//===-- Single-precision atan2f function ----------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "src/__support/FPUtil/FPBits.h" #include "src/__support/FPUtil/double_double.h" #include "src/__support/FPUtil/multiply_add.h" #include "src/__support/FPUtil/nearest_integer.h" #include "src/__support/FPUtil/rounding_mode.h" #include "src/__support/macros/config.h" #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY #include "src/math/atan2f.h" namespace LIBC_NAMESPACE_DECL { namespace { using FloatFloat = fputil::FloatFloat; // atan(i/64) with i = 0..16, generated by Sollya with: // > for i from 0 to 16 do { // a = round(atan(i/16), SG, RN); // b = round(atan(i/16) - a, SG, RN); // print("{", b, ",", a, "},"); // }; constexpr FloatFloat ATAN_I[17] = { {0.0f, 0.0f}, {-0x1.1a6042p-30f, 0x1.ff55bcp-5f}, {-0x1.54f424p-30f, 0x1.fd5baap-4f}, {0x1.79cb6p-28f, 0x1.7b97b4p-3f}, {-0x1.b4dfc8p-29f, 0x1.f5b76p-3f}, {-0x1.1f0286p-27f, 0x1.362774p-2f}, {0x1.e4defp-30f, 0x1.6f6194p-2f}, {0x1.e611fep-29f, 0x1.a64eecp-2f}, {0x1.586ed4p-28f, 0x1.dac67p-2f}, {-0x1.6499e6p-26f, 0x1.0657eap-1f}, {0x1.7bdfd6p-26f, 0x1.1e00bap-1f}, {-0x1.98e422p-28f, 0x1.345f02p-1f}, {0x1.934f7p-28f, 0x1.4978fap-1f}, {0x1.c5a6c6p-27f, 0x1.5d5898p-1f}, {0x1.5e118cp-27f, 0x1.700a7cp-1f}, {-0x1.1d4eb6p-26f, 0x1.819d0cp-1f}, {-0x1.777a5cp-26f, 0x1.921fb6p-1f}, }; // Approximate atan(x) for |x| <= 2^-5. // Using degree-3 Taylor polynomial: // P = x - x^3/3 // Then the absolute error is bounded by: // |atan(x) - P(x)| < |x|^5/5 < 2^(-5*5) / 5 < 2^-27. // And the relative error is bounded by: // |(atan(x) - P(x))/atan(x)| < |x|^4 / 4 < 2^-22. // For x = x_hi + x_lo, fully expand the polynomial and drop any terms less than // ulp(x_hi^3 / 3) gives us: // P(x) ~ x_hi - x_hi^3/3 + x_lo * (1 - x_hi^2) FloatFloat atan_eval(const FloatFloat &x) { FloatFloat p; p.hi = x.hi; float x_hi_sq = x.hi * x.hi; // c0 ~ - x_hi^2 / 3 float c0 = -0x1.555556p-2f * x_hi_sq; // c1 ~ x_lo * (1 - x_hi^2) float c1 = fputil::multiply_add(x_hi_sq, -x.lo, x.lo); // p.lo ~ - x_hi^3 / 3 + x_lo * (1 - x_hi*2) p.lo = fputil::multiply_add(x.hi, c0, c1); return p; } } // anonymous namespace // There are several range reduction steps we can take for atan2(y, x) as // follow: // * Range reduction 1: signness // atan2(y, x) will return a number between -PI and PI representing the angle // forming by the 0x axis and the vector (x, y) on the 0xy-plane. // In particular, we have that: // atan2(y, x) = atan( y/x ) if x >= 0 and y >= 0 (I-quadrant) // = pi + atan( y/x ) if x < 0 and y >= 0 (II-quadrant) // = -pi + atan( y/x ) if x < 0 and y < 0 (III-quadrant) // = atan( y/x ) if x >= 0 and y < 0 (IV-quadrant) // Since atan function is odd, we can use the formula: // atan(-u) = -atan(u) // to adjust the above conditions a bit further: // atan2(y, x) = atan( |y|/|x| ) if x >= 0 and y >= 0 (I-quadrant) // = pi - atan( |y|/|x| ) if x < 0 and y >= 0 (II-quadrant) // = -pi + atan( |y|/|x| ) if x < 0 and y < 0 (III-quadrant) // = -atan( |y|/|x| ) if x >= 0 and y < 0 (IV-quadrant) // Which can be simplified to: // atan2(y, x) = sign(y) * atan( |y|/|x| ) if x >= 0 // = sign(y) * (pi - atan( |y|/|x| )) if x < 0 // * Range reduction 2: reciprocal // Now that the argument inside atan is positive, we can use the formula: // atan(1/x) = pi/2 - atan(x) // to make the argument inside atan <= 1 as follow: // atan2(y, x) = sign(y) * atan( |y|/|x|) if 0 <= |y| <= x // = sign(y) * (pi/2 - atan( |x|/|y| ) if 0 <= x < |y| // = sign(y) * (pi - atan( |y|/|x| )) if 0 <= |y| <= -x // = sign(y) * (pi/2 + atan( |x|/|y| )) if 0 <= -x < |y| // * Range reduction 3: look up table. // After the previous two range reduction steps, we reduce the problem to // compute atan(u) with 0 <= u <= 1, or to be precise: // atan( n / d ) where n = min(|x|, |y|) and d = max(|x|, |y|). // An accurate polynomial approximation for the whole [0, 1] input range will // require a very large degree. To make it more efficient, we reduce the input // range further by finding an integer idx such that: // | n/d - idx/16 | <= 1/32. // In particular, // idx := 2^-4 * round(2^4 * n/d) // Then for the fast pass, we find a polynomial approximation for: // atan( n/d ) ~ atan( idx/16 ) + (n/d - idx/16) * Q(n/d - idx/16) // with Q(x) = x - x^3/3 be the cubic Taylor polynomial of atan(x). // It's error in float-float precision is estimated in Sollya to be: // > P = x - x^3/3; // > dirtyinfnorm(atan(x) - P, [-2^-5, 2^-5]); // 0x1.995...p-28. LLVM_LIBC_FUNCTION(float, atan2f, (float y, float x)) { using FPBits = typename fputil::FPBits; constexpr float IS_NEG[2] = {1.0f, -1.0f}; constexpr FloatFloat ZERO = {0.0f, 0.0f}; constexpr FloatFloat MZERO = {-0.0f, -0.0f}; constexpr FloatFloat PI = {-0x1.777a5cp-24f, 0x1.921fb6p1f}; constexpr FloatFloat MPI = {0x1.777a5cp-24f, -0x1.921fb6p1f}; constexpr FloatFloat PI_OVER_4 = {-0x1.777a5cp-26f, 0x1.921fb6p-1f}; constexpr FloatFloat PI_OVER_2 = {-0x1.777a5cp-25f, 0x1.921fb6p0f}; constexpr FloatFloat MPI_OVER_2 = {-0x1.777a5cp-25f, 0x1.921fb6p0f}; constexpr FloatFloat THREE_PI_OVER_4 = {-0x1.99bc5cp-28f, 0x1.2d97c8p1f}; // Adjustment for constant term: // CONST_ADJ[x_sign][y_sign][recip] constexpr FloatFloat CONST_ADJ[2][2][2] = { {{ZERO, MPI_OVER_2}, {MZERO, MPI_OVER_2}}, {{MPI, PI_OVER_2}, {MPI, PI_OVER_2}}}; FPBits x_bits(x), y_bits(y); bool x_sign = x_bits.sign().is_neg(); bool y_sign = y_bits.sign().is_neg(); x_bits = x_bits.abs(); y_bits = y_bits.abs(); uint32_t x_abs = x_bits.uintval(); uint32_t y_abs = y_bits.uintval(); bool recip = x_abs < y_abs; uint32_t min_abs = recip ? x_abs : y_abs; uint32_t max_abs = !recip ? x_abs : y_abs; auto min_exp = static_cast(min_abs >> FPBits::FRACTION_LEN); auto max_exp = static_cast(max_abs >> FPBits::FRACTION_LEN); float num = FPBits(min_abs).get_val(); float den = FPBits(max_abs).get_val(); // Check for exceptional cases, whether inputs are 0, inf, nan, or close to // overflow, or close to underflow. if (LIBC_UNLIKELY(max_exp > 0xffU - 64U || min_exp < 64U)) { if (x_bits.is_nan() || y_bits.is_nan()) return FPBits::quiet_nan().get_val(); unsigned x_except = x == 0.0f ? 0 : (FPBits(x_abs).is_inf() ? 2 : 1); unsigned y_except = y == 0.0f ? 0 : (FPBits(y_abs).is_inf() ? 2 : 1); // Exceptional cases: // EXCEPT[y_except][x_except][x_is_neg] // with x_except & y_except: // 0: zero // 1: finite, non-zero // 2: infinity constexpr FloatFloat EXCEPTS[3][3][2] = { {{ZERO, PI}, {ZERO, PI}, {ZERO, PI}}, {{PI_OVER_2, PI_OVER_2}, {ZERO, ZERO}, {ZERO, PI}}, {{PI_OVER_2, PI_OVER_2}, {PI_OVER_2, PI_OVER_2}, {PI_OVER_4, THREE_PI_OVER_4}}, }; if ((x_except != 1) || (y_except != 1)) { FloatFloat r = EXCEPTS[y_except][x_except][x_sign]; return fputil::multiply_add(IS_NEG[y_sign], r.hi, IS_NEG[y_sign] * r.lo); } bool scale_up = min_exp < 64U; bool scale_down = max_exp > 0xffU - 64U; // At least one input is denormal, multiply both numerator and denominator // by some large enough power of 2 to normalize denormal inputs. if (scale_up) { num *= 0x1.0p32f; if (!scale_down) den *= 0x1.0p32f; } else if (scale_down) { den *= 0x1.0p-32f; num *= 0x1.0p-32f; } min_abs = FPBits(num).uintval(); max_abs = FPBits(den).uintval(); min_exp = static_cast(min_abs >> FPBits::FRACTION_LEN); max_exp = static_cast(max_abs >> FPBits::FRACTION_LEN); } float final_sign = IS_NEG[(x_sign != y_sign) != recip]; FloatFloat const_term = CONST_ADJ[x_sign][y_sign][recip]; unsigned exp_diff = max_exp - min_exp; // We have the following bound for normalized n and d: // 2^(-exp_diff - 1) < n/d < 2^(-exp_diff + 1). if (LIBC_UNLIKELY(exp_diff > 25)) return fputil::multiply_add(final_sign, const_term.hi, final_sign * (const_term.lo + num / den)); float k = fputil::nearest_integer(16.0f * num / den); unsigned idx = static_cast(k); // k = idx / 16 k *= 0x1.0p-4f; // Range reduction: // atan(n/d) - atan(k/64) = atan((n/d - k/16) / (1 + (n/d) * (k/16))) // = atan((n - d * k/16)) / (d + n * k/16)) FloatFloat num_k = fputil::exact_mult(num, k); FloatFloat den_k = fputil::exact_mult(den, k); // num_dd = n - d * k FloatFloat num_ff = fputil::exact_add(num - den_k.hi, -den_k.lo); // den_dd = d + n * k FloatFloat den_ff = fputil::exact_add(den, num_k.hi); den_ff.lo += num_k.lo; // q = (n - d * k) / (d + n * k) FloatFloat q = fputil::div(num_ff, den_ff); // p ~ atan(q) FloatFloat p = atan_eval(q); FloatFloat r = fputil::add(const_term, fputil::add(ATAN_I[idx], p)); return final_sign * r.hi; } } // namespace LIBC_NAMESPACE_DECL