1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
|
//===-- Single-precision atan2f function ----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "src/__support/FPUtil/FPBits.h"
#include "src/__support/FPUtil/double_double.h"
#include "src/__support/FPUtil/multiply_add.h"
#include "src/__support/FPUtil/nearest_integer.h"
#include "src/__support/FPUtil/rounding_mode.h"
#include "src/__support/macros/config.h"
#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
#include "src/math/atan2f.h"
namespace LIBC_NAMESPACE_DECL {
namespace {
using FloatFloat = fputil::FloatFloat;
// atan(i/64) with i = 0..16, generated by Sollya with:
// > for i from 0 to 16 do {
// a = round(atan(i/16), SG, RN);
// b = round(atan(i/16) - a, SG, RN);
// print("{", b, ",", a, "},");
// };
constexpr FloatFloat ATAN_I[17] = {
{0.0f, 0.0f},
{-0x1.1a6042p-30f, 0x1.ff55bcp-5f},
{-0x1.54f424p-30f, 0x1.fd5baap-4f},
{0x1.79cb6p-28f, 0x1.7b97b4p-3f},
{-0x1.b4dfc8p-29f, 0x1.f5b76p-3f},
{-0x1.1f0286p-27f, 0x1.362774p-2f},
{0x1.e4defp-30f, 0x1.6f6194p-2f},
{0x1.e611fep-29f, 0x1.a64eecp-2f},
{0x1.586ed4p-28f, 0x1.dac67p-2f},
{-0x1.6499e6p-26f, 0x1.0657eap-1f},
{0x1.7bdfd6p-26f, 0x1.1e00bap-1f},
{-0x1.98e422p-28f, 0x1.345f02p-1f},
{0x1.934f7p-28f, 0x1.4978fap-1f},
{0x1.c5a6c6p-27f, 0x1.5d5898p-1f},
{0x1.5e118cp-27f, 0x1.700a7cp-1f},
{-0x1.1d4eb6p-26f, 0x1.819d0cp-1f},
{-0x1.777a5cp-26f, 0x1.921fb6p-1f},
};
// Approximate atan(x) for |x| <= 2^-5.
// Using degree-3 Taylor polynomial:
// P = x - x^3/3
// Then the absolute error is bounded by:
// |atan(x) - P(x)| < |x|^5/5 < 2^(-5*5) / 5 < 2^-27.
// And the relative error is bounded by:
// |(atan(x) - P(x))/atan(x)| < |x|^4 / 4 < 2^-22.
// For x = x_hi + x_lo, fully expand the polynomial and drop any terms less than
// ulp(x_hi^3 / 3) gives us:
// P(x) ~ x_hi - x_hi^3/3 + x_lo * (1 - x_hi^2)
FloatFloat atan_eval(const FloatFloat &x) {
FloatFloat p;
p.hi = x.hi;
float x_hi_sq = x.hi * x.hi;
// c0 ~ - x_hi^2 / 3
float c0 = -0x1.555556p-2f * x_hi_sq;
// c1 ~ x_lo * (1 - x_hi^2)
float c1 = fputil::multiply_add(x_hi_sq, -x.lo, x.lo);
// p.lo ~ - x_hi^3 / 3 + x_lo * (1 - x_hi*2)
p.lo = fputil::multiply_add(x.hi, c0, c1);
return p;
}
} // anonymous namespace
// There are several range reduction steps we can take for atan2(y, x) as
// follow:
// * Range reduction 1: signness
// atan2(y, x) will return a number between -PI and PI representing the angle
// forming by the 0x axis and the vector (x, y) on the 0xy-plane.
// In particular, we have that:
// atan2(y, x) = atan( y/x ) if x >= 0 and y >= 0 (I-quadrant)
// = pi + atan( y/x ) if x < 0 and y >= 0 (II-quadrant)
// = -pi + atan( y/x ) if x < 0 and y < 0 (III-quadrant)
// = atan( y/x ) if x >= 0 and y < 0 (IV-quadrant)
// Since atan function is odd, we can use the formula:
// atan(-u) = -atan(u)
// to adjust the above conditions a bit further:
// atan2(y, x) = atan( |y|/|x| ) if x >= 0 and y >= 0 (I-quadrant)
// = pi - atan( |y|/|x| ) if x < 0 and y >= 0 (II-quadrant)
// = -pi + atan( |y|/|x| ) if x < 0 and y < 0 (III-quadrant)
// = -atan( |y|/|x| ) if x >= 0 and y < 0 (IV-quadrant)
// Which can be simplified to:
// atan2(y, x) = sign(y) * atan( |y|/|x| ) if x >= 0
// = sign(y) * (pi - atan( |y|/|x| )) if x < 0
// * Range reduction 2: reciprocal
// Now that the argument inside atan is positive, we can use the formula:
// atan(1/x) = pi/2 - atan(x)
// to make the argument inside atan <= 1 as follow:
// atan2(y, x) = sign(y) * atan( |y|/|x|) if 0 <= |y| <= x
// = sign(y) * (pi/2 - atan( |x|/|y| ) if 0 <= x < |y|
// = sign(y) * (pi - atan( |y|/|x| )) if 0 <= |y| <= -x
// = sign(y) * (pi/2 + atan( |x|/|y| )) if 0 <= -x < |y|
// * Range reduction 3: look up table.
// After the previous two range reduction steps, we reduce the problem to
// compute atan(u) with 0 <= u <= 1, or to be precise:
// atan( n / d ) where n = min(|x|, |y|) and d = max(|x|, |y|).
// An accurate polynomial approximation for the whole [0, 1] input range will
// require a very large degree. To make it more efficient, we reduce the input
// range further by finding an integer idx such that:
// | n/d - idx/16 | <= 1/32.
// In particular,
// idx := 2^-4 * round(2^4 * n/d)
// Then for the fast pass, we find a polynomial approximation for:
// atan( n/d ) ~ atan( idx/16 ) + (n/d - idx/16) * Q(n/d - idx/16)
// with Q(x) = x - x^3/3 be the cubic Taylor polynomial of atan(x).
// It's error in float-float precision is estimated in Sollya to be:
// > P = x - x^3/3;
// > dirtyinfnorm(atan(x) - P, [-2^-5, 2^-5]);
// 0x1.995...p-28.
LLVM_LIBC_FUNCTION(float, atan2f, (float y, float x)) {
using FPBits = typename fputil::FPBits<float>;
constexpr float IS_NEG[2] = {1.0f, -1.0f};
constexpr FloatFloat ZERO = {0.0f, 0.0f};
constexpr FloatFloat MZERO = {-0.0f, -0.0f};
constexpr FloatFloat PI = {-0x1.777a5cp-24f, 0x1.921fb6p1f};
constexpr FloatFloat MPI = {0x1.777a5cp-24f, -0x1.921fb6p1f};
constexpr FloatFloat PI_OVER_4 = {-0x1.777a5cp-26f, 0x1.921fb6p-1f};
constexpr FloatFloat PI_OVER_2 = {-0x1.777a5cp-25f, 0x1.921fb6p0f};
constexpr FloatFloat MPI_OVER_2 = {-0x1.777a5cp-25f, 0x1.921fb6p0f};
constexpr FloatFloat THREE_PI_OVER_4 = {-0x1.99bc5cp-28f, 0x1.2d97c8p1f};
// Adjustment for constant term:
// CONST_ADJ[x_sign][y_sign][recip]
constexpr FloatFloat CONST_ADJ[2][2][2] = {
{{ZERO, MPI_OVER_2}, {MZERO, MPI_OVER_2}},
{{MPI, PI_OVER_2}, {MPI, PI_OVER_2}}};
FPBits x_bits(x), y_bits(y);
bool x_sign = x_bits.sign().is_neg();
bool y_sign = y_bits.sign().is_neg();
x_bits = x_bits.abs();
y_bits = y_bits.abs();
uint32_t x_abs = x_bits.uintval();
uint32_t y_abs = y_bits.uintval();
bool recip = x_abs < y_abs;
uint32_t min_abs = recip ? x_abs : y_abs;
uint32_t max_abs = !recip ? x_abs : y_abs;
auto min_exp = static_cast<unsigned>(min_abs >> FPBits::FRACTION_LEN);
auto max_exp = static_cast<unsigned>(max_abs >> FPBits::FRACTION_LEN);
float num = FPBits(min_abs).get_val();
float den = FPBits(max_abs).get_val();
// Check for exceptional cases, whether inputs are 0, inf, nan, or close to
// overflow, or close to underflow.
if (LIBC_UNLIKELY(max_exp > 0xffU - 64U || min_exp < 64U)) {
if (x_bits.is_nan() || y_bits.is_nan())
return FPBits::quiet_nan().get_val();
unsigned x_except = x == 0.0f ? 0 : (FPBits(x_abs).is_inf() ? 2 : 1);
unsigned y_except = y == 0.0f ? 0 : (FPBits(y_abs).is_inf() ? 2 : 1);
// Exceptional cases:
// EXCEPT[y_except][x_except][x_is_neg]
// with x_except & y_except:
// 0: zero
// 1: finite, non-zero
// 2: infinity
constexpr FloatFloat EXCEPTS[3][3][2] = {
{{ZERO, PI}, {ZERO, PI}, {ZERO, PI}},
{{PI_OVER_2, PI_OVER_2}, {ZERO, ZERO}, {ZERO, PI}},
{{PI_OVER_2, PI_OVER_2},
{PI_OVER_2, PI_OVER_2},
{PI_OVER_4, THREE_PI_OVER_4}},
};
if ((x_except != 1) || (y_except != 1)) {
FloatFloat r = EXCEPTS[y_except][x_except][x_sign];
return fputil::multiply_add(IS_NEG[y_sign], r.hi, IS_NEG[y_sign] * r.lo);
}
bool scale_up = min_exp < 64U;
bool scale_down = max_exp > 0xffU - 64U;
// At least one input is denormal, multiply both numerator and denominator
// by some large enough power of 2 to normalize denormal inputs.
if (scale_up) {
num *= 0x1.0p32f;
if (!scale_down)
den *= 0x1.0p32f;
} else if (scale_down) {
den *= 0x1.0p-32f;
num *= 0x1.0p-32f;
}
min_abs = FPBits(num).uintval();
max_abs = FPBits(den).uintval();
min_exp = static_cast<unsigned>(min_abs >> FPBits::FRACTION_LEN);
max_exp = static_cast<unsigned>(max_abs >> FPBits::FRACTION_LEN);
}
float final_sign = IS_NEG[(x_sign != y_sign) != recip];
FloatFloat const_term = CONST_ADJ[x_sign][y_sign][recip];
unsigned exp_diff = max_exp - min_exp;
// We have the following bound for normalized n and d:
// 2^(-exp_diff - 1) < n/d < 2^(-exp_diff + 1).
if (LIBC_UNLIKELY(exp_diff > 25))
return fputil::multiply_add(final_sign, const_term.hi,
final_sign * (const_term.lo + num / den));
float k = fputil::nearest_integer(16.0f * num / den);
unsigned idx = static_cast<unsigned>(k);
// k = idx / 16
k *= 0x1.0p-4f;
// Range reduction:
// atan(n/d) - atan(k/64) = atan((n/d - k/16) / (1 + (n/d) * (k/16)))
// = atan((n - d * k/16)) / (d + n * k/16))
FloatFloat num_k = fputil::exact_mult(num, k);
FloatFloat den_k = fputil::exact_mult(den, k);
// num_dd = n - d * k
FloatFloat num_ff = fputil::exact_add(num - den_k.hi, -den_k.lo);
// den_dd = d + n * k
FloatFloat den_ff = fputil::exact_add(den, num_k.hi);
den_ff.lo += num_k.lo;
// q = (n - d * k) / (d + n * k)
FloatFloat q = fputil::div(num_ff, den_ff);
// p ~ atan(q)
FloatFloat p = atan_eval(q);
FloatFloat r = fputil::add(const_term, fputil::add(ATAN_I[idx], p));
return final_sign * r.hi;
}
} // namespace LIBC_NAMESPACE_DECL
|