1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
|
//===-- Quad-precision atan2 function -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "src/math/atan2f128.h"
#include "atan_utils.h"
#include "src/__support/FPUtil/FPBits.h"
#include "src/__support/FPUtil/dyadic_float.h"
#include "src/__support/FPUtil/multiply_add.h"
#include "src/__support/FPUtil/nearest_integer.h"
#include "src/__support/integer_literals.h"
#include "src/__support/macros/config.h"
#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
#include "src/__support/macros/properties/types.h"
#include "src/__support/uint128.h"
namespace LIBC_NAMESPACE_DECL {
namespace {
using Float128 = fputil::DyadicFloat<128>;
static constexpr Float128 ZERO = {Sign::POS, 0, 0_u128};
static constexpr Float128 MZERO = {Sign::NEG, 0, 0_u128};
static constexpr Float128 PI = {Sign::POS, -126,
0xc90fdaa2'2168c234'c4c6628b'80dc1cd1_u128};
static constexpr Float128 MPI = {Sign::NEG, -126,
0xc90fdaa2'2168c234'c4c6628b'80dc1cd1_u128};
static constexpr Float128 PI_OVER_2 = {
Sign::POS, -127, 0xc90fdaa2'2168c234'c4c6628b'80dc1cd1_u128};
static constexpr Float128 MPI_OVER_2 = {
Sign::NEG, -127, 0xc90fdaa2'2168c234'c4c6628b'80dc1cd1_u128};
static constexpr Float128 PI_OVER_4 = {
Sign::POS, -128, 0xc90fdaa2'2168c234'c4c6628b'80dc1cd1_u128};
static constexpr Float128 THREE_PI_OVER_4 = {
Sign::POS, -128, 0x96cbe3f9'990e91a7'9394c9e8'a0a5159d_u128};
// Adjustment for constant term:
// CONST_ADJ[x_sign][y_sign][recip]
static constexpr Float128 CONST_ADJ[2][2][2] = {
{{ZERO, MPI_OVER_2}, {MZERO, MPI_OVER_2}},
{{MPI, PI_OVER_2}, {MPI, PI_OVER_2}}};
} // anonymous namespace
// There are several range reduction steps we can take for atan2(y, x) as
// follow:
// * Range reduction 1: signness
// atan2(y, x) will return a number between -PI and PI representing the angle
// forming by the 0x axis and the vector (x, y) on the 0xy-plane.
// In particular, we have that:
// atan2(y, x) = atan( y/x ) if x >= 0 and y >= 0 (I-quadrant)
// = pi + atan( y/x ) if x < 0 and y >= 0 (II-quadrant)
// = -pi + atan( y/x ) if x < 0 and y < 0 (III-quadrant)
// = atan( y/x ) if x >= 0 and y < 0 (IV-quadrant)
// Since atan function is odd, we can use the formula:
// atan(-u) = -atan(u)
// to adjust the above conditions a bit further:
// atan2(y, x) = atan( |y|/|x| ) if x >= 0 and y >= 0 (I-quadrant)
// = pi - atan( |y|/|x| ) if x < 0 and y >= 0 (II-quadrant)
// = -pi + atan( |y|/|x| ) if x < 0 and y < 0 (III-quadrant)
// = -atan( |y|/|x| ) if x >= 0 and y < 0 (IV-quadrant)
// Which can be simplified to:
// atan2(y, x) = sign(y) * atan( |y|/|x| ) if x >= 0
// = sign(y) * (pi - atan( |y|/|x| )) if x < 0
// * Range reduction 2: reciprocal
// Now that the argument inside atan is positive, we can use the formula:
// atan(1/x) = pi/2 - atan(x)
// to make the argument inside atan <= 1 as follow:
// atan2(y, x) = sign(y) * atan( |y|/|x|) if 0 <= |y| <= x
// = sign(y) * (pi/2 - atan( |x|/|y| ) if 0 <= x < |y|
// = sign(y) * (pi - atan( |y|/|x| )) if 0 <= |y| <= -x
// = sign(y) * (pi/2 + atan( |x|/|y| )) if 0 <= -x < |y|
// * Range reduction 3: look up table.
// After the previous two range reduction steps, we reduce the problem to
// compute atan(u) with 0 <= u <= 1, or to be precise:
// atan( n / d ) where n = min(|x|, |y|) and d = max(|x|, |y|).
// An accurate polynomial approximation for the whole [0, 1] input range will
// require a very large degree. To make it more efficient, we reduce the input
// range further by finding an integer idx such that:
// | n/d - idx/64 | <= 1/128.
// In particular,
// idx := round(2^6 * n/d)
// Then for the fast pass, we find a polynomial approximation for:
// atan( n/d ) ~ atan( idx/64 ) + (n/d - idx/64) * Q(n/d - idx/64)
// For the accurate pass, we use the addition formula:
// atan( n/d ) - atan( idx/64 ) = atan( (n/d - idx/64)/(1 + (n*idx)/(64*d)) )
// = atan( (n - d*(idx/64))/(d + n*(idx/64)) )
// And for the fast pass, we use degree-13 minimax polynomial to compute the
// RHS:
// atan(u) ~ P(u) = u - c_3 * u^3 + c_5 * u^5 - c_7 * u^7 + c_9 *u^9 -
// - c_11 * u^11 + c_13 * u^13
// with absolute errors bounded by:
// |atan(u) - P(u)| < 2^-121
// and relative errors bounded by:
// |(atan(u) - P(u)) / P(u)| < 2^-114.
LLVM_LIBC_FUNCTION(float128, atan2f128, (float128 y, float128 x)) {
using FPBits = fputil::FPBits<float128>;
using Float128 = fputil::DyadicFloat<128>;
FPBits x_bits(x), y_bits(y);
bool x_sign = x_bits.sign().is_neg();
bool y_sign = y_bits.sign().is_neg();
x_bits = x_bits.abs();
y_bits = y_bits.abs();
UInt128 x_abs = x_bits.uintval();
UInt128 y_abs = y_bits.uintval();
bool recip = x_abs < y_abs;
UInt128 min_abs = recip ? x_abs : y_abs;
UInt128 max_abs = !recip ? x_abs : y_abs;
unsigned min_exp = static_cast<unsigned>(min_abs >> FPBits::FRACTION_LEN);
unsigned max_exp = static_cast<unsigned>(max_abs >> FPBits::FRACTION_LEN);
Float128 num(FPBits(min_abs).get_val());
Float128 den(FPBits(max_abs).get_val());
// Check for exceptional cases, whether inputs are 0, inf, nan, or close to
// overflow, or close to underflow.
if (LIBC_UNLIKELY(max_exp >= 0x7fffU || min_exp == 0U)) {
if (x_bits.is_nan() || y_bits.is_nan())
return FPBits::quiet_nan().get_val();
unsigned x_except = x == 0 ? 0 : (FPBits(x_abs).is_inf() ? 2 : 1);
unsigned y_except = y == 0 ? 0 : (FPBits(y_abs).is_inf() ? 2 : 1);
// Exceptional cases:
// EXCEPT[y_except][x_except][x_is_neg]
// with x_except & y_except:
// 0: zero
// 1: finite, non-zero
// 2: infinity
constexpr Float128 EXCEPTS[3][3][2] = {
{{ZERO, PI}, {ZERO, PI}, {ZERO, PI}},
{{PI_OVER_2, PI_OVER_2}, {ZERO, ZERO}, {ZERO, PI}},
{{PI_OVER_2, PI_OVER_2},
{PI_OVER_2, PI_OVER_2},
{PI_OVER_4, THREE_PI_OVER_4}},
};
if ((x_except != 1) || (y_except != 1)) {
Float128 r = EXCEPTS[y_except][x_except][x_sign];
if (y_sign)
r.sign = r.sign.negate();
return static_cast<float128>(r);
}
}
bool final_sign = ((x_sign != y_sign) != recip);
Float128 const_term = CONST_ADJ[x_sign][y_sign][recip];
int exp_diff = den.exponent - num.exponent;
// We have the following bound for normalized n and d:
// 2^(-exp_diff - 1) < n/d < 2^(-exp_diff + 1).
if (LIBC_UNLIKELY(exp_diff > FPBits::FRACTION_LEN + 2)) {
if (final_sign)
const_term.sign = const_term.sign.negate();
return static_cast<float128>(const_term);
}
// Take 24 leading bits of num and den to convert to float for fast division.
// We also multiply the numerator by 64 using integer addition directly to the
// exponent field.
float num_f =
cpp::bit_cast<float>(static_cast<uint32_t>(num.mantissa >> 104) +
(6U << fputil::FPBits<float>::FRACTION_LEN));
float den_f = cpp::bit_cast<float>(
static_cast<uint32_t>(den.mantissa >> 104) +
(static_cast<uint32_t>(exp_diff) << fputil::FPBits<float>::FRACTION_LEN));
float k = fputil::nearest_integer(num_f / den_f);
unsigned idx = static_cast<unsigned>(k);
// k_f128 = idx / 64
Float128 k_f128(Sign::POS, -6, Float128::MantissaType(idx));
// Range reduction:
// atan(n/d) - atan(k) = atan((n/d - k/64) / (1 + (n/d) * (k/64)))
// = atan((n - d * k/64)) / (d + n * k/64))
// num_f128 = n - d * k/64
Float128 num_f128 = fputil::multiply_add(den, -k_f128, num);
// den_f128 = d + n * k/64
Float128 den_f128 = fputil::multiply_add(num, k_f128, den);
// q = (n - d * k) / (d + n * k)
Float128 q = fputil::quick_mul(num_f128, fputil::approx_reciprocal(den_f128));
// p ~ atan(q)
Float128 p = atan_eval(q);
Float128 r =
fputil::quick_add(const_term, fputil::quick_add(ATAN_I_F128[idx], p));
if (final_sign)
r.sign = r.sign.negate();
return static_cast<float128>(r);
}
} // namespace LIBC_NAMESPACE_DECL
|