//===- CIRGenExprAggregrate.cpp - Emit CIR Code from Aggregate Expressions ===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This contains code to emit Aggregate Expr nodes as CIR code. // //===----------------------------------------------------------------------===// #include "CIRGenBuilder.h" #include "CIRGenFunction.h" #include "CIRGenValue.h" #include "clang/CIR/Dialect/IR/CIRAttrs.h" #include "clang/AST/Expr.h" #include "clang/AST/RecordLayout.h" #include "clang/AST/StmtVisitor.h" #include using namespace clang; using namespace clang::CIRGen; namespace { class AggExprEmitter : public StmtVisitor { CIRGenFunction &cgf; AggValueSlot dest; // Calls `fn` with a valid return value slot, potentially creating a temporary // to do so. If a temporary is created, an appropriate copy into `Dest` will // be emitted, as will lifetime markers. // // The given function should take a ReturnValueSlot, and return an RValue that // points to said slot. void withReturnValueSlot(const Expr *e, llvm::function_ref fn); AggValueSlot ensureSlot(mlir::Location loc, QualType t) { if (!dest.isIgnored()) return dest; cgf.cgm.errorNYI(loc, "Slot for ignored address"); return dest; } public: AggExprEmitter(CIRGenFunction &cgf, AggValueSlot dest) : cgf(cgf), dest(dest) {} /// Given an expression with aggregate type that represents a value lvalue, /// this method emits the address of the lvalue, then loads the result into /// DestPtr. void emitAggLoadOfLValue(const Expr *e); void emitArrayInit(Address destPtr, cir::ArrayType arrayTy, QualType arrayQTy, Expr *exprToVisit, ArrayRef args, Expr *arrayFiller); /// Perform the final copy to DestPtr, if desired. void emitFinalDestCopy(QualType type, const LValue &src); void emitInitializationToLValue(Expr *e, LValue lv); void emitNullInitializationToLValue(mlir::Location loc, LValue lv); void Visit(Expr *e) { StmtVisitor::Visit(e); } void VisitCallExpr(const CallExpr *e); void VisitDeclRefExpr(DeclRefExpr *e) { emitAggLoadOfLValue(e); } void VisitInitListExpr(InitListExpr *e); void VisitCXXConstructExpr(const CXXConstructExpr *e); void visitCXXParenListOrInitListExpr(Expr *e, ArrayRef args, FieldDecl *initializedFieldInUnion, Expr *arrayFiller); }; } // namespace static bool isTrivialFiller(Expr *e) { if (!e) return true; if (isa(e)) return true; if (auto *ile = dyn_cast(e)) { if (ile->getNumInits()) return false; return isTrivialFiller(ile->getArrayFiller()); } if (const auto *cons = dyn_cast_or_null(e)) return cons->getConstructor()->isDefaultConstructor() && cons->getConstructor()->isTrivial(); return false; } /// Given an expression with aggregate type that represents a value lvalue, this /// method emits the address of the lvalue, then loads the result into DestPtr. void AggExprEmitter::emitAggLoadOfLValue(const Expr *e) { LValue lv = cgf.emitLValue(e); // If the type of the l-value is atomic, then do an atomic load. assert(!cir::MissingFeatures::opLoadStoreAtomic()); emitFinalDestCopy(e->getType(), lv); } void AggExprEmitter::emitArrayInit(Address destPtr, cir::ArrayType arrayTy, QualType arrayQTy, Expr *e, ArrayRef args, Expr *arrayFiller) { CIRGenBuilderTy &builder = cgf.getBuilder(); const mlir::Location loc = cgf.getLoc(e->getSourceRange()); const uint64_t numInitElements = args.size(); const QualType elementType = cgf.getContext().getAsArrayType(arrayQTy)->getElementType(); if (elementType.isDestructedType()) { cgf.cgm.errorNYI(loc, "dtorKind NYI"); return; } const QualType elementPtrType = cgf.getContext().getPointerType(elementType); const mlir::Type cirElementType = cgf.convertType(elementType); const cir::PointerType cirElementPtrType = builder.getPointerTo(cirElementType); auto begin = builder.create(loc, cirElementPtrType, cir::CastKind::array_to_ptrdecay, destPtr.getPointer()); const CharUnits elementSize = cgf.getContext().getTypeSizeInChars(elementType); const CharUnits elementAlign = destPtr.getAlignment().alignmentOfArrayElement(elementSize); // The 'current element to initialize'. The invariants on this // variable are complicated. Essentially, after each iteration of // the loop, it points to the last initialized element, except // that it points to the beginning of the array before any // elements have been initialized. mlir::Value element = begin; // Don't build the 'one' before the cycle to avoid // emmiting the redundant `cir.const 1` instrs. mlir::Value one; // Emit the explicit initializers. for (uint64_t i = 0; i != numInitElements; ++i) { // Advance to the next element. if (i > 0) { one = builder.getConstantInt(loc, cgf.PtrDiffTy, i); element = builder.createPtrStride(loc, begin, one); } const Address address = Address(element, cirElementType, elementAlign); const LValue elementLV = cgf.makeAddrLValue(address, elementType); emitInitializationToLValue(args[i], elementLV); } const uint64_t numArrayElements = arrayTy.getSize(); // Check whether there's a non-trivial array-fill expression. const bool hasTrivialFiller = isTrivialFiller(arrayFiller); // Any remaining elements need to be zero-initialized, possibly // using the filler expression. We can skip this if the we're // emitting to zeroed memory. if (numInitElements != numArrayElements && !(dest.isZeroed() && hasTrivialFiller && cgf.getTypes().isZeroInitializable(elementType))) { // Advance to the start of the rest of the array. if (numInitElements) { one = builder.getConstantInt(loc, cgf.PtrDiffTy, 1); element = builder.create(loc, cirElementPtrType, element, one); } // Allocate the temporary variable // to store the pointer to first unitialized element const Address tmpAddr = cgf.createTempAlloca( cirElementPtrType, cgf.getPointerAlign(), loc, "arrayinit.temp"); LValue tmpLV = cgf.makeAddrLValue(tmpAddr, elementPtrType); cgf.emitStoreThroughLValue(RValue::get(element), tmpLV); // TODO(CIR): Replace this part later with cir::DoWhileOp for (unsigned i = numInitElements; i != numArrayElements; ++i) { cir::LoadOp currentElement = builder.createLoad(loc, tmpAddr); // Emit the actual filler expression. const LValue elementLV = cgf.makeAddrLValue( Address(currentElement, cirElementType, elementAlign), elementType); if (arrayFiller) emitInitializationToLValue(arrayFiller, elementLV); else emitNullInitializationToLValue(loc, elementLV); // Advance pointer and store them to temporary variable one = builder.getConstantInt(loc, cgf.PtrDiffTy, 1); cir::PtrStrideOp nextElement = builder.createPtrStride(loc, currentElement, one); cgf.emitStoreThroughLValue(RValue::get(nextElement), tmpLV); } } } /// Perform the final copy to destPtr, if desired. void AggExprEmitter::emitFinalDestCopy(QualType type, const LValue &src) { // If dest is ignored, then we're evaluating an aggregate expression // in a context that doesn't care about the result. Note that loads // from volatile l-values force the existence of a non-ignored // destination. if (dest.isIgnored()) return; cgf.cgm.errorNYI("emitFinalDestCopy: non-ignored dest is NYI"); } void AggExprEmitter::emitInitializationToLValue(Expr *e, LValue lv) { const QualType type = lv.getType(); if (isa(e)) { const mlir::Location loc = e->getSourceRange().isValid() ? cgf.getLoc(e->getSourceRange()) : *cgf.currSrcLoc; return emitNullInitializationToLValue(loc, lv); } if (isa(e)) return; if (type->isReferenceType()) cgf.cgm.errorNYI("emitInitializationToLValue ReferenceType"); switch (cgf.getEvaluationKind(type)) { case cir::TEK_Complex: cgf.cgm.errorNYI("emitInitializationToLValue TEK_Complex"); break; case cir::TEK_Aggregate: cgf.emitAggExpr(e, AggValueSlot::forLValue(lv, AggValueSlot::IsDestructed, AggValueSlot::IsNotAliased, AggValueSlot::MayOverlap, dest.isZeroed())); return; case cir::TEK_Scalar: if (lv.isSimple()) cgf.emitScalarInit(e, cgf.getLoc(e->getSourceRange()), lv); else cgf.emitStoreThroughLValue(RValue::get(cgf.emitScalarExpr(e)), lv); return; } } void AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *e) { AggValueSlot slot = ensureSlot(cgf.getLoc(e->getSourceRange()), e->getType()); cgf.emitCXXConstructExpr(e, slot); } void AggExprEmitter::emitNullInitializationToLValue(mlir::Location loc, LValue lv) { const QualType type = lv.getType(); // If the destination slot is already zeroed out before the aggregate is // copied into it, we don't have to emit any zeros here. if (dest.isZeroed() && cgf.getTypes().isZeroInitializable(type)) return; if (cgf.hasScalarEvaluationKind(type)) { // For non-aggregates, we can store the appropriate null constant. mlir::Value null = cgf.cgm.emitNullConstant(type, loc); if (lv.isSimple()) { cgf.emitStoreOfScalar(null, lv, /* isInitialization */ true); return; } cgf.cgm.errorNYI("emitStoreThroughBitfieldLValue"); return; } // There's a potential optimization opportunity in combining // memsets; that would be easy for arrays, but relatively // difficult for structures with the current code. cgf.emitNullInitialization(loc, lv.getAddress(), lv.getType()); } void AggExprEmitter::VisitCallExpr(const CallExpr *e) { if (e->getCallReturnType(cgf.getContext())->isReferenceType()) { cgf.cgm.errorNYI(e->getSourceRange(), "reference return type"); return; } withReturnValueSlot( e, [&](ReturnValueSlot slot) { return cgf.emitCallExpr(e, slot); }); } void AggExprEmitter::withReturnValueSlot( const Expr *e, llvm::function_ref fn) { QualType retTy = e->getType(); assert(!cir::MissingFeatures::aggValueSlotDestructedFlag()); bool requiresDestruction = retTy.isDestructedType() == QualType::DK_nontrivial_c_struct; if (requiresDestruction) cgf.cgm.errorNYI( e->getSourceRange(), "withReturnValueSlot: return value requiring destruction is NYI"); // If it makes no observable difference, save a memcpy + temporary. // // We need to always provide our own temporary if destruction is required. // Otherwise, fn will emit its own, notice that it's "unused", and end its // lifetime before we have the chance to emit a proper destructor call. assert(!cir::MissingFeatures::aggValueSlotAlias()); assert(!cir::MissingFeatures::aggValueSlotGC()); Address retAddr = dest.getAddress(); assert(!cir::MissingFeatures::emitLifetimeMarkers()); assert(!cir::MissingFeatures::aggValueSlotVolatile()); assert(!cir::MissingFeatures::aggValueSlotDestructedFlag()); fn(ReturnValueSlot(retAddr)); } void AggExprEmitter::VisitInitListExpr(InitListExpr *e) { if (e->hadArrayRangeDesignator()) llvm_unreachable("GNU array range designator extension"); if (e->isTransparent()) return Visit(e->getInit(0)); visitCXXParenListOrInitListExpr( e, e->inits(), e->getInitializedFieldInUnion(), e->getArrayFiller()); } void AggExprEmitter::visitCXXParenListOrInitListExpr( Expr *e, ArrayRef args, FieldDecl *initializedFieldInUnion, Expr *arrayFiller) { const AggValueSlot dest = ensureSlot(cgf.getLoc(e->getSourceRange()), e->getType()); if (e->getType()->isConstantArrayType()) { cir::ArrayType arrayTy = cast(dest.getAddress().getElementType()); emitArrayInit(dest.getAddress(), arrayTy, e->getType(), e, args, arrayFiller); return; } else if (e->getType()->isVariableArrayType()) { cgf.cgm.errorNYI(e->getSourceRange(), "visitCXXParenListOrInitListExpr variable array type"); return; } if (e->getType()->isArrayType()) { cgf.cgm.errorNYI(e->getSourceRange(), "visitCXXParenListOrInitListExpr array type"); return; } assert(e->getType()->isRecordType() && "Only support structs/unions here!"); // Do struct initialization; this code just sets each individual member // to the approprate value. This makes bitfield support automatic; // the disadvantage is that the generated code is more difficult for // the optimizer, especially with bitfields. unsigned numInitElements = args.size(); RecordDecl *record = e->getType()->castAs()->getDecl(); // We'll need to enter cleanup scopes in case any of the element // initializers throws an exception. assert(!cir::MissingFeatures::requiresCleanups()); unsigned curInitIndex = 0; // Emit initialization of base classes. if (auto *cxxrd = dyn_cast(record)) { assert(numInitElements >= cxxrd->getNumBases() && "missing initializer for base class"); if (cxxrd->getNumBases() > 0) { cgf.cgm.errorNYI(e->getSourceRange(), "visitCXXParenListOrInitListExpr base class init"); return; } } LValue destLV = cgf.makeAddrLValue(dest.getAddress(), e->getType()); if (record->isUnion()) { cgf.cgm.errorNYI(e->getSourceRange(), "visitCXXParenListOrInitListExpr union type"); return; } // Here we iterate over the fields; this makes it simpler to both // default-initialize fields and skip over unnamed fields. for (const FieldDecl *field : record->fields()) { // We're done once we hit the flexible array member. if (field->getType()->isIncompleteArrayType()) break; // Always skip anonymous bitfields. if (field->isUnnamedBitField()) continue; // We're done if we reach the end of the explicit initializers, we // have a zeroed object, and the rest of the fields are // zero-initializable. if (curInitIndex == numInitElements && dest.isZeroed() && cgf.getTypes().isZeroInitializable(e->getType())) break; LValue lv = cgf.emitLValueForFieldInitialization(destLV, field, field->getName()); // We never generate write-barriers for initialized fields. assert(!cir::MissingFeatures::setNonGC()); if (curInitIndex < numInitElements) { // Store the initializer into the field. CIRGenFunction::SourceLocRAIIObject loc{ cgf, cgf.getLoc(record->getSourceRange())}; emitInitializationToLValue(args[curInitIndex++], lv); } else { // We're out of initializers; default-initialize to null emitNullInitializationToLValue(cgf.getLoc(e->getSourceRange()), lv); } // Push a destructor if necessary. // FIXME: if we have an array of structures, all explicitly // initialized, we can end up pushing a linear number of cleanups. if (field->getType().isDestructedType()) { cgf.cgm.errorNYI(e->getSourceRange(), "visitCXXParenListOrInitListExpr destructor"); return; } // From classic codegen, maybe not useful for CIR: // If the GEP didn't get used because of a dead zero init or something // else, clean it up for -O0 builds and general tidiness. } } // TODO(cir): This could be shared with classic codegen. AggValueSlot::Overlap_t CIRGenFunction::getOverlapForBaseInit( const CXXRecordDecl *rd, const CXXRecordDecl *baseRD, bool isVirtual) { // If the most-derived object is a field declared with [[no_unique_address]], // the tail padding of any virtual base could be reused for other subobjects // of that field's class. if (isVirtual) return AggValueSlot::MayOverlap; // If the base class is laid out entirely within the nvsize of the derived // class, its tail padding cannot yet be initialized, so we can issue // stores at the full width of the base class. const ASTRecordLayout &layout = getContext().getASTRecordLayout(rd); if (layout.getBaseClassOffset(baseRD) + getContext().getASTRecordLayout(baseRD).getSize() <= layout.getNonVirtualSize()) return AggValueSlot::DoesNotOverlap; // The tail padding may contain values we need to preserve. return AggValueSlot::MayOverlap; } void CIRGenFunction::emitAggExpr(const Expr *e, AggValueSlot slot) { AggExprEmitter(*this, slot).Visit(const_cast(e)); } LValue CIRGenFunction::emitAggExprToLValue(const Expr *e) { assert(hasAggregateEvaluationKind(e->getType()) && "Invalid argument!"); Address temp = createMemTemp(e->getType(), getLoc(e->getSourceRange())); LValue lv = makeAddrLValue(temp, e->getType()); emitAggExpr(e, AggValueSlot::forLValue(lv, AggValueSlot::IsNotDestructed, AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap)); return lv; }