aboutsummaryrefslogtreecommitdiff
path: root/libc/src/math/generic
diff options
context:
space:
mode:
Diffstat (limited to 'libc/src/math/generic')
-rw-r--r--libc/src/math/generic/CMakeLists.txt22
-rw-r--r--libc/src/math/generic/atanhf16.cpp86
-rw-r--r--libc/src/math/generic/cbrt.cpp328
-rw-r--r--libc/src/math/generic/common_constants.cpp78
-rw-r--r--libc/src/math/generic/common_constants.h8
-rw-r--r--libc/src/math/generic/explogxf.h43
6 files changed, 6 insertions, 559 deletions
diff --git a/libc/src/math/generic/CMakeLists.txt b/libc/src/math/generic/CMakeLists.txt
index bac043f..a866195 100644
--- a/libc/src/math/generic/CMakeLists.txt
+++ b/libc/src/math/generic/CMakeLists.txt
@@ -3932,17 +3932,7 @@ add_entrypoint_object(
HDRS
../atanhf16.h
DEPENDS
- .explogxf
- libc.hdr.errno_macros
- libc.hdr.fenv_macros
- libc.src.__support.FPUtil.cast
- libc.src.__support.FPUtil.except_value_utils
- libc.src.__support.FPUtil.fenv_impl
- libc.src.__support.FPUtil.fp_bits
- libc.src.__support.FPUtil.multiply_add
- libc.src.__support.FPUtil.polyeval
- libc.src.__support.macros.optimization
- libc.src.__support.macros.properties.types
+ libc.src.__support.math.atanhf16
)
add_entrypoint_object(
@@ -4763,15 +4753,7 @@ add_entrypoint_object(
HDRS
../cbrt.h
DEPENDS
- libc.hdr.fenv_macros
- libc.src.__support.FPUtil.double_double
- libc.src.__support.FPUtil.dyadic_float
- libc.src.__support.FPUtil.fenv_impl
- libc.src.__support.FPUtil.fp_bits
- libc.src.__support.FPUtil.multiply_add
- libc.src.__support.FPUtil.polyeval
- libc.src.__support.macros.optimization
- libc.src.__support.integer_literals
+ libc.src.__support.math.cbrt
)
add_entrypoint_object(
diff --git a/libc/src/math/generic/atanhf16.cpp b/libc/src/math/generic/atanhf16.cpp
index 57885ac..0539bac 100644
--- a/libc/src/math/generic/atanhf16.cpp
+++ b/libc/src/math/generic/atanhf16.cpp
@@ -7,92 +7,10 @@
//===----------------------------------------------------------------------===//
#include "src/math/atanhf16.h"
-#include "explogxf.h"
-#include "hdr/errno_macros.h"
-#include "hdr/fenv_macros.h"
-#include "src/__support/FPUtil/FEnvImpl.h"
-#include "src/__support/FPUtil/FPBits.h"
-#include "src/__support/FPUtil/PolyEval.h"
-#include "src/__support/FPUtil/cast.h"
-#include "src/__support/FPUtil/except_value_utils.h"
-#include "src/__support/FPUtil/multiply_add.h"
-#include "src/__support/common.h"
-#include "src/__support/macros/config.h"
-#include "src/__support/macros/optimization.h"
+#include "src/__support/math/atanhf16.h"
namespace LIBC_NAMESPACE_DECL {
-static constexpr size_t N_EXCEPTS = 1;
-static constexpr fputil::ExceptValues<float16, N_EXCEPTS> ATANHF16_EXCEPTS{{
- // (input, RZ output, RU offset, RD offset, RN offset)
- // x = 0x1.a5cp-4, atanhf16(x) = 0x1.a74p-4 (RZ)
- {0x2E97, 0x2E9D, 1, 0, 0},
-}};
-
-LLVM_LIBC_FUNCTION(float16, atanhf16, (float16 x)) {
- using FPBits = fputil::FPBits<float16>;
-
- FPBits xbits(x);
- Sign sign = xbits.sign();
- uint16_t x_abs = xbits.abs().uintval();
-
- // |x| >= 1
- if (LIBC_UNLIKELY(x_abs >= 0x3c00U)) {
- if (xbits.is_nan()) {
- if (xbits.is_signaling_nan()) {
- fputil::raise_except_if_required(FE_INVALID);
- return FPBits::quiet_nan().get_val();
- }
- return x;
- }
-
- // |x| == 1.0
- if (x_abs == 0x3c00U) {
- fputil::set_errno_if_required(ERANGE);
- fputil::raise_except_if_required(FE_DIVBYZERO);
- return FPBits::inf(sign).get_val();
- }
- // |x| > 1.0
- fputil::set_errno_if_required(EDOM);
- fputil::raise_except_if_required(FE_INVALID);
- return FPBits::quiet_nan().get_val();
- }
-
- if (auto r = ATANHF16_EXCEPTS.lookup(xbits.uintval());
- LIBC_UNLIKELY(r.has_value()))
- return r.value();
-
- // For |x| less than approximately 0.24
- if (LIBC_UNLIKELY(x_abs <= 0x33f3U)) {
- // atanh(+/-0) = +/-0
- if (LIBC_UNLIKELY(x_abs == 0U))
- return x;
- // The Taylor expansion of atanh(x) is:
- // atanh(x) = x + x^3/3 + x^5/5 + x^7/7 + x^9/9 + x^11/11
- // = x * [1 + x^2/3 + x^4/5 + x^6/7 + x^8/9 + x^10/11]
- // When |x| < 2^-5 (0x0800U), this can be approximated by:
- // atanh(x) ≈ x + (1/3)*x^3
- if (LIBC_UNLIKELY(x_abs < 0x0800U)) {
- float xf = x;
- return fputil::cast<float16>(xf + 0x1.555556p-2f * xf * xf * xf);
- }
-
- // For 2^-5 <= |x| <= 0x1.fccp-3 (~0.24):
- // Let t = x^2.
- // Define P(t) ≈ (1/3)*t + (1/5)*t^2 + (1/7)*t^3 + (1/9)*t^4 + (1/11)*t^5.
- // Coefficients (from Sollya, RN, hexadecimal):
- // 1/3 = 0x1.555556p-2, 1/5 = 0x1.99999ap-3, 1/7 = 0x1.24924ap-3,
- // 1/9 = 0x1.c71c72p-4, 1/11 = 0x1.745d18p-4
- // Thus, atanh(x) ≈ x * (1 + P(x^2)).
- float xf = x;
- float x2 = xf * xf;
- float pe = fputil::polyeval(x2, 0.0f, 0x1.555556p-2f, 0x1.99999ap-3f,
- 0x1.24924ap-3f, 0x1.c71c72p-4f, 0x1.745d18p-4f);
- return fputil::cast<float16>(fputil::multiply_add(xf, pe, xf));
- }
-
- float xf = x;
- return fputil::cast<float16>(0.5 * log_eval_f((xf + 1.0f) / (xf - 1.0f)));
-}
+LLVM_LIBC_FUNCTION(float16, atanhf16, (float16 x)) { return math::atanhf16(x); }
} // namespace LIBC_NAMESPACE_DECL
diff --git a/libc/src/math/generic/cbrt.cpp b/libc/src/math/generic/cbrt.cpp
index ce227e6..e9b69bb 100644
--- a/libc/src/math/generic/cbrt.cpp
+++ b/libc/src/math/generic/cbrt.cpp
@@ -7,334 +7,10 @@
//===----------------------------------------------------------------------===//
#include "src/math/cbrt.h"
-#include "hdr/fenv_macros.h"
-#include "src/__support/FPUtil/FEnvImpl.h"
-#include "src/__support/FPUtil/FPBits.h"
-#include "src/__support/FPUtil/PolyEval.h"
-#include "src/__support/FPUtil/double_double.h"
-#include "src/__support/FPUtil/dyadic_float.h"
-#include "src/__support/FPUtil/multiply_add.h"
-#include "src/__support/common.h"
-#include "src/__support/integer_literals.h"
-#include "src/__support/macros/config.h"
-#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
-
-#if ((LIBC_MATH & LIBC_MATH_SKIP_ACCURATE_PASS) != 0)
-#define LIBC_MATH_CBRT_SKIP_ACCURATE_PASS
-#endif
+#include "src/__support/math/cbrt.h"
namespace LIBC_NAMESPACE_DECL {
-using DoubleDouble = fputil::DoubleDouble;
-using Float128 = fputil::DyadicFloat<128>;
-
-namespace {
-
-// Initial approximation of x^(-2/3) for 1 <= x < 2.
-// Polynomial generated by Sollya with:
-// > P = fpminimax(x^(-2/3), 7, [|D...|], [1, 2]);
-// > dirtyinfnorm(P/x^(-2/3) - 1, [1, 2]);
-// 0x1.28...p-21
-double intial_approximation(double x) {
- constexpr double COEFFS[8] = {
- 0x1.bc52aedead5c6p1, -0x1.b52bfebf110b3p2, 0x1.1d8d71d53d126p3,
- -0x1.de2db9e81cf87p2, 0x1.0154ca06153bdp2, -0x1.5973c66ee6da7p0,
- 0x1.07bf6ac832552p-2, -0x1.5e53d9ce41cb8p-6,
- };
-
- double x_sq = x * x;
-
- double c0 = fputil::multiply_add(x, COEFFS[1], COEFFS[0]);
- double c1 = fputil::multiply_add(x, COEFFS[3], COEFFS[2]);
- double c2 = fputil::multiply_add(x, COEFFS[5], COEFFS[4]);
- double c3 = fputil::multiply_add(x, COEFFS[7], COEFFS[6]);
-
- double x_4 = x_sq * x_sq;
- double d0 = fputil::multiply_add(x_sq, c1, c0);
- double d1 = fputil::multiply_add(x_sq, c3, c2);
-
- return fputil::multiply_add(x_4, d1, d0);
-}
-
-// Get the error term for Newton iteration:
-// h(x) = x^3 * a^2 - 1,
-#ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE
-double get_error(const DoubleDouble &x_3, const DoubleDouble &a_sq) {
- return fputil::multiply_add(x_3.hi, a_sq.hi, -1.0) +
- fputil::multiply_add(x_3.lo, a_sq.hi, x_3.hi * a_sq.lo);
-}
-#else
-double get_error(const DoubleDouble &x_3, const DoubleDouble &a_sq) {
- DoubleDouble x_3_a_sq = fputil::quick_mult(a_sq, x_3);
- return (x_3_a_sq.hi - 1.0) + x_3_a_sq.lo;
-}
-#endif
-
-} // anonymous namespace
-
-// Correctly rounded cbrt algorithm:
-//
-// === Step 1 - Range reduction ===
-// For x = (-1)^s * 2^e * (1.m), we get 2 reduced arguments x_r and a as:
-// x_r = 1.m
-// a = (-1)^s * 2^(e % 3) * (1.m)
-// Then cbrt(x) = x^(1/3) can be computed as:
-// x^(1/3) = 2^(e / 3) * a^(1/3).
-//
-// In order to avoid division, we compute a^(-2/3) using Newton method and then
-// multiply the results by a:
-// a^(1/3) = a * a^(-2/3).
-//
-// === Step 2 - First approximation to a^(-2/3) ===
-// First, we use a degree-7 minimax polynomial generated by Sollya to
-// approximate x_r^(-2/3) for 1 <= x_r < 2.
-// p = P(x_r) ~ x_r^(-2/3),
-// with relative errors bounded by:
-// | p / x_r^(-2/3) - 1 | < 1.16 * 2^-21.
-//
-// Then we multiply with 2^(e % 3) from a small lookup table to get:
-// x_0 = 2^(-2*(e % 3)/3) * p
-// ~ 2^(-2*(e % 3)/3) * x_r^(-2/3)
-// = a^(-2/3)
-// With relative errors:
-// | x_0 / a^(-2/3) - 1 | < 1.16 * 2^-21.
-// This step is done in double precision.
-//
-// === Step 3 - First Newton iteration ===
-// We follow the method described in:
-// Sibidanov, A. and Zimmermann, P., "Correctly rounded cubic root evaluation
-// in double precision", https://core-math.gitlabpages.inria.fr/cbrt64.pdf
-// to derive multiplicative Newton iterations as below:
-// Let x_n be the nth approximation to a^(-2/3). Define the n^th error as:
-// h_n = x_n^3 * a^2 - 1
-// Then:
-// a^(-2/3) = x_n / (1 + h_n)^(1/3)
-// = x_n * (1 - (1/3) * h_n + (2/9) * h_n^2 - (14/81) * h_n^3 + ...)
-// using the Taylor series expansion of (1 + h_n)^(-1/3).
-//
-// Apply to x_0 above:
-// h_0 = x_0^3 * a^2 - 1
-// = a^2 * (x_0 - a^(-2/3)) * (x_0^2 + x_0 * a^(-2/3) + a^(-4/3)),
-// it's bounded by:
-// |h_0| < 4 * 3 * 1.16 * 2^-21 * 4 < 2^-17.
-// So in the first iteration step, we use:
-// x_1 = x_0 * (1 - (1/3) * h_n + (2/9) * h_n^2 - (14/81) * h_n^3)
-// Its relative error is bounded by:
-// | x_1 / a^(-2/3) - 1 | < 35/242 * |h_0|^4 < 2^-70.
-// Then we perform Ziv's rounding test and check if the answer is exact.
-// This step is done in double-double precision.
-//
-// === Step 4 - Second Newton iteration ===
-// If the Ziv's rounding test from the previous step fails, we define the error
-// term:
-// h_1 = x_1^3 * a^2 - 1,
-// And perform another iteration:
-// x_2 = x_1 * (1 - h_1 / 3)
-// with the relative errors exceed the precision of double-double.
-// We then check the Ziv's accuracy test with relative errors < 2^-102 to
-// compensate for rounding errors.
-//
-// === Step 5 - Final iteration ===
-// If the Ziv's accuracy test from the previous step fails, we perform another
-// iteration in 128-bit precision and check for exact outputs.
-//
-// TODO: It is possible to replace this costly computation step with special
-// exceptional handling, similar to what was done in the CORE-MATH project:
-// https://gitlab.inria.fr/core-math/core-math/-/blob/master/src/binary64/cbrt/cbrt.c
-
-LLVM_LIBC_FUNCTION(double, cbrt, (double x)) {
- using FPBits = fputil::FPBits<double>;
-
- uint64_t x_abs = FPBits(x).abs().uintval();
-
- unsigned exp_bias_correction = 682; // 1023 * 2/3
-
- if (LIBC_UNLIKELY(x_abs < FPBits::min_normal().uintval() ||
- x_abs >= FPBits::inf().uintval())) {
- if (x == 0.0 || x_abs >= FPBits::inf().uintval())
- // x is 0, Inf, or NaN.
- // Make sure it works for FTZ/DAZ modes.
- return static_cast<double>(x + x);
-
- // x is non-zero denormal number.
- // Normalize x.
- x *= 0x1.0p60;
- exp_bias_correction -= 20;
- }
-
- FPBits x_bits(x);
-
- // When using biased exponent of x in double precision,
- // x_e = real_exponent_of_x + 1023
- // Then:
- // x_e / 3 = real_exponent_of_x / 3 + 1023/3
- // = real_exponent_of_x / 3 + 341
- // So to make it the correct biased exponent of x^(1/3), we add
- // 1023 - 341 = 682
- // to the quotient x_e / 3.
- unsigned x_e = static_cast<unsigned>(x_bits.get_biased_exponent());
- unsigned out_e = (x_e / 3 + exp_bias_correction);
- unsigned shift_e = x_e % 3;
-
- // Set x_r = 1.mantissa
- double x_r =
- FPBits(x_bits.get_mantissa() |
- (static_cast<uint64_t>(FPBits::EXP_BIAS) << FPBits::FRACTION_LEN))
- .get_val();
-
- // Set a = (-1)^x_sign * 2^(x_e % 3) * (1.mantissa)
- uint64_t a_bits = x_bits.uintval() & 0x800F'FFFF'FFFF'FFFF;
- a_bits |=
- (static_cast<uint64_t>(shift_e + static_cast<unsigned>(FPBits::EXP_BIAS))
- << FPBits::FRACTION_LEN);
- double a = FPBits(a_bits).get_val();
-
- // Initial approximation of x_r^(-2/3).
- double p = intial_approximation(x_r);
-
- // Look up for 2^(-2*n/3) used for first approximation step.
- constexpr double EXP2_M2_OVER_3[3] = {1.0, 0x1.428a2f98d728bp-1,
- 0x1.965fea53d6e3dp-2};
-
- // x0 is an initial approximation of a^(-2/3) for 1 <= |a| < 8.
- // Relative error: < 1.16 * 2^(-21).
- double x0 = static_cast<double>(EXP2_M2_OVER_3[shift_e] * p);
-
- // First iteration in double precision.
- DoubleDouble a_sq = fputil::exact_mult(a, a);
-
- // h0 = x0^3 * a^2 - 1
- DoubleDouble x0_sq = fputil::exact_mult(x0, x0);
- DoubleDouble x0_3 = fputil::quick_mult(x0, x0_sq);
-
- double h0 = get_error(x0_3, a_sq);
-
-#ifdef LIBC_MATH_CBRT_SKIP_ACCURATE_PASS
- constexpr double REL_ERROR = 0;
-#else
- constexpr double REL_ERROR = 0x1.0p-51;
-#endif // LIBC_MATH_CBRT_SKIP_ACCURATE_PASS
-
- // Taylor polynomial of (1 + h)^(-1/3):
- // (1 + h)^(-1/3) = 1 - h/3 + 2 h^2 / 9 - 14 h^3 / 81 + ...
- constexpr double ERR_COEFFS[3] = {
- -0x1.5555555555555p-2 - REL_ERROR, // -1/3 - relative_error
- 0x1.c71c71c71c71cp-3, // 2/9
- -0x1.61f9add3c0ca4p-3, // -14/81
- };
- // e0 = -14 * h^2 / 81 + 2 * h / 9 - 1/3 - relative_error.
- double e0 = fputil::polyeval(h0, ERR_COEFFS[0], ERR_COEFFS[1], ERR_COEFFS[2]);
- double x0_h0 = x0 * h0;
-
- // x1 = x0 (1 - h0/3 + 2 h0^2 / 9 - 14 h0^3 / 81)
- // x1 approximate a^(-2/3) with relative errors bounded by:
- // | x1 / a^(-2/3) - 1 | < (34/243) h0^4 < h0 * REL_ERROR
- DoubleDouble x1_dd{x0_h0 * e0, x0};
-
- // r1 = x1 * a ~ a^(-2/3) * a = a^(1/3).
- DoubleDouble r1 = fputil::quick_mult(a, x1_dd);
-
- // Lambda function to update the exponent of the result.
- auto update_exponent = [=](double r) -> double {
- uint64_t r_m = FPBits(r).uintval() - 0x3FF0'0000'0000'0000;
- // Adjust exponent and sign.
- uint64_t r_bits =
- r_m + (static_cast<uint64_t>(out_e) << FPBits::FRACTION_LEN);
- return FPBits(r_bits).get_val();
- };
-
-#ifdef LIBC_MATH_CBRT_SKIP_ACCURATE_PASS
- // TODO: We probably don't need to use double-double if accurate tests and
- // passes are skipped.
- return update_exponent(r1.hi + r1.lo);
-#else
- // Accurate checks and passes.
- double r1_lower = r1.hi + r1.lo;
- double r1_upper =
- r1.hi + fputil::multiply_add(x0_h0, 2.0 * REL_ERROR * a, r1.lo);
-
- // Ziv's accuracy test.
- if (LIBC_LIKELY(r1_upper == r1_lower)) {
- // Test for exact outputs.
- // Check if lower (52 - 17 = 35) bits are 0's.
- if (LIBC_UNLIKELY((FPBits(r1_lower).uintval() & 0x0000'0007'FFFF'FFFF) ==
- 0)) {
- double r1_err = (r1_lower - r1.hi) - r1.lo;
- if (FPBits(r1_err).abs().get_val() < 0x1.0p69)
- fputil::clear_except_if_required(FE_INEXACT);
- }
-
- return update_exponent(r1_lower);
- }
-
- // Accuracy test failed, perform another Newton iteration.
- double x1 = x1_dd.hi + (e0 + REL_ERROR) * x0_h0;
-
- // Second iteration in double-double precision.
- // h1 = x1^3 * a^2 - 1.
- DoubleDouble x1_sq = fputil::exact_mult(x1, x1);
- DoubleDouble x1_3 = fputil::quick_mult(x1, x1_sq);
- double h1 = get_error(x1_3, a_sq);
-
- // e1 = -x1*h1/3.
- double e1 = h1 * (x1 * -0x1.5555555555555p-2);
- // x2 = x1*(1 - h1/3) = x1 + e1 ~ a^(-2/3) with relative errors < 2^-101.
- DoubleDouble x2 = fputil::exact_add(x1, e1);
- // r2 = a * x2 ~ a * a^(-2/3) = a^(1/3) with relative errors < 2^-100.
- DoubleDouble r2 = fputil::quick_mult(a, x2);
-
- double r2_upper = r2.hi + fputil::multiply_add(a, 0x1.0p-102, r2.lo);
- double r2_lower = r2.hi + fputil::multiply_add(a, -0x1.0p-102, r2.lo);
-
- // Ziv's accuracy test.
- if (LIBC_LIKELY(r2_upper == r2_lower))
- return update_exponent(r2_upper);
-
- // TODO: Investigate removing float128 and just list exceptional cases.
- // Apply another Newton iteration with ~126-bit accuracy.
- Float128 x2_f128 = fputil::quick_add(Float128(x2.hi), Float128(x2.lo));
- // x2^3
- Float128 x2_3 =
- fputil::quick_mul(fputil::quick_mul(x2_f128, x2_f128), x2_f128);
- // a^2
- Float128 a_sq_f128 = fputil::quick_mul(Float128(a), Float128(a));
- // x2^3 * a^2
- Float128 x2_3_a_sq = fputil::quick_mul(x2_3, a_sq_f128);
- // h2 = x2^3 * a^2 - 1
- Float128 h2_f128 = fputil::quick_add(x2_3_a_sq, Float128(-1.0));
- double h2 = static_cast<double>(h2_f128);
- // t2 = 1 - h2 / 3
- Float128 t2 =
- fputil::quick_add(Float128(1.0), Float128(h2 * (-0x1.5555555555555p-2)));
- // x3 = x2 * (1 - h2 / 3) ~ a^(-2/3)
- Float128 x3 = fputil::quick_mul(x2_f128, t2);
- // r3 = a * x3 ~ a * a^(-2/3) = a^(1/3)
- Float128 r3 = fputil::quick_mul(Float128(a), x3);
-
- // Check for exact cases:
- Float128::MantissaType rounding_bits =
- r3.mantissa & 0x0000'0000'0000'03FF'FFFF'FFFF'FFFF'FFFF_u128;
-
- double result = static_cast<double>(r3);
- if ((rounding_bits < 0x0000'0000'0000'0000'0000'0000'0000'000F_u128) ||
- (rounding_bits >= 0x0000'0000'0000'03FF'FFFF'FFFF'FFFF'FFF0_u128)) {
- // Output is exact.
- r3.mantissa &= 0xFFFF'FFFF'FFFF'FFFF'FFFF'FFFF'FFFF'FFF0_u128;
-
- if (rounding_bits >= 0x0000'0000'0000'03FF'FFFF'FFFF'FFFF'FFF0_u128) {
- Float128 tmp{r3.sign, r3.exponent - 123,
- 0x8000'0000'0000'0000'0000'0000'0000'0000_u128};
- Float128 r4 = fputil::quick_add(r3, tmp);
- result = static_cast<double>(r4);
- } else {
- result = static_cast<double>(r3);
- }
-
- fputil::clear_except_if_required(FE_INEXACT);
- }
-
- return update_exponent(result);
-#endif // LIBC_MATH_CBRT_SKIP_ACCURATE_PASS
-}
+LLVM_LIBC_FUNCTION(double, cbrt, (double x)) { return math::cbrt(x); }
} // namespace LIBC_NAMESPACE_DECL
diff --git a/libc/src/math/generic/common_constants.cpp b/libc/src/math/generic/common_constants.cpp
index 42e3ff0..2a15df2 100644
--- a/libc/src/math/generic/common_constants.cpp
+++ b/libc/src/math/generic/common_constants.cpp
@@ -12,84 +12,6 @@
namespace LIBC_NAMESPACE_DECL {
-// Lookup table for logf(f) = logf(1 + n*2^(-7)) where n = 0..127,
-// computed and stored as float precision constants.
-// Generated by Sollya with the following commands:
-// display = hexadecimal;
-// for n from 0 to 127 do { print(single(1 / (1 + n / 128.0))); };
-const float ONE_OVER_F_FLOAT[128] = {
- 0x1p0f, 0x1.fc07fp-1f, 0x1.f81f82p-1f, 0x1.f4465ap-1f,
- 0x1.f07c2p-1f, 0x1.ecc07cp-1f, 0x1.e9131ap-1f, 0x1.e573acp-1f,
- 0x1.e1e1e2p-1f, 0x1.de5d6ep-1f, 0x1.dae608p-1f, 0x1.d77b66p-1f,
- 0x1.d41d42p-1f, 0x1.d0cb58p-1f, 0x1.cd8568p-1f, 0x1.ca4b3p-1f,
- 0x1.c71c72p-1f, 0x1.c3f8fp-1f, 0x1.c0e07p-1f, 0x1.bdd2b8p-1f,
- 0x1.bacf92p-1f, 0x1.b7d6c4p-1f, 0x1.b4e81cp-1f, 0x1.b20364p-1f,
- 0x1.af286cp-1f, 0x1.ac5702p-1f, 0x1.a98ef6p-1f, 0x1.a6d01ap-1f,
- 0x1.a41a42p-1f, 0x1.a16d4p-1f, 0x1.9ec8eap-1f, 0x1.9c2d14p-1f,
- 0x1.99999ap-1f, 0x1.970e5p-1f, 0x1.948b1p-1f, 0x1.920fb4p-1f,
- 0x1.8f9c18p-1f, 0x1.8d3018p-1f, 0x1.8acb9p-1f, 0x1.886e6p-1f,
- 0x1.861862p-1f, 0x1.83c978p-1f, 0x1.818182p-1f, 0x1.7f406p-1f,
- 0x1.7d05f4p-1f, 0x1.7ad22p-1f, 0x1.78a4c8p-1f, 0x1.767dcep-1f,
- 0x1.745d18p-1f, 0x1.724288p-1f, 0x1.702e06p-1f, 0x1.6e1f76p-1f,
- 0x1.6c16c2p-1f, 0x1.6a13cep-1f, 0x1.681682p-1f, 0x1.661ec6p-1f,
- 0x1.642c86p-1f, 0x1.623fa8p-1f, 0x1.605816p-1f, 0x1.5e75bcp-1f,
- 0x1.5c9882p-1f, 0x1.5ac056p-1f, 0x1.58ed24p-1f, 0x1.571ed4p-1f,
- 0x1.555556p-1f, 0x1.539094p-1f, 0x1.51d07ep-1f, 0x1.501502p-1f,
- 0x1.4e5e0ap-1f, 0x1.4cab88p-1f, 0x1.4afd6ap-1f, 0x1.49539ep-1f,
- 0x1.47ae14p-1f, 0x1.460cbcp-1f, 0x1.446f86p-1f, 0x1.42d662p-1f,
- 0x1.414142p-1f, 0x1.3fb014p-1f, 0x1.3e22ccp-1f, 0x1.3c995ap-1f,
- 0x1.3b13b2p-1f, 0x1.3991c2p-1f, 0x1.381382p-1f, 0x1.3698ep-1f,
- 0x1.3521dp-1f, 0x1.33ae46p-1f, 0x1.323e34p-1f, 0x1.30d19p-1f,
- 0x1.2f684cp-1f, 0x1.2e025cp-1f, 0x1.2c9fb4p-1f, 0x1.2b404ap-1f,
- 0x1.29e412p-1f, 0x1.288b02p-1f, 0x1.27350cp-1f, 0x1.25e228p-1f,
- 0x1.24924ap-1f, 0x1.234568p-1f, 0x1.21fb78p-1f, 0x1.20b47p-1f,
- 0x1.1f7048p-1f, 0x1.1e2ef4p-1f, 0x1.1cf06ap-1f, 0x1.1bb4a4p-1f,
- 0x1.1a7b96p-1f, 0x1.194538p-1f, 0x1.181182p-1f, 0x1.16e068p-1f,
- 0x1.15b1e6p-1f, 0x1.1485fp-1f, 0x1.135c82p-1f, 0x1.12358ep-1f,
- 0x1.111112p-1f, 0x1.0fef02p-1f, 0x1.0ecf56p-1f, 0x1.0db20ap-1f,
- 0x1.0c9714p-1f, 0x1.0b7e6ep-1f, 0x1.0a681p-1f, 0x1.0953f4p-1f,
- 0x1.08421p-1f, 0x1.07326p-1f, 0x1.0624dep-1f, 0x1.05198p-1f,
- 0x1.041042p-1f, 0x1.03091cp-1f, 0x1.020408p-1f, 0x1.010102p-1f};
-
-// Lookup table for log(f) = log(1 + n*2^(-7)) where n = 0..127,
-// computed and stored as float precision constants.
-// Generated by Sollya with the following commands:
-// display = hexadecimal;
-// for n from 0 to 127 do { print(single(log(1 + n / 128.0))); };
-const float LOG_F_FLOAT[128] = {
- 0.0f, 0x1.fe02a6p-8f, 0x1.fc0a8cp-7f, 0x1.7b91bp-6f,
- 0x1.f829bp-6f, 0x1.39e87cp-5f, 0x1.77459p-5f, 0x1.b42dd8p-5f,
- 0x1.f0a30cp-5f, 0x1.16536ep-4f, 0x1.341d7ap-4f, 0x1.51b074p-4f,
- 0x1.6f0d28p-4f, 0x1.8c345ep-4f, 0x1.a926d4p-4f, 0x1.c5e548p-4f,
- 0x1.e27076p-4f, 0x1.fec914p-4f, 0x1.0d77e8p-3f, 0x1.1b72aep-3f,
- 0x1.29553p-3f, 0x1.371fc2p-3f, 0x1.44d2b6p-3f, 0x1.526e5ep-3f,
- 0x1.5ff308p-3f, 0x1.6d60fep-3f, 0x1.7ab89p-3f, 0x1.87fa06p-3f,
- 0x1.9525aap-3f, 0x1.a23bc2p-3f, 0x1.af3c94p-3f, 0x1.bc2868p-3f,
- 0x1.c8ff7cp-3f, 0x1.d5c216p-3f, 0x1.e27076p-3f, 0x1.ef0adcp-3f,
- 0x1.fb9186p-3f, 0x1.04025ap-2f, 0x1.0a324ep-2f, 0x1.1058cp-2f,
- 0x1.1675cap-2f, 0x1.1c898cp-2f, 0x1.22942p-2f, 0x1.2895a2p-2f,
- 0x1.2e8e2cp-2f, 0x1.347ddap-2f, 0x1.3a64c6p-2f, 0x1.404308p-2f,
- 0x1.4618bcp-2f, 0x1.4be5fap-2f, 0x1.51aad8p-2f, 0x1.576772p-2f,
- 0x1.5d1bdcp-2f, 0x1.62c83p-2f, 0x1.686c82p-2f, 0x1.6e08eap-2f,
- 0x1.739d8p-2f, 0x1.792a56p-2f, 0x1.7eaf84p-2f, 0x1.842d1ep-2f,
- 0x1.89a338p-2f, 0x1.8f11e8p-2f, 0x1.947942p-2f, 0x1.99d958p-2f,
- 0x1.9f323ep-2f, 0x1.a4840ap-2f, 0x1.a9cecap-2f, 0x1.af1294p-2f,
- 0x1.b44f78p-2f, 0x1.b9858ap-2f, 0x1.beb4dap-2f, 0x1.c3dd7ap-2f,
- 0x1.c8ff7cp-2f, 0x1.ce1afp-2f, 0x1.d32fe8p-2f, 0x1.d83e72p-2f,
- 0x1.dd46ap-2f, 0x1.e24882p-2f, 0x1.e74426p-2f, 0x1.ec399ep-2f,
- 0x1.f128f6p-2f, 0x1.f6124p-2f, 0x1.faf588p-2f, 0x1.ffd2ep-2f,
- 0x1.02552ap-1f, 0x1.04bdfap-1f, 0x1.0723e6p-1f, 0x1.0986f4p-1f,
- 0x1.0be72ep-1f, 0x1.0e4498p-1f, 0x1.109f3ap-1f, 0x1.12f71ap-1f,
- 0x1.154c3ep-1f, 0x1.179eacp-1f, 0x1.19ee6cp-1f, 0x1.1c3b82p-1f,
- 0x1.1e85f6p-1f, 0x1.20cdcep-1f, 0x1.23130ep-1f, 0x1.2555bcp-1f,
- 0x1.2795e2p-1f, 0x1.29d38p-1f, 0x1.2c0e9ep-1f, 0x1.2e4744p-1f,
- 0x1.307d74p-1f, 0x1.32b134p-1f, 0x1.34e28ap-1f, 0x1.37117cp-1f,
- 0x1.393e0ep-1f, 0x1.3b6844p-1f, 0x1.3d9026p-1f, 0x1.3fb5b8p-1f,
- 0x1.41d8fep-1f, 0x1.43f9fep-1f, 0x1.4618bcp-1f, 0x1.48353ep-1f,
- 0x1.4a4f86p-1f, 0x1.4c679ap-1f, 0x1.4e7d82p-1f, 0x1.50913cp-1f,
- 0x1.52a2d2p-1f, 0x1.54b246p-1f, 0x1.56bf9ep-1f, 0x1.58cadcp-1f,
- 0x1.5ad404p-1f, 0x1.5cdb1ep-1f, 0x1.5ee02ap-1f, 0x1.60e33p-1f};
-
// Range reduction constants for logarithms.
// r(0) = 1, r(127) = 0.5
// r(k) = 2^-8 * ceil(2^8 * (1 - 2^-8) / (1 + k*2^-7))
diff --git a/libc/src/math/generic/common_constants.h b/libc/src/math/generic/common_constants.h
index 72b1d564..9ee31f0 100644
--- a/libc/src/math/generic/common_constants.h
+++ b/libc/src/math/generic/common_constants.h
@@ -17,14 +17,6 @@
namespace LIBC_NAMESPACE_DECL {
-// Lookup table for (1/f) where f = 1 + n*2^(-7), n = 0..127,
-// computed and stored as float precision constants.
-extern const float ONE_OVER_F_FLOAT[128];
-
-// Lookup table for log(f) = log(1 + n*2^(-7)) where n = 0..127,
-// computed and stored as float precision constants.
-extern const float LOG_F_FLOAT[128];
-
// Lookup table for range reduction constants r for logarithms.
extern const float R[128];
diff --git a/libc/src/math/generic/explogxf.h b/libc/src/math/generic/explogxf.h
index a2a6d60..72f8da8 100644
--- a/libc/src/math/generic/explogxf.h
+++ b/libc/src/math/generic/explogxf.h
@@ -121,49 +121,6 @@ template <bool is_sinh> LIBC_INLINE double exp_pm_eval(float x) {
return r;
}
-// x should be positive, normal finite value
-// TODO: Simplify range reduction and polynomial degree for float16.
-// See issue #137190.
-LIBC_INLINE static float log_eval_f(float x) {
- // For x = 2^ex * (1 + mx), logf(x) = ex * logf(2) + logf(1 + mx).
- using FPBits = fputil::FPBits<float>;
- FPBits xbits(x);
-
- float ex = static_cast<float>(xbits.get_exponent());
- // p1 is the leading 7 bits of mx, i.e.
- // p1 * 2^(-7) <= m_x < (p1 + 1) * 2^(-7).
- int p1 = static_cast<int>(xbits.get_mantissa() >> (FPBits::FRACTION_LEN - 7));
-
- // Set bits to (1 + (mx - p1*2^(-7)))
- xbits.set_uintval(xbits.uintval() & (FPBits::FRACTION_MASK >> 7));
- xbits.set_biased_exponent(FPBits::EXP_BIAS);
- // dx = (mx - p1*2^(-7)) / (1 + p1*2^(-7)).
- float dx = (xbits.get_val() - 1.0f) * ONE_OVER_F_FLOAT[p1];
-
- // Minimax polynomial for log(1 + dx), generated using Sollya:
- // > P = fpminimax(log(1 + x)/x, 6, [|SG...|], [0, 2^-7]);
- // > Q = (P - 1) / x;
- // > for i from 0 to degree(Q) do print(coeff(Q, i));
- constexpr float COEFFS[6] = {-0x1p-1f, 0x1.555556p-2f, -0x1.00022ep-2f,
- 0x1.9ea056p-3f, -0x1.e50324p-2f, 0x1.c018fp3f};
-
- float dx2 = dx * dx;
-
- float c1 = fputil::multiply_add(dx, COEFFS[1], COEFFS[0]);
- float c2 = fputil::multiply_add(dx, COEFFS[3], COEFFS[2]);
- float c3 = fputil::multiply_add(dx, COEFFS[5], COEFFS[4]);
-
- float p = fputil::polyeval(dx2, dx, c1, c2, c3);
-
- // Generated by Sollya with the following commands:
- // > display = hexadecimal;
- // > round(log(2), SG, RN);
- constexpr float LOGF_2 = 0x1.62e43p-1f;
-
- float result = fputil::multiply_add(ex, LOGF_2, LOG_F_FLOAT[p1] + p);
- return result;
-}
-
} // namespace LIBC_NAMESPACE_DECL
#endif // LLVM_LIBC_SRC_MATH_GENERIC_EXPLOGXF_H