diff options
Diffstat (limited to 'libc/src/math/generic/atan2f128.cpp')
-rw-r--r-- | libc/src/math/generic/atan2f128.cpp | 189 |
1 files changed, 2 insertions, 187 deletions
diff --git a/libc/src/math/generic/atan2f128.cpp b/libc/src/math/generic/atan2f128.cpp index a3aba0b..ec051dd 100644 --- a/libc/src/math/generic/atan2f128.cpp +++ b/libc/src/math/generic/atan2f128.cpp @@ -7,197 +7,12 @@ //===----------------------------------------------------------------------===// #include "src/math/atan2f128.h" -#include "atan_utils.h" -#include "src/__support/FPUtil/FPBits.h" -#include "src/__support/FPUtil/dyadic_float.h" -#include "src/__support/FPUtil/multiply_add.h" -#include "src/__support/FPUtil/nearest_integer.h" -#include "src/__support/integer_literals.h" -#include "src/__support/macros/config.h" -#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY -#include "src/__support/macros/properties/types.h" -#include "src/__support/uint128.h" +#include "src/__support/math/atan2f128.h" namespace LIBC_NAMESPACE_DECL { -namespace { - -using Float128 = fputil::DyadicFloat<128>; - -static constexpr Float128 ZERO = {Sign::POS, 0, 0_u128}; -static constexpr Float128 MZERO = {Sign::NEG, 0, 0_u128}; -static constexpr Float128 PI = {Sign::POS, -126, - 0xc90fdaa2'2168c234'c4c6628b'80dc1cd1_u128}; -static constexpr Float128 MPI = {Sign::NEG, -126, - 0xc90fdaa2'2168c234'c4c6628b'80dc1cd1_u128}; -static constexpr Float128 PI_OVER_2 = { - Sign::POS, -127, 0xc90fdaa2'2168c234'c4c6628b'80dc1cd1_u128}; -static constexpr Float128 MPI_OVER_2 = { - Sign::NEG, -127, 0xc90fdaa2'2168c234'c4c6628b'80dc1cd1_u128}; -static constexpr Float128 PI_OVER_4 = { - Sign::POS, -128, 0xc90fdaa2'2168c234'c4c6628b'80dc1cd1_u128}; -static constexpr Float128 THREE_PI_OVER_4 = { - Sign::POS, -128, 0x96cbe3f9'990e91a7'9394c9e8'a0a5159d_u128}; - -// Adjustment for constant term: -// CONST_ADJ[x_sign][y_sign][recip] -static constexpr Float128 CONST_ADJ[2][2][2] = { - {{ZERO, MPI_OVER_2}, {MZERO, MPI_OVER_2}}, - {{MPI, PI_OVER_2}, {MPI, PI_OVER_2}}}; - -} // anonymous namespace - -// There are several range reduction steps we can take for atan2(y, x) as -// follow: - -// * Range reduction 1: signness -// atan2(y, x) will return a number between -PI and PI representing the angle -// forming by the 0x axis and the vector (x, y) on the 0xy-plane. -// In particular, we have that: -// atan2(y, x) = atan( y/x ) if x >= 0 and y >= 0 (I-quadrant) -// = pi + atan( y/x ) if x < 0 and y >= 0 (II-quadrant) -// = -pi + atan( y/x ) if x < 0 and y < 0 (III-quadrant) -// = atan( y/x ) if x >= 0 and y < 0 (IV-quadrant) -// Since atan function is odd, we can use the formula: -// atan(-u) = -atan(u) -// to adjust the above conditions a bit further: -// atan2(y, x) = atan( |y|/|x| ) if x >= 0 and y >= 0 (I-quadrant) -// = pi - atan( |y|/|x| ) if x < 0 and y >= 0 (II-quadrant) -// = -pi + atan( |y|/|x| ) if x < 0 and y < 0 (III-quadrant) -// = -atan( |y|/|x| ) if x >= 0 and y < 0 (IV-quadrant) -// Which can be simplified to: -// atan2(y, x) = sign(y) * atan( |y|/|x| ) if x >= 0 -// = sign(y) * (pi - atan( |y|/|x| )) if x < 0 - -// * Range reduction 2: reciprocal -// Now that the argument inside atan is positive, we can use the formula: -// atan(1/x) = pi/2 - atan(x) -// to make the argument inside atan <= 1 as follow: -// atan2(y, x) = sign(y) * atan( |y|/|x|) if 0 <= |y| <= x -// = sign(y) * (pi/2 - atan( |x|/|y| ) if 0 <= x < |y| -// = sign(y) * (pi - atan( |y|/|x| )) if 0 <= |y| <= -x -// = sign(y) * (pi/2 + atan( |x|/|y| )) if 0 <= -x < |y| - -// * Range reduction 3: look up table. -// After the previous two range reduction steps, we reduce the problem to -// compute atan(u) with 0 <= u <= 1, or to be precise: -// atan( n / d ) where n = min(|x|, |y|) and d = max(|x|, |y|). -// An accurate polynomial approximation for the whole [0, 1] input range will -// require a very large degree. To make it more efficient, we reduce the input -// range further by finding an integer idx such that: -// | n/d - idx/64 | <= 1/128. -// In particular, -// idx := round(2^6 * n/d) -// Then for the fast pass, we find a polynomial approximation for: -// atan( n/d ) ~ atan( idx/64 ) + (n/d - idx/64) * Q(n/d - idx/64) -// For the accurate pass, we use the addition formula: -// atan( n/d ) - atan( idx/64 ) = atan( (n/d - idx/64)/(1 + (n*idx)/(64*d)) ) -// = atan( (n - d*(idx/64))/(d + n*(idx/64)) ) -// And for the fast pass, we use degree-13 minimax polynomial to compute the -// RHS: -// atan(u) ~ P(u) = u - c_3 * u^3 + c_5 * u^5 - c_7 * u^7 + c_9 *u^9 - -// - c_11 * u^11 + c_13 * u^13 -// with absolute errors bounded by: -// |atan(u) - P(u)| < 2^-121 -// and relative errors bounded by: -// |(atan(u) - P(u)) / P(u)| < 2^-114. - LLVM_LIBC_FUNCTION(float128, atan2f128, (float128 y, float128 x)) { - using FPBits = fputil::FPBits<float128>; - using Float128 = fputil::DyadicFloat<128>; - - FPBits x_bits(x), y_bits(y); - bool x_sign = x_bits.sign().is_neg(); - bool y_sign = y_bits.sign().is_neg(); - x_bits = x_bits.abs(); - y_bits = y_bits.abs(); - UInt128 x_abs = x_bits.uintval(); - UInt128 y_abs = y_bits.uintval(); - bool recip = x_abs < y_abs; - UInt128 min_abs = recip ? x_abs : y_abs; - UInt128 max_abs = !recip ? x_abs : y_abs; - unsigned min_exp = static_cast<unsigned>(min_abs >> FPBits::FRACTION_LEN); - unsigned max_exp = static_cast<unsigned>(max_abs >> FPBits::FRACTION_LEN); - - Float128 num(FPBits(min_abs).get_val()); - Float128 den(FPBits(max_abs).get_val()); - - // Check for exceptional cases, whether inputs are 0, inf, nan, or close to - // overflow, or close to underflow. - if (LIBC_UNLIKELY(max_exp >= 0x7fffU || min_exp == 0U)) { - if (x_bits.is_nan() || y_bits.is_nan()) - return FPBits::quiet_nan().get_val(); - unsigned x_except = x == 0 ? 0 : (FPBits(x_abs).is_inf() ? 2 : 1); - unsigned y_except = y == 0 ? 0 : (FPBits(y_abs).is_inf() ? 2 : 1); - - // Exceptional cases: - // EXCEPT[y_except][x_except][x_is_neg] - // with x_except & y_except: - // 0: zero - // 1: finite, non-zero - // 2: infinity - constexpr Float128 EXCEPTS[3][3][2] = { - {{ZERO, PI}, {ZERO, PI}, {ZERO, PI}}, - {{PI_OVER_2, PI_OVER_2}, {ZERO, ZERO}, {ZERO, PI}}, - {{PI_OVER_2, PI_OVER_2}, - {PI_OVER_2, PI_OVER_2}, - {PI_OVER_4, THREE_PI_OVER_4}}, - }; - - if ((x_except != 1) || (y_except != 1)) { - Float128 r = EXCEPTS[y_except][x_except][x_sign]; - if (y_sign) - r.sign = r.sign.negate(); - return static_cast<float128>(r); - } - } - - bool final_sign = ((x_sign != y_sign) != recip); - Float128 const_term = CONST_ADJ[x_sign][y_sign][recip]; - int exp_diff = den.exponent - num.exponent; - // We have the following bound for normalized n and d: - // 2^(-exp_diff - 1) < n/d < 2^(-exp_diff + 1). - if (LIBC_UNLIKELY(exp_diff > FPBits::FRACTION_LEN + 2)) { - if (final_sign) - const_term.sign = const_term.sign.negate(); - return static_cast<float128>(const_term); - } - - // Take 24 leading bits of num and den to convert to float for fast division. - // We also multiply the numerator by 64 using integer addition directly to the - // exponent field. - float num_f = - cpp::bit_cast<float>(static_cast<uint32_t>(num.mantissa >> 104) + - (6U << fputil::FPBits<float>::FRACTION_LEN)); - float den_f = cpp::bit_cast<float>( - static_cast<uint32_t>(den.mantissa >> 104) + - (static_cast<uint32_t>(exp_diff) << fputil::FPBits<float>::FRACTION_LEN)); - - float k = fputil::nearest_integer(num_f / den_f); - unsigned idx = static_cast<unsigned>(k); - - // k_f128 = idx / 64 - Float128 k_f128(Sign::POS, -6, Float128::MantissaType(idx)); - - // Range reduction: - // atan(n/d) - atan(k) = atan((n/d - k/64) / (1 + (n/d) * (k/64))) - // = atan((n - d * k/64)) / (d + n * k/64)) - // num_f128 = n - d * k/64 - Float128 num_f128 = fputil::multiply_add(den, -k_f128, num); - // den_f128 = d + n * k/64 - Float128 den_f128 = fputil::multiply_add(num, k_f128, den); - - // q = (n - d * k) / (d + n * k) - Float128 q = fputil::quick_mul(num_f128, fputil::approx_reciprocal(den_f128)); - // p ~ atan(q) - Float128 p = atan_eval(q); - - Float128 r = - fputil::quick_add(const_term, fputil::quick_add(ATAN_I_F128[idx], p)); - if (final_sign) - r.sign = r.sign.negate(); - - return static_cast<float128>(r); + return math::atan2f128(y, x); } } // namespace LIBC_NAMESPACE_DECL |