//===-- Half-precision asinf16(x) function --------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception. // //===----------------------------------------------------------------------===// #include "src/math/asinf16.h" #include "hdr/errno_macros.h" #include "hdr/fenv_macros.h" #include "src/__support/FPUtil/FEnvImpl.h" #include "src/__support/FPUtil/FPBits.h" #include "src/__support/FPUtil/PolyEval.h" #include "src/__support/FPUtil/cast.h" #include "src/__support/FPUtil/multiply_add.h" #include "src/__support/FPUtil/sqrt.h" #include "src/__support/macros/optimization.h" namespace LIBC_NAMESPACE_DECL { // Generated by Sollya using the following command: // > round(pi/2, D, RN); static constexpr float PI_2 = 0x1.921fb54442d18p0f; LLVM_LIBC_FUNCTION(float16, asinf16, (float16 x)) { using FPBits = fputil::FPBits; FPBits xbits(x); uint16_t x_u = xbits.uintval(); uint16_t x_abs = x_u & 0x7fff; float xf = x; // |x| > 0x1p0, |x| > 1, or x is NaN. if (LIBC_UNLIKELY(x_abs > 0x3c00)) { // asinf16(NaN) = NaN if (xbits.is_nan()) { if (xbits.is_signaling_nan()) { fputil::raise_except_if_required(FE_INVALID); return FPBits::quiet_nan().get_val(); } return x; } // 1 < |x| <= +/-inf fputil::raise_except_if_required(FE_INVALID); fputil::set_errno_if_required(EDOM); return FPBits::quiet_nan().get_val(); } float xsq = xf * xf; // |x| <= 0x1p-1, |x| <= 0.5 if (x_abs <= 0x3800) { // asinf16(+/-0) = +/-0 if (LIBC_UNLIKELY(x_abs == 0)) return x; // Exhaustive tests show that, // for |x| <= 0x1.878p-9, when: // x > 0, and rounding upward, or // x < 0, and rounding downward, then, // asin(x) = x * 2^-11 + x // else, in other rounding modes, // asin(x) = x if (LIBC_UNLIKELY(x_abs <= 0x1a1e)) { int rounding = fputil::quick_get_round(); if ((xbits.is_pos() && rounding == FE_UPWARD) || (xbits.is_neg() && rounding == FE_DOWNWARD)) return fputil::cast(fputil::multiply_add(xf, 0x1.0p-11f, xf)); return x; } // Degree-6 minimax odd polynomial of asin(x) generated by Sollya with: // > P = fpminimax(asin(x)/x, [|0, 2, 4, 6, 8|], [|SG...|], [0, 0.5]); float result = fputil::polyeval(xsq, 0x1.000002p0f, 0x1.554c2ap-3f, 0x1.3541ccp-4f, 0x1.43b2d6p-5f, 0x1.a0d73ep-5f); return fputil::cast(xf * result); } // When |x| > 0.5, assume that 0.5 < |x| <= 1, // // Step-by-step range-reduction proof: // 1: Let y = asin(x), such that, x = sin(y) // 2: From complimentary angle identity: // x = sin(y) = cos(pi/2 - y) // 3: Let z = pi/2 - y, such that x = cos(z) // 4: From double angle formula; cos(2A) = 1 - sin^2(A): // z = 2A, z/2 = A // cos(z) = 1 - 2 * sin^2(z/2) // 5: Make sin(z/2) subject of the formula: // sin(z/2) = sqrt((1 - cos(z))/2) // 6: Recall [3]; x = cos(z). Therefore: // sin(z/2) = sqrt((1 - x)/2) // 7: Let u = (1 - x)/2 // 8: Therefore: // asin(sqrt(u)) = z/2 // 2 * asin(sqrt(u)) = z // 9: Recall [3], z = pi/2 - y. Therefore: // y = pi/2 - z // y = pi/2 - 2 * asin(sqrt(u)) // 10: Recall [1], y = asin(x). Therefore: // asin(x) = pi/2 - 2 * asin(sqrt(u)) // // WHY? // 11: Recall [7], u = (1 - x)/2 // 12: Since 0.5 < x <= 1, therefore: // 0 <= u <= 0.25 and 0 <= sqrt(u) <= 0.5 // // Hence, we can reuse the same [0, 0.5] domain polynomial approximation for // Step [10] as `sqrt(u)` is in range. // 0x1p-1 < |x| <= 0x1p0, 0.5 < |x| <= 1.0 float xf_abs = (xf < 0 ? -xf : xf); float sign = (xbits.uintval() >> 15 == 1 ? -1.0 : 1.0); float u = fputil::multiply_add(-0.5f, xf_abs, 0.5f); float u_sqrt = fputil::sqrt(u); // Degree-6 minimax odd polynomial of asin(x) generated by Sollya with: // > P = fpminimax(asin(x)/x, [|0, 2, 4, 6, 8|], [|SG...|], [0, 0.5]); float asin_sqrt_u = u_sqrt * fputil::polyeval(u, 0x1.000002p0f, 0x1.554c2ap-3f, 0x1.3541ccp-4f, 0x1.43b2d6p-5f, 0x1.a0d73ep-5f); return fputil::cast(sign * fputil::multiply_add(-2.0f, asin_sqrt_u, PI_2)); } } // namespace LIBC_NAMESPACE_DECL