1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
|
//===-- Half-precision asinf16(x) function --------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception.
//
//===----------------------------------------------------------------------===//
#include "src/math/asinf16.h"
#include "hdr/errno_macros.h"
#include "hdr/fenv_macros.h"
#include "src/__support/FPUtil/FEnvImpl.h"
#include "src/__support/FPUtil/FPBits.h"
#include "src/__support/FPUtil/PolyEval.h"
#include "src/__support/FPUtil/cast.h"
#include "src/__support/FPUtil/multiply_add.h"
#include "src/__support/FPUtil/sqrt.h"
#include "src/__support/macros/optimization.h"
namespace LIBC_NAMESPACE_DECL {
// Generated by Sollya using the following command:
// > round(pi/2, D, RN);
static constexpr float PI_2 = 0x1.921fb54442d18p0f;
LLVM_LIBC_FUNCTION(float16, asinf16, (float16 x)) {
using FPBits = fputil::FPBits<float16>;
FPBits xbits(x);
uint16_t x_u = xbits.uintval();
uint16_t x_abs = x_u & 0x7fff;
float xf = x;
// |x| > 0x1p0, |x| > 1, or x is NaN.
if (LIBC_UNLIKELY(x_abs > 0x3c00)) {
// asinf16(NaN) = NaN
if (xbits.is_nan()) {
if (xbits.is_signaling_nan()) {
fputil::raise_except_if_required(FE_INVALID);
return FPBits::quiet_nan().get_val();
}
return x;
}
// 1 < |x| <= +/-inf
fputil::raise_except_if_required(FE_INVALID);
fputil::set_errno_if_required(EDOM);
return FPBits::quiet_nan().get_val();
}
float xsq = xf * xf;
// |x| <= 0x1p-1, |x| <= 0.5
if (x_abs <= 0x3800) {
// asinf16(+/-0) = +/-0
if (LIBC_UNLIKELY(x_abs == 0))
return x;
// Exhaustive tests show that,
// for |x| <= 0x1.878p-9, when:
// x > 0, and rounding upward, or
// x < 0, and rounding downward, then,
// asin(x) = x * 2^-11 + x
// else, in other rounding modes,
// asin(x) = x
if (LIBC_UNLIKELY(x_abs <= 0x1a1e)) {
int rounding = fputil::quick_get_round();
if ((xbits.is_pos() && rounding == FE_UPWARD) ||
(xbits.is_neg() && rounding == FE_DOWNWARD))
return fputil::cast<float16>(fputil::multiply_add(xf, 0x1.0p-11f, xf));
return x;
}
// Degree-6 minimax odd polynomial of asin(x) generated by Sollya with:
// > P = fpminimax(asin(x)/x, [|0, 2, 4, 6, 8|], [|SG...|], [0, 0.5]);
float result =
fputil::polyeval(xsq, 0x1.000002p0f, 0x1.554c2ap-3f, 0x1.3541ccp-4f,
0x1.43b2d6p-5f, 0x1.a0d73ep-5f);
return fputil::cast<float16>(xf * result);
}
// When |x| > 0.5, assume that 0.5 < |x| <= 1,
//
// Step-by-step range-reduction proof:
// 1: Let y = asin(x), such that, x = sin(y)
// 2: From complimentary angle identity:
// x = sin(y) = cos(pi/2 - y)
// 3: Let z = pi/2 - y, such that x = cos(z)
// 4: From double angle formula; cos(2A) = 1 - sin^2(A):
// z = 2A, z/2 = A
// cos(z) = 1 - 2 * sin^2(z/2)
// 5: Make sin(z/2) subject of the formula:
// sin(z/2) = sqrt((1 - cos(z))/2)
// 6: Recall [3]; x = cos(z). Therefore:
// sin(z/2) = sqrt((1 - x)/2)
// 7: Let u = (1 - x)/2
// 8: Therefore:
// asin(sqrt(u)) = z/2
// 2 * asin(sqrt(u)) = z
// 9: Recall [3], z = pi/2 - y. Therefore:
// y = pi/2 - z
// y = pi/2 - 2 * asin(sqrt(u))
// 10: Recall [1], y = asin(x). Therefore:
// asin(x) = pi/2 - 2 * asin(sqrt(u))
//
// WHY?
// 11: Recall [7], u = (1 - x)/2
// 12: Since 0.5 < x <= 1, therefore:
// 0 <= u <= 0.25 and 0 <= sqrt(u) <= 0.5
//
// Hence, we can reuse the same [0, 0.5] domain polynomial approximation for
// Step [10] as `sqrt(u)` is in range.
// 0x1p-1 < |x| <= 0x1p0, 0.5 < |x| <= 1.0
float xf_abs = (xf < 0 ? -xf : xf);
float sign = (xbits.uintval() >> 15 == 1 ? -1.0 : 1.0);
float u = fputil::multiply_add(-0.5f, xf_abs, 0.5f);
float u_sqrt = fputil::sqrt<float>(u);
// Degree-6 minimax odd polynomial of asin(x) generated by Sollya with:
// > P = fpminimax(asin(x)/x, [|0, 2, 4, 6, 8|], [|SG...|], [0, 0.5]);
float asin_sqrt_u =
u_sqrt * fputil::polyeval(u, 0x1.000002p0f, 0x1.554c2ap-3f,
0x1.3541ccp-4f, 0x1.43b2d6p-5f, 0x1.a0d73ep-5f);
return fputil::cast<float16>(sign *
fputil::multiply_add(-2.0f, asin_sqrt_u, PI_2));
}
} // namespace LIBC_NAMESPACE_DECL
|