), 1), which requires less instructions for the
// supported types.
SDValue SetCC = N->getOperand(0);
if (SetCC.getOpcode() == ISD::SETCC &&
SetCC.getOperand(2) == DAG.getCondCode(ISD::SETGT)) {
SDValue CmpLHS = SetCC.getOperand(0);
EVT VT = CmpLHS.getValueType();
SDNode *CmpRHS = SetCC.getOperand(1).getNode();
SDNode *SplatLHS = N->getOperand(1).getNode();
SDNode *SplatRHS = N->getOperand(2).getNode();
APInt SplatLHSVal;
if (CmpLHS.getValueType() == N->getOperand(1).getValueType() &&
VT.isSimple() &&
is_contained(ArrayRef({MVT::v8i8, MVT::v16i8, MVT::v4i16, MVT::v8i16,
MVT::v2i32, MVT::v4i32, MVT::v2i64}),
VT.getSimpleVT().SimpleTy) &&
ISD::isConstantSplatVector(SplatLHS, SplatLHSVal) &&
SplatLHSVal.isOne() && ISD::isConstantSplatVectorAllOnes(CmpRHS) &&
ISD::isConstantSplatVectorAllOnes(SplatRHS)) {
unsigned NumElts = VT.getVectorNumElements();
SmallVector<SDValue, 8> Ops(
NumElts, DAG.getConstant(VT.getScalarSizeInBits() - 1, SDLoc(N),
VT.getScalarType()));
SDValue Val = DAG.getBuildVector(VT, SDLoc(N), Ops);
auto Shift = DAG.getNode(ISD::SRA, SDLoc(N), VT, CmpLHS, Val);
auto Or = DAG.getNode(ISD::OR, SDLoc(N), VT, Shift, N->getOperand(1));
return Or;
}
}
EVT CmpVT = N0.getOperand(0).getValueType();
if (N0.getOpcode() != ISD::SETCC ||
CCVT.getVectorElementCount() != ElementCount::getFixed(1) ||
CCVT.getVectorElementType() != MVT::i1 ||
CmpVT.getVectorElementType().isFloatingPoint())
return SDValue();
EVT ResVT = N->getValueType(0);
// Only combine when the result type is of the same size as the compared
// operands.
if (ResVT.getSizeInBits() != CmpVT.getSizeInBits())
return SDValue();
SDValue IfTrue = N->getOperand(1);
SDValue IfFalse = N->getOperand(2);
SetCC = DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
N0.getOperand(0), N0.getOperand(1),
cast<CondCodeSDNode>(N0.getOperand(2))->get());
return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC,
IfTrue, IfFalse);
}
/// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with
/// the compare-mask instructions rather than going via NZCV, even if LHS and
/// RHS are really scalar. This replaces any scalar setcc in the above pattern
/// with a vector one followed by a DUP shuffle on the result.
static SDValue performSelectCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
SelectionDAG &DAG = DCI.DAG;
SDValue N0 = N->getOperand(0);
EVT ResVT = N->getValueType(0);
if (N0.getOpcode() != ISD::SETCC)
return SDValue();
if (ResVT.isScalableVT())
return SDValue();
// Make sure the SETCC result is either i1 (initial DAG), or i32, the lowered
// scalar SetCCResultType. We also don't expect vectors, because we assume
// that selects fed by vector SETCCs are canonicalized to VSELECT.
assert((N0.getValueType() == MVT::i1 || N0.getValueType() == MVT::i32) &&
"Scalar-SETCC feeding SELECT has unexpected result type!");
// If NumMaskElts == 0, the comparison is larger than select result. The
// largest real NEON comparison is 64-bits per lane, which means the result is
// at most 32-bits and an illegal vector. Just bail out for now.
EVT SrcVT = N0.getOperand(0).getValueType();
// Don't try to do this optimization when the setcc itself has i1 operands.
// There are no legal vectors of i1, so this would be pointless. v1f16 is
// ruled out to prevent the creation of setcc that need to be scalarized.
if (SrcVT == MVT::i1 ||
(SrcVT.isFloatingPoint() && SrcVT.getSizeInBits() <= 16))
return SDValue();
int NumMaskElts = ResVT.getSizeInBits() / SrcVT.getSizeInBits();
if (!ResVT.isVector() || NumMaskElts == 0)
return SDValue();
SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumMaskElts);
EVT CCVT = SrcVT.changeVectorElementTypeToInteger();
// Also bail out if the vector CCVT isn't the same size as ResVT.
// This can happen if the SETCC operand size doesn't divide the ResVT size
// (e.g., f64 vs v3f32).
if (CCVT.getSizeInBits() != ResVT.getSizeInBits())
return SDValue();
// Make sure we didn't create illegal types, if we're not supposed to.
assert(DCI.isBeforeLegalize() ||
DAG.getTargetLoweringInfo().isTypeLegal(SrcVT));
// First perform a vector comparison, where lane 0 is the one we're interested
// in.
SDLoc DL(N0);
SDValue LHS =
DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0));
SDValue RHS =
DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1));
SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2));
// Now duplicate the comparison mask we want across all other lanes.
SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0);
SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask);
Mask = DAG.getNode(ISD::BITCAST, DL,
ResVT.changeVectorElementTypeToInteger(), Mask);
return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2));
}
static SDValue performDUPCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
EVT VT = N->getValueType(0);
SDLoc DL(N);
// If "v2i32 DUP(x)" and "v4i32 DUP(x)" both exist, use an extract from the
// 128bit vector version.
if (VT.is64BitVector() && DCI.isAfterLegalizeDAG()) {
EVT LVT = VT.getDoubleNumVectorElementsVT(*DCI.DAG.getContext());
SmallVector<SDValue> Ops(N->ops());
if (SDNode *LN = DCI.DAG.getNodeIfExists(N->getOpcode(),
DCI.DAG.getVTList(LVT), Ops)) {
return DCI.DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, SDValue(LN, 0),
DCI.DAG.getConstant(0, DL, MVT::i64));
}
}
if (N->getOpcode() == AArch64ISD::DUP) {
if (DCI.isAfterLegalizeDAG()) {
// If scalar dup's operand is extract_vector_elt, try to combine them into
// duplane. For example,
//
// t21: i32 = extract_vector_elt t19, Constant:i64<0>
// t18: v4i32 = AArch64ISD::DUP t21
// ==>
// t22: v4i32 = AArch64ISD::DUPLANE32 t19, Constant:i64<0>
SDValue EXTRACT_VEC_ELT = N->getOperand(0);
if (EXTRACT_VEC_ELT.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
if (VT == EXTRACT_VEC_ELT.getOperand(0).getValueType()) {
unsigned Opcode = getDUPLANEOp(VT.getVectorElementType());
return DCI.DAG.getNode(Opcode, DL, VT, EXTRACT_VEC_ELT.getOperand(0),
EXTRACT_VEC_ELT.getOperand(1));
}
}
}
return performPostLD1Combine(N, DCI, false);
}
return SDValue();
}
/// Get rid of unnecessary NVCASTs (that don't change the type).
static SDValue performNVCASTCombine(SDNode *N, SelectionDAG &DAG) {
if (N->getValueType(0) == N->getOperand(0).getValueType())
return N->getOperand(0);
if (N->getOperand(0).getOpcode() == AArch64ISD::NVCAST)
return DAG.getNode(AArch64ISD::NVCAST, SDLoc(N), N->getValueType(0),
N->getOperand(0).getOperand(0));
return SDValue();
}
// If all users of the globaladdr are of the form (globaladdr + constant), find
// the smallest constant, fold it into the globaladdr's offset and rewrite the
// globaladdr as (globaladdr + constant) - constant.
static SDValue performGlobalAddressCombine(SDNode *N, SelectionDAG &DAG,
const AArch64Subtarget *Subtarget,
const TargetMachine &TM) {
auto *GN = cast<GlobalAddressSDNode>(N);
if (Subtarget->ClassifyGlobalReference(GN->getGlobal(), TM) !=
AArch64II::MO_NO_FLAG)
return SDValue();
uint64_t MinOffset = -1ull;
for (SDNode *N : GN->uses()) {
if (N->getOpcode() != ISD::ADD)
return SDValue();
auto *C = dyn_cast<ConstantSDNode>(N->getOperand(0));
if (!C)
C = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (!C)
return SDValue();
MinOffset = std::min(MinOffset, C->getZExtValue());
}
uint64_t Offset = MinOffset + GN->getOffset();
// Require that the new offset is larger than the existing one. Otherwise, we
// can end up oscillating between two possible DAGs, for example,
// (add (add globaladdr + 10, -1), 1) and (add globaladdr + 9, 1).
if (Offset <= uint64_t(GN->getOffset()))
return SDValue();
// Check whether folding this offset is legal. It must not go out of bounds of
// the referenced object to avoid violating the code model, and must be
// smaller than 2^20 because this is the largest offset expressible in all
// object formats. (The IMAGE_REL_ARM64_PAGEBASE_REL21 relocation in COFF
// stores an immediate signed 21 bit offset.)
//
// This check also prevents us from folding negative offsets, which will end
// up being treated in the same way as large positive ones. They could also
// cause code model violations, and aren't really common enough to matter.
if (Offset >= (1 << 20))
return SDValue();
const GlobalValue *GV = GN->getGlobal();
Type *T = GV->getValueType();
if (!T->isSized() ||
Offset > GV->getDataLayout().getTypeAllocSize(T))
return SDValue();
SDLoc DL(GN);
SDValue Result = DAG.getGlobalAddress(GV, DL, MVT::i64, Offset);
return DAG.getNode(ISD::SUB, DL, MVT::i64, Result,
DAG.getConstant(MinOffset, DL, MVT::i64));
}
static SDValue performCTLZCombine(SDNode *N, SelectionDAG &DAG,
const AArch64Subtarget *Subtarget) {
SDValue BR = N->getOperand(0);
if (!Subtarget->hasCSSC() || BR.getOpcode() != ISD::BITREVERSE ||
!BR.getValueType().isScalarInteger())
return SDValue();
SDLoc DL(N);
return DAG.getNode(ISD::CTTZ, DL, BR.getValueType(), BR.getOperand(0));
}
// Turns the vector of indices into a vector of byte offstes by scaling Offset
// by (BitWidth / 8).
static SDValue getScaledOffsetForBitWidth(SelectionDAG &DAG, SDValue Offset,
SDLoc DL, unsigned BitWidth) {
assert(Offset.getValueType().isScalableVector() &&
"This method is only for scalable vectors of offsets");
SDValue Shift = DAG.getConstant(Log2_32(BitWidth / 8), DL, MVT::i64);
SDValue SplatShift = DAG.getNode(ISD::SPLAT_VECTOR, DL, MVT::nxv2i64, Shift);
return DAG.getNode(ISD::SHL, DL, MVT::nxv2i64, Offset, SplatShift);
}
/// Check if the value of \p OffsetInBytes can be used as an immediate for
/// the gather load/prefetch and scatter store instructions with vector base and
/// immediate offset addressing mode:
///
/// [<Zn>.[S|D]{, #<imm>}]
///
/// where <imm> = sizeof(<T>) * k, for k = 0, 1, ..., 31.
inline static bool isValidImmForSVEVecImmAddrMode(unsigned OffsetInBytes,
unsigned ScalarSizeInBytes) {
// The immediate is not a multiple of the scalar size.
if (OffsetInBytes % ScalarSizeInBytes)
return false;
// The immediate is out of range.
if (OffsetInBytes / ScalarSizeInBytes > 31)
return false;
return true;
}
/// Check if the value of \p Offset represents a valid immediate for the SVE
/// gather load/prefetch and scatter store instructiona with vector base and
/// immediate offset addressing mode:
///
/// [<Zn>.[S|D]{, #<imm>}]
///
/// where <imm> = sizeof(<T>) * k, for k = 0, 1, ..., 31.
static bool isValidImmForSVEVecImmAddrMode(SDValue Offset,
unsigned ScalarSizeInBytes) {
ConstantSDNode *OffsetConst = dyn_cast<ConstantSDNode>(Offset.getNode());
return OffsetConst && isValidImmForSVEVecImmAddrMode(
OffsetConst->getZExtValue(), ScalarSizeInBytes);
}
static SDValue performScatterStoreCombine(SDNode *N, SelectionDAG &DAG,
unsigned Opcode,
bool OnlyPackedOffsets = true) {
const SDValue Src = N->getOperand(2);
const EVT SrcVT = Src->getValueType(0);
assert(SrcVT.isScalableVector() &&
"Scatter stores are only possible for SVE vectors");
SDLoc DL(N);
MVT SrcElVT = SrcVT.getVectorElementType().getSimpleVT();
// Make sure that source data will fit into an SVE register
if (SrcVT.getSizeInBits().getKnownMinValue() > AArch64::SVEBitsPerBlock)
return SDValue();
// For FPs, ACLE only supports _packed_ single and double precision types.
// SST1Q_[INDEX_]PRED is the ST1Q for sve2p1 and should allow all sizes.
if (SrcElVT.isFloatingPoint())
if ((SrcVT != MVT::nxv4f32) && (SrcVT != MVT::nxv2f64) &&
((Opcode != AArch64ISD::SST1Q_PRED &&
Opcode != AArch64ISD::SST1Q_INDEX_PRED) ||
((SrcVT != MVT::nxv8f16) && (SrcVT != MVT::nxv8bf16))))
return SDValue();
// Depending on the addressing mode, this is either a pointer or a vector of
// pointers (that fits into one register)
SDValue Base = N->getOperand(4);
// Depending on the addressing mode, this is either a single offset or a
// vector of offsets (that fits into one register)
SDValue Offset = N->getOperand(5);
// For "scalar + vector of indices", just scale the indices. This only
// applies to non-temporal scatters because there's no instruction that takes
// indices.
if (Opcode == AArch64ISD::SSTNT1_INDEX_PRED) {
Offset =
getScaledOffsetForBitWidth(DAG, Offset, DL, SrcElVT.getSizeInBits());
Opcode = AArch64ISD::SSTNT1_PRED;
} else if (Opcode == AArch64ISD::SST1Q_INDEX_PRED) {
Offset =
getScaledOffsetForBitWidth(DAG, Offset, DL, SrcElVT.getSizeInBits());
Opcode = AArch64ISD::SST1Q_PRED;
}
// In the case of non-temporal gather loads there's only one SVE instruction
// per data-size: "scalar + vector", i.e.
// * stnt1{b|h|w|d} { z0.s }, p0/z, [z0.s, x0]
// Since we do have intrinsics that allow the arguments to be in a different
// order, we may need to swap them to match the spec.
if ((Opcode == AArch64ISD::SSTNT1_PRED || Opcode == AArch64ISD::SST1Q_PRED) &&
Offset.getValueType().isVector())
std::swap(Base, Offset);
// SST1_IMM requires that the offset is an immediate that is:
// * a multiple of #SizeInBytes,
// * in the range [0, 31 x #SizeInBytes],
// where #SizeInBytes is the size in bytes of the stored items. For
// immediates outside that range and non-immediate scalar offsets use SST1 or
// SST1_UXTW instead.
if (Opcode == AArch64ISD::SST1_IMM_PRED) {
if (!isValidImmForSVEVecImmAddrMode(Offset,
SrcVT.getScalarSizeInBits() / 8)) {
if (MVT::nxv4i32 == Base.getValueType().getSimpleVT().SimpleTy)
Opcode = AArch64ISD::SST1_UXTW_PRED;
else
Opcode = AArch64ISD::SST1_PRED;
std::swap(Base, Offset);
}
}
auto &TLI = DAG.getTargetLoweringInfo();
if (!TLI.isTypeLegal(Base.getValueType()))
return SDValue();
// Some scatter store variants allow unpacked offsets, but only as nxv2i32
// vectors. These are implicitly sign (sxtw) or zero (zxtw) extend to
// nxv2i64. Legalize accordingly.
if (!OnlyPackedOffsets &&
Offset.getValueType().getSimpleVT().SimpleTy == MVT::nxv2i32)
Offset = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::nxv2i64, Offset).getValue(0);
if (!TLI.isTypeLegal(Offset.getValueType()))
return SDValue();
// Source value type that is representable in hardware
EVT HwSrcVt = getSVEContainerType(SrcVT);
// Keep the original type of the input data to store - this is needed to be
// able to select the correct instruction, e.g. ST1B, ST1H, ST1W and ST1D. For
// FP values we want the integer equivalent, so just use HwSrcVt.
SDValue InputVT = DAG.getValueType(SrcVT);
if (SrcVT.isFloatingPoint())
InputVT = DAG.getValueType(HwSrcVt);
SDVTList VTs = DAG.getVTList(MVT::Other);
SDValue SrcNew;
if (Src.getValueType().isFloatingPoint())
SrcNew = DAG.getNode(ISD::BITCAST, DL, HwSrcVt, Src);
else
SrcNew = DAG.getNode(ISD::ANY_EXTEND, DL, HwSrcVt, Src);
SDValue Ops[] = {N->getOperand(0), // Chain
SrcNew,
N->getOperand(3), // Pg
Base,
Offset,
InputVT};
return DAG.getNode(Opcode, DL, VTs, Ops);
}
static SDValue performGatherLoadCombine(SDNode *N, SelectionDAG &DAG,
unsigned Opcode,
bool OnlyPackedOffsets = true) {
const EVT RetVT = N->getValueType(0);
assert(RetVT.isScalableVector() &&
"Gather loads are only possible for SVE vectors");
SDLoc DL(N);
// Make sure that the loaded data will fit into an SVE register
if (RetVT.getSizeInBits().getKnownMinValue() > AArch64::SVEBitsPerBlock)
return SDValue();
// Depending on the addressing mode, this is either a pointer or a vector of
// pointers (that fits into one register)
SDValue Base = N->getOperand(3);
// Depending on the addressing mode, this is either a single offset or a
// vector of offsets (that fits into one register)
SDValue Offset = N->getOperand(4);
// For "scalar + vector of indices", scale the indices to obtain unscaled
// offsets. This applies to non-temporal and quadword gathers, which do not
// have an addressing mode with scaled offset.
if (Opcode == AArch64ISD::GLDNT1_INDEX_MERGE_ZERO) {
Offset = getScaledOffsetForBitWidth(DAG, Offset, DL,
RetVT.getScalarSizeInBits());
Opcode = AArch64ISD::GLDNT1_MERGE_ZERO;
} else if (Opcode == AArch64ISD::GLD1Q_INDEX_MERGE_ZERO) {
Offset = getScaledOffsetForBitWidth(DAG, Offset, DL,
RetVT.getScalarSizeInBits());
Opcode = AArch64ISD::GLD1Q_MERGE_ZERO;
}
// In the case of non-temporal gather loads and quadword gather loads there's
// only one addressing mode : "vector + scalar", e.g.
// ldnt1{b|h|w|d} { z0.s }, p0/z, [z0.s, x0]
// Since we do have intrinsics that allow the arguments to be in a different
// order, we may need to swap them to match the spec.
if ((Opcode == AArch64ISD::GLDNT1_MERGE_ZERO ||
Opcode == AArch64ISD::GLD1Q_MERGE_ZERO) &&
Offset.getValueType().isVector())
std::swap(Base, Offset);
// GLD{FF}1_IMM requires that the offset is an immediate that is:
// * a multiple of #SizeInBytes,
// * in the range [0, 31 x #SizeInBytes],
// where #SizeInBytes is the size in bytes of the loaded items. For
// immediates outside that range and non-immediate scalar offsets use
// GLD1_MERGE_ZERO or GLD1_UXTW_MERGE_ZERO instead.
if (Opcode == AArch64ISD::GLD1_IMM_MERGE_ZERO ||
Opcode == AArch64ISD::GLDFF1_IMM_MERGE_ZERO) {
if (!isValidImmForSVEVecImmAddrMode(Offset,
RetVT.getScalarSizeInBits() / 8)) {
if (MVT::nxv4i32 == Base.getValueType().getSimpleVT().SimpleTy)
Opcode = (Opcode == AArch64ISD::GLD1_IMM_MERGE_ZERO)
? AArch64ISD::GLD1_UXTW_MERGE_ZERO
: AArch64ISD::GLDFF1_UXTW_MERGE_ZERO;
else
Opcode = (Opcode == AArch64ISD::GLD1_IMM_MERGE_ZERO)
? AArch64ISD::GLD1_MERGE_ZERO
: AArch64ISD::GLDFF1_MERGE_ZERO;
std::swap(Base, Offset);
}
}
auto &TLI = DAG.getTargetLoweringInfo();
if (!TLI.isTypeLegal(Base.getValueType()))
return SDValue();
// Some gather load variants allow unpacked offsets, but only as nxv2i32
// vectors. These are implicitly sign (sxtw) or zero (zxtw) extend to
// nxv2i64. Legalize accordingly.
if (!OnlyPackedOffsets &&
Offset.getValueType().getSimpleVT().SimpleTy == MVT::nxv2i32)
Offset = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::nxv2i64, Offset).getValue(0);
// Return value type that is representable in hardware
EVT HwRetVt = getSVEContainerType(RetVT);
// Keep the original output value type around - this is needed to be able to
// select the correct instruction, e.g. LD1B, LD1H, LD1W and LD1D. For FP
// values we want the integer equivalent, so just use HwRetVT.
SDValue OutVT = DAG.getValueType(RetVT);
if (RetVT.isFloatingPoint())
OutVT = DAG.getValueType(HwRetVt);
SDVTList VTs = DAG.getVTList(HwRetVt, MVT::Other);
SDValue Ops[] = {N->getOperand(0), // Chain
N->getOperand(2), // Pg
Base, Offset, OutVT};
SDValue Load = DAG.getNode(Opcode, DL, VTs, Ops);
SDValue LoadChain = SDValue(Load.getNode(), 1);
if (RetVT.isInteger() && (RetVT != HwRetVt))
Load = DAG.getNode(ISD::TRUNCATE, DL, RetVT, Load.getValue(0));
// If the original return value was FP, bitcast accordingly. Doing it here
// means that we can avoid adding TableGen patterns for FPs.
if (RetVT.isFloatingPoint())
Load = DAG.getNode(ISD::BITCAST, DL, RetVT, Load.getValue(0));
return DAG.getMergeValues({Load, LoadChain}, DL);
}
static SDValue
performSignExtendInRegCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
SelectionDAG &DAG) {
SDLoc DL(N);
SDValue Src = N->getOperand(0);
unsigned Opc = Src->getOpcode();
// Sign extend of an unsigned unpack -> signed unpack
if (Opc == AArch64ISD::UUNPKHI || Opc == AArch64ISD::UUNPKLO) {
unsigned SOpc = Opc == AArch64ISD::UUNPKHI ? AArch64ISD::SUNPKHI
: AArch64ISD::SUNPKLO;
// Push the sign extend to the operand of the unpack
// This is necessary where, for example, the operand of the unpack
// is another unpack:
// 4i32 sign_extend_inreg (4i32 uunpklo(8i16 uunpklo (16i8 opnd)), from 4i8)
// ->
// 4i32 sunpklo (8i16 sign_extend_inreg(8i16 uunpklo (16i8 opnd), from 8i8)
// ->
// 4i32 sunpklo(8i16 sunpklo(16i8 opnd))
SDValue ExtOp = Src->getOperand(0);
auto VT = cast<VTSDNode>(N->getOperand(1))->getVT();
EVT EltTy = VT.getVectorElementType();
(void)EltTy;
assert((EltTy == MVT::i8 || EltTy == MVT::i16 || EltTy == MVT::i32) &&
"Sign extending from an invalid type");
EVT ExtVT = VT.getDoubleNumVectorElementsVT(*DAG.getContext());
SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ExtOp.getValueType(),
ExtOp, DAG.getValueType(ExtVT));
return DAG.getNode(SOpc, DL, N->getValueType(0), Ext);
}
if (DCI.isBeforeLegalizeOps())
return SDValue();
if (!EnableCombineMGatherIntrinsics)
return SDValue();
// SVE load nodes (e.g. AArch64ISD::GLD1) are straightforward candidates
// for DAG Combine with SIGN_EXTEND_INREG. Bail out for all other nodes.
unsigned NewOpc;
unsigned MemVTOpNum = 4;
switch (Opc) {
case AArch64ISD::LD1_MERGE_ZERO:
NewOpc = AArch64ISD::LD1S_MERGE_ZERO;
MemVTOpNum = 3;
break;
case AArch64ISD::LDNF1_MERGE_ZERO:
NewOpc = AArch64ISD::LDNF1S_MERGE_ZERO;
MemVTOpNum = 3;
break;
case AArch64ISD::LDFF1_MERGE_ZERO:
NewOpc = AArch64ISD::LDFF1S_MERGE_ZERO;
MemVTOpNum = 3;
break;
case AArch64ISD::GLD1_MERGE_ZERO:
NewOpc = AArch64ISD::GLD1S_MERGE_ZERO;
break;
case AArch64ISD::GLD1_SCALED_MERGE_ZERO:
NewOpc = AArch64ISD::GLD1S_SCALED_MERGE_ZERO;
break;
case AArch64ISD::GLD1_SXTW_MERGE_ZERO:
NewOpc = AArch64ISD::GLD1S_SXTW_MERGE_ZERO;
break;
case AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO:
NewOpc = AArch64ISD::GLD1S_SXTW_SCALED_MERGE_ZERO;
break;
case AArch64ISD::GLD1_UXTW_MERGE_ZERO:
NewOpc = AArch64ISD::GLD1S_UXTW_MERGE_ZERO;
break;
case AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO:
NewOpc = AArch64ISD::GLD1S_UXTW_SCALED_MERGE_ZERO;
break;
case AArch64ISD::GLD1_IMM_MERGE_ZERO:
NewOpc = AArch64ISD::GLD1S_IMM_MERGE_ZERO;
break;
case AArch64ISD::GLDFF1_MERGE_ZERO:
NewOpc = AArch64ISD::GLDFF1S_MERGE_ZERO;
break;
case AArch64ISD::GLDFF1_SCALED_MERGE_ZERO:
NewOpc = AArch64ISD::GLDFF1S_SCALED_MERGE_ZERO;
break;
case AArch64ISD::GLDFF1_SXTW_MERGE_ZERO:
NewOpc = AArch64ISD::GLDFF1S_SXTW_MERGE_ZERO;
break;
case AArch64ISD::GLDFF1_SXTW_SCALED_MERGE_ZERO:
NewOpc = AArch64ISD::GLDFF1S_SXTW_SCALED_MERGE_ZERO;
break;
case AArch64ISD::GLDFF1_UXTW_MERGE_ZERO:
NewOpc = AArch64ISD::GLDFF1S_UXTW_MERGE_ZERO;
break;
case AArch64ISD::GLDFF1_UXTW_SCALED_MERGE_ZERO:
NewOpc = AArch64ISD::GLDFF1S_UXTW_SCALED_MERGE_ZERO;
break;
case AArch64ISD::GLDFF1_IMM_MERGE_ZERO:
NewOpc = AArch64ISD::GLDFF1S_IMM_MERGE_ZERO;
break;
case AArch64ISD::GLDNT1_MERGE_ZERO:
NewOpc = AArch64ISD::GLDNT1S_MERGE_ZERO;
break;
default:
return SDValue();
}
EVT SignExtSrcVT = cast<VTSDNode>(N->getOperand(1))->getVT();
EVT SrcMemVT = cast<VTSDNode>(Src->getOperand(MemVTOpNum))->getVT();
if ((SignExtSrcVT != SrcMemVT) || !Src.hasOneUse())
return SDValue();
EVT DstVT = N->getValueType(0);
SDVTList VTs = DAG.getVTList(DstVT, MVT::Other);
SmallVector<SDValue, 5> Ops;
for (unsigned I = 0; I < Src->getNumOperands(); ++I)
Ops.push_back(Src->getOperand(I));
SDValue ExtLoad = DAG.getNode(NewOpc, SDLoc(N), VTs, Ops);
DCI.CombineTo(N, ExtLoad);
DCI.CombineTo(Src.getNode(), ExtLoad, ExtLoad.getValue(1));
// Return N so it doesn't get rechecked
return SDValue(N, 0);
}
/// Legalize the gather prefetch (scalar + vector addressing mode) when the
/// offset vector is an unpacked 32-bit scalable vector. The other cases (Offset
/// != nxv2i32) do not need legalization.
static SDValue legalizeSVEGatherPrefetchOffsVec(SDNode *N, SelectionDAG &DAG) {
const unsigned OffsetPos = 4;
SDValue Offset = N->getOperand(OffsetPos);
// Not an unpacked vector, bail out.
if (Offset.getValueType().getSimpleVT().SimpleTy != MVT::nxv2i32)
return SDValue();
// Extend the unpacked offset vector to 64-bit lanes.
SDLoc DL(N);
Offset = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::nxv2i64, Offset);
SmallVector<SDValue, 5> Ops(N->ops());
// Replace the offset operand with the 64-bit one.
Ops[OffsetPos] = Offset;
return DAG.getNode(N->getOpcode(), DL, DAG.getVTList(MVT::Other), Ops);
}
/// Combines a node carrying the intrinsic
/// `aarch64_sve_prf<T>_gather_scalar_offset` into a node that uses
/// `aarch64_sve_prfb_gather_uxtw_index` when the scalar offset passed to
/// `aarch64_sve_prf<T>_gather_scalar_offset` is not a valid immediate for the
/// sve gather prefetch instruction with vector plus immediate addressing mode.
static SDValue combineSVEPrefetchVecBaseImmOff(SDNode *N, SelectionDAG &DAG,
unsigned ScalarSizeInBytes) {
const unsigned ImmPos = 4, OffsetPos = 3;
// No need to combine the node if the immediate is valid...
if (isValidImmForSVEVecImmAddrMode(N->getOperand(ImmPos), ScalarSizeInBytes))
return SDValue();
// ...otherwise swap the offset base with the offset...
SmallVector<SDValue, 5> Ops(N->ops());
std::swap(Ops[ImmPos], Ops[OffsetPos]);
// ...and remap the intrinsic `aarch64_sve_prf<T>_gather_scalar_offset` to
// `aarch64_sve_prfb_gather_uxtw_index`.
SDLoc DL(N);
Ops[1] = DAG.getConstant(Intrinsic::aarch64_sve_prfb_gather_uxtw_index, DL,
MVT::i64);
return DAG.getNode(N->getOpcode(), DL, DAG.getVTList(MVT::Other), Ops);
}
// Return true if the vector operation can guarantee only the first lane of its
// result contains data, with all bits in other lanes set to zero.
static bool isLanes1toNKnownZero(SDValue Op) {
switch (Op.getOpcode()) {
default:
return false;
case AArch64ISD::ANDV_PRED:
case AArch64ISD::EORV_PRED:
case AArch64ISD::FADDA_PRED:
case AArch64ISD::FADDV_PRED:
case AArch64ISD::FMAXNMV_PRED:
case AArch64ISD::FMAXV_PRED:
case AArch64ISD::FMINNMV_PRED:
case AArch64ISD::FMINV_PRED:
case AArch64ISD::ORV_PRED:
case AArch64ISD::SADDV_PRED:
case AArch64ISD::SMAXV_PRED:
case AArch64ISD::SMINV_PRED:
case AArch64ISD::UADDV_PRED:
case AArch64ISD::UMAXV_PRED:
case AArch64ISD::UMINV_PRED:
return true;
}
}
static SDValue removeRedundantInsertVectorElt(SDNode *N) {
assert(N->getOpcode() == ISD::INSERT_VECTOR_ELT && "Unexpected node!");
SDValue InsertVec = N->getOperand(0);
SDValue InsertElt = N->getOperand(1);
SDValue InsertIdx = N->getOperand(2);
// We only care about inserts into the first element...
if (!isNullConstant(InsertIdx))
return SDValue();
// ...of a zero'd vector...
if (!ISD::isConstantSplatVectorAllZeros(InsertVec.getNode()))
return SDValue();
// ...where the inserted data was previously extracted...
if (InsertElt.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
return SDValue();
SDValue ExtractVec = InsertElt.getOperand(0);
SDValue ExtractIdx = InsertElt.getOperand(1);
// ...from the first element of a vector.
if (!isNullConstant(ExtractIdx))
return SDValue();
// If we get here we are effectively trying to zero lanes 1-N of a vector.
// Ensure there's no type conversion going on.
if (N->getValueType(0) != ExtractVec.getValueType())
return SDValue();
if (!isLanes1toNKnownZero(ExtractVec))
return SDValue();
// The explicit zeroing is redundant.
return ExtractVec;
}
static SDValue
performInsertVectorEltCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
if (SDValue Res = removeRedundantInsertVectorElt(N))
return Res;
return performPostLD1Combine(N, DCI, true);
}
static SDValue performFPExtendCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const AArch64Subtarget *Subtarget) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
if (N->hasOneUse() && N->use_begin()->getOpcode() == ISD::FP_ROUND)
return SDValue();
auto hasValidElementTypeForFPExtLoad = [](EVT VT) {
EVT EltVT = VT.getVectorElementType();
return EltVT == MVT::f32 || EltVT == MVT::f64;
};
// fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
// We purposefully don't care about legality of the nodes here as we know
// they can be split down into something legal.
if (DCI.isBeforeLegalizeOps() && ISD::isNormalLoad(N0.getNode()) &&
N0.hasOneUse() && Subtarget->useSVEForFixedLengthVectors() &&
VT.isFixedLengthVector() && hasValidElementTypeForFPExtLoad(VT) &&
VT.getFixedSizeInBits() >= Subtarget->getMinSVEVectorSizeInBits()) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
LN0->getChain(), LN0->getBasePtr(),
N0.getValueType(), LN0->getMemOperand());
DCI.CombineTo(N, ExtLoad);
DCI.CombineTo(
N0.getNode(),
DAG.getNode(ISD::FP_ROUND, SDLoc(N0), N0.getValueType(), ExtLoad,
DAG.getIntPtrConstant(1, SDLoc(N0), /*isTarget=*/true)),
ExtLoad.getValue(1));
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
return SDValue();
}
static SDValue performBSPExpandForSVE(SDNode *N, SelectionDAG &DAG,
const AArch64Subtarget *Subtarget) {
EVT VT = N->getValueType(0);
// Don't expand for NEON, SVE2 or SME
if (!VT.isScalableVector() || Subtarget->hasSVE2() || Subtarget->hasSME())
return SDValue();
SDLoc DL(N);
SDValue Mask = N->getOperand(0);
SDValue In1 = N->getOperand(1);
SDValue In2 = N->getOperand(2);
SDValue InvMask = DAG.getNOT(DL, Mask, VT);
SDValue Sel = DAG.getNode(ISD::AND, DL, VT, Mask, In1);
SDValue SelInv = DAG.getNode(ISD::AND, DL, VT, InvMask, In2);
return DAG.getNode(ISD::OR, DL, VT, Sel, SelInv);
}
static SDValue performDupLane128Combine(SDNode *N, SelectionDAG &DAG) {
EVT VT = N->getValueType(0);
SDValue Insert = N->getOperand(0);
if (Insert.getOpcode() != ISD::INSERT_SUBVECTOR)
return SDValue();
if (!Insert.getOperand(0).isUndef())
return SDValue();
uint64_t IdxInsert = Insert.getConstantOperandVal(2);
uint64_t IdxDupLane = N->getConstantOperandVal(1);
if (IdxInsert != 0 || IdxDupLane != 0)
return SDValue();
SDValue Bitcast = Insert.getOperand(1);
if (Bitcast.getOpcode() != ISD::BITCAST)
return SDValue();
SDValue Subvec = Bitcast.getOperand(0);
EVT SubvecVT = Subvec.getValueType();
if (!SubvecVT.is128BitVector())
return SDValue();
EVT NewSubvecVT =
getPackedSVEVectorVT(Subvec.getValueType().getVectorElementType());
SDLoc DL(N);
SDValue NewInsert =
DAG.getNode(ISD::INSERT_SUBVECTOR, DL, NewSubvecVT,
DAG.getUNDEF(NewSubvecVT), Subvec, Insert->getOperand(2));
SDValue NewDuplane128 = DAG.getNode(AArch64ISD::DUPLANE128, DL, NewSubvecVT,
NewInsert, N->getOperand(1));
return DAG.getNode(ISD::BITCAST, DL, VT, NewDuplane128);
}
// Try to combine mull with uzp1.
static SDValue tryCombineMULLWithUZP1(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
SelectionDAG &DAG) {
if (DCI.isBeforeLegalizeOps())
return SDValue();
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
SDValue ExtractHigh;
SDValue ExtractLow;
SDValue TruncHigh;
SDValue TruncLow;
SDLoc DL(N);
// Check the operands are trunc and extract_high.
if (isEssentiallyExtractHighSubvector(LHS) &&
RHS.getOpcode() == ISD::TRUNCATE) {
TruncHigh = RHS;
if (LHS.getOpcode() == ISD::BITCAST)
ExtractHigh = LHS.getOperand(0);
else
ExtractHigh = LHS;
} else if (isEssentiallyExtractHighSubvector(RHS) &&
LHS.getOpcode() == ISD::TRUNCATE) {
TruncHigh = LHS;
if (RHS.getOpcode() == ISD::BITCAST)
ExtractHigh = RHS.getOperand(0);
else
ExtractHigh = RHS;
} else
return SDValue();
// If the truncate's operand is BUILD_VECTOR with DUP, do not combine the op
// with uzp1.
// You can see the regressions on test/CodeGen/AArch64/aarch64-smull.ll
SDValue TruncHighOp = TruncHigh.getOperand(0);
EVT TruncHighOpVT = TruncHighOp.getValueType();
if (TruncHighOp.getOpcode() == AArch64ISD::DUP ||
DAG.isSplatValue(TruncHighOp, false))
return SDValue();
// Check there is other extract_high with same source vector.
// For example,
//
// t18: v4i16 = extract_subvector t2, Constant:i64<0>
// t12: v4i16 = truncate t11
// t31: v4i32 = AArch64ISD::SMULL t18, t12
// t23: v4i16 = extract_subvector t2, Constant:i64<4>
// t16: v4i16 = truncate t15
// t30: v4i32 = AArch64ISD::SMULL t23, t1
//
// This dagcombine assumes the two extract_high uses same source vector in
// order to detect the pair of the mull. If they have different source vector,
// this code will not work.
// TODO: Should also try to look through a bitcast.
bool HasFoundMULLow = true;
SDValue ExtractHighSrcVec = ExtractHigh.getOperand(0);
if (ExtractHighSrcVec->use_size() != 2)
HasFoundMULLow = false;
// Find ExtractLow.
for (SDNode *User : ExtractHighSrcVec.getNode()->uses()) {
if (User == ExtractHigh.getNode())
continue;
if (User->getOpcode() != ISD::EXTRACT_SUBVECTOR ||
!isNullConstant(User->getOperand(1))) {
HasFoundMULLow = false;
break;
}
ExtractLow.setNode(User);
}
if (!ExtractLow || !ExtractLow->hasOneUse())
HasFoundMULLow = false;
// Check ExtractLow's user.
if (HasFoundMULLow) {
SDNode *ExtractLowUser = *ExtractLow.getNode()->use_begin();
if (ExtractLowUser->getOpcode() != N->getOpcode()) {
HasFoundMULLow = false;
} else {
if (ExtractLowUser->getOperand(0) == ExtractLow) {
if (ExtractLowUser->getOperand(1).getOpcode() == ISD::TRUNCATE)
TruncLow = ExtractLowUser->getOperand(1);
else
HasFoundMULLow = false;
} else {
if (ExtractLowUser->getOperand(0).getOpcode() == ISD::TRUNCATE)
TruncLow = ExtractLowUser->getOperand(0);
else
HasFoundMULLow = false;
}
}
}
// If the truncate's operand is BUILD_VECTOR with DUP, do not combine the op
// with uzp1.
// You can see the regressions on test/CodeGen/AArch64/aarch64-smull.ll
EVT TruncHighVT = TruncHigh.getValueType();
EVT UZP1VT = TruncHighVT.getDoubleNumVectorElementsVT(*DAG.getContext());
SDValue TruncLowOp =
HasFoundMULLow ? TruncLow.getOperand(0) : DAG.getUNDEF(UZP1VT);
EVT TruncLowOpVT = TruncLowOp.getValueType();
if (HasFoundMULLow && (TruncLowOp.getOpcode() == AArch64ISD::DUP ||
DAG.isSplatValue(TruncLowOp, false)))
return SDValue();
// Create uzp1, extract_high and extract_low.
if (TruncHighOpVT != UZP1VT)
TruncHighOp = DAG.getNode(ISD::BITCAST, DL, UZP1VT, TruncHighOp);
if (TruncLowOpVT != UZP1VT)
TruncLowOp = DAG.getNode(ISD::BITCAST, DL, UZP1VT, TruncLowOp);
SDValue UZP1 =
DAG.getNode(AArch64ISD::UZP1, DL, UZP1VT, TruncLowOp, TruncHighOp);
SDValue HighIdxCst =
DAG.getConstant(TruncHighVT.getVectorNumElements(), DL, MVT::i64);
SDValue NewTruncHigh =
DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, TruncHighVT, UZP1, HighIdxCst);
DAG.ReplaceAllUsesWith(TruncHigh, NewTruncHigh);
if (HasFoundMULLow) {
EVT TruncLowVT = TruncLow.getValueType();
SDValue NewTruncLow = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, TruncLowVT,
UZP1, ExtractLow.getOperand(1));
DAG.ReplaceAllUsesWith(TruncLow, NewTruncLow);
}
return SDValue(N, 0);
}
static SDValue performMULLCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
SelectionDAG &DAG) {
if (SDValue Val =
tryCombineLongOpWithDup(Intrinsic::not_intrinsic, N, DCI, DAG))
return Val;
if (SDValue Val = tryCombineMULLWithUZP1(N, DCI, DAG))
return Val;
return SDValue();
}
static SDValue
performScalarToVectorCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
SelectionDAG &DAG) {
// Let's do below transform.
//
// t34: v4i32 = AArch64ISD::UADDLV t2
// t35: i32 = extract_vector_elt t34, Constant:i64<0>
// t7: i64 = zero_extend t35
// t20: v1i64 = scalar_to_vector t7
// ==>
// t34: v4i32 = AArch64ISD::UADDLV t2
// t39: v2i32 = extract_subvector t34, Constant:i64<0>
// t40: v1i64 = AArch64ISD::NVCAST t39
if (DCI.isBeforeLegalizeOps())
return SDValue();
EVT VT = N->getValueType(0);
if (VT != MVT::v1i64)
return SDValue();
SDValue ZEXT = N->getOperand(0);
if (ZEXT.getOpcode() != ISD::ZERO_EXTEND || ZEXT.getValueType() != MVT::i64)
return SDValue();
SDValue EXTRACT_VEC_ELT = ZEXT.getOperand(0);
if (EXTRACT_VEC_ELT.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
EXTRACT_VEC_ELT.getValueType() != MVT::i32)
return SDValue();
if (!isNullConstant(EXTRACT_VEC_ELT.getOperand(1)))
return SDValue();
SDValue UADDLV = EXTRACT_VEC_ELT.getOperand(0);
if (UADDLV.getOpcode() != AArch64ISD::UADDLV ||
UADDLV.getValueType() != MVT::v4i32 ||
UADDLV.getOperand(0).getValueType() != MVT::v8i8)
return SDValue();
// Let's generate new sequence with AArch64ISD::NVCAST.
SDLoc DL(N);
SDValue EXTRACT_SUBVEC =
DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i32, UADDLV,
DAG.getConstant(0, DL, MVT::i64));
SDValue NVCAST =
DAG.getNode(AArch64ISD::NVCAST, DL, MVT::v1i64, EXTRACT_SUBVEC);
return NVCAST;
}
SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
switch (N->getOpcode()) {
default:
LLVM_DEBUG(dbgs() << "Custom combining: skipping\n");
break;
case ISD::VECREDUCE_AND:
case ISD::VECREDUCE_OR:
case ISD::VECREDUCE_XOR:
return performVecReduceBitwiseCombine(N, DCI, DAG);
case ISD::ADD:
case ISD::SUB:
return performAddSubCombine(N, DCI);
case ISD::BUILD_VECTOR:
return performBuildVectorCombine(N, DCI, DAG);
case ISD::TRUNCATE:
return performTruncateCombine(N, DAG);
case AArch64ISD::ANDS:
return performFlagSettingCombine(N, DCI, ISD::AND);
case AArch64ISD::ADC:
if (auto R = foldOverflowCheck(N, DAG, /* IsAdd */ true))
return R;
return foldADCToCINC(N, DAG);
case AArch64ISD::SBC:
return foldOverflowCheck(N, DAG, /* IsAdd */ false);
case AArch64ISD::ADCS:
if (auto R = foldOverflowCheck(N, DAG, /* IsAdd */ true))
return R;
return performFlagSettingCombine(N, DCI, AArch64ISD::ADC);
case AArch64ISD::SBCS:
if (auto R = foldOverflowCheck(N, DAG, /* IsAdd */ false))
return R;
return performFlagSettingCombine(N, DCI, AArch64ISD::SBC);
case AArch64ISD::BICi: {
APInt DemandedBits =
APInt::getAllOnes(N->getValueType(0).getScalarSizeInBits());
APInt DemandedElts =
APInt::getAllOnes(N->getValueType(0).getVectorNumElements());
if (DAG.getTargetLoweringInfo().SimplifyDemandedBits(
SDValue(N, 0), DemandedBits, DemandedElts, DCI))
return SDValue();
break;
}
case ISD::XOR:
return performXorCombine(N, DAG, DCI, Subtarget);
case ISD::MUL:
return performMulCombine(N, DAG, DCI, Subtarget);
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP:
return performIntToFpCombine(N, DAG, Subtarget);
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
case ISD::FP_TO_SINT_SAT:
case ISD::FP_TO_UINT_SAT:
return performFpToIntCombine(N, DAG, DCI, Subtarget);
case ISD::OR:
return performORCombine(N, DCI, Subtarget, *this);
case ISD::AND:
return performANDCombine(N, DCI);
case ISD::FADD:
return performFADDCombine(N, DCI);
case ISD::INTRINSIC_WO_CHAIN:
return performIntrinsicCombine(N, DCI, Subtarget);
case ISD::ANY_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::SIGN_EXTEND:
return performExtendCombine(N, DCI, DAG);
case ISD::SIGN_EXTEND_INREG:
return performSignExtendInRegCombine(N, DCI, DAG);
case ISD::CONCAT_VECTORS:
return performConcatVectorsCombine(N, DCI, DAG);
case ISD::EXTRACT_SUBVECTOR:
return performExtractSubvectorCombine(N, DCI, DAG);
case ISD::INSERT_SUBVECTOR:
return performInsertSubvectorCombine(N, DCI, DAG);
case ISD::SELECT:
return performSelectCombine(N, DCI);
case ISD::VSELECT:
return performVSelectCombine(N, DCI.DAG);
case ISD::SETCC:
return performSETCCCombine(N, DCI, DAG);
case ISD::LOAD:
return performLOADCombine(N, DCI, DAG, Subtarget);
case ISD::STORE:
return performSTORECombine(N, DCI, DAG, Subtarget);
case ISD::MSTORE:
return performMSTORECombine(N, DCI, DAG, Subtarget);
case ISD::MGATHER:
case ISD::MSCATTER:
case ISD::EXPERIMENTAL_VECTOR_HISTOGRAM:
return performMaskedGatherScatterCombine(N, DCI, DAG);
case ISD::FP_EXTEND:
return performFPExtendCombine(N, DAG, DCI, Subtarget);
case AArch64ISD::BRCOND:
return performBRCONDCombine(N, DCI, DAG);
case AArch64ISD::TBNZ:
case AArch64ISD::TBZ:
return performTBZCombine(N, DCI, DAG);
case AArch64ISD::CSEL:
return performCSELCombine(N, DCI, DAG);
case AArch64ISD::DUP:
case AArch64ISD::DUPLANE8:
case AArch64ISD::DUPLANE16:
case AArch64ISD::DUPLANE32:
case AArch64ISD::DUPLANE64:
return performDUPCombine(N, DCI);
case AArch64ISD::DUPLANE128:
return performDupLane128Combine(N, DAG);
case AArch64ISD::NVCAST:
return performNVCASTCombine(N, DAG);
case AArch64ISD::SPLICE:
return performSpliceCombine(N, DAG);
case AArch64ISD::UUNPKLO:
case AArch64ISD::UUNPKHI:
return performUnpackCombine(N, DAG, Subtarget);
case AArch64ISD::UZP1:
case AArch64ISD::UZP2:
return performUzpCombine(N, DAG, Subtarget);
case AArch64ISD::SETCC_MERGE_ZERO:
return performSetccMergeZeroCombine(N, DCI);
case AArch64ISD::REINTERPRET_CAST:
return performReinterpretCastCombine(N);
case AArch64ISD::GLD1_MERGE_ZERO:
case AArch64ISD::GLD1_SCALED_MERGE_ZERO:
case AArch64ISD::GLD1_UXTW_MERGE_ZERO:
case AArch64ISD::GLD1_SXTW_MERGE_ZERO:
case AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO:
case AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO:
case AArch64ISD::GLD1_IMM_MERGE_ZERO:
case AArch64ISD::GLD1S_MERGE_ZERO:
case AArch64ISD::GLD1S_SCALED_MERGE_ZERO:
case AArch64ISD::GLD1S_UXTW_MERGE_ZERO:
case AArch64ISD::GLD1S_SXTW_MERGE_ZERO:
case AArch64ISD::GLD1S_UXTW_SCALED_MERGE_ZERO:
case AArch64ISD::GLD1S_SXTW_SCALED_MERGE_ZERO:
case AArch64ISD::GLD1S_IMM_MERGE_ZERO:
return performGLD1Combine(N, DAG);
case AArch64ISD::VASHR:
case AArch64ISD::VLSHR:
return performVectorShiftCombine(N, *this, DCI);
case AArch64ISD::SUNPKLO:
return performSunpkloCombine(N, DAG);
case AArch64ISD::BSP:
return performBSPExpandForSVE(N, DAG, Subtarget);
case ISD::INSERT_VECTOR_ELT:
return performInsertVectorEltCombine(N, DCI);
case ISD::EXTRACT_VECTOR_ELT:
return performExtractVectorEltCombine(N, DCI, Subtarget);
case ISD::VECREDUCE_ADD:
return performVecReduceAddCombine(N, DCI.DAG, Subtarget);
case AArch64ISD::UADDV:
return performUADDVCombine(N, DAG);
case AArch64ISD::SMULL:
case AArch64ISD::UMULL:
case AArch64ISD::PMULL:
return performMULLCombine(N, DCI, DAG);
case ISD::INTRINSIC_VOID:
case ISD::INTRINSIC_W_CHAIN:
switch (N->getConstantOperandVal(1)) {
case Intrinsic::aarch64_sve_prfb_gather_scalar_offset:
return combineSVEPrefetchVecBaseImmOff(N, DAG, 1 /*=ScalarSizeInBytes*/);
case Intrinsic::aarch64_sve_prfh_gather_scalar_offset:
return combineSVEPrefetchVecBaseImmOff(N, DAG, 2 /*=ScalarSizeInBytes*/);
case Intrinsic::aarch64_sve_prfw_gather_scalar_offset:
return combineSVEPrefetchVecBaseImmOff(N, DAG, 4 /*=ScalarSizeInBytes*/);
case Intrinsic::aarch64_sve_prfd_gather_scalar_offset:
return combineSVEPrefetchVecBaseImmOff(N, DAG, 8 /*=ScalarSizeInBytes*/);
case Intrinsic::aarch64_sve_prfb_gather_uxtw_index:
case Intrinsic::aarch64_sve_prfb_gather_sxtw_index:
case Intrinsic::aarch64_sve_prfh_gather_uxtw_index:
case Intrinsic::aarch64_sve_prfh_gather_sxtw_index:
case Intrinsic::aarch64_sve_prfw_gather_uxtw_index:
case Intrinsic::aarch64_sve_prfw_gather_sxtw_index:
case Intrinsic::aarch64_sve_prfd_gather_uxtw_index:
case Intrinsic::aarch64_sve_prfd_gather_sxtw_index:
return legalizeSVEGatherPrefetchOffsVec(N, DAG);
case Intrinsic::aarch64_neon_ld2:
case Intrinsic::aarch64_neon_ld3:
case Intrinsic::aarch64_neon_ld4:
case Intrinsic::aarch64_neon_ld1x2:
case Intrinsic::aarch64_neon_ld1x3:
case Intrinsic::aarch64_neon_ld1x4:
case Intrinsic::aarch64_neon_ld2lane:
case Intrinsic::aarch64_neon_ld3lane:
case Intrinsic::aarch64_neon_ld4lane:
case Intrinsic::aarch64_neon_ld2r:
case Intrinsic::aarch64_neon_ld3r:
case Intrinsic::aarch64_neon_ld4r:
case Intrinsic::aarch64_neon_st2:
case Intrinsic::aarch64_neon_st3:
case Intrinsic::aarch64_neon_st4:
case Intrinsic::aarch64_neon_st1x2:
case Intrinsic::aarch64_neon_st1x3:
case Intrinsic::aarch64_neon_st1x4:
case Intrinsic::aarch64_neon_st2lane:
case Intrinsic::aarch64_neon_st3lane:
case Intrinsic::aarch64_neon_st4lane:
return performNEONPostLDSTCombine(N, DCI, DAG);
case Intrinsic::aarch64_sve_ldnt1:
return performLDNT1Combine(N, DAG);
case Intrinsic::aarch64_sve_ld1rq:
return performLD1ReplicateCombine<AArch64ISD::LD1RQ_MERGE_ZERO>(N, DAG);
case Intrinsic::aarch64_sve_ld1ro:
return performLD1ReplicateCombine<AArch64ISD::LD1RO_MERGE_ZERO>(N, DAG);
case Intrinsic::aarch64_sve_ldnt1_gather_scalar_offset:
return performGatherLoadCombine(N, DAG, AArch64ISD::GLDNT1_MERGE_ZERO);
case Intrinsic::aarch64_sve_ldnt1_gather:
return performGatherLoadCombine(N, DAG, AArch64ISD::GLDNT1_MERGE_ZERO);
case Intrinsic::aarch64_sve_ldnt1_gather_index:
return performGatherLoadCombine(N, DAG,
AArch64ISD::GLDNT1_INDEX_MERGE_ZERO);
case Intrinsic::aarch64_sve_ldnt1_gather_uxtw:
return performGatherLoadCombine(N, DAG, AArch64ISD::GLDNT1_MERGE_ZERO);
case Intrinsic::aarch64_sve_ld1:
return performLD1Combine(N, DAG, AArch64ISD::LD1_MERGE_ZERO);
case Intrinsic::aarch64_sve_ldnf1:
return performLD1Combine(N, DAG, AArch64ISD::LDNF1_MERGE_ZERO);
case Intrinsic::aarch64_sve_ldff1:
return performLD1Combine(N, DAG, AArch64ISD::LDFF1_MERGE_ZERO);
case Intrinsic::aarch64_sve_st1:
return performST1Combine(N, DAG);
case Intrinsic::aarch64_sve_stnt1:
return performSTNT1Combine(N, DAG);
case Intrinsic::aarch64_sve_stnt1_scatter_scalar_offset:
return performScatterStoreCombine(N, DAG, AArch64ISD::SSTNT1_PRED);
case Intrinsic::aarch64_sve_stnt1_scatter_uxtw:
return performScatterStoreCombine(N, DAG, AArch64ISD::SSTNT1_PRED);
case Intrinsic::aarch64_sve_stnt1_scatter:
return performScatterStoreCombine(N, DAG, AArch64ISD::SSTNT1_PRED);
case Intrinsic::aarch64_sve_stnt1_scatter_index:
return performScatterStoreCombine(N, DAG, AArch64ISD::SSTNT1_INDEX_PRED);
case Intrinsic::aarch64_sve_ld1_gather:
return performGatherLoadCombine(N, DAG, AArch64ISD::GLD1_MERGE_ZERO);
case Intrinsic::aarch64_sve_ld1q_gather_scalar_offset:
case Intrinsic::aarch64_sve_ld1q_gather_vector_offset:
return performGatherLoadCombine(N, DAG, AArch64ISD::GLD1Q_MERGE_ZERO);
case Intrinsic::aarch64_sve_ld1q_gather_index:
return performGatherLoadCombine(N, DAG,
AArch64ISD::GLD1Q_INDEX_MERGE_ZERO);
case Intrinsic::aarch64_sve_ld1_gather_index:
return performGatherLoadCombine(N, DAG,
AArch64ISD::GLD1_SCALED_MERGE_ZERO);
case Intrinsic::aarch64_sve_ld1_gather_sxtw:
return performGatherLoadCombine(N, DAG, AArch64ISD::GLD1_SXTW_MERGE_ZERO,
/*OnlyPackedOffsets=*/false);
case Intrinsic::aarch64_sve_ld1_gather_uxtw:
return performGatherLoadCombine(N, DAG, AArch64ISD::GLD1_UXTW_MERGE_ZERO,
/*OnlyPackedOffsets=*/false);
case Intrinsic::aarch64_sve_ld1_gather_sxtw_index:
return performGatherLoadCombine(N, DAG,
AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO,
/*OnlyPackedOffsets=*/false);
case Intrinsic::aarch64_sve_ld1_gather_uxtw_index:
return performGatherLoadCombine(N, DAG,
AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO,
/*OnlyPackedOffsets=*/false);
case Intrinsic::aarch64_sve_ld1_gather_scalar_offset:
return performGatherLoadCombine(N, DAG, AArch64ISD::GLD1_IMM_MERGE_ZERO);
case Intrinsic::aarch64_sve_ldff1_gather:
return performGatherLoadCombine(N, DAG, AArch64ISD::GLDFF1_MERGE_ZERO);
case Intrinsic::aarch64_sve_ldff1_gather_index:
return performGatherLoadCombine(N, DAG,
AArch64ISD::GLDFF1_SCALED_MERGE_ZERO);
case Intrinsic::aarch64_sve_ldff1_gather_sxtw:
return performGatherLoadCombine(N, DAG,
AArch64ISD::GLDFF1_SXTW_MERGE_ZERO,
/*OnlyPackedOffsets=*/false);
case Intrinsic::aarch64_sve_ldff1_gather_uxtw:
return performGatherLoadCombine(N, DAG,
AArch64ISD::GLDFF1_UXTW_MERGE_ZERO,
/*OnlyPackedOffsets=*/false);
case Intrinsic::aarch64_sve_ldff1_gather_sxtw_index:
return performGatherLoadCombine(N, DAG,
AArch64ISD::GLDFF1_SXTW_SCALED_MERGE_ZERO,
/*OnlyPackedOffsets=*/false);
case Intrinsic::aarch64_sve_ldff1_gather_uxtw_index:
return performGatherLoadCombine(N, DAG,
AArch64ISD::GLDFF1_UXTW_SCALED_MERGE_ZERO,
/*OnlyPackedOffsets=*/false);
case Intrinsic::aarch64_sve_ldff1_gather_scalar_offset:
return performGatherLoadCombine(N, DAG,
AArch64ISD::GLDFF1_IMM_MERGE_ZERO);
case Intrinsic::aarch64_sve_st1q_scatter_scalar_offset:
case Intrinsic::aarch64_sve_st1q_scatter_vector_offset:
return performScatterStoreCombine(N, DAG, AArch64ISD::SST1Q_PRED);
case Intrinsic::aarch64_sve_st1q_scatter_index:
return performScatterStoreCombine(N, DAG, AArch64ISD::SST1Q_INDEX_PRED);
case Intrinsic::aarch64_sve_st1_scatter:
return performScatterStoreCombine(N, DAG, AArch64ISD::SST1_PRED);
case Intrinsic::aarch64_sve_st1_scatter_index:
return performScatterStoreCombine(N, DAG, AArch64ISD::SST1_SCALED_PRED);
case Intrinsic::aarch64_sve_st1_scatter_sxtw:
return performScatterStoreCombine(N, DAG, AArch64ISD::SST1_SXTW_PRED,
/*OnlyPackedOffsets=*/false);
case Intrinsic::aarch64_sve_st1_scatter_uxtw:
return performScatterStoreCombine(N, DAG, AArch64ISD::SST1_UXTW_PRED,
/*OnlyPackedOffsets=*/false);
case Intrinsic::aarch64_sve_st1_scatter_sxtw_index:
return performScatterStoreCombine(N, DAG,
AArch64ISD::SST1_SXTW_SCALED_PRED,
/*OnlyPackedOffsets=*/false);
case Intrinsic::aarch64_sve_st1_scatter_uxtw_index:
return performScatterStoreCombine(N, DAG,
AArch64ISD::SST1_UXTW_SCALED_PRED,
/*OnlyPackedOffsets=*/false);
case Intrinsic::aarch64_sve_st1_scatter_scalar_offset:
return performScatterStoreCombine(N, DAG, AArch64ISD::SST1_IMM_PRED);
case Intrinsic::aarch64_rndr:
case Intrinsic::aarch64_rndrrs: {
unsigned IntrinsicID = N->getConstantOperandVal(1);
auto Register =
(IntrinsicID == Intrinsic::aarch64_rndr ? AArch64SysReg::RNDR
: AArch64SysReg::RNDRRS);
SDLoc DL(N);
SDValue A = DAG.getNode(
AArch64ISD::MRS, DL, DAG.getVTList(MVT::i64, MVT::Glue, MVT::Other),
N->getOperand(0), DAG.getConstant(Register, DL, MVT::i64));
SDValue B = DAG.getNode(
AArch64ISD::CSINC, DL, MVT::i32, DAG.getConstant(0, DL, MVT::i32),
DAG.getConstant(0, DL, MVT::i32),
DAG.getConstant(AArch64CC::NE, DL, MVT::i32), A.getValue(1));
return DAG.getMergeValues(
{A, DAG.getZExtOrTrunc(B, DL, MVT::i1), A.getValue(2)}, DL);
}
case Intrinsic::aarch64_sme_ldr_zt:
return DAG.getNode(AArch64ISD::RESTORE_ZT, SDLoc(N),
DAG.getVTList(MVT::Other), N->getOperand(0),
N->getOperand(2), N->getOperand(3));
case Intrinsic::aarch64_sme_str_zt:
return DAG.getNode(AArch64ISD::SAVE_ZT, SDLoc(N),
DAG.getVTList(MVT::Other), N->getOperand(0),
N->getOperand(2), N->getOperand(3));
default:
break;
}
break;
case ISD::GlobalAddress:
return performGlobalAddressCombine(N, DAG, Subtarget, getTargetMachine());
case ISD::CTLZ:
return performCTLZCombine(N, DAG, Subtarget);
case ISD::SCALAR_TO_VECTOR:
return performScalarToVectorCombine(N, DCI, DAG);
}
return SDValue();
}
// Check if the return value is used as only a return value, as otherwise
// we can't perform a tail-call. In particular, we need to check for
// target ISD nodes that are returns and any other "odd" constructs
// that the generic analysis code won't necessarily catch.
bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N,
SDValue &Chain) const {
if (N->getNumValues() != 1)
return false;
if (!N->hasNUsesOfValue(1, 0))
return false;
SDValue TCChain = Chain;
SDNode *Copy = *N->use_begin();
if (Copy->getOpcode() == ISD::CopyToReg) {
// If the copy has a glue operand, we conservatively assume it isn't safe to
// perform a tail call.
if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() ==
MVT::Glue)
return false;
TCChain = Copy->getOperand(0);
} else if (Copy->getOpcode() != ISD::FP_EXTEND)
return false;
bool HasRet = false;
for (SDNode *Node : Copy->uses()) {
if (Node->getOpcode() != AArch64ISD::RET_GLUE)
return false;
HasRet = true;
}
if (!HasRet)
return false;
Chain = TCChain;
return true;
}
// Return whether the an instruction can potentially be optimized to a tail
// call. This will cause the optimizers to attempt to move, or duplicate,
// return instructions to help enable tail call optimizations for this
// instruction.
bool AArch64TargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
return CI->isTailCall();
}
bool AArch64TargetLowering::isIndexingLegal(MachineInstr &MI, Register Base,
Register Offset, bool IsPre,
MachineRegisterInfo &MRI) const {
auto CstOffset = getIConstantVRegVal(Offset, MRI);
if (!CstOffset || CstOffset->isZero())
return false;
// All of the indexed addressing mode instructions take a signed 9 bit
// immediate offset. Our CstOffset is a G_PTR_ADD offset so it already
// encodes the sign/indexing direction.
return isInt<9>(CstOffset->getSExtValue());
}
bool AArch64TargetLowering::getIndexedAddressParts(SDNode *N, SDNode *Op,
SDValue &Base,
SDValue &Offset,
SelectionDAG &DAG) const {
if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)
return false;
// Non-null if there is exactly one user of the loaded value (ignoring chain).
SDNode *ValOnlyUser = nullptr;
for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); UI != UE;
++UI) {
if (UI.getUse().getResNo() == 1)
continue; // Ignore chain.
if (ValOnlyUser == nullptr)
ValOnlyUser = *UI;
else {
ValOnlyUser = nullptr; // Multiple non-chain uses, bail out.
break;
}
}
auto IsUndefOrZero = [](SDValue V) {
return V.isUndef() || isNullOrNullSplat(V, /*AllowUndefs*/ true);
};
// If the only user of the value is a scalable vector splat, it is
// preferable to do a replicating load (ld1r*).
if (ValOnlyUser && ValOnlyUser->getValueType(0).isScalableVector() &&
(ValOnlyUser->getOpcode() == ISD::SPLAT_VECTOR ||
(ValOnlyUser->getOpcode() == AArch64ISD::DUP_MERGE_PASSTHRU &&
IsUndefOrZero(ValOnlyUser->getOperand(2)))))
return false;
Base = Op->getOperand(0);
// All of the indexed addressing mode instructions take a signed
// 9 bit immediate offset.
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
int64_t RHSC = RHS->getSExtValue();
if (Op->getOpcode() == ISD::SUB)
RHSC = -(uint64_t)RHSC;
if (!isInt<9>(RHSC))
return false;
// Always emit pre-inc/post-inc addressing mode. Use negated constant offset
// when dealing with subtraction.
Offset = DAG.getConstant(RHSC, SDLoc(N), RHS->getValueType(0));
return true;
}
return false;
}
bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
SDValue &Offset,
ISD::MemIndexedMode &AM,
SelectionDAG &DAG) const {
EVT VT;
SDValue Ptr;
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
VT = LD->getMemoryVT();
Ptr = LD->getBasePtr();
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
VT = ST->getMemoryVT();
Ptr = ST->getBasePtr();
} else
return false;
if (!getIndexedAddressParts(N, Ptr.getNode(), Base, Offset, DAG))
return false;
AM = ISD::PRE_INC;
return true;
}
bool AArch64TargetLowering::getPostIndexedAddressParts(
SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset,
ISD::MemIndexedMode &AM, SelectionDAG &DAG) const {
EVT VT;
SDValue Ptr;
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
VT = LD->getMemoryVT();
Ptr = LD->getBasePtr();
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
VT = ST->getMemoryVT();
Ptr = ST->getBasePtr();
} else
return false;
if (!getIndexedAddressParts(N, Op, Base, Offset, DAG))
return false;
// Post-indexing updates the base, so it's not a valid transform
// if that's not the same as the load's pointer.
if (Ptr != Base)
return false;
AM = ISD::POST_INC;
return true;
}
static void replaceBoolVectorBitcast(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) {
SDLoc DL(N);
SDValue Op = N->getOperand(0);
EVT VT = N->getValueType(0);
[[maybe_unused]] EVT SrcVT = Op.getValueType();
assert(SrcVT.isVector() && SrcVT.getVectorElementType() == MVT::i1 &&
"Must be bool vector.");
// Special handling for Clang's __builtin_convertvector. For vectors with <8
// elements, it adds a vector concatenation with undef(s). If we encounter
// this here, we can skip the concat.
if (Op.getOpcode() == ISD::CONCAT_VECTORS && !Op.getOperand(0).isUndef()) {
bool AllUndef = true;
for (unsigned I = 1; I < Op.getNumOperands(); ++I)
AllUndef &= Op.getOperand(I).isUndef();
if (AllUndef)
Op = Op.getOperand(0);
}
SDValue VectorBits = vectorToScalarBitmask(Op.getNode(), DAG);
if (VectorBits)
Results.push_back(DAG.getZExtOrTrunc(VectorBits, DL, VT));
}
static void CustomNonLegalBITCASTResults(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG, EVT ExtendVT,
EVT CastVT) {
SDLoc DL(N);
SDValue Op = N->getOperand(0);
EVT VT = N->getValueType(0);
// Use SCALAR_TO_VECTOR for lane zero
SDValue Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, ExtendVT, Op);
SDValue CastVal = DAG.getNode(ISD::BITCAST, DL, CastVT, Vec);
SDValue IdxZero = DAG.getVectorIdxConstant(0, DL);
Results.push_back(
DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, CastVal, IdxZero));
}
void AArch64TargetLowering::ReplaceBITCASTResults(
SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
SDLoc DL(N);
SDValue Op = N->getOperand(0);
EVT VT = N->getValueType(0);
EVT SrcVT = Op.getValueType();
if (VT == MVT::v2i16 && SrcVT == MVT::i32) {
CustomNonLegalBITCASTResults(N, Results, DAG, MVT::v2i32, MVT::v4i16);
return;
}
if (VT == MVT::v4i8 && SrcVT == MVT::i32) {
CustomNonLegalBITCASTResults(N, Results, DAG, MVT::v2i32, MVT::v8i8);
return;
}
if (VT == MVT::v2i8 && SrcVT == MVT::i16) {
CustomNonLegalBITCASTResults(N, Results, DAG, MVT::v4i16, MVT::v8i8);
return;
}
if (VT.isScalableVector() && !isTypeLegal(VT) && isTypeLegal(SrcVT)) {
assert(!VT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
"Expected fp->int bitcast!");
// Bitcasting between unpacked vector types of different element counts is
// not a NOP because the live elements are laid out differently.
// 01234567
// e.g. nxv2i32 = XX??XX??
// nxv4f16 = X?X?X?X?
if (VT.getVectorElementCount() != SrcVT.getVectorElementCount())
return;
SDValue CastResult = getSVESafeBitCast(getSVEContainerType(VT), Op, DAG);
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, CastResult));
return;
}
if (SrcVT.isVector() && SrcVT.getVectorElementType() == MVT::i1 &&
!VT.isVector())
return replaceBoolVectorBitcast(N, Results, DAG);
if (VT != MVT::i16 || (SrcVT != MVT::f16 && SrcVT != MVT::bf16))
return;
Op = DAG.getTargetInsertSubreg(AArch64::hsub, DL, MVT::f32,
DAG.getUNDEF(MVT::i32), Op);
Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op);
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op));
}
static void ReplaceAddWithADDP(SDNode *N, SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG,
const AArch64Subtarget *Subtarget) {
EVT VT = N->getValueType(0);
if (!VT.is256BitVector() ||
(VT.getScalarType().isFloatingPoint() &&
!N->getFlags().hasAllowReassociation()) ||
(VT.getScalarType() == MVT::f16 && !Subtarget->hasFullFP16()) ||
VT.getScalarType() == MVT::bf16)
return;
SDValue X = N->getOperand(0);
auto *Shuf = dyn_cast<ShuffleVectorSDNode>(N->getOperand(1));
if (!Shuf) {
Shuf = dyn_cast<ShuffleVectorSDNode>(N->getOperand(0));
X = N->getOperand(1);
if (!Shuf)
return;
}
if (Shuf->getOperand(0) != X || !Shuf->getOperand(1)->isUndef())
return;
// Check the mask is 1,0,3,2,5,4,...
ArrayRef<int> Mask = Shuf->getMask();
for (int I = 0, E = Mask.size(); I < E; I++)
if (Mask[I] != (I % 2 == 0 ? I + 1 : I - 1))
return;
SDLoc DL(N);
auto LoHi = DAG.SplitVector(X, DL);
assert(LoHi.first.getValueType() == LoHi.second.getValueType());
SDValue Addp = DAG.getNode(AArch64ISD::ADDP, N, LoHi.first.getValueType(),
LoHi.first, LoHi.second);
// Shuffle the elements back into order.
SmallVector<int> NMask;
for (unsigned I = 0, E = VT.getVectorNumElements() / 2; I < E; I++) {
NMask.push_back(I);
NMask.push_back(I);
}
Results.push_back(
DAG.getVectorShuffle(VT, DL,
DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Addp,
DAG.getUNDEF(LoHi.first.getValueType())),
DAG.getUNDEF(VT), NMask));
}
static void ReplaceReductionResults(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG, unsigned InterOp,
unsigned AcrossOp) {
EVT LoVT, HiVT;
SDValue Lo, Hi;
SDLoc dl(N);
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0);
SDValue InterVal = DAG.getNode(InterOp, dl, LoVT, Lo, Hi);
SDValue SplitVal = DAG.getNode(AcrossOp, dl, LoVT, InterVal);
Results.push_back(SplitVal);
}
void AArch64TargetLowering::ReplaceExtractSubVectorResults(
SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
SDValue In = N->getOperand(0);
EVT InVT = In.getValueType();
// Common code will handle these just fine.
if (!InVT.isScalableVector() || !InVT.isInteger())
return;
SDLoc DL(N);
EVT VT = N->getValueType(0);
// The following checks bail if this is not a halving operation.
ElementCount ResEC = VT.getVectorElementCount();
if (InVT.getVectorElementCount() != (ResEC * 2))
return;
auto *CIndex = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (!CIndex)
return;
unsigned Index = CIndex->getZExtValue();
if ((Index != 0) && (Index != ResEC.getKnownMinValue()))
return;
unsigned Opcode = (Index == 0) ? AArch64ISD::UUNPKLO : AArch64ISD::UUNPKHI;
EVT ExtendedHalfVT = VT.widenIntegerVectorElementType(*DAG.getContext());
SDValue Half = DAG.getNode(Opcode, DL, ExtendedHalfVT, N->getOperand(0));
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Half));
}
// Create an even/odd pair of X registers holding integer value V.
static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) {
SDLoc dl(V.getNode());
auto [VLo, VHi] = DAG.SplitScalar(V, dl, MVT::i64, MVT::i64);
if (DAG.getDataLayout().isBigEndian())
std::swap (VLo, VHi);
SDValue RegClass =
DAG.getTargetConstant(AArch64::XSeqPairsClassRegClassID, dl, MVT::i32);
SDValue SubReg0 = DAG.getTargetConstant(AArch64::sube64, dl, MVT::i32);
SDValue SubReg1 = DAG.getTargetConstant(AArch64::subo64, dl, MVT::i32);
const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 };
return SDValue(
DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
}
static void ReplaceCMP_SWAP_128Results(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG,
const AArch64Subtarget *Subtarget) {
assert(N->getValueType(0) == MVT::i128 &&
"AtomicCmpSwap on types less than 128 should be legal");
MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
if (Subtarget->hasLSE() || Subtarget->outlineAtomics()) {
// LSE has a 128-bit compare and swap (CASP), but i128 is not a legal type,
// so lower it here, wrapped in REG_SEQUENCE and EXTRACT_SUBREG.
SDValue Ops[] = {
createGPRPairNode(DAG, N->getOperand(2)), // Compare value
createGPRPairNode(DAG, N->getOperand(3)), // Store value
N->getOperand(1), // Ptr
N->getOperand(0), // Chain in
};
unsigned Opcode;
switch (MemOp->getMergedOrdering()) {
case AtomicOrdering::Monotonic:
Opcode = AArch64::CASPX;
break;
case AtomicOrdering::Acquire:
Opcode = AArch64::CASPAX;
break;
case AtomicOrdering::Release:
Opcode = AArch64::CASPLX;
break;
case AtomicOrdering::AcquireRelease:
case AtomicOrdering::SequentiallyConsistent:
Opcode = AArch64::CASPALX;
break;
default:
llvm_unreachable("Unexpected ordering!");
}
MachineSDNode *CmpSwap = DAG.getMachineNode(
Opcode, SDLoc(N), DAG.getVTList(MVT::Untyped, MVT::Other), Ops);
DAG.setNodeMemRefs(CmpSwap, {MemOp});
unsigned SubReg1 = AArch64::sube64, SubReg2 = AArch64::subo64;
if (DAG.getDataLayout().isBigEndian())
std::swap(SubReg1, SubReg2);
SDValue Lo = DAG.getTargetExtractSubreg(SubReg1, SDLoc(N), MVT::i64,
SDValue(CmpSwap, 0));
SDValue Hi = DAG.getTargetExtractSubreg(SubReg2, SDLoc(N), MVT::i64,
SDValue(CmpSwap, 0));
Results.push_back(
DAG.getNode(ISD::BUILD_PAIR, SDLoc(N), MVT::i128, Lo, Hi));
Results.push_back(SDValue(CmpSwap, 1)); // Chain out
return;
}
unsigned Opcode;
switch (MemOp->getMergedOrdering()) {
case AtomicOrdering::Monotonic:
Opcode = AArch64::CMP_SWAP_128_MONOTONIC;
break;
case AtomicOrdering::Acquire:
Opcode = AArch64::CMP_SWAP_128_ACQUIRE;
break;
case AtomicOrdering::Release:
Opcode = AArch64::CMP_SWAP_128_RELEASE;
break;
case AtomicOrdering::AcquireRelease:
case AtomicOrdering::SequentiallyConsistent:
Opcode = AArch64::CMP_SWAP_128;
break;
default:
llvm_unreachable("Unexpected ordering!");
}
SDLoc DL(N);
auto Desired = DAG.SplitScalar(N->getOperand(2), DL, MVT::i64, MVT::i64);
auto New = DAG.SplitScalar(N->getOperand(3), DL, MVT::i64, MVT::i64);
SDValue Ops[] = {N->getOperand(1), Desired.first, Desired.second,
New.first, New.second, N->getOperand(0)};
SDNode *CmpSwap = DAG.getMachineNode(
Opcode, SDLoc(N), DAG.getVTList(MVT::i64, MVT::i64, MVT::i32, MVT::Other),
Ops);
DAG.setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp});
Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128,
SDValue(CmpSwap, 0), SDValue(CmpSwap, 1)));
Results.push_back(SDValue(CmpSwap, 3));
}
static unsigned getAtomicLoad128Opcode(unsigned ISDOpcode,
AtomicOrdering Ordering) {
// ATOMIC_LOAD_CLR only appears when lowering ATOMIC_LOAD_AND (see
// LowerATOMIC_LOAD_AND). We can't take that approach with 128-bit, because
// the type is not legal. Therefore we shouldn't expect to see a 128-bit
// ATOMIC_LOAD_CLR at any point.
assert(ISDOpcode != ISD::ATOMIC_LOAD_CLR &&
"ATOMIC_LOAD_AND should be lowered to LDCLRP directly");
assert(ISDOpcode != ISD::ATOMIC_LOAD_ADD && "There is no 128 bit LDADD");
assert(ISDOpcode != ISD::ATOMIC_LOAD_SUB && "There is no 128 bit LDSUB");
if (ISDOpcode == ISD::ATOMIC_LOAD_AND) {
// The operand will need to be XORed in a separate step.
switch (Ordering) {
case AtomicOrdering::Monotonic:
return AArch64::LDCLRP;
break;
case AtomicOrdering::Acquire:
return AArch64::LDCLRPA;
break;
case AtomicOrdering::Release:
return AArch64::LDCLRPL;
break;
case AtomicOrdering::AcquireRelease:
case AtomicOrdering::SequentiallyConsistent:
return AArch64::LDCLRPAL;
break;
default:
llvm_unreachable("Unexpected ordering!");
}
}
if (ISDOpcode == ISD::ATOMIC_LOAD_OR) {
switch (Ordering) {
case AtomicOrdering::Monotonic:
return AArch64::LDSETP;
break;
case AtomicOrdering::Acquire:
return AArch64::LDSETPA;
break;
case AtomicOrdering::Release:
return AArch64::LDSETPL;
break;
case AtomicOrdering::AcquireRelease:
case AtomicOrdering::SequentiallyConsistent:
return AArch64::LDSETPAL;
break;
default:
llvm_unreachable("Unexpected ordering!");
}
}
if (ISDOpcode == ISD::ATOMIC_SWAP) {
switch (Ordering) {
case AtomicOrdering::Monotonic:
return AArch64::SWPP;
break;
case AtomicOrdering::Acquire:
return AArch64::SWPPA;
break;
case AtomicOrdering::Release:
return AArch64::SWPPL;
break;
case AtomicOrdering::AcquireRelease:
case AtomicOrdering::SequentiallyConsistent:
return AArch64::SWPPAL;
break;
default:
llvm_unreachable("Unexpected ordering!");
}
}
llvm_unreachable("Unexpected ISDOpcode!");
}
static void ReplaceATOMIC_LOAD_128Results(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG,
const AArch64Subtarget *Subtarget) {
// LSE128 has a 128-bit RMW ops, but i128 is not a legal type, so lower it
// here. This follows the approach of the CMP_SWAP_XXX pseudo instructions
// rather than the CASP instructions, because CASP has register classes for
// the pairs of registers and therefore uses REG_SEQUENCE and EXTRACT_SUBREG
// to present them as single operands. LSE128 instructions use the GPR64
// register class (because the pair does not have to be sequential), like
// CMP_SWAP_XXX, and therefore we use TRUNCATE and BUILD_PAIR.
assert(N->getValueType(0) == MVT::i128 &&
"AtomicLoadXXX on types less than 128 should be legal");
if (!Subtarget->hasLSE128())
return;
MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
const SDValue &Chain = N->getOperand(0);
const SDValue &Ptr = N->getOperand(1);
const SDValue &Val128 = N->getOperand(2);
std::pair<SDValue, SDValue> Val2x64 =
DAG.SplitScalar(Val128, SDLoc(Val128), MVT::i64, MVT::i64);
const unsigned ISDOpcode = N->getOpcode();
const unsigned MachineOpcode =
getAtomicLoad128Opcode(ISDOpcode, MemOp->getMergedOrdering());
if (ISDOpcode == ISD::ATOMIC_LOAD_AND) {
SDLoc dl(Val128);
Val2x64.first =
DAG.getNode(ISD::XOR, dl, MVT::i64,
DAG.getConstant(-1ULL, dl, MVT::i64), Val2x64.first);
Val2x64.second =
DAG.getNode(ISD::XOR, dl, MVT::i64,
DAG.getConstant(-1ULL, dl, MVT::i64), Val2x64.second);
}
SDValue Ops[] = {Val2x64.first, Val2x64.second, Ptr, Chain};
if (DAG.getDataLayout().isBigEndian())
std::swap(Ops[0], Ops[1]);
MachineSDNode *AtomicInst =
DAG.getMachineNode(MachineOpcode, SDLoc(N),
DAG.getVTList(MVT::i64, MVT::i64, MVT::Other), Ops);
DAG.setNodeMemRefs(AtomicInst, {MemOp});
SDValue Lo = SDValue(AtomicInst, 0), Hi = SDValue(AtomicInst, 1);
if (DAG.getDataLayout().isBigEndian())
std::swap(Lo, Hi);
Results.push_back(DAG.getNode(ISD::BUILD_PAIR, SDLoc(N), MVT::i128, Lo, Hi));
Results.push_back(SDValue(AtomicInst, 2)); // Chain out
}
void AArch64TargetLowering::ReplaceNodeResults(
SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
switch (N->getOpcode()) {
default:
llvm_unreachable("Don't know how to custom expand this");
case ISD::BITCAST:
ReplaceBITCASTResults(N, Results, DAG);
return;
case ISD::VECREDUCE_ADD:
case ISD::VECREDUCE_SMAX:
case ISD::VECREDUCE_SMIN:
case ISD::VECREDUCE_UMAX:
case ISD::VECREDUCE_UMIN:
Results.push_back(LowerVECREDUCE(SDValue(N, 0), DAG));
return;
case ISD::VECTOR_COMPRESS:
if (SDValue Res = LowerVECTOR_COMPRESS(SDValue(N, 0), DAG))
Results.push_back(Res);
return;
case ISD::ADD:
case ISD::FADD:
ReplaceAddWithADDP(N, Results, DAG, Subtarget);
return;
case ISD::CTPOP:
case ISD::PARITY:
if (SDValue Result = LowerCTPOP_PARITY(SDValue(N, 0), DAG))
Results.push_back(Result);
return;
case AArch64ISD::SADDV:
ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::SADDV);
return;
case AArch64ISD::UADDV:
ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::UADDV);
return;
case AArch64ISD::SMINV:
ReplaceReductionResults(N, Results, DAG, ISD::SMIN, AArch64ISD::SMINV);
return;
case AArch64ISD::UMINV:
ReplaceReductionResults(N, Results, DAG, ISD::UMIN, AArch64ISD::UMINV);
return;
case AArch64ISD::SMAXV:
ReplaceReductionResults(N, Results, DAG, ISD::SMAX, AArch64ISD::SMAXV);
return;
case AArch64ISD::UMAXV:
ReplaceReductionResults(N, Results, DAG, ISD::UMAX, AArch64ISD::UMAXV);
return;
case ISD::MULHS:
if (useSVEForFixedLengthVectorVT(SDValue(N, 0).getValueType()))
Results.push_back(
LowerToPredicatedOp(SDValue(N, 0), DAG, AArch64ISD::MULHS_PRED));
return;
case ISD::MULHU:
if (useSVEForFixedLengthVectorVT(SDValue(N, 0).getValueType()))
Results.push_back(
LowerToPredicatedOp(SDValue(N, 0), DAG, AArch64ISD::MULHU_PRED));
return;
case ISD::FP_TO_UINT:
case ISD::FP_TO_SINT:
case ISD::STRICT_FP_TO_SINT:
case ISD::STRICT_FP_TO_UINT:
assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion");
// Let normal code take care of it by not adding anything to Results.
return;
case ISD::ATOMIC_CMP_SWAP:
ReplaceCMP_SWAP_128Results(N, Results, DAG, Subtarget);
return;
case ISD::ATOMIC_LOAD_CLR:
assert(N->getValueType(0) != MVT::i128 &&
"128-bit ATOMIC_LOAD_AND should be lowered directly to LDCLRP");
break;
case ISD::ATOMIC_LOAD_AND:
case ISD::ATOMIC_LOAD_OR:
case ISD::ATOMIC_SWAP: {
assert(cast<AtomicSDNode>(N)->getVal().getValueType() == MVT::i128 &&
"Expected 128-bit atomicrmw.");
// These need custom type legalisation so we go directly to instruction.
ReplaceATOMIC_LOAD_128Results(N, Results, DAG, Subtarget);
return;
}
case ISD::ATOMIC_LOAD:
case ISD::LOAD: {
MemSDNode *LoadNode = cast<MemSDNode>(N);
EVT MemVT = LoadNode->getMemoryVT();
// Handle lowering 256 bit non temporal loads into LDNP for little-endian
// targets.
if (LoadNode->isNonTemporal() && Subtarget->isLittleEndian() &&
MemVT.getSizeInBits() == 256u &&
(MemVT.getScalarSizeInBits() == 8u ||
MemVT.getScalarSizeInBits() == 16u ||
MemVT.getScalarSizeInBits() == 32u ||
MemVT.getScalarSizeInBits() == 64u)) {
SDValue Result = DAG.getMemIntrinsicNode(
AArch64ISD::LDNP, SDLoc(N),
DAG.getVTList({MemVT.getHalfNumVectorElementsVT(*DAG.getContext()),
MemVT.getHalfNumVectorElementsVT(*DAG.getContext()),
MVT::Other}),
{LoadNode->getChain(), LoadNode->getBasePtr()},
LoadNode->getMemoryVT(), LoadNode->getMemOperand());
SDValue Pair = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), MemVT,
Result.getValue(0), Result.getValue(1));
Results.append({Pair, Result.getValue(2) /* Chain */});
return;
}
if ((!LoadNode->isVolatile() && !LoadNode->isAtomic()) ||
LoadNode->getMemoryVT() != MVT::i128) {
// Non-volatile or atomic loads are optimized later in AArch64's load/store
// optimizer.
return;
}
if (SDValue(N, 0).getValueType() == MVT::i128) {
auto *AN = dyn_cast<AtomicSDNode>(LoadNode);
bool isLoadAcquire =
AN && AN->getSuccessOrdering() == AtomicOrdering::Acquire;
unsigned Opcode = isLoadAcquire ? AArch64ISD::LDIAPP : AArch64ISD::LDP;
if (isLoadAcquire)
assert(Subtarget->hasFeature(AArch64::FeatureRCPC3));
SDValue Result = DAG.getMemIntrinsicNode(
Opcode, SDLoc(N), DAG.getVTList({MVT::i64, MVT::i64, MVT::Other}),
{LoadNode->getChain(), LoadNode->getBasePtr()},
LoadNode->getMemoryVT(), LoadNode->getMemOperand());
unsigned FirstRes = DAG.getDataLayout().isBigEndian() ? 1 : 0;
SDValue Pair =
DAG.getNode(ISD::BUILD_PAIR, SDLoc(N), MVT::i128,
Result.getValue(FirstRes), Result.getValue(1 - FirstRes));
Results.append({Pair, Result.getValue(2) /* Chain */});
}
return;
}
case ISD::EXTRACT_SUBVECTOR:
ReplaceExtractSubVectorResults(N, Results, DAG);
return;
case ISD::INSERT_SUBVECTOR:
case ISD::CONCAT_VECTORS:
// Custom lowering has been requested for INSERT_SUBVECTOR and
// CONCAT_VECTORS -- but delegate to common code for result type
// legalisation
return;
case ISD::INTRINSIC_WO_CHAIN: {
EVT VT = N->getValueType(0);
Intrinsic::ID IntID =
static_cast<Intrinsic::ID>(N->getConstantOperandVal(0));
switch (IntID) {
default:
return;
case Intrinsic::aarch64_sve_clasta_n: {
assert((VT == MVT::i8 || VT == MVT::i16) &&
"custom lowering for unexpected type");
SDLoc DL(N);
auto Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, N->getOperand(2));
auto V = DAG.getNode(AArch64ISD::CLASTA_N, DL, MVT::i32,
N->getOperand(1), Op2, N->getOperand(3));
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V));
return;
}
case Intrinsic::aarch64_sve_clastb_n: {
assert((VT == MVT::i8 || VT == MVT::i16) &&
"custom lowering for unexpected type");
SDLoc DL(N);
auto Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, N->getOperand(2));
auto V = DAG.getNode(AArch64ISD::CLASTB_N, DL, MVT::i32,
N->getOperand(1), Op2, N->getOperand(3));
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V));
return;
}
case Intrinsic::aarch64_sve_lasta: {
assert((VT == MVT::i8 || VT == MVT::i16) &&
"custom lowering for unexpected type");
SDLoc DL(N);
auto V = DAG.getNode(AArch64ISD::LASTA, DL, MVT::i32,
N->getOperand(1), N->getOperand(2));
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V));
return;
}
case Intrinsic::aarch64_sve_lastb: {
assert((VT == MVT::i8 || VT == MVT::i16) &&
"custom lowering for unexpected type");
SDLoc DL(N);
auto V = DAG.getNode(AArch64ISD::LASTB, DL, MVT::i32,
N->getOperand(1), N->getOperand(2));
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V));
return;
}
case Intrinsic::get_active_lane_mask: {
if (!VT.isFixedLengthVector() || VT.getVectorElementType() != MVT::i1)
return;
// NOTE: Only trivial type promotion is supported.
EVT NewVT = getTypeToTransformTo(*DAG.getContext(), VT);
if (NewVT.getVectorNumElements() != VT.getVectorNumElements())
return;
SDLoc DL(N);
auto V = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, NewVT, N->ops());
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V));
return;
}
}
}
case ISD::READ_REGISTER: {
SDLoc DL(N);
assert(N->getValueType(0) == MVT::i128 &&
"READ_REGISTER custom lowering is only for 128-bit sysregs");
SDValue Chain = N->getOperand(0);
SDValue SysRegName = N->getOperand(1);
SDValue Result = DAG.getNode(
AArch64ISD::MRRS, DL, DAG.getVTList({MVT::i64, MVT::i64, MVT::Other}),
Chain, SysRegName);
// Sysregs are not endian. Result.getValue(0) always contains the lower half
// of the 128-bit System Register value.
SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128,
Result.getValue(0), Result.getValue(1));
Results.push_back(Pair);
Results.push_back(Result.getValue(2)); // Chain
return;
}
}
}
bool AArch64TargetLowering::useLoadStackGuardNode(const Module &M) const {
if (Subtarget->isTargetAndroid() || Subtarget->isTargetFuchsia())
return TargetLowering::useLoadStackGuardNode(M);
return true;
}
unsigned AArch64TargetLowering::combineRepeatedFPDivisors() const {
// Combine multiple FDIVs with the same divisor into multiple FMULs by the
// reciprocal if there are three or more FDIVs.
return 3;
}
TargetLoweringBase::LegalizeTypeAction
AArch64TargetLowering::getPreferredVectorAction(MVT VT) const {
// During type legalization, we prefer to widen v1i8, v1i16, v1i32 to v8i8,
// v4i16, v2i32 instead of to promote.
if (VT == MVT::v1i8 || VT == MVT::v1i16 || VT == MVT::v1i32 ||
VT == MVT::v1f32)
return TypeWidenVector;
return TargetLoweringBase::getPreferredVectorAction(VT);
}
// In v8.4a, ldp and stp instructions are guaranteed to be single-copy atomic
// provided the address is 16-byte aligned.
bool AArch64TargetLowering::isOpSuitableForLDPSTP(const Instruction *I) const {
if (!Subtarget->hasLSE2())
return false;
if (auto LI = dyn_cast<LoadInst>(I))
return LI->getType()->getPrimitiveSizeInBits() == 128 &&
LI->getAlign() >= Align(16);
if (auto SI = dyn_cast<StoreInst>(I))
return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() == 128 &&
SI->getAlign() >= Align(16);
return false;
}
bool AArch64TargetLowering::isOpSuitableForLSE128(const Instruction *I) const {
if (!Subtarget->hasLSE128())
return false;
// Only use SWPP for stores where LSE2 would require a fence. Unlike STP, SWPP
// will clobber the two registers.
if (const auto *SI = dyn_cast<StoreInst>(I))
return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() == 128 &&
SI->getAlign() >= Align(16) &&
(SI->getOrdering() == AtomicOrdering::Release ||
SI->getOrdering() == AtomicOrdering::SequentiallyConsistent);
if (const auto *RMW = dyn_cast<AtomicRMWInst>(I))
return RMW->getValOperand()->getType()->getPrimitiveSizeInBits() == 128 &&
RMW->getAlign() >= Align(16) &&
(RMW->getOperation() == AtomicRMWInst::Xchg ||
RMW->getOperation() == AtomicRMWInst::And ||
RMW->getOperation() == AtomicRMWInst::Or);
return false;
}
bool AArch64TargetLowering::isOpSuitableForRCPC3(const Instruction *I) const {
if (!Subtarget->hasLSE2() || !Subtarget->hasRCPC3())
return false;
if (auto LI = dyn_cast<LoadInst>(I))
return LI->getType()->getPrimitiveSizeInBits() == 128 &&
LI->getAlign() >= Align(16) &&
LI->getOrdering() == AtomicOrdering::Acquire;
if (auto SI = dyn_cast<StoreInst>(I))
return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() == 128 &&
SI->getAlign() >= Align(16) &&
SI->getOrdering() == AtomicOrdering::Release;
return false;
}
bool AArch64TargetLowering::shouldInsertFencesForAtomic(
const Instruction *I) const {
if (isOpSuitableForRCPC3(I))
return false;
if (isOpSuitableForLSE128(I))
return false;
if (isOpSuitableForLDPSTP(I))
return true;
return false;
}
bool AArch64TargetLowering::shouldInsertTrailingFenceForAtomicStore(
const Instruction *I) const {
// Store-Release instructions only provide seq_cst guarantees when paired with
// Load-Acquire instructions. MSVC CRT does not use these instructions to
// implement seq_cst loads and stores, so we need additional explicit fences
// after memory writes.
if (!Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
return false;
switch (I->getOpcode()) {
default:
return false;
case Instruction::AtomicCmpXchg:
return cast<AtomicCmpXchgInst>(I)->getSuccessOrdering() ==
AtomicOrdering::SequentiallyConsistent;
case Instruction::AtomicRMW:
return cast<AtomicRMWInst>(I)->getOrdering() ==
AtomicOrdering::SequentiallyConsistent;
case Instruction::Store:
return cast<StoreInst>(I)->getOrdering() ==
AtomicOrdering::SequentiallyConsistent;
}
}
// Loads and stores less than 128-bits are already atomic; ones above that
// are doomed anyway, so defer to the default libcall and blame the OS when
// things go wrong.
TargetLoweringBase::AtomicExpansionKind
AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
if (Size != 128)
return AtomicExpansionKind::None;
if (isOpSuitableForRCPC3(SI))
return AtomicExpansionKind::None;
if (isOpSuitableForLSE128(SI))
return AtomicExpansionKind::Expand;
if (isOpSuitableForLDPSTP(SI))
return AtomicExpansionKind::None;
return AtomicExpansionKind::Expand;
}
// Loads and stores less than 128-bits are already atomic; ones above that
// are doomed anyway, so defer to the default libcall and blame the OS when
// things go wrong.
TargetLowering::AtomicExpansionKind
AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
unsigned Size = LI->getType()->getPrimitiveSizeInBits();
if (Size != 128)
return AtomicExpansionKind::None;
if (isOpSuitableForRCPC3(LI))
return AtomicExpansionKind::None;
// No LSE128 loads
if (isOpSuitableForLDPSTP(LI))
return AtomicExpansionKind::None;
// At -O0, fast-regalloc cannot cope with the live vregs necessary to
// implement atomicrmw without spilling. If the target address is also on the
// stack and close enough to the spill slot, this can lead to a situation
// where the monitor always gets cleared and the atomic operation can never
// succeed. So at -O0 lower this operation to a CAS loop.
if (getTargetMachine().getOptLevel() == CodeGenOptLevel::None)
return AtomicExpansionKind::CmpXChg;
// Using CAS for an atomic load has a better chance of succeeding under high
// contention situations. So use it if available.
return Subtarget->hasLSE() ? AtomicExpansionKind::CmpXChg
: AtomicExpansionKind::LLSC;
}
// Return true if the atomic operation expansion will lower to use a library
// call, and is thus ineligible to use an LLSC expansion.
static bool rmwOpMayLowerToLibcall(const AArch64Subtarget &Subtarget,
const AtomicRMWInst *RMW) {
if (!RMW->isFloatingPointOperation())
return false;
switch (RMW->getType()->getScalarType()->getTypeID()) {
case Type::FloatTyID:
case Type::DoubleTyID:
case Type::HalfTyID:
case Type::BFloatTyID:
// Will use soft float
return !Subtarget.hasFPARMv8();
default:
// fp128 will emit library calls.
return true;
}
llvm_unreachable("covered type switch");
}
// The "default" for integer RMW operations is to expand to an LL/SC loop.
// However, with the LSE instructions (or outline-atomics mode, which provides
// library routines in place of the LSE-instructions), we can directly emit many
// operations instead.
TargetLowering::AtomicExpansionKind
AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
Type *Ty = AI->getType();
unsigned Size = Ty->getPrimitiveSizeInBits();
assert(Size <= 128 && "AtomicExpandPass should've handled larger sizes.");
bool CanUseLSE128 = Subtarget->hasLSE128() && Size == 128 &&
(AI->getOperation() == AtomicRMWInst::Xchg ||
AI->getOperation() == AtomicRMWInst::Or ||
AI->getOperation() == AtomicRMWInst::And);
if (CanUseLSE128)
return AtomicExpansionKind::None;
// Nand is not supported in LSE.
// Leave 128 bits to LLSC or CmpXChg.
if (AI->getOperation() != AtomicRMWInst::Nand && Size < 128 &&
!AI->isFloatingPointOperation()) {
if (Subtarget->hasLSE())
return AtomicExpansionKind::None;
if (Subtarget->outlineAtomics()) {
// [U]Min/[U]Max RWM atomics are used in __sync_fetch_ libcalls so far.
// Don't outline them unless
// (1) high level <atomic> support approved:
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0493r1.pdf
// (2) low level libgcc and compiler-rt support implemented by:
// min/max outline atomics helpers
if (AI->getOperation() != AtomicRMWInst::Min &&
AI->getOperation() != AtomicRMWInst::Max &&
AI->getOperation() != AtomicRMWInst::UMin &&
AI->getOperation() != AtomicRMWInst::UMax) {
return AtomicExpansionKind::None;
}
}
}
// At -O0, fast-regalloc cannot cope with the live vregs necessary to
// implement atomicrmw without spilling. If the target address is also on the
// stack and close enough to the spill slot, this can lead to a situation
// where the monitor always gets cleared and the atomic operation can never
// succeed. So at -O0 lower this operation to a CAS loop. Also worthwhile if
// we have a single CAS instruction that can replace the loop.
if (getTargetMachine().getOptLevel() == CodeGenOptLevel::None ||
Subtarget->hasLSE() || rmwOpMayLowerToLibcall(*Subtarget, AI))
return AtomicExpansionKind::CmpXChg;
return AtomicExpansionKind::LLSC;
}
TargetLowering::AtomicExpansionKind
AArch64TargetLowering::shouldExpandAtomicCmpXchgInIR(
AtomicCmpXchgInst *AI) const {
// If subtarget has LSE, leave cmpxchg intact for codegen.
if (Subtarget->hasLSE() || Subtarget->outlineAtomics())
return AtomicExpansionKind::None;
// At -O0, fast-regalloc cannot cope with the live vregs necessary to
// implement cmpxchg without spilling. If the address being exchanged is also
// on the stack and close enough to the spill slot, this can lead to a
// situation where the monitor always gets cleared and the atomic operation
// can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
if (getTargetMachine().getOptLevel() == CodeGenOptLevel::None)
return AtomicExpansionKind::None;
// 128-bit atomic cmpxchg is weird; AtomicExpand doesn't know how to expand
// it.
unsigned Size = AI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
if (Size > 64)
return AtomicExpansionKind::None;
return AtomicExpansionKind::LLSC;
}
Value *AArch64TargetLowering::emitLoadLinked(IRBuilderBase &Builder,
Type *ValueTy, Value *Addr,
AtomicOrdering Ord) const {
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
bool IsAcquire = isAcquireOrStronger(Ord);
// Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd
// intrinsic must return {i64, i64} and we have to recombine them into a
// single i128 here.
if (ValueTy->getPrimitiveSizeInBits() == 128) {
Intrinsic::ID Int =
IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp;
Value *LoHi =
Builder.CreateIntrinsic(Int, {}, Addr, /*FMFSource=*/nullptr, "lohi");
Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
auto *Int128Ty = Type::getInt128Ty(Builder.getContext());
Lo = Builder.CreateZExt(Lo, Int128Ty, "lo64");
Hi = Builder.CreateZExt(Hi, Int128Ty, "hi64");
Value *Or = Builder.CreateOr(
Lo, Builder.CreateShl(Hi, ConstantInt::get(Int128Ty, 64)), "val64");
return Builder.CreateBitCast(Or, ValueTy);
}
Type *Tys[] = { Addr->getType() };
Intrinsic::ID Int =
IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr;
const DataLayout &DL = M->getDataLayout();
IntegerType *IntEltTy = Builder.getIntNTy(DL.getTypeSizeInBits(ValueTy));
CallInst *CI = Builder.CreateIntrinsic(Int, Tys, Addr);
CI->addParamAttr(0, Attribute::get(Builder.getContext(),
Attribute::ElementType, IntEltTy));
Value *Trunc = Builder.CreateTrunc(CI, IntEltTy);
return Builder.CreateBitCast(Trunc, ValueTy);
}
void AArch64TargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
IRBuilderBase &Builder) const {
Builder.CreateIntrinsic(Intrinsic::aarch64_clrex, {}, {});
}
Value *AArch64TargetLowering::emitStoreConditional(IRBuilderBase &Builder,
Value *Val, Value *Addr,
AtomicOrdering Ord) const {
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
bool IsRelease = isReleaseOrStronger(Ord);
// Since the intrinsics must have legal type, the i128 intrinsics take two
// parameters: "i64, i64". We must marshal Val into the appropriate form
// before the call.
if (Val->getType()->getPrimitiveSizeInBits() == 128) {
Intrinsic::ID Int =
IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp;
Function *Stxr = Intrinsic::getOrInsertDeclaration(M, Int);
Type *Int64Ty = Type::getInt64Ty(M->getContext());
Type *Int128Ty = Type::getInt128Ty(M->getContext());
Value *CastVal = Builder.CreateBitCast(Val, Int128Ty);
Value *Lo = Builder.CreateTrunc(CastVal, Int64Ty, "lo");
Value *Hi =
Builder.CreateTrunc(Builder.CreateLShr(CastVal, 64), Int64Ty, "hi");
return Builder.CreateCall(Stxr, {Lo, Hi, Addr});
}
Intrinsic::ID Int =
IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr;
Type *Tys[] = { Addr->getType() };
Function *Stxr = Intrinsic::getOrInsertDeclaration(M, Int, Tys);
const DataLayout &DL = M->getDataLayout();
IntegerType *IntValTy = Builder.getIntNTy(DL.getTypeSizeInBits(Val->getType()));
Val = Builder.CreateBitCast(Val, IntValTy);
CallInst *CI = Builder.CreateCall(
Stxr, {Builder.CreateZExtOrBitCast(
Val, Stxr->getFunctionType()->getParamType(0)),
Addr});
CI->addParamAttr(1, Attribute::get(Builder.getContext(),
Attribute::ElementType, Val->getType()));
return CI;
}
bool AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters(
Type *Ty, CallingConv::ID CallConv, bool isVarArg,
const DataLayout &DL) const {
if (!Ty->isArrayTy()) {
const TypeSize &TySize = Ty->getPrimitiveSizeInBits();
return TySize.isScalable() && TySize.getKnownMinValue() > 128;
}
// All non aggregate members of the type must have the same type
SmallVector<EVT> ValueVTs;
ComputeValueVTs(*this, DL, Ty, ValueVTs);
return all_equal(ValueVTs);
}
bool AArch64TargetLowering::shouldNormalizeToSelectSequence(LLVMContext &,
EVT) const {
return false;
}
static Value *UseTlsOffset(IRBuilderBase &IRB, unsigned Offset) {
Module *M = IRB.GetInsertBlock()->getParent()->getParent();
Function *ThreadPointerFunc =
Intrinsic::getOrInsertDeclaration(M, Intrinsic::thread_pointer);
return IRB.CreatePointerCast(
IRB.CreateConstGEP1_32(IRB.getInt8Ty(), IRB.CreateCall(ThreadPointerFunc),
Offset),
IRB.getPtrTy(0));
}
Value *AArch64TargetLowering::getIRStackGuard(IRBuilderBase &IRB) const {
// Android provides a fixed TLS slot for the stack cookie. See the definition
// of TLS_SLOT_STACK_GUARD in
// https://android.googlesource.com/platform/bionic/+/main/libc/platform/bionic/tls_defines.h
if (Subtarget->isTargetAndroid())
return UseTlsOffset(IRB, 0x28);
// Fuchsia is similar.
// <zircon/tls.h> defines ZX_TLS_STACK_GUARD_OFFSET with this value.
if (Subtarget->isTargetFuchsia())
return UseTlsOffset(IRB, -0x10);
return TargetLowering::getIRStackGuard(IRB);
}
void AArch64TargetLowering::insertSSPDeclarations(Module &M) const {
// MSVC CRT provides functionalities for stack protection.
if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment()) {
// MSVC CRT has a global variable holding security cookie.
M.getOrInsertGlobal("__security_cookie",
PointerType::getUnqual(M.getContext()));
// MSVC CRT has a function to validate security cookie.
FunctionCallee SecurityCheckCookie =
M.getOrInsertFunction(Subtarget->getSecurityCheckCookieName(),
Type::getVoidTy(M.getContext()),
PointerType::getUnqual(M.getContext()));
if (Function *F = dyn_cast<Function>(SecurityCheckCookie.getCallee())) {
F->setCallingConv(CallingConv::Win64);
F->addParamAttr(0, Attribute::AttrKind::InReg);
}
return;
}
TargetLowering::insertSSPDeclarations(M);
}
Value *AArch64TargetLowering::getSDagStackGuard(const Module &M) const {
// MSVC CRT has a global variable holding security cookie.
if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
return M.getGlobalVariable("__security_cookie");
return TargetLowering::getSDagStackGuard(M);
}
Function *AArch64TargetLowering::getSSPStackGuardCheck(const Module &M) const {
// MSVC CRT has a function to validate security cookie.
if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
return M.getFunction(Subtarget->getSecurityCheckCookieName());
return TargetLowering::getSSPStackGuardCheck(M);
}
Value *
AArch64TargetLowering::getSafeStackPointerLocation(IRBuilderBase &IRB) const {
// Android provides a fixed TLS slot for the SafeStack pointer. See the
// definition of TLS_SLOT_SAFESTACK in
// https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
if (Subtarget->isTargetAndroid())
return UseTlsOffset(IRB, 0x48);
// Fuchsia is similar.
// <zircon/tls.h> defines ZX_TLS_UNSAFE_SP_OFFSET with this value.
if (Subtarget->isTargetFuchsia())
return UseTlsOffset(IRB, -0x8);
return TargetLowering::getSafeStackPointerLocation(IRB);
}
/// If a physical register, this returns the register that receives the
/// exception address on entry to an EH pad.
Register AArch64TargetLowering::getExceptionPointerRegister(
const Constant *PersonalityFn) const {
// FIXME: This is a guess. Has this been defined yet?
return AArch64::X0;
}
/// If a physical register, this returns the register that receives the
/// exception typeid on entry to a landing pad.
Register AArch64TargetLowering::getExceptionSelectorRegister(
const Constant *PersonalityFn) const {
// FIXME: This is a guess. Has this been defined yet?
return AArch64::X1;
}
bool AArch64TargetLowering::isMaskAndCmp0FoldingBeneficial(
const Instruction &AndI) const {
// Only sink 'and' mask to cmp use block if it is masking a single bit, since
// this is likely to be fold the and/cmp/br into a single tbz instruction. It
// may be beneficial to sink in other cases, but we would have to check that
// the cmp would not get folded into the br to form a cbz for these to be
// beneficial.
ConstantInt* Mask = dyn_cast<ConstantInt>(AndI.getOperand(1));
if (!Mask)
return false;
return Mask->getValue().isPowerOf2();
}
bool AArch64TargetLowering::
shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
unsigned OldShiftOpcode, unsigned NewShiftOpcode,
SelectionDAG &DAG) const {
// Does baseline recommend not to perform the fold by default?
if (!TargetLowering::shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG))
return false;
// Else, if this is a vector shift, prefer 'shl'.
return X.getValueType().isScalarInteger() || NewShiftOpcode == ISD::SHL;
}
TargetLowering::ShiftLegalizationStrategy
AArch64TargetLowering::preferredShiftLegalizationStrategy(
SelectionDAG &DAG, SDNode *N, unsigned int ExpansionFactor) const {
if (DAG.getMachineFunction().getFunction().hasMinSize() &&
!Subtarget->isTargetWindows() && !Subtarget->isTargetDarwin())
return ShiftLegalizationStrategy::LowerToLibcall;
return TargetLowering::preferredShiftLegalizationStrategy(DAG, N,
ExpansionFactor);
}
void AArch64TargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
// Update IsSplitCSR in AArch64unctionInfo.
AArch64FunctionInfo *AFI = Entry->getParent()->getInfo<AArch64FunctionInfo>();
AFI->setIsSplitCSR(true);
}
void AArch64TargetLowering::insertCopiesSplitCSR(
MachineBasicBlock *Entry,
const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
if (!IStart)
return;
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
MachineBasicBlock::iterator MBBI = Entry->begin();
for (const MCPhysReg *I = IStart; *I; ++I) {
const TargetRegisterClass *RC = nullptr;
if (AArch64::GPR64RegClass.contains(*I))
RC = &AArch64::GPR64RegClass;
else if (AArch64::FPR64RegClass.contains(*I))
RC = &AArch64::FPR64RegClass;
else
llvm_unreachable("Unexpected register class in CSRsViaCopy!");
Register NewVR = MRI->createVirtualRegister(RC);
// Create copy from CSR to a virtual register.
// FIXME: this currently does not emit CFI pseudo-instructions, it works
// fine for CXX_FAST_TLS since the C++-style TLS access functions should be
// nounwind. If we want to generalize this later, we may need to emit
// CFI pseudo-instructions.
assert(Entry->getParent()->getFunction().hasFnAttribute(
Attribute::NoUnwind) &&
"Function should be nounwind in insertCopiesSplitCSR!");
Entry->addLiveIn(*I);
BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
.addReg(*I);
// Insert the copy-back instructions right before the terminator.
for (auto *Exit : Exits)
BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
TII->get(TargetOpcode::COPY), *I)
.addReg(NewVR);
}
}
bool AArch64TargetLowering::isIntDivCheap(EVT VT, AttributeList Attr) const {
// Integer division on AArch64 is expensive. However, when aggressively
// optimizing for code size, we prefer to use a div instruction, as it is
// usually smaller than the alternative sequence.
// The exception to this is vector division. Since AArch64 doesn't have vector
// integer division, leaving the division as-is is a loss even in terms of
// size, because it will have to be scalarized, while the alternative code
// sequence can be performed in vector form.
bool OptSize = Attr.hasFnAttr(Attribute::MinSize);
return OptSize && !VT.isVector();
}
bool AArch64TargetLowering::canMergeStoresTo(unsigned AddressSpace, EVT MemVT,
const MachineFunction &MF) const {
// Avoid merging stores into fixed-length vectors when Neon is unavailable.
// In future, we could allow this when SVE is available, but currently,
// the SVE lowerings for BUILD_VECTOR are limited to a few specific cases (and
// the general lowering may introduce stack spills/reloads).
if (MemVT.isFixedLengthVector() && !Subtarget->isNeonAvailable())
return false;
// Do not merge to float value size (128 bytes) if no implicit float attribute
// is set.
bool NoFloat = MF.getFunction().hasFnAttribute(Attribute::NoImplicitFloat);
return !NoFloat || MemVT.getSizeInBits() <= 64;
}
bool AArch64TargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
// We want inc-of-add for scalars and sub-of-not for vectors.
return VT.isScalarInteger();
}
bool AArch64TargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT,
EVT VT) const {
// v8f16 without fp16 need to be extended to v8f32, which is more difficult to
// legalize.
if (FPVT == MVT::v8f16 && !Subtarget->hasFullFP16())
return false;
if (FPVT == MVT::v8bf16)
return false;
return TargetLowering::shouldConvertFpToSat(Op, FPVT, VT);
}
bool AArch64TargetLowering::shouldExpandCmpUsingSelects(EVT VT) const {
// Expand scalar and SVE operations using selects. Neon vectors prefer sub to
// avoid vselect becoming bsl / unrolling.
return !VT.isFixedLengthVector();
}
MachineInstr *
AArch64TargetLowering::EmitKCFICheck(MachineBasicBlock &MBB,
MachineBasicBlock::instr_iterator &MBBI,
const TargetInstrInfo *TII) const {
assert(MBBI->isCall() && MBBI->getCFIType() &&
"Invalid call instruction for a KCFI check");
switch (MBBI->getOpcode()) {
case AArch64::BLR:
case AArch64::BLRNoIP:
case AArch64::TCRETURNri:
case AArch64::TCRETURNrix16x17:
case AArch64::TCRETURNrix17:
case AArch64::TCRETURNrinotx16:
break;
default:
llvm_unreachable("Unexpected CFI call opcode");
}
MachineOperand &Target = MBBI->getOperand(0);
assert(Target.isReg() && "Invalid target operand for an indirect call");
Target.setIsRenamable(false);
return BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(AArch64::KCFI_CHECK))
.addReg(Target.getReg())
.addImm(MBBI->getCFIType())
.getInstr();
}
bool AArch64TargetLowering::enableAggressiveFMAFusion(EVT VT) const {
return Subtarget->hasAggressiveFMA() && VT.isFloatingPoint();
}
unsigned
AArch64TargetLowering::getVaListSizeInBits(const DataLayout &DL) const {
if (Subtarget->isTargetDarwin() || Subtarget->isTargetWindows())
return getPointerTy(DL).getSizeInBits();
return 3 * getPointerTy(DL).getSizeInBits() + 2 * 32;
}
void AArch64TargetLowering::finalizeLowering(MachineFunction &MF) const {
MachineFrameInfo &MFI = MF.getFrameInfo();
// If we have any vulnerable SVE stack objects then the stack protector
// needs to be placed at the top of the SVE stack area, as the SVE locals
// are placed above the other locals, so we allocate it as if it were a
// scalable vector.
// FIXME: It may be worthwhile having a specific interface for this rather
// than doing it here in finalizeLowering.
if (MFI.hasStackProtectorIndex()) {
for (unsigned int i = 0, e = MFI.getObjectIndexEnd(); i != e; ++i) {
if (MFI.getStackID(i) == TargetStackID::ScalableVector &&
MFI.getObjectSSPLayout(i) != MachineFrameInfo::SSPLK_None) {
MFI.setStackID(MFI.getStackProtectorIndex(),
TargetStackID::ScalableVector);
MFI.setObjectAlignment(MFI.getStackProtectorIndex(), Align(16));
break;
}
}
}
MFI.computeMaxCallFrameSize(MF);
TargetLoweringBase::finalizeLowering(MF);
}
// Unlike X86, we let frame lowering assign offsets to all catch objects.
bool AArch64TargetLowering::needsFixedCatchObjects() const {
return false;
}
bool AArch64TargetLowering::shouldLocalize(
const MachineInstr &MI, const TargetTransformInfo *TTI) const {
auto &MF = *MI.getMF();
auto &MRI = MF.getRegInfo();
auto maxUses = [](unsigned RematCost) {
// A cost of 1 means remats are basically free.
if (RematCost == 1)
return std::numeric_limits<unsigned>::max();
if (RematCost == 2)
return 2U;
// Remat is too expensive, only sink if there's one user.
if (RematCost > 2)
return 1U;
llvm_unreachable("Unexpected remat cost");
};
unsigned Opc = MI.getOpcode();
switch (Opc) {
case TargetOpcode::G_GLOBAL_VALUE: {
// On Darwin, TLS global vars get selected into function calls, which
// we don't want localized, as they can get moved into the middle of a
// another call sequence.
const GlobalValue &GV = *MI.getOperand(1).getGlobal();
if (GV.isThreadLocal() && Subtarget->isTargetMachO())
return false;
return true; // Always localize G_GLOBAL_VALUE to avoid high reg pressure.
}
case TargetOpcode::G_FCONSTANT:
case TargetOpcode::G_CONSTANT: {
const ConstantInt *CI;
unsigned AdditionalCost = 0;
if (Opc == TargetOpcode::G_CONSTANT)
CI = MI.getOperand(1).getCImm();
else {
LLT Ty = MRI.getType(MI.getOperand(0).getReg());
// We try to estimate cost of 32/64b fpimms, as they'll likely be
// materialized as integers.
if (Ty.getScalarSizeInBits() != 32 && Ty.getScalarSizeInBits() != 64)
break;
auto APF = MI.getOperand(1).getFPImm()->getValueAPF();
bool OptForSize =
MF.getFunction().hasOptSize() || MF.getFunction().hasMinSize();
if (isFPImmLegal(APF, EVT::getFloatingPointVT(Ty.getScalarSizeInBits()),
OptForSize))
return true; // Constant should be cheap.
CI =
ConstantInt::get(MF.getFunction().getContext(), APF.bitcastToAPInt());
// FP materialization also costs an extra move, from gpr to fpr.
AdditionalCost = 1;
}
APInt Imm = CI->getValue();
InstructionCost Cost = TTI->getIntImmCost(
Imm, CI->getType(), TargetTransformInfo::TCK_CodeSize);
assert(Cost.isValid() && "Expected a valid imm cost");
unsigned RematCost = *Cost.getValue();
RematCost += AdditionalCost;
Register Reg = MI.getOperand(0).getReg();
unsigned MaxUses = maxUses(RematCost);
// Don't pass UINT_MAX sentinel value to hasAtMostUserInstrs().
if (MaxUses == std::numeric_limits<unsigned>::max())
--MaxUses;
return MRI.hasAtMostUserInstrs(Reg, MaxUses);
}
// If we legalized G_GLOBAL_VALUE into ADRP + G_ADD_LOW, mark both as being
// localizable.
case AArch64::ADRP:
case AArch64::G_ADD_LOW:
// Need to localize G_PTR_ADD so that G_GLOBAL_VALUE can be localized too.
case TargetOpcode::G_PTR_ADD:
return true;
default:
break;
}
return TargetLoweringBase::shouldLocalize(MI, TTI);
}
bool AArch64TargetLowering::fallBackToDAGISel(const Instruction &Inst) const {
// Fallback for scalable vectors.
// Note that if EnableSVEGISel is true, we allow scalable vector types for
// all instructions, regardless of whether they are actually supported.
if (!EnableSVEGISel) {
if (Inst.getType()->isScalableTy()) {
return true;
}
for (unsigned i = 0; i < Inst.getNumOperands(); ++i)
if (Inst.getOperand(i)->getType()->isScalableTy())
return true;
if (const AllocaInst *AI = dyn_cast<AllocaInst>(&Inst)) {
if (AI->getAllocatedType()->isScalableTy())
return true;
}
}
// Checks to allow the use of SME instructions
if (auto *Base = dyn_cast<CallBase>(&Inst)) {
auto CallerAttrs = SMEAttrs(*Inst.getFunction());
auto CalleeAttrs = SMEAttrs(*Base);
if (CallerAttrs.requiresSMChange(CalleeAttrs) ||
CallerAttrs.requiresLazySave(CalleeAttrs) ||
CallerAttrs.requiresPreservingZT0(CalleeAttrs))
return true;
}
return false;
}
// Return the largest legal scalable vector type that matches VT's element type.
static EVT getContainerForFixedLengthVector(SelectionDAG &DAG, EVT VT) {
assert(VT.isFixedLengthVector() &&
DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
"Expected legal fixed length vector!");
switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
default:
llvm_unreachable("unexpected element type for SVE container");
case MVT::i8:
return EVT(MVT::nxv16i8);
case MVT::i16:
return EVT(MVT::nxv8i16);
case MVT::i32:
return EVT(MVT::nxv4i32);
case MVT::i64:
return EVT(MVT::nxv2i64);
case MVT::bf16:
return EVT(MVT::nxv8bf16);
case MVT::f16:
return EVT(MVT::nxv8f16);
case MVT::f32:
return EVT(MVT::nxv4f32);
case MVT::f64:
return EVT(MVT::nxv2f64);
}
}
// Return a PTRUE with active lanes corresponding to the extent of VT.
static SDValue getPredicateForFixedLengthVector(SelectionDAG &DAG, SDLoc &DL,
EVT VT) {
assert(VT.isFixedLengthVector() &&
DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
"Expected legal fixed length vector!");
std::optional<unsigned> PgPattern =
getSVEPredPatternFromNumElements(VT.getVectorNumElements());
assert(PgPattern && "Unexpected element count for SVE predicate");
// For vectors that are exactly getMaxSVEVectorSizeInBits big, we can use
// AArch64SVEPredPattern::all, which can enable the use of unpredicated
// variants of instructions when available.
const auto &Subtarget = DAG.getSubtarget<AArch64Subtarget>();
unsigned MinSVESize = Subtarget.getMinSVEVectorSizeInBits();
unsigned MaxSVESize = Subtarget.getMaxSVEVectorSizeInBits();
if (MaxSVESize && MinSVESize == MaxSVESize &&
MaxSVESize == VT.getSizeInBits())
PgPattern = AArch64SVEPredPattern::all;
MVT MaskVT;
switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
default:
llvm_unreachable("unexpected element type for SVE predicate");
case MVT::i8:
MaskVT = MVT::nxv16i1;
break;
case MVT::i16:
case MVT::f16:
case MVT::bf16:
MaskVT = MVT::nxv8i1;
break;
case MVT::i32:
case MVT::f32:
MaskVT = MVT::nxv4i1;
break;
case MVT::i64:
case MVT::f64:
MaskVT = MVT::nxv2i1;
break;
}
return getPTrue(DAG, DL, MaskVT, *PgPattern);
}
static SDValue getPredicateForScalableVector(SelectionDAG &DAG, SDLoc &DL,
EVT VT) {
assert(VT.isScalableVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
"Expected legal scalable vector!");
auto PredTy = VT.changeVectorElementType(MVT::i1);
return getPTrue(DAG, DL, PredTy, AArch64SVEPredPattern::all);
}
static SDValue getPredicateForVector(SelectionDAG &DAG, SDLoc &DL, EVT VT) {
if (VT.isFixedLengthVector())
return getPredicateForFixedLengthVector(DAG, DL, VT);
return getPredicateForScalableVector(DAG, DL, VT);
}
// Grow V to consume an entire SVE register.
static SDValue convertToScalableVector(SelectionDAG &DAG, EVT VT, SDValue V) {
assert(VT.isScalableVector() &&
"Expected to convert into a scalable vector!");
assert(V.getValueType().isFixedLengthVector() &&
"Expected a fixed length vector operand!");
SDLoc DL(V);
SDValue Zero = DAG.getConstant(0, DL, MVT::i64);
return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
}
// Shrink V so it's just big enough to maintain a VT's worth of data.
static SDValue convertFromScalableVector(SelectionDAG &DAG, EVT VT, SDValue V) {
assert(VT.isFixedLengthVector() &&
"Expected to convert into a fixed length vector!");
assert(V.getValueType().isScalableVector() &&
"Expected a scalable vector operand!");
SDLoc DL(V);
SDValue Zero = DAG.getConstant(0, DL, MVT::i64);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
}
// Convert all fixed length vector loads larger than NEON to masked_loads.
SDValue AArch64TargetLowering::LowerFixedLengthVectorLoadToSVE(
SDValue Op, SelectionDAG &DAG) const {
auto Load = cast<LoadSDNode>(Op);
SDLoc DL(Op);
EVT VT = Op.getValueType();
EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT);
EVT LoadVT = ContainerVT;
EVT MemVT = Load->getMemoryVT();
auto Pg = getPredicateForFixedLengthVector(DAG, DL, VT);
if (VT.isFloatingPoint()) {
LoadVT = ContainerVT.changeTypeToInteger();
MemVT = MemVT.changeTypeToInteger();
}
SDValue NewLoad = DAG.getMaskedLoad(
LoadVT, DL, Load->getChain(), Load->getBasePtr(), Load->getOffset(), Pg,
DAG.getUNDEF(LoadVT), MemVT, Load->getMemOperand(),
Load->getAddressingMode(), Load->getExtensionType());
SDValue Result = NewLoad;
if (VT.isFloatingPoint() && Load->getExtensionType() == ISD::EXTLOAD) {
EVT ExtendVT = ContainerVT.changeVectorElementType(
Load->getMemoryVT().getVectorElementType());
Result = getSVESafeBitCast(ExtendVT, Result, DAG);
Result = DAG.getNode(AArch64ISD::FP_EXTEND_MERGE_PASSTHRU, DL, ContainerVT,
Pg, Result, DAG.getUNDEF(ContainerVT));
} else if (VT.isFloatingPoint()) {
Result = DAG.getNode(ISD::BITCAST, DL, ContainerVT, Result);
}
Result = convertFromScalableVector(DAG, VT, Result);
SDValue MergedValues[2] = {Result, NewLoad.getValue(1)};
return DAG.getMergeValues(MergedValues, DL);
}
static SDValue convertFixedMaskToScalableVector(SDValue Mask,
SelectionDAG &DAG) {
SDLoc DL(Mask);
EVT InVT = Mask.getValueType();
EVT ContainerVT = getContainerForFixedLengthVector(DAG, InVT);
auto Pg = getPredicateForFixedLengthVector(DAG, DL, InVT);
if (ISD::isBuildVectorAllOnes(Mask.getNode()))
return Pg;
auto Op1 = convertToScalableVector(DAG, ContainerVT, Mask);
auto Op2 = DAG.getConstant(0, DL, ContainerVT);
return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, DL, Pg.getValueType(),
{Pg, Op1, Op2, DAG.getCondCode(ISD::SETNE)});
}
// Convert all fixed length vector loads larger than NEON to masked_loads.
SDValue AArch64TargetLowering::LowerFixedLengthVectorMLoadToSVE(
SDValue Op, SelectionDAG &DAG) const {
auto Load = cast<MaskedLoadSDNode>(Op);
SDLoc DL(Op);
EVT VT = Op.getValueType();
EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT);
SDValue Mask = Load->getMask();
// If this is an extending load and the mask type is not the same as
// load's type then we have to extend the mask type.
if (VT.getScalarSizeInBits() > Mask.getValueType().getScalarSizeInBits()) {
assert(Load->getExtensionType() != ISD::NON_EXTLOAD &&
"Incorrect mask type");
Mask = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Mask);
}
Mask = convertFixedMaskToScalableVector(Mask, DAG);
SDValue PassThru;
bool IsPassThruZeroOrUndef = false;
if (Load->getPassThru()->isUndef()) {
PassThru = DAG.getUNDEF(ContainerVT);
IsPassThruZeroOrUndef = true;
} else {
if (ContainerVT.isInteger())
PassThru = DAG.getConstant(0, DL, ContainerVT);
else
PassThru = DAG.getConstantFP(0, DL, ContainerVT);
if (isZerosVector(Load->getPassThru().getNode()))
IsPassThruZeroOrUndef = true;
}
SDValue NewLoad = DAG.getMaskedLoad(
ContainerVT, DL, Load->getChain(), Load->getBasePtr(), Load->getOffset(),
Mask, PassThru, Load->getMemoryVT(), Load->getMemOperand(),
Load->getAddressingMode(), Load->getExtensionType());
SDValue Result = NewLoad;
if (!IsPassThruZeroOrUndef) {
SDValue OldPassThru =
convertToScalableVector(DAG, ContainerVT, Load->getPassThru());
Result = DAG.getSelect(DL, ContainerVT, Mask, Result, OldPassThru);
}
Result = convertFromScalableVector(DAG, VT, Result);
SDValue MergedValues[2] = {Result, NewLoad.getValue(1)};
return DAG.getMergeValues(MergedValues, DL);
}
// Convert all fixed length vector stores larger than NEON to masked_stores.
SDValue AArch64TargetLowering::LowerFixedLengthVectorStoreToSVE(
SDValue Op, SelectionDAG &DAG) const {
auto Store = cast<StoreSDNode>(Op);
SDLoc DL(Op);
EVT VT = Store->getValue().getValueType();
EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT);
EVT MemVT = Store->getMemoryVT();
auto Pg = getPredicateForFixedLengthVector(DAG, DL, VT);
auto NewValue = convertToScalableVector(DAG, ContainerVT, Store->getValue());
if (VT.isFloatingPoint() && Store->isTruncatingStore()) {
EVT TruncVT = ContainerVT.changeVectorElementType(
Store->getMemoryVT().getVectorElementType());
MemVT = MemVT.changeTypeToInteger();
NewValue = DAG.getNode(AArch64ISD::FP_ROUND_MERGE_PASSTHRU, DL, TruncVT, Pg,
NewValue, DAG.getTargetConstant(0, DL, MVT::i64),
DAG.getUNDEF(TruncVT));
NewValue =
getSVESafeBitCast(ContainerVT.changeTypeToInteger(), NewValue, DAG);
} else if (VT.isFloatingPoint()) {
MemVT = MemVT.changeTypeToInteger();
NewValue =
getSVESafeBitCast(ContainerVT.changeTypeToInteger(), NewValue, DAG);
}
return DAG.getMaskedStore(Store->getChain(), DL, NewValue,
Store->getBasePtr(), Store->getOffset(), Pg, MemVT,
Store->getMemOperand(), Store->getAddressingMode(),
Store->isTruncatingStore());
}
SDValue AArch64TargetLowering::LowerFixedLengthVectorMStoreToSVE(
SDValue Op, SelectionDAG &DAG) const {
auto *Store = cast<MaskedStoreSDNode>(Op);
SDLoc DL(Op);
EVT VT = Store->getValue().getValueType();
EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT);
auto NewValue = convertToScalableVector(DAG, ContainerVT, Store->getValue());
SDValue Mask = convertFixedMaskToScalableVector(Store->getMask(), DAG);
return DAG.getMaskedStore(
Store->getChain(), DL, NewValue, Store->getBasePtr(), Store->getOffset(),
Mask, Store->getMemoryVT(), Store->getMemOperand(),
Store->getAddressingMode(), Store->isTruncatingStore());
}
SDValue AArch64TargetLowering::LowerFixedLengthVectorIntDivideToSVE(
SDValue Op, SelectionDAG &DAG) const {
SDLoc dl(Op);
EVT VT = Op.getValueType();
EVT EltVT = VT.getVectorElementType();
bool Signed = Op.getOpcode() == ISD::SDIV;
unsigned PredOpcode = Signed ? AArch64ISD::SDIV_PRED : AArch64ISD::UDIV_PRED;
bool Negated;
uint64_t SplatVal;
if (Signed && isPow2Splat(Op.getOperand(1), SplatVal, Negated)) {
EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT);
SDValue Op1 = convertToScalableVector(DAG, ContainerVT, Op.getOperand(0));
SDValue Op2 = DAG.getTargetConstant(Log2_64(SplatVal), dl, MVT::i32);
SDValue Pg = getPredicateForFixedLengthVector(DAG, dl, VT);
SDValue Res =
DAG.getNode(AArch64ISD::SRAD_MERGE_OP1, dl, ContainerVT, Pg, Op1, Op2);
if (Negated)
Res = DAG.getNode(ISD::SUB, dl, ContainerVT,
DAG.getConstant(0, dl, ContainerVT), Res);
return convertFromScalableVector(DAG, VT, Res);
}
// Scalable vector i32/i64 DIV is supported.
if (EltVT == MVT::i32 || EltVT == MVT::i64)
return LowerToPredicatedOp(Op, DAG, PredOpcode);
// Scalable vector i8/i16 DIV is not supported. Promote it to i32.
EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
EVT PromVT = HalfVT.widenIntegerVectorElementType(*DAG.getContext());
unsigned ExtendOpcode = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
// If the wider type is legal: extend, op, and truncate.
EVT WideVT = VT.widenIntegerVectorElementType(*DAG.getContext());
if (DAG.getTargetLoweringInfo().isTypeLegal(WideVT)) {
SDValue Op0 = DAG.getNode(ExtendOpcode, dl, WideVT, Op.getOperand(0));
SDValue Op1 = DAG.getNode(ExtendOpcode, dl, WideVT, Op.getOperand(1));
SDValue Div = DAG.getNode(Op.getOpcode(), dl, WideVT, Op0, Op1);
return DAG.getNode(ISD::TRUNCATE, dl, VT, Div);
}
auto HalveAndExtendVector = [&DAG, &dl, &HalfVT, &PromVT,
&ExtendOpcode](SDValue Op) {
SDValue IdxZero = DAG.getConstant(0, dl, MVT::i64);
SDValue IdxHalf =
DAG.getConstant(HalfVT.getVectorNumElements(), dl, MVT::i64);
SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, HalfVT, Op, IdxZero);
SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, HalfVT, Op, IdxHalf);
return std::pair<SDValue, SDValue>(
{DAG.getNode(ExtendOpcode, dl, PromVT, Lo),
DAG.getNode(ExtendOpcode, dl, PromVT, Hi)});
};
// If wider type is not legal: split, extend, op, trunc and concat.
auto [Op0LoExt, Op0HiExt] = HalveAndExtendVector(Op.getOperand(0));
auto [Op1LoExt, Op1HiExt] = HalveAndExtendVector(Op.getOperand(1));
SDValue Lo = DAG.getNode(Op.getOpcode(), dl, PromVT, Op0LoExt, Op1LoExt);
SDValue Hi = DAG.getNode(Op.getOpcode(), dl, PromVT, Op0HiExt, Op1HiExt);
SDValue LoTrunc = DAG.getNode(ISD::TRUNCATE, dl, HalfVT, Lo);
SDValue HiTrunc = DAG.getNode(ISD::TRUNCATE, dl, HalfVT, Hi);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, {LoTrunc, HiTrunc});
}
SDValue AArch64TargetLowering::LowerFixedLengthVectorIntExtendToSVE(
SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
assert(VT.isFixedLengthVector() && "Expected fixed length vector type!");
SDLoc DL(Op);
SDValue Val = Op.getOperand(0);
EVT ContainerVT = getContainerForFixedLengthVector(DAG, Val.getValueType());
Val = convertToScalableVector(DAG, ContainerVT, Val);
bool Signed = Op.getOpcode() == ISD::SIGN_EXTEND;
unsigned ExtendOpc = Signed ? AArch64ISD::SUNPKLO : AArch64ISD::UUNPKLO;
// Repeatedly unpack Val until the result is of the desired element type.
switch (ContainerVT.getSimpleVT().SimpleTy) {
default:
llvm_unreachable("unimplemented container type");
case MVT::nxv16i8:
Val = DAG.getNode(ExtendOpc, DL, MVT::nxv8i16, Val);
if (VT.getVectorElementType() == MVT::i16)
break;
[[fallthrough]];
case MVT::nxv8i16:
Val = DAG.getNode(ExtendOpc, DL, MVT::nxv4i32, Val);
if (VT.getVectorElementType() == MVT::i32)
break;
[[fallthrough]];
case MVT::nxv4i32:
Val = DAG.getNode(ExtendOpc, DL, MVT::nxv2i64, Val);
assert(VT.getVectorElementType() == MVT::i64 && "Unexpected element type!");
break;
}
return convertFromScalableVector(DAG, VT, Val);
}
SDValue AArch64TargetLowering::LowerFixedLengthVectorTruncateToSVE(
SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
assert(VT.isFixedLengthVector() && "Expected fixed length vector type!");
SDLoc DL(Op);
SDValue Val = Op.getOperand(0);
EVT ContainerVT = getContainerForFixedLengthVector(DAG, Val.getValueType());
Val = convertToScalableVector(DAG, ContainerVT, Val);
// Repeatedly truncate Val until the result is of the desired element type.
switch (ContainerVT.getSimpleVT().SimpleTy) {
default:
llvm_unreachable("unimplemented container type");
case MVT::nxv2i64:
Val = DAG.getNode(ISD::BITCAST, DL, MVT::nxv4i32, Val);
Val = DAG.getNode(AArch64ISD::UZP1, DL, MVT::nxv4i32, Val, Val);
if (VT.getVectorElementType() == MVT::i32)
break;
[[fallthrough]];
case MVT::nxv4i32:
Val = DAG.getNode(ISD::BITCAST, DL, MVT::nxv8i16, Val);
Val = DAG.getNode(AArch64ISD::UZP1, DL, MVT::nxv8i16, Val, Val);
if (VT.getVectorElementType() == MVT::i16)
break;
[[fallthrough]];
case MVT::nxv8i16:
Val = DAG.getNode(ISD::BITCAST, DL, MVT::nxv16i8, Val);
Val = DAG.getNode(AArch64ISD::UZP1, DL, MVT::nxv16i8, Val, Val);
assert(VT.getVectorElementType() == MVT::i8 && "Unexpected element type!");
break;
}
return convertFromScalableVector(DAG, VT, Val);
}
SDValue AArch64TargetLowering::LowerFixedLengthExtractVectorElt(
SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
EVT InVT = Op.getOperand(0).getValueType();
assert(InVT.isFixedLengthVector() && "Expected fixed length vector type!");
SDLoc DL(Op);
EVT ContainerVT = getContainerForFixedLengthVector(DAG, InVT);
SDValue Op0 = convertToScalableVector(DAG, ContainerVT, Op->getOperand(0));
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op0, Op.getOperand(1));
}
SDValue AArch64TargetLowering::LowerFixedLengthInsertVectorElt(
SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
assert(VT.isFixedLengthVector() && "Expected fixed length vector type!");
SDLoc DL(Op);
EVT InVT = Op.getOperand(0).getValueType();
EVT ContainerVT = getContainerForFixedLengthVector(DAG, InVT);
SDValue Op0 = convertToScalableVector(DAG, ContainerVT, Op->getOperand(0));
auto ScalableRes = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ContainerVT, Op0,
Op.getOperand(1), Op.getOperand(2));
return convertFromScalableVector(DAG, VT, ScalableRes);
}
// Convert vector operation 'Op' to an equivalent predicated operation whereby
// the original operation's type is used to construct a suitable predicate.
// NOTE: The results for inactive lanes are undefined.
SDValue AArch64TargetLowering::LowerToPredicatedOp(SDValue Op,
SelectionDAG &DAG,
unsigned NewOp) const {
EVT VT = Op.getValueType();
SDLoc DL(Op);
auto Pg = getPredicateForVector(DAG, DL, VT);
if (VT.isFixedLengthVector()) {
assert(isTypeLegal(VT) && "Expected only legal fixed-width types");
EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT);
// Create list of operands by converting existing ones to scalable types.
SmallVector<SDValue, 4> Operands = {Pg};
for (const SDValue &V : Op->op_values()) {
if (isa<CondCodeSDNode>(V)) {
Operands.push_back(V);
continue;
}
if (const VTSDNode *VTNode = dyn_cast<VTSDNode>(V)) {
EVT VTArg = VTNode->getVT().getVectorElementType();
EVT NewVTArg = ContainerVT.changeVectorElementType(VTArg);
Operands.push_back(DAG.getValueType(NewVTArg));
continue;
}
assert(isTypeLegal(V.getValueType()) &&
"Expected only legal fixed-width types");
Operands.push_back(convertToScalableVector(DAG, ContainerVT, V));
}
if (isMergePassthruOpcode(NewOp))
Operands.push_back(DAG.getUNDEF(ContainerVT));
auto ScalableRes = DAG.getNode(NewOp, DL, ContainerVT, Operands);
return convertFromScalableVector(DAG, VT, ScalableRes);
}
assert(VT.isScalableVector() && "Only expect to lower scalable vector op!");
SmallVector<SDValue, 4> Operands = {Pg};
for (const SDValue &V : Op->op_values()) {
assert((!V.getValueType().isVector() ||
V.getValueType().isScalableVector()) &&
"Only scalable vectors are supported!");
Operands.push_back(V);
}
if (isMergePassthruOpcode(NewOp))
Operands.push_back(DAG.getUNDEF(VT));
return DAG.getNode(NewOp, DL, VT, Operands, Op->getFlags());
}
// If a fixed length vector operation has no side effects when applied to
// undefined elements, we can safely use scalable vectors to perform the same
// operation without needing to worry about predication.
SDValue AArch64TargetLowering::LowerToScalableOp(SDValue Op,
SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
assert(VT.isFixedLengthVector() && isTypeLegal(VT) &&
"Only expected to lower fixed length vector operation!");
EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT);
// Create list of operands by converting existing ones to scalable types.
SmallVector<SDValue, 4> Ops;
for (const SDValue &V : Op->op_values()) {
assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
// Pass through non-vector operands.
if (!V.getValueType().isVector()) {
Ops.push_back(V);
continue;
}
// "cast" fixed length vector to a scalable vector.
assert(V.getValueType().isFixedLengthVector() &&
isTypeLegal(V.getValueType()) &&
"Only fixed length vectors are supported!");
Ops.push_back(convertToScalableVector(DAG, ContainerVT, V));
}
auto ScalableRes = DAG.getNode(Op.getOpcode(), SDLoc(Op), ContainerVT, Ops);
return convertFromScalableVector(DAG, VT, ScalableRes);
}
SDValue AArch64TargetLowering::LowerVECREDUCE_SEQ_FADD(SDValue ScalarOp,
SelectionDAG &DAG) const {
SDLoc DL(ScalarOp);
SDValue AccOp = ScalarOp.getOperand(0);
SDValue VecOp = ScalarOp.getOperand(1);
EVT SrcVT = VecOp.getValueType();
EVT ResVT = SrcVT.getVectorElementType();
EVT ContainerVT = SrcVT;
if (SrcVT.isFixedLengthVector()) {
ContainerVT = getContainerForFixedLengthVector(DAG, SrcVT);
VecOp = convertToScalableVector(DAG, ContainerVT, VecOp);
}
SDValue Pg = getPredicateForVector(DAG, DL, SrcVT);
SDValue Zero = DAG.getConstant(0, DL, MVT::i64);
// Convert operands to Scalable.
AccOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ContainerVT,
DAG.getUNDEF(ContainerVT), AccOp, Zero);
// Perform reduction.
SDValue Rdx = DAG.getNode(AArch64ISD::FADDA_PRED, DL, ContainerVT,
Pg, AccOp, VecOp);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Rdx, Zero);
}
SDValue AArch64TargetLowering::LowerPredReductionToSVE(SDValue ReduceOp,
SelectionDAG &DAG) const {
SDLoc DL(ReduceOp);
SDValue Op = ReduceOp.getOperand(0);
EVT OpVT = Op.getValueType();
EVT VT = ReduceOp.getValueType();
if (!OpVT.isScalableVector() || OpVT.getVectorElementType() != MVT::i1)
return SDValue();
SDValue Pg = getPredicateForVector(DAG, DL, OpVT);
switch (ReduceOp.getOpcode()) {
default:
return SDValue();
case ISD::VECREDUCE_OR:
if (isAllActivePredicate(DAG, Pg) && OpVT == MVT::nxv16i1)
// The predicate can be 'Op' because
// vecreduce_or(Op & <all true>) <=> vecreduce_or(Op).
return getPTest(DAG, VT, Op, Op, AArch64CC::ANY_ACTIVE);
else
return getPTest(DAG, VT, Pg, Op, AArch64CC::ANY_ACTIVE);
case ISD::VECREDUCE_AND: {
Op = DAG.getNode(ISD::XOR, DL, OpVT, Op, Pg);
return getPTest(DAG, VT, Pg, Op, AArch64CC::NONE_ACTIVE);
}
case ISD::VECREDUCE_XOR: {
SDValue ID =
DAG.getTargetConstant(Intrinsic::aarch64_sve_cntp, DL, MVT::i64);
if (OpVT == MVT::nxv1i1) {
// Emulate a CNTP on .Q using .D and a different governing predicate.
Pg = DAG.getNode(AArch64ISD::REINTERPRET_CAST, DL, MVT::nxv2i1, Pg);
Op = DAG.getNode(AArch64ISD::REINTERPRET_CAST, DL, MVT::nxv2i1, Op);
}
SDValue Cntp =
DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, MVT::i64, ID, Pg, Op);
return DAG.getAnyExtOrTrunc(Cntp, DL, VT);
}
}
return SDValue();
}
SDValue AArch64TargetLowering::LowerReductionToSVE(unsigned Opcode,
SDValue ScalarOp,
SelectionDAG &DAG) const {
SDLoc DL(ScalarOp);
SDValue VecOp = ScalarOp.getOperand(0);
EVT SrcVT = VecOp.getValueType();
if (useSVEForFixedLengthVectorVT(
SrcVT,
/*OverrideNEON=*/Subtarget->useSVEForFixedLengthVectors())) {
EVT ContainerVT = getContainerForFixedLengthVector(DAG, SrcVT);
VecOp = convertToScalableVector(DAG, ContainerVT, VecOp);
}
// Lower VECREDUCE_ADD of nxv2i1-nxv16i1 to CNTP rather than UADDV.
if (ScalarOp.getOpcode() == ISD::VECREDUCE_ADD &&
VecOp.getOpcode() == ISD::ZERO_EXTEND) {
SDValue BoolVec = VecOp.getOperand(0);
if (BoolVec.getValueType().getVectorElementType() == MVT::i1) {
// CNTP(BoolVec & BoolVec) <=> CNTP(BoolVec & PTRUE)
SDValue CntpOp = DAG.getNode(
ISD::INTRINSIC_WO_CHAIN, DL, MVT::i64,
DAG.getTargetConstant(Intrinsic::aarch64_sve_cntp, DL, MVT::i64),
BoolVec, BoolVec);
return DAG.getAnyExtOrTrunc(CntpOp, DL, ScalarOp.getValueType());
}
}
// UADDV always returns an i64 result.
EVT ResVT = (Opcode == AArch64ISD::UADDV_PRED) ? MVT::i64 :
SrcVT.getVectorElementType();
EVT RdxVT = SrcVT;
if (SrcVT.isFixedLengthVector() || Opcode == AArch64ISD::UADDV_PRED)
RdxVT = getPackedSVEVectorVT(ResVT);
SDValue Pg = getPredicateForVector(DAG, DL, SrcVT);
SDValue Rdx = DAG.getNode(Opcode, DL, RdxVT, Pg, VecOp);
SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT,
Rdx, DAG.getConstant(0, DL, MVT::i64));
// The VEC_REDUCE nodes expect an element size result.
if (ResVT != ScalarOp.getValueType())
Res = DAG.getAnyExtOrTrunc(Res, DL, ScalarOp.getValueType());
return Res;
}
SDValue
AArch64TargetLowering::LowerFixedLengthVectorSelectToSVE(SDValue Op,
SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
SDLoc DL(Op);
EVT InVT = Op.getOperand(1).getValueType();
EVT ContainerVT = getContainerForFixedLengthVector(DAG, InVT);
SDValue Op1 = convertToScalableVector(DAG, ContainerVT, Op->getOperand(1));
SDValue Op2 = convertToScalableVector(DAG, ContainerVT, Op->getOperand(2));
// Convert the mask to a predicated (NOTE: We don't need to worry about
// inactive lanes since VSELECT is safe when given undefined elements).
EVT MaskVT = Op.getOperand(0).getValueType();
EVT MaskContainerVT = getContainerForFixedLengthVector(DAG, MaskVT);
auto Mask = convertToScalableVector(DAG, MaskContainerVT, Op.getOperand(0));
Mask = DAG.getNode(ISD::TRUNCATE, DL,
MaskContainerVT.changeVectorElementType(MVT::i1), Mask);
auto ScalableRes = DAG.getNode(ISD::VSELECT, DL, ContainerVT,
Mask, Op1, Op2);
return convertFromScalableVector(DAG, VT, ScalableRes);
}
SDValue AArch64TargetLowering::LowerFixedLengthVectorSetccToSVE(
SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT InVT = Op.getOperand(0).getValueType();
EVT ContainerVT = getContainerForFixedLengthVector(DAG, InVT);
assert(InVT.isFixedLengthVector() && isTypeLegal(InVT) &&
"Only expected to lower fixed length vector operation!");
assert(Op.getValueType() == InVT.changeTypeToInteger() &&
"Expected integer result of the same bit length as the inputs!");
auto Op1 = convertToScalableVector(DAG, ContainerVT, Op.getOperand(0));
auto Op2 = convertToScalableVector(DAG, ContainerVT, Op.getOperand(1));
auto Pg = getPredicateForFixedLengthVector(DAG, DL, InVT);
EVT CmpVT = Pg.getValueType();
auto Cmp = DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, DL, CmpVT,
{Pg, Op1, Op2, Op.getOperand(2)});
EVT PromoteVT = ContainerVT.changeTypeToInteger();
auto Promote = DAG.getBoolExtOrTrunc(Cmp, DL, PromoteVT, InVT);
return convertFromScalableVector(DAG, Op.getValueType(), Promote);
}
SDValue
AArch64TargetLowering::LowerFixedLengthBitcastToSVE(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
auto SrcOp = Op.getOperand(0);
EVT VT = Op.getValueType();
EVT ContainerDstVT = getContainerForFixedLengthVector(DAG, VT);
EVT ContainerSrcVT =
getContainerForFixedLengthVector(DAG, SrcOp.getValueType());
SrcOp = convertToScalableVector(DAG, ContainerSrcVT, SrcOp);
Op = DAG.getNode(ISD::BITCAST, DL, ContainerDstVT, SrcOp);
return convertFromScalableVector(DAG, VT, Op);
}
SDValue AArch64TargetLowering::LowerFixedLengthConcatVectorsToSVE(
SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
unsigned NumOperands = Op->getNumOperands();
assert(NumOperands > 1 && isPowerOf2_32(NumOperands) &&
"Unexpected number of operands in CONCAT_VECTORS");
auto SrcOp1 = Op.getOperand(0);
auto SrcOp2 = Op.getOperand(1);
EVT VT = Op.getValueType();
EVT SrcVT = SrcOp1.getValueType();
if (NumOperands > 2) {
SmallVector<SDValue, 4> Ops;
EVT PairVT = SrcVT.getDoubleNumVectorElementsVT(*DAG.getContext());
for (unsigned I = 0; I < NumOperands; I += 2)
Ops.push_back(DAG.getNode(ISD::CONCAT_VECTORS, DL, PairVT,
Op->getOperand(I), Op->getOperand(I + 1)));
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Ops);
}
EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT);
SDValue Pg = getPredicateForFixedLengthVector(DAG, DL, SrcVT);
SrcOp1 = convertToScalableVector(DAG, ContainerVT, SrcOp1);
SrcOp2 = convertToScalableVector(DAG, ContainerVT, SrcOp2);
Op = DAG.getNode(AArch64ISD::SPLICE, DL, ContainerVT, Pg, SrcOp1, SrcOp2);
return convertFromScalableVector(DAG, VT, Op);
}
SDValue
AArch64TargetLowering::LowerFixedLengthFPExtendToSVE(SDValue Op,
SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
assert(VT.isFixedLengthVector() && "Expected fixed length vector type!");
SDLoc DL(Op);
SDValue Val = Op.getOperand(0);
SDValue Pg = getPredicateForVector(DAG, DL, VT);
EVT SrcVT = Val.getValueType();
EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT);
EVT ExtendVT = ContainerVT.changeVectorElementType(
SrcVT.getVectorElementType());
Val = DAG.getNode(ISD::BITCAST, DL, SrcVT.changeTypeToInteger(), Val);
Val = DAG.getNode(ISD::ANY_EXTEND, DL, VT.changeTypeToInteger(), Val);
Val = convertToScalableVector(DAG, ContainerVT.changeTypeToInteger(), Val);
Val = getSVESafeBitCast(ExtendVT, Val, DAG);
Val = DAG.getNode(AArch64ISD::FP_EXTEND_MERGE_PASSTHRU, DL, ContainerVT,
Pg, Val, DAG.getUNDEF(ContainerVT));
return convertFromScalableVector(DAG, VT, Val);
}
SDValue
AArch64TargetLowering::LowerFixedLengthFPRoundToSVE(SDValue Op,
SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
assert(VT.isFixedLengthVector() && "Expected fixed length vector type!");
SDLoc DL(Op);
SDValue Val = Op.getOperand(0);
EVT SrcVT = Val.getValueType();
EVT ContainerSrcVT = getContainerForFixedLengthVector(DAG, SrcVT);
EVT RoundVT = ContainerSrcVT.changeVectorElementType(
VT.getVectorElementType());
SDValue Pg = getPredicateForVector(DAG, DL, RoundVT);
Val = convertToScalableVector(DAG, ContainerSrcVT, Val);
Val = DAG.getNode(AArch64ISD::FP_ROUND_MERGE_PASSTHRU, DL, RoundVT, Pg, Val,
Op.getOperand(1), DAG.getUNDEF(RoundVT));
Val = getSVESafeBitCast(ContainerSrcVT.changeTypeToInteger(), Val, DAG);
Val = convertFromScalableVector(DAG, SrcVT.changeTypeToInteger(), Val);
Val = DAG.getNode(ISD::TRUNCATE, DL, VT.changeTypeToInteger(), Val);
return DAG.getNode(ISD::BITCAST, DL, VT, Val);
}
SDValue
AArch64TargetLowering::LowerFixedLengthIntToFPToSVE(SDValue Op,
SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
assert(VT.isFixedLengthVector() && "Expected fixed length vector type!");
bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP;
unsigned Opcode = IsSigned ? AArch64ISD::SINT_TO_FP_MERGE_PASSTHRU
: AArch64ISD::UINT_TO_FP_MERGE_PASSTHRU;
SDLoc DL(Op);
SDValue Val = Op.getOperand(0);
EVT SrcVT = Val.getValueType();
EVT ContainerDstVT = getContainerForFixedLengthVector(DAG, VT);
EVT ContainerSrcVT = getContainerForFixedLengthVector(DAG, SrcVT);
if (VT.bitsGE(SrcVT)) {
SDValue Pg = getPredicateForFixedLengthVector(DAG, DL, VT);
Val = DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL,
VT.changeTypeToInteger(), Val);
// Safe to use a larger than specified operand because by promoting the
// value nothing has changed from an arithmetic point of view.
Val =
convertToScalableVector(DAG, ContainerDstVT.changeTypeToInteger(), Val);
Val = DAG.getNode(Opcode, DL, ContainerDstVT, Pg, Val,
DAG.getUNDEF(ContainerDstVT));
return convertFromScalableVector(DAG, VT, Val);
} else {
EVT CvtVT = ContainerSrcVT.changeVectorElementType(
ContainerDstVT.getVectorElementType());
SDValue Pg = getPredicateForFixedLengthVector(DAG, DL, SrcVT);
Val = convertToScalableVector(DAG, ContainerSrcVT, Val);
Val = DAG.getNode(Opcode, DL, CvtVT, Pg, Val, DAG.getUNDEF(CvtVT));
Val = getSVESafeBitCast(ContainerSrcVT, Val, DAG);
Val = convertFromScalableVector(DAG, SrcVT, Val);
Val = DAG.getNode(ISD::TRUNCATE, DL, VT.changeTypeToInteger(), Val);
return DAG.getNode(ISD::BITCAST, DL, VT, Val);
}
}
SDValue
AArch64TargetLowering::LowerVECTOR_DEINTERLEAVE(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT OpVT = Op.getValueType();
assert(OpVT.isScalableVector() &&
"Expected scalable vector in LowerVECTOR_DEINTERLEAVE.");
SDValue Even = DAG.getNode(AArch64ISD::UZP1, DL, OpVT, Op.getOperand(0),
Op.getOperand(1));
SDValue Odd = DAG.getNode(AArch64ISD::UZP2, DL, OpVT, Op.getOperand(0),
Op.getOperand(1));
return DAG.getMergeValues({Even, Odd}, DL);
}
SDValue AArch64TargetLowering::LowerVECTOR_INTERLEAVE(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT OpVT = Op.getValueType();
assert(OpVT.isScalableVector() &&
"Expected scalable vector in LowerVECTOR_INTERLEAVE.");
SDValue Lo = DAG.getNode(AArch64ISD::ZIP1, DL, OpVT, Op.getOperand(0),
Op.getOperand(1));
SDValue Hi = DAG.getNode(AArch64ISD::ZIP2, DL, OpVT, Op.getOperand(0),
Op.getOperand(1));
return DAG.getMergeValues({Lo, Hi}, DL);
}
SDValue AArch64TargetLowering::LowerVECTOR_HISTOGRAM(SDValue Op,
SelectionDAG &DAG) const {
// FIXME: Maybe share some code with LowerMGather/Scatter?
MaskedHistogramSDNode *HG = cast<MaskedHistogramSDNode>(Op);
SDLoc DL(HG);
SDValue Chain = HG->getChain();
SDValue Inc = HG->getInc();
SDValue Mask = HG->getMask();
SDValue Ptr = HG->getBasePtr();
SDValue Index = HG->getIndex();
SDValue Scale = HG->getScale();
SDValue IntID = HG->getIntID();
// The Intrinsic ID determines the type of update operation.
[[maybe_unused]] ConstantSDNode *CID = cast<ConstantSDNode>(IntID.getNode());
// Right now, we only support 'add' as an update.
assert(CID->getZExtValue() == Intrinsic::experimental_vector_histogram_add &&
"Unexpected histogram update operation");
EVT IndexVT = Index.getValueType();
LLVMContext &Ctx = *DAG.getContext();
ElementCount EC = IndexVT.getVectorElementCount();
EVT MemVT = EVT::getVectorVT(Ctx, HG->getMemoryVT(), EC);
EVT IncExtVT =
EVT::getIntegerVT(Ctx, AArch64::SVEBitsPerBlock / EC.getKnownMinValue());
EVT IncSplatVT = EVT::getVectorVT(Ctx, IncExtVT, EC);
bool ExtTrunc = IncSplatVT != MemVT;
SDValue Zero = DAG.getConstant(0, DL, MVT::i64);
SDValue PassThru = DAG.getSplatVector(IncSplatVT, DL, Zero);
SDValue IncSplat = DAG.getSplatVector(
IncSplatVT, DL, DAG.getAnyExtOrTrunc(Inc, DL, IncExtVT));
SDValue Ops[] = {Chain, PassThru, Mask, Ptr, Index, Scale};
MachineMemOperand *MMO = HG->getMemOperand();
// Create an MMO for the gather, without load|store flags.
MachineMemOperand *GMMO = DAG.getMachineFunction().getMachineMemOperand(
MMO->getPointerInfo(), MachineMemOperand::MOLoad, MMO->getSize(),
MMO->getAlign(), MMO->getAAInfo());
ISD::MemIndexType IndexType = HG->getIndexType();
SDValue Gather = DAG.getMaskedGather(
DAG.getVTList(IncSplatVT, MVT::Other), MemVT, DL, Ops, GMMO, IndexType,
ExtTrunc ? ISD::EXTLOAD : ISD::NON_EXTLOAD);
SDValue GChain = Gather.getValue(1);
// Perform the histcnt, multiply by inc, add to bucket data.
SDValue ID =
DAG.getTargetConstant(Intrinsic::aarch64_sve_histcnt, DL, IncExtVT);
SDValue HistCnt =
DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, IndexVT, ID, Mask, Index, Index);
SDValue Mul = DAG.getNode(ISD::MUL, DL, IncSplatVT, HistCnt, IncSplat);
SDValue Add = DAG.getNode(ISD::ADD, DL, IncSplatVT, Gather, Mul);
// Create an MMO for the scatter, without load|store flags.
MachineMemOperand *SMMO = DAG.getMachineFunction().getMachineMemOperand(
MMO->getPointerInfo(), MachineMemOperand::MOStore, MMO->getSize(),
MMO->getAlign(), MMO->getAAInfo());
SDValue ScatterOps[] = {GChain, Add, Mask, Ptr, Index, Scale};
SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), MemVT, DL,
ScatterOps, SMMO, IndexType, ExtTrunc);
return Scatter;
}
SDValue
AArch64TargetLowering::LowerFixedLengthFPToIntToSVE(SDValue Op,
SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
assert(VT.isFixedLengthVector() && "Expected fixed length vector type!");
bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT;
unsigned Opcode = IsSigned ? AArch64ISD::FCVTZS_MERGE_PASSTHRU
: AArch64ISD::FCVTZU_MERGE_PASSTHRU;
SDLoc DL(Op);
SDValue Val = Op.getOperand(0);
EVT SrcVT = Val.getValueType();
EVT ContainerDstVT = getContainerForFixedLengthVector(DAG, VT);
EVT ContainerSrcVT = getContainerForFixedLengthVector(DAG, SrcVT);
if (VT.bitsGT(SrcVT)) {
EVT CvtVT = ContainerDstVT.changeVectorElementType(
ContainerSrcVT.getVectorElementType());
SDValue Pg = getPredicateForFixedLengthVector(DAG, DL, VT);
Val = DAG.getNode(ISD::BITCAST, DL, SrcVT.changeTypeToInteger(), Val);
Val = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Val);
Val = convertToScalableVector(DAG, ContainerDstVT, Val);
Val = getSVESafeBitCast(CvtVT, Val, DAG);
Val = DAG.getNode(Opcode, DL, ContainerDstVT, Pg, Val,
DAG.getUNDEF(ContainerDstVT));
return convertFromScalableVector(DAG, VT, Val);
} else {
EVT CvtVT = ContainerSrcVT.changeTypeToInteger();
SDValue Pg = getPredicateForFixedLengthVector(DAG, DL, SrcVT);
// Safe to use a larger than specified result since an fp_to_int where the
// result doesn't fit into the destination is undefined.
Val = convertToScalableVector(DAG, ContainerSrcVT, Val);
Val = DAG.getNode(Opcode, DL, CvtVT, Pg, Val, DAG.getUNDEF(CvtVT));
Val = convertFromScalableVector(DAG, SrcVT.changeTypeToInteger(), Val);
return DAG.getNode(ISD::TRUNCATE, DL, VT, Val);
}
}
static SDValue GenerateFixedLengthSVETBL(SDValue Op, SDValue Op1, SDValue Op2,
ArrayRef<int> ShuffleMask, EVT VT,
EVT ContainerVT, SelectionDAG &DAG) {
auto &Subtarget = DAG.getSubtarget<AArch64Subtarget>();
SDLoc DL(Op);
unsigned MinSVESize = Subtarget.getMinSVEVectorSizeInBits();
unsigned MaxSVESize = Subtarget.getMaxSVEVectorSizeInBits();
bool IsSingleOp =
ShuffleVectorInst::isSingleSourceMask(ShuffleMask, ShuffleMask.size());
if (!Subtarget.isNeonAvailable() && !MinSVESize)
MinSVESize = 128;
// Ignore two operands if no SVE2 or all index numbers couldn't
// be represented.
if (!IsSingleOp && !Subtarget.hasSVE2())
return SDValue();
EVT VTOp1 = Op.getOperand(0).getValueType();
unsigned BitsPerElt = VTOp1.getVectorElementType().getSizeInBits();
unsigned IndexLen = MinSVESize / BitsPerElt;
unsigned ElementsPerVectorReg = VTOp1.getVectorNumElements();
uint64_t MaxOffset = maxUIntN(BitsPerElt);
EVT MaskEltType = VTOp1.getVectorElementType().changeTypeToInteger();
EVT MaskType = EVT::getVectorVT(*DAG.getContext(), MaskEltType, IndexLen);
bool MinMaxEqual = (MinSVESize == MaxSVESize);
assert(ElementsPerVectorReg <= IndexLen && ShuffleMask.size() <= IndexLen &&
"Incorrectly legalised shuffle operation");
SmallVector<SDValue, 8> TBLMask;
// If MinSVESize is not equal to MaxSVESize then we need to know which
// TBL mask element needs adjustment.
SmallVector<SDValue, 8> AddRuntimeVLMask;
// Bail out for 8-bits element types, because with 2048-bit SVE register
// size 8 bits is only sufficient to index into the first source vector.
if (!IsSingleOp && !MinMaxEqual && BitsPerElt == 8)
return SDValue();
for (int Index : ShuffleMask) {
// Handling poison index value.
if (Index < 0)
Index = 0;
// If the mask refers to elements in the second operand, then we have to
// offset the index by the number of elements in a vector. If this is number
// is not known at compile-time, we need to maintain a mask with 'VL' values
// to add at runtime.
if ((unsigned)Index >= ElementsPerVectorReg) {
if (MinMaxEqual) {
Index += IndexLen - ElementsPerVectorReg;
} else {
Index = Index - ElementsPerVectorReg;
AddRuntimeVLMask.push_back(DAG.getConstant(1, DL, MVT::i64));
}
} else if (!MinMaxEqual)
AddRuntimeVLMask.push_back(DAG.getConstant(0, DL, MVT::i64));
// For 8-bit elements and 1024-bit SVE registers and MaxOffset equals
// to 255, this might point to the last element of in the second operand
// of the shufflevector, thus we are rejecting this transform.
if ((unsigned)Index >= MaxOffset)
return SDValue();
TBLMask.push_back(DAG.getConstant(Index, DL, MVT::i64));
}
// Choosing an out-of-range index leads to the lane being zeroed vs zero
// value where it would perform first lane duplication for out of
// index elements. For i8 elements an out-of-range index could be a valid
// for 2048-bit vector register size.
for (unsigned i = 0; i < IndexLen - ElementsPerVectorReg; ++i) {
TBLMask.push_back(DAG.getConstant((int)MaxOffset, DL, MVT::i64));
if (!MinMaxEqual)
AddRuntimeVLMask.push_back(DAG.getConstant(0, DL, MVT::i64));
}
EVT MaskContainerVT = getContainerForFixedLengthVector(DAG, MaskType);
SDValue VecMask =
DAG.getBuildVector(MaskType, DL, ArrayRef(TBLMask.data(), IndexLen));
SDValue SVEMask = convertToScalableVector(DAG, MaskContainerVT, VecMask);
SDValue Shuffle;
if (IsSingleOp)
Shuffle =
DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, ContainerVT,
DAG.getConstant(Intrinsic::aarch64_sve_tbl, DL, MVT::i32),
Op1, SVEMask);
else if (Subtarget.hasSVE2()) {
if (!MinMaxEqual) {
unsigned MinNumElts = AArch64::SVEBitsPerBlock / BitsPerElt;
SDValue VScale = (BitsPerElt == 64)
? DAG.getVScale(DL, MVT::i64, APInt(64, MinNumElts))
: DAG.getVScale(DL, MVT::i32, APInt(32, MinNumElts));
SDValue VecMask =
DAG.getBuildVector(MaskType, DL, ArrayRef(TBLMask.data(), IndexLen));
SDValue MulByMask = DAG.getNode(
ISD::MUL, DL, MaskType,
DAG.getNode(ISD::SPLAT_VECTOR, DL, MaskType, VScale),
DAG.getBuildVector(MaskType, DL,
ArrayRef(AddRuntimeVLMask.data(), IndexLen)));
SDValue UpdatedVecMask =
DAG.getNode(ISD::ADD, DL, MaskType, VecMask, MulByMask);
SVEMask = convertToScalableVector(
DAG, getContainerForFixedLengthVector(DAG, MaskType), UpdatedVecMask);
}
Shuffle =
DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, ContainerVT,
DAG.getConstant(Intrinsic::aarch64_sve_tbl2, DL, MVT::i32),
Op1, Op2, SVEMask);
}
Shuffle = convertFromScalableVector(DAG, VT, Shuffle);
return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle);
}
SDValue AArch64TargetLowering::LowerFixedLengthVECTOR_SHUFFLEToSVE(
SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
assert(VT.isFixedLengthVector() && "Expected fixed length vector type!");
auto *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
auto ShuffleMask = SVN->getMask();
SDLoc DL(Op);
SDValue Op1 = Op.getOperand(0);
SDValue Op2 = Op.getOperand(1);
EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT);
Op1 = convertToScalableVector(DAG, ContainerVT, Op1);
Op2 = convertToScalableVector(DAG, ContainerVT, Op2);
auto MinLegalExtractEltScalarTy = [](EVT ScalarTy) -> EVT {
if (ScalarTy == MVT::i8 || ScalarTy == MVT::i16)
return MVT::i32;
return ScalarTy;
};
if (SVN->isSplat()) {
unsigned Lane = std::max(0, SVN->getSplatIndex());
EVT ScalarTy = MinLegalExtractEltScalarTy(VT.getVectorElementType());
SDValue SplatEl = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarTy, Op1,
DAG.getConstant(Lane, DL, MVT::i64));
Op = DAG.getNode(ISD::SPLAT_VECTOR, DL, ContainerVT, SplatEl);
return convertFromScalableVector(DAG, VT, Op);
}
bool ReverseEXT = false;
unsigned Imm;
if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm) &&
Imm == VT.getVectorNumElements() - 1) {
if (ReverseEXT)
std::swap(Op1, Op2);
EVT ScalarTy = MinLegalExtractEltScalarTy(VT.getVectorElementType());
SDValue Scalar = DAG.getNode(
ISD::EXTRACT_VECTOR_ELT, DL, ScalarTy, Op1,
DAG.getConstant(VT.getVectorNumElements() - 1, DL, MVT::i64));
Op = DAG.getNode(AArch64ISD::INSR, DL, ContainerVT, Op2, Scalar);
return convertFromScalableVector(DAG, VT, Op);
}
unsigned EltSize = VT.getScalarSizeInBits();
for (unsigned LaneSize : {64U, 32U, 16U}) {
if (isREVMask(ShuffleMask, EltSize, VT.getVectorNumElements(), LaneSize)) {
EVT NewVT =
getPackedSVEVectorVT(EVT::getIntegerVT(*DAG.getContext(), LaneSize));
unsigned RevOp;
if (EltSize == 8)
RevOp = AArch64ISD::BSWAP_MERGE_PASSTHRU;
else if (EltSize == 16)
RevOp = AArch64ISD::REVH_MERGE_PASSTHRU;
else
RevOp = AArch64ISD::REVW_MERGE_PASSTHRU;
Op = DAG.getNode(ISD::BITCAST, DL, NewVT, Op1);
Op = LowerToPredicatedOp(Op, DAG, RevOp);
Op = DAG.getNode(ISD::BITCAST, DL, ContainerVT, Op);
return convertFromScalableVector(DAG, VT, Op);
}
}
if (Subtarget->hasSVE2p1() && EltSize == 64 &&
isREVMask(ShuffleMask, EltSize, VT.getVectorNumElements(), 128)) {
if (!VT.isFloatingPoint())
return LowerToPredicatedOp(Op, DAG, AArch64ISD::REVD_MERGE_PASSTHRU);
EVT NewVT = getPackedSVEVectorVT(EVT::getIntegerVT(*DAG.getContext(), 64));
Op = DAG.getNode(ISD::BITCAST, DL, NewVT, Op1);
Op = LowerToPredicatedOp(Op, DAG, AArch64ISD::REVD_MERGE_PASSTHRU);
Op = DAG.getNode(ISD::BITCAST, DL, ContainerVT, Op);
return convertFromScalableVector(DAG, VT, Op);
}
unsigned WhichResult;
if (isZIPMask(ShuffleMask, VT.getVectorNumElements(), WhichResult) &&
WhichResult == 0)
return convertFromScalableVector(
DAG, VT, DAG.getNode(AArch64ISD::ZIP1, DL, ContainerVT, Op1, Op2));
if (isTRNMask(ShuffleMask, VT.getVectorNumElements(), WhichResult)) {
unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
return convertFromScalableVector(
DAG, VT, DAG.getNode(Opc, DL, ContainerVT, Op1, Op2));
}
if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult) && WhichResult == 0)
return convertFromScalableVector(
DAG, VT, DAG.getNode(AArch64ISD::ZIP1, DL, ContainerVT, Op1, Op1));
if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
return convertFromScalableVector(
DAG, VT, DAG.getNode(Opc, DL, ContainerVT, Op1, Op1));
}
// Functions like isZIPMask return true when a ISD::VECTOR_SHUFFLE's mask
// represents the same logical operation as performed by a ZIP instruction. In
// isolation these functions do not mean the ISD::VECTOR_SHUFFLE is exactly
// equivalent to an AArch64 instruction. There's the extra component of
// ISD::VECTOR_SHUFFLE's value type to consider. Prior to SVE these functions
// only operated on 64/128bit vector types that have a direct mapping to a
// target register and so an exact mapping is implied.
// However, when using SVE for fixed length vectors, most legal vector types
// are actually sub-vectors of a larger SVE register. When mapping
// ISD::VECTOR_SHUFFLE to an SVE instruction care must be taken to consider
// how the mask's indices translate. Specifically, when the mapping requires
// an exact meaning for a specific vector index (e.g. Index X is the last
// vector element in the register) then such mappings are often only safe when
// the exact SVE register size is know. The main exception to this is when
// indices are logically relative to the first element of either
// ISD::VECTOR_SHUFFLE operand because these relative indices don't change
// when converting from fixed-length to scalable vector types (i.e. the start
// of a fixed length vector is always the start of a scalable vector).
unsigned MinSVESize = Subtarget->getMinSVEVectorSizeInBits();
unsigned MaxSVESize = Subtarget->getMaxSVEVectorSizeInBits();
if (MinSVESize == MaxSVESize && MaxSVESize == VT.getSizeInBits()) {
if (ShuffleVectorInst::isReverseMask(ShuffleMask, ShuffleMask.size()) &&
Op2.isUndef()) {
Op = DAG.getNode(ISD::VECTOR_REVERSE, DL, ContainerVT, Op1);
return convertFromScalableVector(DAG, VT, Op);
}
if (isZIPMask(ShuffleMask, VT.getVectorNumElements(), WhichResult) &&
WhichResult != 0)
return convertFromScalableVector(
DAG, VT, DAG.getNode(AArch64ISD::ZIP2, DL, ContainerVT, Op1, Op2));
if (isUZPMask(ShuffleMask, VT.getVectorNumElements(), WhichResult)) {
unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
return convertFromScalableVector(
DAG, VT, DAG.getNode(Opc, DL, ContainerVT, Op1, Op2));
}
if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult) && WhichResult != 0)
return convertFromScalableVector(
DAG, VT, DAG.getNode(AArch64ISD::ZIP2, DL, ContainerVT, Op1, Op1));
if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
return convertFromScalableVector(
DAG, VT, DAG.getNode(Opc, DL, ContainerVT, Op1, Op1));
}
}
// Avoid producing TBL instruction if we don't know SVE register minimal size,
// unless NEON is not available and we can assume minimal SVE register size is
// 128-bits.
if (MinSVESize || !Subtarget->isNeonAvailable())
return GenerateFixedLengthSVETBL(Op, Op1, Op2, ShuffleMask, VT, ContainerVT,
DAG);
return SDValue();
}
SDValue AArch64TargetLowering::getSVESafeBitCast(EVT VT, SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT InVT = Op.getValueType();
assert(VT.isScalableVector() && isTypeLegal(VT) &&
InVT.isScalableVector() && isTypeLegal(InVT) &&
"Only expect to cast between legal scalable vector types!");
assert(VT.getVectorElementType() != MVT::i1 &&
InVT.getVectorElementType() != MVT::i1 &&
"For predicate bitcasts, use getSVEPredicateBitCast");
if (InVT == VT)
return Op;
EVT PackedVT = getPackedSVEVectorVT(VT.getVectorElementType());
EVT PackedInVT = getPackedSVEVectorVT(InVT.getVectorElementType());
// Safe bitcasting between unpacked vector types of different element counts
// is currently unsupported because the following is missing the necessary
// work to ensure the result's elements live where they're supposed to within
// an SVE register.
// 01234567
// e.g. nxv2i32 = XX??XX??
// nxv4f16 = X?X?X?X?
assert((VT.getVectorElementCount() == InVT.getVectorElementCount() ||
VT == PackedVT || InVT == PackedInVT) &&
"Unexpected bitcast!");
// Pack input if required.
if (InVT != PackedInVT)
Op = DAG.getNode(AArch64ISD::REINTERPRET_CAST, DL, PackedInVT, Op);
if (Subtarget->isLittleEndian() ||
PackedVT.getScalarSizeInBits() == PackedInVT.getScalarSizeInBits())
Op = DAG.getNode(ISD::BITCAST, DL, PackedVT, Op);
else {
EVT PackedVTAsInt = PackedVT.changeTypeToInteger();
EVT PackedInVTAsInt = PackedInVT.changeTypeToInteger();
// Simulate the effect of casting through memory.
Op = DAG.getNode(ISD::BITCAST, DL, PackedInVTAsInt, Op);
if (PackedInVTAsInt.getScalarSizeInBits() != 8)
Op = DAG.getNode(ISD::BSWAP, DL, PackedInVTAsInt, Op);
Op = DAG.getNode(AArch64ISD::NVCAST, DL, PackedVTAsInt, Op);
if (PackedVTAsInt.getScalarSizeInBits() != 8)
Op = DAG.getNode(ISD::BSWAP, DL, PackedVTAsInt, Op);
Op = DAG.getNode(ISD::BITCAST, DL, PackedVT, Op);
}
// Unpack result if required.
if (VT != PackedVT)
Op = DAG.getNode(AArch64ISD::REINTERPRET_CAST, DL, VT, Op);
return Op;
}
bool AArch64TargetLowering::isAllActivePredicate(SelectionDAG &DAG,
SDValue N) const {
return ::isAllActivePredicate(DAG, N);
}
EVT AArch64TargetLowering::getPromotedVTForPredicate(EVT VT) const {
return ::getPromotedVTForPredicate(VT);
}
bool AArch64TargetLowering::SimplifyDemandedBitsForTargetNode(
SDValue Op, const APInt &OriginalDemandedBits,
const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
unsigned Depth) const {
unsigned Opc = Op.getOpcode();
switch (Opc) {
case AArch64ISD::VSHL: {
// Match (VSHL (VLSHR Val X) X)
SDValue ShiftL = Op;
SDValue ShiftR = Op->getOperand(0);
if (ShiftR->getOpcode() != AArch64ISD::VLSHR)
return false;
if (!ShiftL.hasOneUse() || !ShiftR.hasOneUse())
return false;
unsigned ShiftLBits = ShiftL->getConstantOperandVal(1);
unsigned ShiftRBits = ShiftR->getConstantOperandVal(1);
// Other cases can be handled as well, but this is not
// implemented.
if (ShiftRBits != ShiftLBits)
return false;
unsigned ScalarSize = Op.getScalarValueSizeInBits();
assert(ScalarSize > ShiftLBits && "Invalid shift imm");
APInt ZeroBits = APInt::getLowBitsSet(ScalarSize, ShiftLBits);
APInt UnusedBits = ~OriginalDemandedBits;
if ((ZeroBits & UnusedBits) != ZeroBits)
return false;
// All bits that are zeroed by (VSHL (VLSHR Val X) X) are not
// used - simplify to just Val.
return TLO.CombineTo(Op, ShiftR->getOperand(0));
}
case AArch64ISD::BICi: {
// Fold BICi if all destination bits already known to be zeroed
SDValue Op0 = Op.getOperand(0);
KnownBits KnownOp0 =
TLO.DAG.computeKnownBits(Op0, OriginalDemandedElts, Depth + 1);
// Op0 &= ~(ConstantOperandVal(1) << ConstantOperandVal(2))
APInt BitsToClear =
(Op->getConstantOperandAPInt(1) << Op->getConstantOperandAPInt(2))
.trunc(KnownOp0.getBitWidth());
APInt AlreadyZeroedBitsToClear = BitsToClear & KnownOp0.Zero;
if (BitsToClear.isSubsetOf(AlreadyZeroedBitsToClear))
return TLO.CombineTo(Op, Op0);
Known = KnownOp0 & KnownBits::makeConstant(~BitsToClear);
return false;
}
case ISD::INTRINSIC_WO_CHAIN: {
if (auto ElementSize = IsSVECntIntrinsic(Op)) {
unsigned MaxSVEVectorSizeInBits = Subtarget->getMaxSVEVectorSizeInBits();
if (!MaxSVEVectorSizeInBits)
MaxSVEVectorSizeInBits = AArch64::SVEMaxBitsPerVector;
unsigned MaxElements = MaxSVEVectorSizeInBits / *ElementSize;
// The SVE count intrinsics don't support the multiplier immediate so we
// don't have to account for that here. The value returned may be slightly
// over the true required bits, as this is based on the "ALL" pattern. The
// other patterns are also exposed by these intrinsics, but they all
// return a value that's strictly less than "ALL".
unsigned RequiredBits = llvm::bit_width(MaxElements);
unsigned BitWidth = Known.Zero.getBitWidth();
if (RequiredBits < BitWidth)
Known.Zero.setHighBits(BitWidth - RequiredBits);
return false;
}
}
}
return TargetLowering::SimplifyDemandedBitsForTargetNode(
Op, OriginalDemandedBits, OriginalDemandedElts, Known, TLO, Depth);
}
bool AArch64TargetLowering::isTargetCanonicalConstantNode(SDValue Op) const {
return Op.getOpcode() == AArch64ISD::DUP ||
Op.getOpcode() == AArch64ISD::MOVI ||
(Op.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
Op.getOperand(0).getOpcode() == AArch64ISD::DUP) ||
TargetLowering::isTargetCanonicalConstantNode(Op);
}
bool AArch64TargetLowering::isComplexDeinterleavingSupported() const {
return Subtarget->hasSVE() || Subtarget->hasSVE2() ||
Subtarget->hasComplxNum();
}
bool AArch64TargetLowering::isComplexDeinterleavingOperationSupported(
ComplexDeinterleavingOperation Operation, Type *Ty) const {
auto *VTy = dyn_cast<VectorType>(Ty);
if (!VTy)
return false;
// If the vector is scalable, SVE is enabled, implying support for complex
// numbers. Otherwise, we need to ensure complex number support is available
if (!VTy->isScalableTy() && !Subtarget->hasComplxNum())
return false;
auto *ScalarTy = VTy->getScalarType();
unsigned NumElements = VTy->getElementCount().getKnownMinValue();
// We can only process vectors that have a bit size of 128 or higher (with an
// additional 64 bits for Neon). Additionally, these vectors must have a
// power-of-2 size, as we later split them into the smallest supported size
// and merging them back together after applying complex operation.
unsigned VTyWidth = VTy->getScalarSizeInBits() * NumElements;
if ((VTyWidth < 128 && (VTy->isScalableTy() || VTyWidth != 64)) ||
!llvm::isPowerOf2_32(VTyWidth))
return false;
if (ScalarTy->isIntegerTy() && Subtarget->hasSVE2() && VTy->isScalableTy()) {
unsigned ScalarWidth = ScalarTy->getScalarSizeInBits();
return 8 <= ScalarWidth && ScalarWidth <= 64;
}
return (ScalarTy->isHalfTy() && Subtarget->hasFullFP16()) ||
ScalarTy->isFloatTy() || ScalarTy->isDoubleTy();
}
Value *AArch64TargetLowering::createComplexDeinterleavingIR(
IRBuilderBase &B, ComplexDeinterleavingOperation OperationType,
ComplexDeinterleavingRotation Rotation, Value *InputA, Value *InputB,
Value *Accumulator) const {
VectorType *Ty = cast<VectorType>(InputA->getType());
bool IsScalable = Ty->isScalableTy();
bool IsInt = Ty->getElementType()->isIntegerTy();
unsigned TyWidth =
Ty->getScalarSizeInBits() * Ty->getElementCount().getKnownMinValue();
assert(((TyWidth >= 128 && llvm::isPowerOf2_32(TyWidth)) || TyWidth == 64) &&
"Vector type must be either 64 or a power of 2 that is at least 128");
if (TyWidth > 128) {
int Stride = Ty->getElementCount().getKnownMinValue() / 2;
auto *HalfTy = VectorType::getHalfElementsVectorType(Ty);
auto *LowerSplitA = B.CreateExtractVector(HalfTy, InputA, B.getInt64(0));
auto *LowerSplitB = B.CreateExtractVector(HalfTy, InputB, B.getInt64(0));
auto *UpperSplitA =
B.CreateExtractVector(HalfTy, InputA, B.getInt64(Stride));
auto *UpperSplitB =
B.CreateExtractVector(HalfTy, InputB, B.getInt64(Stride));
Value *LowerSplitAcc = nullptr;
Value *UpperSplitAcc = nullptr;
if (Accumulator) {
LowerSplitAcc = B.CreateExtractVector(HalfTy, Accumulator, B.getInt64(0));
UpperSplitAcc =
B.CreateExtractVector(HalfTy, Accumulator, B.getInt64(Stride));
}
auto *LowerSplitInt = createComplexDeinterleavingIR(
B, OperationType, Rotation, LowerSplitA, LowerSplitB, LowerSplitAcc);
auto *UpperSplitInt = createComplexDeinterleavingIR(
B, OperationType, Rotation, UpperSplitA, UpperSplitB, UpperSplitAcc);
auto *Result = B.CreateInsertVector(Ty, PoisonValue::get(Ty), LowerSplitInt,
B.getInt64(0));
return B.CreateInsertVector(Ty, Result, UpperSplitInt, B.getInt64(Stride));
}
if (OperationType == ComplexDeinterleavingOperation::CMulPartial) {
if (Accumulator == nullptr)
Accumulator = Constant::getNullValue(Ty);
if (IsScalable) {
if (IsInt)
return B.CreateIntrinsic(
Intrinsic::aarch64_sve_cmla_x, Ty,
{Accumulator, InputA, InputB, B.getInt32((int)Rotation * 90)});
auto *Mask = B.getAllOnesMask(Ty->getElementCount());
return B.CreateIntrinsic(
Intrinsic::aarch64_sve_fcmla, Ty,
{Mask, Accumulator, InputA, InputB, B.getInt32((int)Rotation * 90)});
}
Intrinsic::ID IdMap[4] = {Intrinsic::aarch64_neon_vcmla_rot0,
Intrinsic::aarch64_neon_vcmla_rot90,
Intrinsic::aarch64_neon_vcmla_rot180,
Intrinsic::aarch64_neon_vcmla_rot270};
return B.CreateIntrinsic(IdMap[(int)Rotation], Ty,
{Accumulator, InputA, InputB});
}
if (OperationType == ComplexDeinterleavingOperation::CAdd) {
if (IsScalable) {
if (Rotation == ComplexDeinterleavingRotation::Rotation_90 ||
Rotation == ComplexDeinterleavingRotation::Rotation_270) {
if (IsInt)
return B.CreateIntrinsic(
Intrinsic::aarch64_sve_cadd_x, Ty,
{InputA, InputB, B.getInt32((int)Rotation * 90)});
auto *Mask = B.getAllOnesMask(Ty->getElementCount());
return B.CreateIntrinsic(
Intrinsic::aarch64_sve_fcadd, Ty,
{Mask, InputA, InputB, B.getInt32((int)Rotation * 90)});
}
return nullptr;
}
Intrinsic::ID IntId = Intrinsic::not_intrinsic;
if (Rotation == ComplexDeinterleavingRotation::Rotation_90)
IntId = Intrinsic::aarch64_neon_vcadd_rot90;
else if (Rotation == ComplexDeinterleavingRotation::Rotation_270)
IntId = Intrinsic::aarch64_neon_vcadd_rot270;
if (IntId == Intrinsic::not_intrinsic)
return nullptr;
return B.CreateIntrinsic(IntId, Ty, {InputA, InputB});
}
return nullptr;
}
bool AArch64TargetLowering::preferScalarizeSplat(SDNode *N) const {
unsigned Opc = N->getOpcode();
if (ISD::isExtOpcode(Opc)) {
if (any_of(N->uses(),
[&](SDNode *Use) { return Use->getOpcode() == ISD::MUL; }))
return false;
}
return true;
}
unsigned AArch64TargetLowering::getMinimumJumpTableEntries() const {
return Subtarget->getMinimumJumpTableEntries();
}
MVT AArch64TargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
CallingConv::ID CC,
EVT VT) const {
bool NonUnitFixedLengthVector =
VT.isFixedLengthVector() && !VT.getVectorElementCount().isScalar();
if (!NonUnitFixedLengthVector || !Subtarget->useSVEForFixedLengthVectors())
return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
EVT VT1;
MVT RegisterVT;
unsigned NumIntermediates;
getVectorTypeBreakdownForCallingConv(Context, CC, VT, VT1, NumIntermediates,
RegisterVT);
return RegisterVT;
}
unsigned AArch64TargetLowering::getNumRegistersForCallingConv(
LLVMContext &Context, CallingConv::ID CC, EVT VT) const {
bool NonUnitFixedLengthVector =
VT.isFixedLengthVector() && !VT.getVectorElementCount().isScalar();
if (!NonUnitFixedLengthVector || !Subtarget->useSVEForFixedLengthVectors())
return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
EVT VT1;
MVT VT2;
unsigned NumIntermediates;
return getVectorTypeBreakdownForCallingConv(Context, CC, VT, VT1,
NumIntermediates, VT2);
}
unsigned AArch64TargetLowering::getVectorTypeBreakdownForCallingConv(
LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
unsigned &NumIntermediates, MVT &RegisterVT) const {
int NumRegs = TargetLowering::getVectorTypeBreakdownForCallingConv(
Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT);
if (!RegisterVT.isFixedLengthVector() ||
RegisterVT.getFixedSizeInBits() <= 128)
return NumRegs;
assert(Subtarget->useSVEForFixedLengthVectors() && "Unexpected mode!");
assert(IntermediateVT == RegisterVT && "Unexpected VT mismatch!");
assert(RegisterVT.getFixedSizeInBits() % 128 == 0 && "Unexpected size!");
// A size mismatch here implies either type promotion or widening and would
// have resulted in scalarisation if larger vectors had not be available.
if (RegisterVT.getSizeInBits() * NumRegs != VT.getSizeInBits()) {
EVT EltTy = VT.getVectorElementType();
EVT NewVT = EVT::getVectorVT(Context, EltTy, ElementCount::getFixed(1));
if (!isTypeLegal(NewVT))
NewVT = EltTy;
IntermediateVT = NewVT;
NumIntermediates = VT.getVectorNumElements();
RegisterVT = getRegisterType(Context, NewVT);
return NumIntermediates;
}
// SVE VLS support does not introduce a new ABI so we should use NEON sized
// types for vector arguments and returns.
unsigned NumSubRegs = RegisterVT.getFixedSizeInBits() / 128;
NumIntermediates *= NumSubRegs;
NumRegs *= NumSubRegs;
switch (RegisterVT.getVectorElementType().SimpleTy) {
default:
llvm_unreachable("unexpected element type for vector");
case MVT::i8:
IntermediateVT = RegisterVT = MVT::v16i8;
break;
case MVT::i16:
IntermediateVT = RegisterVT = MVT::v8i16;
break;
case MVT::i32:
IntermediateVT = RegisterVT = MVT::v4i32;
break;
case MVT::i64:
IntermediateVT = RegisterVT = MVT::v2i64;
break;
case MVT::f16:
IntermediateVT = RegisterVT = MVT::v8f16;
break;
case MVT::f32:
IntermediateVT = RegisterVT = MVT::v4f32;
break;
case MVT::f64:
IntermediateVT = RegisterVT = MVT::v2f64;
break;
case MVT::bf16:
IntermediateVT = RegisterVT = MVT::v8bf16;
break;
}
return NumRegs;
}
bool AArch64TargetLowering::hasInlineStackProbe(
const MachineFunction &MF) const {
return !Subtarget->isTargetWindows() &&
MF.getInfo<AArch64FunctionInfo>()->hasStackProbing();
}
bool AArch64TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
switch (Opc) {
case ISD::TRUNCATE_SSAT_S:
case ISD::TRUNCATE_SSAT_U:
case ISD::TRUNCATE_USAT_U:
if (VT == MVT::v8i8 || VT == MVT::v4i16 || VT == MVT::v2i32)
return true;
}
return TargetLowering::isTypeDesirableForOp(Opc, VT);
}
#ifndef NDEBUG
void AArch64TargetLowering::verifyTargetSDNode(const SDNode *N) const {
switch (N->getOpcode()) {
default:
break;
case AArch64ISD::SUNPKLO:
case AArch64ISD::SUNPKHI:
case AArch64ISD::UUNPKLO:
case AArch64ISD::UUNPKHI: {
assert(N->getNumValues() == 1 && "Expected one result!");
assert(N->getNumOperands() == 1 && "Expected one operand!");
EVT VT = N->getValueType(0);
EVT OpVT = N->getOperand(0).getValueType();
assert(OpVT.isVector() && VT.isVector() && OpVT.isInteger() &&
VT.isInteger() && "Expected integer vectors!");
assert(OpVT.getSizeInBits() == VT.getSizeInBits() &&
"Expected vectors of equal size!");
assert(OpVT.getVectorElementCount() == VT.getVectorElementCount() * 2 &&
"Expected result vector with half the lanes of its input!");
break;
}
case AArch64ISD::TRN1:
case AArch64ISD::TRN2:
case AArch64ISD::UZP1:
case AArch64ISD::UZP2:
case AArch64ISD::ZIP1:
case AArch64ISD::ZIP2: {
assert(N->getNumValues() == 1 && "Expected one result!");
assert(N->getNumOperands() == 2 && "Expected two operands!");
EVT VT = N->getValueType(0);
EVT Op0VT = N->getOperand(0).getValueType();
EVT Op1VT = N->getOperand(1).getValueType();
assert(VT.isVector() && Op0VT.isVector() && Op1VT.isVector() &&
"Expected vectors!");
assert(VT == Op0VT && VT == Op1VT && "Expected matching vectors!");
break;
}
case AArch64ISD::RSHRNB_I: {
assert(N->getNumValues() == 1 && "Expected one result!");
assert(N->getNumOperands() == 2 && "Expected two operands!");
EVT VT = N->getValueType(0);
EVT Op0VT = N->getOperand(0).getValueType();
EVT Op1VT = N->getOperand(1).getValueType();
assert(VT.isVector() && VT.isInteger() &&
"Expected integer vector result type!");
assert(Op0VT.isVector() && Op0VT.isInteger() &&
"Expected first operand to be an integer vector!");
assert(VT.getSizeInBits() == Op0VT.getSizeInBits() &&
"Expected vectors of equal size!");
assert(VT.getVectorElementCount() == Op0VT.getVectorElementCount() * 2 &&
"Expected input vector with half the lanes of its result!");
assert(Op1VT == MVT::i32 && isa<ConstantSDNode>(N->getOperand(1)) &&
"Expected second operand to be a constant i32!");
break;
}
}
}
#endif
|