aboutsummaryrefslogtreecommitdiff
path: root/clang/lib/CIR/CodeGen/CIRGenExprAggregate.cpp
blob: d8459b468813791d8f209f4d4591031020b18a33 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
//===- CIRGenExprAggregrate.cpp - Emit CIR Code from Aggregate Expressions ===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Aggregate Expr nodes as CIR code.
//
//===----------------------------------------------------------------------===//

#include "CIRGenBuilder.h"
#include "CIRGenFunction.h"
#include "CIRGenValue.h"
#include "clang/CIR/Dialect/IR/CIRAttrs.h"

#include "clang/AST/Expr.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/StmtVisitor.h"
#include <cstdint>

using namespace clang;
using namespace clang::CIRGen;

namespace {
class AggExprEmitter : public StmtVisitor<AggExprEmitter> {

  CIRGenFunction &cgf;
  AggValueSlot dest;

  // Calls `fn` with a valid return value slot, potentially creating a temporary
  // to do so. If a temporary is created, an appropriate copy into `Dest` will
  // be emitted, as will lifetime markers.
  //
  // The given function should take a ReturnValueSlot, and return an RValue that
  // points to said slot.
  void withReturnValueSlot(const Expr *e,
                           llvm::function_ref<RValue(ReturnValueSlot)> fn);

  AggValueSlot ensureSlot(mlir::Location loc, QualType t) {
    if (!dest.isIgnored())
      return dest;

    cgf.cgm.errorNYI(loc, "Slot for ignored address");
    return dest;
  }

public:
  AggExprEmitter(CIRGenFunction &cgf, AggValueSlot dest)
      : cgf(cgf), dest(dest) {}

  /// Given an expression with aggregate type that represents a value lvalue,
  /// this method emits the address of the lvalue, then loads the result into
  /// DestPtr.
  void emitAggLoadOfLValue(const Expr *e);

  void emitArrayInit(Address destPtr, cir::ArrayType arrayTy, QualType arrayQTy,
                     Expr *exprToVisit, ArrayRef<Expr *> args,
                     Expr *arrayFiller);

  /// Perform the final copy to DestPtr, if desired.
  void emitFinalDestCopy(QualType type, const LValue &src);

  void emitInitializationToLValue(Expr *e, LValue lv);

  void emitNullInitializationToLValue(mlir::Location loc, LValue lv);

  void Visit(Expr *e) { StmtVisitor<AggExprEmitter>::Visit(e); }

  void VisitCallExpr(const CallExpr *e);

  void VisitDeclRefExpr(DeclRefExpr *e) { emitAggLoadOfLValue(e); }

  void VisitInitListExpr(InitListExpr *e);
  void VisitCXXConstructExpr(const CXXConstructExpr *e);

  void visitCXXParenListOrInitListExpr(Expr *e, ArrayRef<Expr *> args,
                                       FieldDecl *initializedFieldInUnion,
                                       Expr *arrayFiller);
};

} // namespace

static bool isTrivialFiller(Expr *e) {
  if (!e)
    return true;

  if (isa<ImplicitValueInitExpr>(e))
    return true;

  if (auto *ile = dyn_cast<InitListExpr>(e)) {
    if (ile->getNumInits())
      return false;
    return isTrivialFiller(ile->getArrayFiller());
  }

  if (const auto *cons = dyn_cast_or_null<CXXConstructExpr>(e))
    return cons->getConstructor()->isDefaultConstructor() &&
           cons->getConstructor()->isTrivial();

  return false;
}

/// Given an expression with aggregate type that represents a value lvalue, this
/// method emits the address of the lvalue, then loads the result into DestPtr.
void AggExprEmitter::emitAggLoadOfLValue(const Expr *e) {
  LValue lv = cgf.emitLValue(e);

  // If the type of the l-value is atomic, then do an atomic load.
  assert(!cir::MissingFeatures::opLoadStoreAtomic());

  emitFinalDestCopy(e->getType(), lv);
}

void AggExprEmitter::emitArrayInit(Address destPtr, cir::ArrayType arrayTy,
                                   QualType arrayQTy, Expr *e,
                                   ArrayRef<Expr *> args, Expr *arrayFiller) {
  CIRGenBuilderTy &builder = cgf.getBuilder();
  const mlir::Location loc = cgf.getLoc(e->getSourceRange());

  const uint64_t numInitElements = args.size();

  const QualType elementType =
      cgf.getContext().getAsArrayType(arrayQTy)->getElementType();

  if (elementType.isDestructedType()) {
    cgf.cgm.errorNYI(loc, "dtorKind NYI");
    return;
  }

  const QualType elementPtrType = cgf.getContext().getPointerType(elementType);

  const mlir::Type cirElementType = cgf.convertType(elementType);
  const cir::PointerType cirElementPtrType =
      builder.getPointerTo(cirElementType);

  auto begin = builder.create<cir::CastOp>(loc, cirElementPtrType,
                                           cir::CastKind::array_to_ptrdecay,
                                           destPtr.getPointer());

  const CharUnits elementSize =
      cgf.getContext().getTypeSizeInChars(elementType);
  const CharUnits elementAlign =
      destPtr.getAlignment().alignmentOfArrayElement(elementSize);

  // The 'current element to initialize'.  The invariants on this
  // variable are complicated.  Essentially, after each iteration of
  // the loop, it points to the last initialized element, except
  // that it points to the beginning of the array before any
  // elements have been initialized.
  mlir::Value element = begin;

  // Don't build the 'one' before the cycle to avoid
  // emmiting the redundant `cir.const 1` instrs.
  mlir::Value one;

  // Emit the explicit initializers.
  for (uint64_t i = 0; i != numInitElements; ++i) {
    // Advance to the next element.
    if (i > 0) {
      one = builder.getConstantInt(loc, cgf.PtrDiffTy, i);
      element = builder.createPtrStride(loc, begin, one);
    }

    const Address address = Address(element, cirElementType, elementAlign);
    const LValue elementLV = cgf.makeAddrLValue(address, elementType);
    emitInitializationToLValue(args[i], elementLV);
  }

  const uint64_t numArrayElements = arrayTy.getSize();

  // Check whether there's a non-trivial array-fill expression.
  const bool hasTrivialFiller = isTrivialFiller(arrayFiller);

  // Any remaining elements need to be zero-initialized, possibly
  // using the filler expression.  We can skip this if the we're
  // emitting to zeroed memory.
  if (numInitElements != numArrayElements &&
      !(dest.isZeroed() && hasTrivialFiller &&
        cgf.getTypes().isZeroInitializable(elementType))) {
    // Advance to the start of the rest of the array.
    if (numInitElements) {
      one = builder.getConstantInt(loc, cgf.PtrDiffTy, 1);
      element = builder.create<cir::PtrStrideOp>(loc, cirElementPtrType,
                                                 element, one);
    }

    // Allocate the temporary variable
    // to store the pointer to first unitialized element
    const Address tmpAddr = cgf.createTempAlloca(
        cirElementPtrType, cgf.getPointerAlign(), loc, "arrayinit.temp");
    LValue tmpLV = cgf.makeAddrLValue(tmpAddr, elementPtrType);
    cgf.emitStoreThroughLValue(RValue::get(element), tmpLV);

    // TODO(CIR): Replace this part later with cir::DoWhileOp
    for (unsigned i = numInitElements; i != numArrayElements; ++i) {
      cir::LoadOp currentElement = builder.createLoad(loc, tmpAddr);

      // Emit the actual filler expression.
      const LValue elementLV = cgf.makeAddrLValue(
          Address(currentElement, cirElementType, elementAlign), elementType);

      if (arrayFiller)
        emitInitializationToLValue(arrayFiller, elementLV);
      else
        emitNullInitializationToLValue(loc, elementLV);

      // Advance pointer and store them to temporary variable
      one = builder.getConstantInt(loc, cgf.PtrDiffTy, 1);
      cir::PtrStrideOp nextElement =
          builder.createPtrStride(loc, currentElement, one);
      cgf.emitStoreThroughLValue(RValue::get(nextElement), tmpLV);
    }
  }
}

/// Perform the final copy to destPtr, if desired.
void AggExprEmitter::emitFinalDestCopy(QualType type, const LValue &src) {
  // If dest is ignored, then we're evaluating an aggregate expression
  // in a context that doesn't care about the result.  Note that loads
  // from volatile l-values force the existence of a non-ignored
  // destination.
  if (dest.isIgnored())
    return;

  cgf.cgm.errorNYI("emitFinalDestCopy: non-ignored dest is NYI");
}

void AggExprEmitter::emitInitializationToLValue(Expr *e, LValue lv) {
  const QualType type = lv.getType();

  if (isa<ImplicitValueInitExpr, CXXScalarValueInitExpr>(e)) {
    const mlir::Location loc = e->getSourceRange().isValid()
                                   ? cgf.getLoc(e->getSourceRange())
                                   : *cgf.currSrcLoc;
    return emitNullInitializationToLValue(loc, lv);
  }

  if (isa<NoInitExpr>(e))
    return;

  if (type->isReferenceType())
    cgf.cgm.errorNYI("emitInitializationToLValue ReferenceType");

  switch (cgf.getEvaluationKind(type)) {
  case cir::TEK_Complex:
    cgf.cgm.errorNYI("emitInitializationToLValue TEK_Complex");
    break;
  case cir::TEK_Aggregate:
    cgf.emitAggExpr(e, AggValueSlot::forLValue(lv, AggValueSlot::IsDestructed,
                                               AggValueSlot::IsNotAliased,
                                               AggValueSlot::MayOverlap,
                                               dest.isZeroed()));

    return;
  case cir::TEK_Scalar:
    if (lv.isSimple())
      cgf.emitScalarInit(e, cgf.getLoc(e->getSourceRange()), lv);
    else
      cgf.emitStoreThroughLValue(RValue::get(cgf.emitScalarExpr(e)), lv);
    return;
  }
}

void AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *e) {
  AggValueSlot slot = ensureSlot(cgf.getLoc(e->getSourceRange()), e->getType());
  cgf.emitCXXConstructExpr(e, slot);
}

void AggExprEmitter::emitNullInitializationToLValue(mlir::Location loc,
                                                    LValue lv) {
  const QualType type = lv.getType();

  // If the destination slot is already zeroed out before the aggregate is
  // copied into it, we don't have to emit any zeros here.
  if (dest.isZeroed() && cgf.getTypes().isZeroInitializable(type))
    return;

  if (cgf.hasScalarEvaluationKind(type)) {
    // For non-aggregates, we can store the appropriate null constant.
    mlir::Value null = cgf.cgm.emitNullConstant(type, loc);
    if (lv.isSimple()) {
      cgf.emitStoreOfScalar(null, lv, /* isInitialization */ true);
      return;
    }

    cgf.cgm.errorNYI("emitStoreThroughBitfieldLValue");
    return;
  }

  // There's a potential optimization opportunity in combining
  // memsets; that would be easy for arrays, but relatively
  // difficult for structures with the current code.
  cgf.emitNullInitialization(loc, lv.getAddress(), lv.getType());
}

void AggExprEmitter::VisitCallExpr(const CallExpr *e) {
  if (e->getCallReturnType(cgf.getContext())->isReferenceType()) {
    cgf.cgm.errorNYI(e->getSourceRange(), "reference return type");
    return;
  }

  withReturnValueSlot(
      e, [&](ReturnValueSlot slot) { return cgf.emitCallExpr(e, slot); });
}

void AggExprEmitter::withReturnValueSlot(
    const Expr *e, llvm::function_ref<RValue(ReturnValueSlot)> fn) {
  QualType retTy = e->getType();

  assert(!cir::MissingFeatures::aggValueSlotDestructedFlag());
  bool requiresDestruction =
      retTy.isDestructedType() == QualType::DK_nontrivial_c_struct;
  if (requiresDestruction)
    cgf.cgm.errorNYI(
        e->getSourceRange(),
        "withReturnValueSlot: return value requiring destruction is NYI");

  // If it makes no observable difference, save a memcpy + temporary.
  //
  // We need to always provide our own temporary if destruction is required.
  // Otherwise, fn will emit its own, notice that it's "unused", and end its
  // lifetime before we have the chance to emit a proper destructor call.
  assert(!cir::MissingFeatures::aggValueSlotAlias());
  assert(!cir::MissingFeatures::aggValueSlotGC());

  Address retAddr = dest.getAddress();
  assert(!cir::MissingFeatures::emitLifetimeMarkers());

  assert(!cir::MissingFeatures::aggValueSlotVolatile());
  assert(!cir::MissingFeatures::aggValueSlotDestructedFlag());
  fn(ReturnValueSlot(retAddr));
}

void AggExprEmitter::VisitInitListExpr(InitListExpr *e) {
  if (e->hadArrayRangeDesignator())
    llvm_unreachable("GNU array range designator extension");

  if (e->isTransparent())
    return Visit(e->getInit(0));

  visitCXXParenListOrInitListExpr(
      e, e->inits(), e->getInitializedFieldInUnion(), e->getArrayFiller());
}

void AggExprEmitter::visitCXXParenListOrInitListExpr(
    Expr *e, ArrayRef<Expr *> args, FieldDecl *initializedFieldInUnion,
    Expr *arrayFiller) {

  const AggValueSlot dest =
      ensureSlot(cgf.getLoc(e->getSourceRange()), e->getType());

  if (e->getType()->isConstantArrayType()) {
    cir::ArrayType arrayTy =
        cast<cir::ArrayType>(dest.getAddress().getElementType());
    emitArrayInit(dest.getAddress(), arrayTy, e->getType(), e, args,
                  arrayFiller);
    return;
  } else if (e->getType()->isVariableArrayType()) {
    cgf.cgm.errorNYI(e->getSourceRange(),
                     "visitCXXParenListOrInitListExpr variable array type");
    return;
  }

  if (e->getType()->isArrayType()) {
    cgf.cgm.errorNYI(e->getSourceRange(),
                     "visitCXXParenListOrInitListExpr array type");
    return;
  }

  assert(e->getType()->isRecordType() && "Only support structs/unions here!");

  // Do struct initialization; this code just sets each individual member
  // to the approprate value.  This makes bitfield support automatic;
  // the disadvantage is that the generated code is more difficult for
  // the optimizer, especially with bitfields.
  unsigned numInitElements = args.size();
  RecordDecl *record = e->getType()->castAs<RecordType>()->getDecl();

  // We'll need to enter cleanup scopes in case any of the element
  // initializers throws an exception.
  assert(!cir::MissingFeatures::requiresCleanups());

  unsigned curInitIndex = 0;

  // Emit initialization of base classes.
  if (auto *cxxrd = dyn_cast<CXXRecordDecl>(record)) {
    assert(numInitElements >= cxxrd->getNumBases() &&
           "missing initializer for base class");
    if (cxxrd->getNumBases() > 0) {
      cgf.cgm.errorNYI(e->getSourceRange(),
                       "visitCXXParenListOrInitListExpr base class init");
      return;
    }
  }

  LValue destLV = cgf.makeAddrLValue(dest.getAddress(), e->getType());

  if (record->isUnion()) {
    cgf.cgm.errorNYI(e->getSourceRange(),
                     "visitCXXParenListOrInitListExpr union type");
    return;
  }

  // Here we iterate over the fields; this makes it simpler to both
  // default-initialize fields and skip over unnamed fields.
  for (const FieldDecl *field : record->fields()) {
    // We're done once we hit the flexible array member.
    if (field->getType()->isIncompleteArrayType())
      break;

    // Always skip anonymous bitfields.
    if (field->isUnnamedBitField())
      continue;

    // We're done if we reach the end of the explicit initializers, we
    // have a zeroed object, and the rest of the fields are
    // zero-initializable.
    if (curInitIndex == numInitElements && dest.isZeroed() &&
        cgf.getTypes().isZeroInitializable(e->getType()))
      break;
    LValue lv =
        cgf.emitLValueForFieldInitialization(destLV, field, field->getName());
    // We never generate write-barriers for initialized fields.
    assert(!cir::MissingFeatures::setNonGC());

    if (curInitIndex < numInitElements) {
      // Store the initializer into the field.
      CIRGenFunction::SourceLocRAIIObject loc{
          cgf, cgf.getLoc(record->getSourceRange())};
      emitInitializationToLValue(args[curInitIndex++], lv);
    } else {
      // We're out of initializers; default-initialize to null
      emitNullInitializationToLValue(cgf.getLoc(e->getSourceRange()), lv);
    }

    // Push a destructor if necessary.
    // FIXME: if we have an array of structures, all explicitly
    // initialized, we can end up pushing a linear number of cleanups.
    if (QualType::DestructionKind dtorKind =
            field->getType().isDestructedType()) {
      cgf.cgm.errorNYI(e->getSourceRange(),
                       "visitCXXParenListOrInitListExpr destructor");
      return;
    }

    // From classic codegen, maybe not useful for CIR:
    // If the GEP didn't get used because of a dead zero init or something
    // else, clean it up for -O0 builds and general tidiness.
  }
}

// TODO(cir): This could be shared with classic codegen.
AggValueSlot::Overlap_t CIRGenFunction::getOverlapForBaseInit(
    const CXXRecordDecl *rd, const CXXRecordDecl *baseRD, bool isVirtual) {
  // If the most-derived object is a field declared with [[no_unique_address]],
  // the tail padding of any virtual base could be reused for other subobjects
  // of that field's class.
  if (isVirtual)
    return AggValueSlot::MayOverlap;

  // If the base class is laid out entirely within the nvsize of the derived
  // class, its tail padding cannot yet be initialized, so we can issue
  // stores at the full width of the base class.
  const ASTRecordLayout &layout = getContext().getASTRecordLayout(rd);
  if (layout.getBaseClassOffset(baseRD) +
          getContext().getASTRecordLayout(baseRD).getSize() <=
      layout.getNonVirtualSize())
    return AggValueSlot::DoesNotOverlap;

  // The tail padding may contain values we need to preserve.
  return AggValueSlot::MayOverlap;
}

void CIRGenFunction::emitAggExpr(const Expr *e, AggValueSlot slot) {
  AggExprEmitter(*this, slot).Visit(const_cast<Expr *>(e));
}

LValue CIRGenFunction::emitAggExprToLValue(const Expr *e) {
  assert(hasAggregateEvaluationKind(e->getType()) && "Invalid argument!");
  Address temp = createMemTemp(e->getType(), getLoc(e->getSourceRange()));
  LValue lv = makeAddrLValue(temp, e->getType());
  emitAggExpr(e, AggValueSlot::forLValue(lv, AggValueSlot::IsNotDestructed,
                                         AggValueSlot::IsNotAliased,
                                         AggValueSlot::DoesNotOverlap));
  return lv;
}