aboutsummaryrefslogtreecommitdiff
path: root/libc/src/math/generic/atan2.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'libc/src/math/generic/atan2.cpp')
-rw-r--r--libc/src/math/generic/atan2.cpp186
1 files changed, 2 insertions, 184 deletions
diff --git a/libc/src/math/generic/atan2.cpp b/libc/src/math/generic/atan2.cpp
index aa770de..4aaa63d 100644
--- a/libc/src/math/generic/atan2.cpp
+++ b/libc/src/math/generic/atan2.cpp
@@ -7,194 +7,12 @@
//===----------------------------------------------------------------------===//
#include "src/math/atan2.h"
-#include "atan_utils.h"
-#include "src/__support/FPUtil/FEnvImpl.h"
-#include "src/__support/FPUtil/FPBits.h"
-#include "src/__support/FPUtil/double_double.h"
-#include "src/__support/FPUtil/multiply_add.h"
-#include "src/__support/FPUtil/nearest_integer.h"
-#include "src/__support/macros/config.h"
-#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
+#include "src/__support/math/atan2.h"
namespace LIBC_NAMESPACE_DECL {
-// There are several range reduction steps we can take for atan2(y, x) as
-// follow:
-
-// * Range reduction 1: signness
-// atan2(y, x) will return a number between -PI and PI representing the angle
-// forming by the 0x axis and the vector (x, y) on the 0xy-plane.
-// In particular, we have that:
-// atan2(y, x) = atan( y/x ) if x >= 0 and y >= 0 (I-quadrant)
-// = pi + atan( y/x ) if x < 0 and y >= 0 (II-quadrant)
-// = -pi + atan( y/x ) if x < 0 and y < 0 (III-quadrant)
-// = atan( y/x ) if x >= 0 and y < 0 (IV-quadrant)
-// Since atan function is odd, we can use the formula:
-// atan(-u) = -atan(u)
-// to adjust the above conditions a bit further:
-// atan2(y, x) = atan( |y|/|x| ) if x >= 0 and y >= 0 (I-quadrant)
-// = pi - atan( |y|/|x| ) if x < 0 and y >= 0 (II-quadrant)
-// = -pi + atan( |y|/|x| ) if x < 0 and y < 0 (III-quadrant)
-// = -atan( |y|/|x| ) if x >= 0 and y < 0 (IV-quadrant)
-// Which can be simplified to:
-// atan2(y, x) = sign(y) * atan( |y|/|x| ) if x >= 0
-// = sign(y) * (pi - atan( |y|/|x| )) if x < 0
-
-// * Range reduction 2: reciprocal
-// Now that the argument inside atan is positive, we can use the formula:
-// atan(1/x) = pi/2 - atan(x)
-// to make the argument inside atan <= 1 as follow:
-// atan2(y, x) = sign(y) * atan( |y|/|x|) if 0 <= |y| <= x
-// = sign(y) * (pi/2 - atan( |x|/|y| ) if 0 <= x < |y|
-// = sign(y) * (pi - atan( |y|/|x| )) if 0 <= |y| <= -x
-// = sign(y) * (pi/2 + atan( |x|/|y| )) if 0 <= -x < |y|
-
-// * Range reduction 3: look up table.
-// After the previous two range reduction steps, we reduce the problem to
-// compute atan(u) with 0 <= u <= 1, or to be precise:
-// atan( n / d ) where n = min(|x|, |y|) and d = max(|x|, |y|).
-// An accurate polynomial approximation for the whole [0, 1] input range will
-// require a very large degree. To make it more efficient, we reduce the input
-// range further by finding an integer idx such that:
-// | n/d - idx/64 | <= 1/128.
-// In particular,
-// idx := round(2^6 * n/d)
-// Then for the fast pass, we find a polynomial approximation for:
-// atan( n/d ) ~ atan( idx/64 ) + (n/d - idx/64) * Q(n/d - idx/64)
-// For the accurate pass, we use the addition formula:
-// atan( n/d ) - atan( idx/64 ) = atan( (n/d - idx/64)/(1 + (n*idx)/(64*d)) )
-// = atan( (n - d*(idx/64))/(d + n*(idx/64)) )
-// And for the fast pass, we use degree-9 Taylor polynomial to compute the RHS:
-// atan(u) ~ P(u) = u - u^3/3 + u^5/5 - u^7/7 + u^9/9
-// with absolute errors bounded by:
-// |atan(u) - P(u)| < |u|^11 / 11 < 2^-80
-// and relative errors bounded by:
-// |(atan(u) - P(u)) / P(u)| < u^10 / 11 < 2^-73.
-
LLVM_LIBC_FUNCTION(double, atan2, (double y, double x)) {
- using FPBits = fputil::FPBits<double>;
-
- constexpr double IS_NEG[2] = {1.0, -1.0};
- constexpr DoubleDouble ZERO = {0.0, 0.0};
- constexpr DoubleDouble MZERO = {-0.0, -0.0};
- constexpr DoubleDouble PI = {0x1.1a62633145c07p-53, 0x1.921fb54442d18p+1};
- constexpr DoubleDouble MPI = {-0x1.1a62633145c07p-53, -0x1.921fb54442d18p+1};
- constexpr DoubleDouble PI_OVER_2 = {0x1.1a62633145c07p-54,
- 0x1.921fb54442d18p0};
- constexpr DoubleDouble MPI_OVER_2 = {-0x1.1a62633145c07p-54,
- -0x1.921fb54442d18p0};
- constexpr DoubleDouble PI_OVER_4 = {0x1.1a62633145c07p-55,
- 0x1.921fb54442d18p-1};
- constexpr DoubleDouble THREE_PI_OVER_4 = {0x1.a79394c9e8a0ap-54,
- 0x1.2d97c7f3321d2p+1};
- // Adjustment for constant term:
- // CONST_ADJ[x_sign][y_sign][recip]
- constexpr DoubleDouble CONST_ADJ[2][2][2] = {
- {{ZERO, MPI_OVER_2}, {MZERO, MPI_OVER_2}},
- {{MPI, PI_OVER_2}, {MPI, PI_OVER_2}}};
-
- FPBits x_bits(x), y_bits(y);
- bool x_sign = x_bits.sign().is_neg();
- bool y_sign = y_bits.sign().is_neg();
- x_bits = x_bits.abs();
- y_bits = y_bits.abs();
- uint64_t x_abs = x_bits.uintval();
- uint64_t y_abs = y_bits.uintval();
- bool recip = x_abs < y_abs;
- uint64_t min_abs = recip ? x_abs : y_abs;
- uint64_t max_abs = !recip ? x_abs : y_abs;
- unsigned min_exp = static_cast<unsigned>(min_abs >> FPBits::FRACTION_LEN);
- unsigned max_exp = static_cast<unsigned>(max_abs >> FPBits::FRACTION_LEN);
-
- double num = FPBits(min_abs).get_val();
- double den = FPBits(max_abs).get_val();
-
- // Check for exceptional cases, whether inputs are 0, inf, nan, or close to
- // overflow, or close to underflow.
- if (LIBC_UNLIKELY(max_exp > 0x7ffU - 128U || min_exp < 128U)) {
- if (x_bits.is_nan() || y_bits.is_nan()) {
- if (x_bits.is_signaling_nan() || y_bits.is_signaling_nan())
- fputil::raise_except_if_required(FE_INVALID);
- return FPBits::quiet_nan().get_val();
- }
- unsigned x_except = x == 0.0 ? 0 : (FPBits(x_abs).is_inf() ? 2 : 1);
- unsigned y_except = y == 0.0 ? 0 : (FPBits(y_abs).is_inf() ? 2 : 1);
-
- // Exceptional cases:
- // EXCEPT[y_except][x_except][x_is_neg]
- // with x_except & y_except:
- // 0: zero
- // 1: finite, non-zero
- // 2: infinity
- constexpr DoubleDouble EXCEPTS[3][3][2] = {
- {{ZERO, PI}, {ZERO, PI}, {ZERO, PI}},
- {{PI_OVER_2, PI_OVER_2}, {ZERO, ZERO}, {ZERO, PI}},
- {{PI_OVER_2, PI_OVER_2},
- {PI_OVER_2, PI_OVER_2},
- {PI_OVER_4, THREE_PI_OVER_4}},
- };
-
- if ((x_except != 1) || (y_except != 1)) {
- DoubleDouble r = EXCEPTS[y_except][x_except][x_sign];
- return fputil::multiply_add(IS_NEG[y_sign], r.hi, IS_NEG[y_sign] * r.lo);
- }
- bool scale_up = min_exp < 128U;
- bool scale_down = max_exp > 0x7ffU - 128U;
- // At least one input is denormal, multiply both numerator and denominator
- // by some large enough power of 2 to normalize denormal inputs.
- if (scale_up) {
- num *= 0x1.0p64;
- if (!scale_down)
- den *= 0x1.0p64;
- } else if (scale_down) {
- den *= 0x1.0p-64;
- if (!scale_up)
- num *= 0x1.0p-64;
- }
-
- min_abs = FPBits(num).uintval();
- max_abs = FPBits(den).uintval();
- min_exp = static_cast<unsigned>(min_abs >> FPBits::FRACTION_LEN);
- max_exp = static_cast<unsigned>(max_abs >> FPBits::FRACTION_LEN);
- }
-
- double final_sign = IS_NEG[(x_sign != y_sign) != recip];
- DoubleDouble const_term = CONST_ADJ[x_sign][y_sign][recip];
- unsigned exp_diff = max_exp - min_exp;
- // We have the following bound for normalized n and d:
- // 2^(-exp_diff - 1) < n/d < 2^(-exp_diff + 1).
- if (LIBC_UNLIKELY(exp_diff > 54)) {
- return fputil::multiply_add(final_sign, const_term.hi,
- final_sign * (const_term.lo + num / den));
- }
-
- double k = fputil::nearest_integer(64.0 * num / den);
- unsigned idx = static_cast<unsigned>(k);
- // k = idx / 64
- k *= 0x1.0p-6;
-
- // Range reduction:
- // atan(n/d) - atan(k/64) = atan((n/d - k/64) / (1 + (n/d) * (k/64)))
- // = atan((n - d * k/64)) / (d + n * k/64))
- DoubleDouble num_k = fputil::exact_mult(num, k);
- DoubleDouble den_k = fputil::exact_mult(den, k);
-
- // num_dd = n - d * k
- DoubleDouble num_dd = fputil::exact_add(num - den_k.hi, -den_k.lo);
- // den_dd = d + n * k
- DoubleDouble den_dd = fputil::exact_add(den, num_k.hi);
- den_dd.lo += num_k.lo;
-
- // q = (n - d * k) / (d + n * k)
- DoubleDouble q = fputil::div(num_dd, den_dd);
- // p ~ atan(q)
- DoubleDouble p = atan_eval(q);
-
- DoubleDouble r = fputil::add(const_term, fputil::add(ATAN_I[idx], p));
- r.hi *= final_sign;
- r.lo *= final_sign;
-
- return r.hi + r.lo;
+ return math::atan2(y, x);
}
} // namespace LIBC_NAMESPACE_DECL